8dbc54cde59e69e40d01a4baf655ce1c10f8d3d5
[linux-2.6.git] / security / selinux / hooks.c
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
7  *            Chris Vance, <cvance@nai.com>
8  *            Wayne Salamon, <wsalamon@nai.com>
9  *            James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *                                         Eric Paris <eparis@redhat.com>
14  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15  *                          <dgoeddel@trustedcs.com>
16  *  Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
17  *              Paul Moore <paul.moore@hp.com>
18  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19  *                     Yuichi Nakamura <ynakam@hitachisoft.jp>
20  *
21  *      This program is free software; you can redistribute it and/or modify
22  *      it under the terms of the GNU General Public License version 2,
23  *      as published by the Free Software Foundation.
24  */
25
26 #include <linux/init.h>
27 #include <linux/kernel.h>
28 #include <linux/tracehook.h>
29 #include <linux/errno.h>
30 #include <linux/sched.h>
31 #include <linux/security.h>
32 #include <linux/xattr.h>
33 #include <linux/capability.h>
34 #include <linux/unistd.h>
35 #include <linux/mm.h>
36 #include <linux/mman.h>
37 #include <linux/slab.h>
38 #include <linux/pagemap.h>
39 #include <linux/swap.h>
40 #include <linux/spinlock.h>
41 #include <linux/syscalls.h>
42 #include <linux/file.h>
43 #include <linux/fdtable.h>
44 #include <linux/namei.h>
45 #include <linux/mount.h>
46 #include <linux/proc_fs.h>
47 #include <linux/netfilter_ipv4.h>
48 #include <linux/netfilter_ipv6.h>
49 #include <linux/tty.h>
50 #include <net/icmp.h>
51 #include <net/ip.h>             /* for local_port_range[] */
52 #include <net/tcp.h>            /* struct or_callable used in sock_rcv_skb */
53 #include <net/net_namespace.h>
54 #include <net/netlabel.h>
55 #include <linux/uaccess.h>
56 #include <asm/ioctls.h>
57 #include <asm/atomic.h>
58 #include <linux/bitops.h>
59 #include <linux/interrupt.h>
60 #include <linux/netdevice.h>    /* for network interface checks */
61 #include <linux/netlink.h>
62 #include <linux/tcp.h>
63 #include <linux/udp.h>
64 #include <linux/dccp.h>
65 #include <linux/quota.h>
66 #include <linux/un.h>           /* for Unix socket types */
67 #include <net/af_unix.h>        /* for Unix socket types */
68 #include <linux/parser.h>
69 #include <linux/nfs_mount.h>
70 #include <net/ipv6.h>
71 #include <linux/hugetlb.h>
72 #include <linux/personality.h>
73 #include <linux/sysctl.h>
74 #include <linux/audit.h>
75 #include <linux/string.h>
76 #include <linux/selinux.h>
77 #include <linux/mutex.h>
78 #include <linux/posix-timers.h>
79
80 #include "avc.h"
81 #include "objsec.h"
82 #include "netif.h"
83 #include "netnode.h"
84 #include "netport.h"
85 #include "xfrm.h"
86 #include "netlabel.h"
87 #include "audit.h"
88
89 #define XATTR_SELINUX_SUFFIX "selinux"
90 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX
91
92 #define NUM_SEL_MNT_OPTS 4
93
94 extern unsigned int policydb_loaded_version;
95 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
96 extern int selinux_compat_net;
97 extern struct security_operations *security_ops;
98
99 /* SECMARK reference count */
100 atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
101
102 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
103 int selinux_enforcing;
104
105 static int __init enforcing_setup(char *str)
106 {
107         unsigned long enforcing;
108         if (!strict_strtoul(str, 0, &enforcing))
109                 selinux_enforcing = enforcing ? 1 : 0;
110         return 1;
111 }
112 __setup("enforcing=", enforcing_setup);
113 #endif
114
115 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
116 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
117
118 static int __init selinux_enabled_setup(char *str)
119 {
120         unsigned long enabled;
121         if (!strict_strtoul(str, 0, &enabled))
122                 selinux_enabled = enabled ? 1 : 0;
123         return 1;
124 }
125 __setup("selinux=", selinux_enabled_setup);
126 #else
127 int selinux_enabled = 1;
128 #endif
129
130
131 /*
132  * Minimal support for a secondary security module,
133  * just to allow the use of the capability module.
134  */
135 static struct security_operations *secondary_ops;
136
137 /* Lists of inode and superblock security structures initialized
138    before the policy was loaded. */
139 static LIST_HEAD(superblock_security_head);
140 static DEFINE_SPINLOCK(sb_security_lock);
141
142 static struct kmem_cache *sel_inode_cache;
143
144 /**
145  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
146  *
147  * Description:
148  * This function checks the SECMARK reference counter to see if any SECMARK
149  * targets are currently configured, if the reference counter is greater than
150  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
151  * enabled, false (0) if SECMARK is disabled.
152  *
153  */
154 static int selinux_secmark_enabled(void)
155 {
156         return (atomic_read(&selinux_secmark_refcount) > 0);
157 }
158
159 /*
160  * initialise the security for the init task
161  */
162 static void cred_init_security(void)
163 {
164         struct cred *cred = (struct cred *) current->real_cred;
165         struct task_security_struct *tsec;
166
167         tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
168         if (!tsec)
169                 panic("SELinux:  Failed to initialize initial task.\n");
170
171         tsec->osid = tsec->sid = SECINITSID_KERNEL;
172         cred->security = tsec;
173 }
174
175 /*
176  * get the security ID of a set of credentials
177  */
178 static inline u32 cred_sid(const struct cred *cred)
179 {
180         const struct task_security_struct *tsec;
181
182         tsec = cred->security;
183         return tsec->sid;
184 }
185
186 /*
187  * get the objective security ID of a task
188  */
189 static inline u32 task_sid(const struct task_struct *task)
190 {
191         u32 sid;
192
193         rcu_read_lock();
194         sid = cred_sid(__task_cred(task));
195         rcu_read_unlock();
196         return sid;
197 }
198
199 /*
200  * get the subjective security ID of the current task
201  */
202 static inline u32 current_sid(void)
203 {
204         const struct task_security_struct *tsec = current_cred()->security;
205
206         return tsec->sid;
207 }
208
209 /* Allocate and free functions for each kind of security blob. */
210
211 static int inode_alloc_security(struct inode *inode)
212 {
213         struct inode_security_struct *isec;
214         u32 sid = current_sid();
215
216         isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
217         if (!isec)
218                 return -ENOMEM;
219
220         mutex_init(&isec->lock);
221         INIT_LIST_HEAD(&isec->list);
222         isec->inode = inode;
223         isec->sid = SECINITSID_UNLABELED;
224         isec->sclass = SECCLASS_FILE;
225         isec->task_sid = sid;
226         inode->i_security = isec;
227
228         return 0;
229 }
230
231 static void inode_free_security(struct inode *inode)
232 {
233         struct inode_security_struct *isec = inode->i_security;
234         struct superblock_security_struct *sbsec = inode->i_sb->s_security;
235
236         spin_lock(&sbsec->isec_lock);
237         if (!list_empty(&isec->list))
238                 list_del_init(&isec->list);
239         spin_unlock(&sbsec->isec_lock);
240
241         inode->i_security = NULL;
242         kmem_cache_free(sel_inode_cache, isec);
243 }
244
245 static int file_alloc_security(struct file *file)
246 {
247         struct file_security_struct *fsec;
248         u32 sid = current_sid();
249
250         fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
251         if (!fsec)
252                 return -ENOMEM;
253
254         fsec->sid = sid;
255         fsec->fown_sid = sid;
256         file->f_security = fsec;
257
258         return 0;
259 }
260
261 static void file_free_security(struct file *file)
262 {
263         struct file_security_struct *fsec = file->f_security;
264         file->f_security = NULL;
265         kfree(fsec);
266 }
267
268 static int superblock_alloc_security(struct super_block *sb)
269 {
270         struct superblock_security_struct *sbsec;
271
272         sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
273         if (!sbsec)
274                 return -ENOMEM;
275
276         mutex_init(&sbsec->lock);
277         INIT_LIST_HEAD(&sbsec->list);
278         INIT_LIST_HEAD(&sbsec->isec_head);
279         spin_lock_init(&sbsec->isec_lock);
280         sbsec->sb = sb;
281         sbsec->sid = SECINITSID_UNLABELED;
282         sbsec->def_sid = SECINITSID_FILE;
283         sbsec->mntpoint_sid = SECINITSID_UNLABELED;
284         sb->s_security = sbsec;
285
286         return 0;
287 }
288
289 static void superblock_free_security(struct super_block *sb)
290 {
291         struct superblock_security_struct *sbsec = sb->s_security;
292
293         spin_lock(&sb_security_lock);
294         if (!list_empty(&sbsec->list))
295                 list_del_init(&sbsec->list);
296         spin_unlock(&sb_security_lock);
297
298         sb->s_security = NULL;
299         kfree(sbsec);
300 }
301
302 static int sk_alloc_security(struct sock *sk, int family, gfp_t priority)
303 {
304         struct sk_security_struct *ssec;
305
306         ssec = kzalloc(sizeof(*ssec), priority);
307         if (!ssec)
308                 return -ENOMEM;
309
310         ssec->peer_sid = SECINITSID_UNLABELED;
311         ssec->sid = SECINITSID_UNLABELED;
312         sk->sk_security = ssec;
313
314         selinux_netlbl_sk_security_reset(ssec, family);
315
316         return 0;
317 }
318
319 static void sk_free_security(struct sock *sk)
320 {
321         struct sk_security_struct *ssec = sk->sk_security;
322
323         sk->sk_security = NULL;
324         selinux_netlbl_sk_security_free(ssec);
325         kfree(ssec);
326 }
327
328 /* The security server must be initialized before
329    any labeling or access decisions can be provided. */
330 extern int ss_initialized;
331
332 /* The file system's label must be initialized prior to use. */
333
334 static char *labeling_behaviors[6] = {
335         "uses xattr",
336         "uses transition SIDs",
337         "uses task SIDs",
338         "uses genfs_contexts",
339         "not configured for labeling",
340         "uses mountpoint labeling",
341 };
342
343 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
344
345 static inline int inode_doinit(struct inode *inode)
346 {
347         return inode_doinit_with_dentry(inode, NULL);
348 }
349
350 enum {
351         Opt_error = -1,
352         Opt_context = 1,
353         Opt_fscontext = 2,
354         Opt_defcontext = 3,
355         Opt_rootcontext = 4,
356 };
357
358 static const match_table_t tokens = {
359         {Opt_context, CONTEXT_STR "%s"},
360         {Opt_fscontext, FSCONTEXT_STR "%s"},
361         {Opt_defcontext, DEFCONTEXT_STR "%s"},
362         {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
363         {Opt_error, NULL},
364 };
365
366 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
367
368 static int may_context_mount_sb_relabel(u32 sid,
369                         struct superblock_security_struct *sbsec,
370                         const struct cred *cred)
371 {
372         const struct task_security_struct *tsec = cred->security;
373         int rc;
374
375         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
376                           FILESYSTEM__RELABELFROM, NULL);
377         if (rc)
378                 return rc;
379
380         rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
381                           FILESYSTEM__RELABELTO, NULL);
382         return rc;
383 }
384
385 static int may_context_mount_inode_relabel(u32 sid,
386                         struct superblock_security_struct *sbsec,
387                         const struct cred *cred)
388 {
389         const struct task_security_struct *tsec = cred->security;
390         int rc;
391         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
392                           FILESYSTEM__RELABELFROM, NULL);
393         if (rc)
394                 return rc;
395
396         rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
397                           FILESYSTEM__ASSOCIATE, NULL);
398         return rc;
399 }
400
401 static int sb_finish_set_opts(struct super_block *sb)
402 {
403         struct superblock_security_struct *sbsec = sb->s_security;
404         struct dentry *root = sb->s_root;
405         struct inode *root_inode = root->d_inode;
406         int rc = 0;
407
408         if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
409                 /* Make sure that the xattr handler exists and that no
410                    error other than -ENODATA is returned by getxattr on
411                    the root directory.  -ENODATA is ok, as this may be
412                    the first boot of the SELinux kernel before we have
413                    assigned xattr values to the filesystem. */
414                 if (!root_inode->i_op->getxattr) {
415                         printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
416                                "xattr support\n", sb->s_id, sb->s_type->name);
417                         rc = -EOPNOTSUPP;
418                         goto out;
419                 }
420                 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
421                 if (rc < 0 && rc != -ENODATA) {
422                         if (rc == -EOPNOTSUPP)
423                                 printk(KERN_WARNING "SELinux: (dev %s, type "
424                                        "%s) has no security xattr handler\n",
425                                        sb->s_id, sb->s_type->name);
426                         else
427                                 printk(KERN_WARNING "SELinux: (dev %s, type "
428                                        "%s) getxattr errno %d\n", sb->s_id,
429                                        sb->s_type->name, -rc);
430                         goto out;
431                 }
432         }
433
434         sbsec->initialized = 1;
435
436         if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
437                 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
438                        sb->s_id, sb->s_type->name);
439         else
440                 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
441                        sb->s_id, sb->s_type->name,
442                        labeling_behaviors[sbsec->behavior-1]);
443
444         /* Initialize the root inode. */
445         rc = inode_doinit_with_dentry(root_inode, root);
446
447         /* Initialize any other inodes associated with the superblock, e.g.
448            inodes created prior to initial policy load or inodes created
449            during get_sb by a pseudo filesystem that directly
450            populates itself. */
451         spin_lock(&sbsec->isec_lock);
452 next_inode:
453         if (!list_empty(&sbsec->isec_head)) {
454                 struct inode_security_struct *isec =
455                                 list_entry(sbsec->isec_head.next,
456                                            struct inode_security_struct, list);
457                 struct inode *inode = isec->inode;
458                 spin_unlock(&sbsec->isec_lock);
459                 inode = igrab(inode);
460                 if (inode) {
461                         if (!IS_PRIVATE(inode))
462                                 inode_doinit(inode);
463                         iput(inode);
464                 }
465                 spin_lock(&sbsec->isec_lock);
466                 list_del_init(&isec->list);
467                 goto next_inode;
468         }
469         spin_unlock(&sbsec->isec_lock);
470 out:
471         return rc;
472 }
473
474 /*
475  * This function should allow an FS to ask what it's mount security
476  * options were so it can use those later for submounts, displaying
477  * mount options, or whatever.
478  */
479 static int selinux_get_mnt_opts(const struct super_block *sb,
480                                 struct security_mnt_opts *opts)
481 {
482         int rc = 0, i;
483         struct superblock_security_struct *sbsec = sb->s_security;
484         char *context = NULL;
485         u32 len;
486         char tmp;
487
488         security_init_mnt_opts(opts);
489
490         if (!sbsec->initialized)
491                 return -EINVAL;
492
493         if (!ss_initialized)
494                 return -EINVAL;
495
496         /*
497          * if we ever use sbsec flags for anything other than tracking mount
498          * settings this is going to need a mask
499          */
500         tmp = sbsec->flags;
501         /* count the number of mount options for this sb */
502         for (i = 0; i < 8; i++) {
503                 if (tmp & 0x01)
504                         opts->num_mnt_opts++;
505                 tmp >>= 1;
506         }
507
508         opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
509         if (!opts->mnt_opts) {
510                 rc = -ENOMEM;
511                 goto out_free;
512         }
513
514         opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
515         if (!opts->mnt_opts_flags) {
516                 rc = -ENOMEM;
517                 goto out_free;
518         }
519
520         i = 0;
521         if (sbsec->flags & FSCONTEXT_MNT) {
522                 rc = security_sid_to_context(sbsec->sid, &context, &len);
523                 if (rc)
524                         goto out_free;
525                 opts->mnt_opts[i] = context;
526                 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
527         }
528         if (sbsec->flags & CONTEXT_MNT) {
529                 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
530                 if (rc)
531                         goto out_free;
532                 opts->mnt_opts[i] = context;
533                 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
534         }
535         if (sbsec->flags & DEFCONTEXT_MNT) {
536                 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
537                 if (rc)
538                         goto out_free;
539                 opts->mnt_opts[i] = context;
540                 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
541         }
542         if (sbsec->flags & ROOTCONTEXT_MNT) {
543                 struct inode *root = sbsec->sb->s_root->d_inode;
544                 struct inode_security_struct *isec = root->i_security;
545
546                 rc = security_sid_to_context(isec->sid, &context, &len);
547                 if (rc)
548                         goto out_free;
549                 opts->mnt_opts[i] = context;
550                 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
551         }
552
553         BUG_ON(i != opts->num_mnt_opts);
554
555         return 0;
556
557 out_free:
558         security_free_mnt_opts(opts);
559         return rc;
560 }
561
562 static int bad_option(struct superblock_security_struct *sbsec, char flag,
563                       u32 old_sid, u32 new_sid)
564 {
565         /* check if the old mount command had the same options */
566         if (sbsec->initialized)
567                 if (!(sbsec->flags & flag) ||
568                     (old_sid != new_sid))
569                         return 1;
570
571         /* check if we were passed the same options twice,
572          * aka someone passed context=a,context=b
573          */
574         if (!sbsec->initialized)
575                 if (sbsec->flags & flag)
576                         return 1;
577         return 0;
578 }
579
580 /*
581  * Allow filesystems with binary mount data to explicitly set mount point
582  * labeling information.
583  */
584 static int selinux_set_mnt_opts(struct super_block *sb,
585                                 struct security_mnt_opts *opts)
586 {
587         const struct cred *cred = current_cred();
588         int rc = 0, i;
589         struct superblock_security_struct *sbsec = sb->s_security;
590         const char *name = sb->s_type->name;
591         struct inode *inode = sbsec->sb->s_root->d_inode;
592         struct inode_security_struct *root_isec = inode->i_security;
593         u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
594         u32 defcontext_sid = 0;
595         char **mount_options = opts->mnt_opts;
596         int *flags = opts->mnt_opts_flags;
597         int num_opts = opts->num_mnt_opts;
598
599         mutex_lock(&sbsec->lock);
600
601         if (!ss_initialized) {
602                 if (!num_opts) {
603                         /* Defer initialization until selinux_complete_init,
604                            after the initial policy is loaded and the security
605                            server is ready to handle calls. */
606                         spin_lock(&sb_security_lock);
607                         if (list_empty(&sbsec->list))
608                                 list_add(&sbsec->list, &superblock_security_head);
609                         spin_unlock(&sb_security_lock);
610                         goto out;
611                 }
612                 rc = -EINVAL;
613                 printk(KERN_WARNING "SELinux: Unable to set superblock options "
614                         "before the security server is initialized\n");
615                 goto out;
616         }
617
618         /*
619          * Binary mount data FS will come through this function twice.  Once
620          * from an explicit call and once from the generic calls from the vfs.
621          * Since the generic VFS calls will not contain any security mount data
622          * we need to skip the double mount verification.
623          *
624          * This does open a hole in which we will not notice if the first
625          * mount using this sb set explict options and a second mount using
626          * this sb does not set any security options.  (The first options
627          * will be used for both mounts)
628          */
629         if (sbsec->initialized && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
630             && (num_opts == 0))
631                 goto out;
632
633         /*
634          * parse the mount options, check if they are valid sids.
635          * also check if someone is trying to mount the same sb more
636          * than once with different security options.
637          */
638         for (i = 0; i < num_opts; i++) {
639                 u32 sid;
640                 rc = security_context_to_sid(mount_options[i],
641                                              strlen(mount_options[i]), &sid);
642                 if (rc) {
643                         printk(KERN_WARNING "SELinux: security_context_to_sid"
644                                "(%s) failed for (dev %s, type %s) errno=%d\n",
645                                mount_options[i], sb->s_id, name, rc);
646                         goto out;
647                 }
648                 switch (flags[i]) {
649                 case FSCONTEXT_MNT:
650                         fscontext_sid = sid;
651
652                         if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
653                                         fscontext_sid))
654                                 goto out_double_mount;
655
656                         sbsec->flags |= FSCONTEXT_MNT;
657                         break;
658                 case CONTEXT_MNT:
659                         context_sid = sid;
660
661                         if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
662                                         context_sid))
663                                 goto out_double_mount;
664
665                         sbsec->flags |= CONTEXT_MNT;
666                         break;
667                 case ROOTCONTEXT_MNT:
668                         rootcontext_sid = sid;
669
670                         if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
671                                         rootcontext_sid))
672                                 goto out_double_mount;
673
674                         sbsec->flags |= ROOTCONTEXT_MNT;
675
676                         break;
677                 case DEFCONTEXT_MNT:
678                         defcontext_sid = sid;
679
680                         if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
681                                         defcontext_sid))
682                                 goto out_double_mount;
683
684                         sbsec->flags |= DEFCONTEXT_MNT;
685
686                         break;
687                 default:
688                         rc = -EINVAL;
689                         goto out;
690                 }
691         }
692
693         if (sbsec->initialized) {
694                 /* previously mounted with options, but not on this attempt? */
695                 if (sbsec->flags && !num_opts)
696                         goto out_double_mount;
697                 rc = 0;
698                 goto out;
699         }
700
701         if (strcmp(sb->s_type->name, "proc") == 0)
702                 sbsec->proc = 1;
703
704         /* Determine the labeling behavior to use for this filesystem type. */
705         rc = security_fs_use(sbsec->proc ? "proc" : sb->s_type->name, &sbsec->behavior, &sbsec->sid);
706         if (rc) {
707                 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
708                        __func__, sb->s_type->name, rc);
709                 goto out;
710         }
711
712         /* sets the context of the superblock for the fs being mounted. */
713         if (fscontext_sid) {
714                 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
715                 if (rc)
716                         goto out;
717
718                 sbsec->sid = fscontext_sid;
719         }
720
721         /*
722          * Switch to using mount point labeling behavior.
723          * sets the label used on all file below the mountpoint, and will set
724          * the superblock context if not already set.
725          */
726         if (context_sid) {
727                 if (!fscontext_sid) {
728                         rc = may_context_mount_sb_relabel(context_sid, sbsec,
729                                                           cred);
730                         if (rc)
731                                 goto out;
732                         sbsec->sid = context_sid;
733                 } else {
734                         rc = may_context_mount_inode_relabel(context_sid, sbsec,
735                                                              cred);
736                         if (rc)
737                                 goto out;
738                 }
739                 if (!rootcontext_sid)
740                         rootcontext_sid = context_sid;
741
742                 sbsec->mntpoint_sid = context_sid;
743                 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
744         }
745
746         if (rootcontext_sid) {
747                 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
748                                                      cred);
749                 if (rc)
750                         goto out;
751
752                 root_isec->sid = rootcontext_sid;
753                 root_isec->initialized = 1;
754         }
755
756         if (defcontext_sid) {
757                 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
758                         rc = -EINVAL;
759                         printk(KERN_WARNING "SELinux: defcontext option is "
760                                "invalid for this filesystem type\n");
761                         goto out;
762                 }
763
764                 if (defcontext_sid != sbsec->def_sid) {
765                         rc = may_context_mount_inode_relabel(defcontext_sid,
766                                                              sbsec, cred);
767                         if (rc)
768                                 goto out;
769                 }
770
771                 sbsec->def_sid = defcontext_sid;
772         }
773
774         rc = sb_finish_set_opts(sb);
775 out:
776         mutex_unlock(&sbsec->lock);
777         return rc;
778 out_double_mount:
779         rc = -EINVAL;
780         printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
781                "security settings for (dev %s, type %s)\n", sb->s_id, name);
782         goto out;
783 }
784
785 static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
786                                         struct super_block *newsb)
787 {
788         const struct superblock_security_struct *oldsbsec = oldsb->s_security;
789         struct superblock_security_struct *newsbsec = newsb->s_security;
790
791         int set_fscontext =     (oldsbsec->flags & FSCONTEXT_MNT);
792         int set_context =       (oldsbsec->flags & CONTEXT_MNT);
793         int set_rootcontext =   (oldsbsec->flags & ROOTCONTEXT_MNT);
794
795         /*
796          * if the parent was able to be mounted it clearly had no special lsm
797          * mount options.  thus we can safely put this sb on the list and deal
798          * with it later
799          */
800         if (!ss_initialized) {
801                 spin_lock(&sb_security_lock);
802                 if (list_empty(&newsbsec->list))
803                         list_add(&newsbsec->list, &superblock_security_head);
804                 spin_unlock(&sb_security_lock);
805                 return;
806         }
807
808         /* how can we clone if the old one wasn't set up?? */
809         BUG_ON(!oldsbsec->initialized);
810
811         /* if fs is reusing a sb, just let its options stand... */
812         if (newsbsec->initialized)
813                 return;
814
815         mutex_lock(&newsbsec->lock);
816
817         newsbsec->flags = oldsbsec->flags;
818
819         newsbsec->sid = oldsbsec->sid;
820         newsbsec->def_sid = oldsbsec->def_sid;
821         newsbsec->behavior = oldsbsec->behavior;
822
823         if (set_context) {
824                 u32 sid = oldsbsec->mntpoint_sid;
825
826                 if (!set_fscontext)
827                         newsbsec->sid = sid;
828                 if (!set_rootcontext) {
829                         struct inode *newinode = newsb->s_root->d_inode;
830                         struct inode_security_struct *newisec = newinode->i_security;
831                         newisec->sid = sid;
832                 }
833                 newsbsec->mntpoint_sid = sid;
834         }
835         if (set_rootcontext) {
836                 const struct inode *oldinode = oldsb->s_root->d_inode;
837                 const struct inode_security_struct *oldisec = oldinode->i_security;
838                 struct inode *newinode = newsb->s_root->d_inode;
839                 struct inode_security_struct *newisec = newinode->i_security;
840
841                 newisec->sid = oldisec->sid;
842         }
843
844         sb_finish_set_opts(newsb);
845         mutex_unlock(&newsbsec->lock);
846 }
847
848 static int selinux_parse_opts_str(char *options,
849                                   struct security_mnt_opts *opts)
850 {
851         char *p;
852         char *context = NULL, *defcontext = NULL;
853         char *fscontext = NULL, *rootcontext = NULL;
854         int rc, num_mnt_opts = 0;
855
856         opts->num_mnt_opts = 0;
857
858         /* Standard string-based options. */
859         while ((p = strsep(&options, "|")) != NULL) {
860                 int token;
861                 substring_t args[MAX_OPT_ARGS];
862
863                 if (!*p)
864                         continue;
865
866                 token = match_token(p, tokens, args);
867
868                 switch (token) {
869                 case Opt_context:
870                         if (context || defcontext) {
871                                 rc = -EINVAL;
872                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
873                                 goto out_err;
874                         }
875                         context = match_strdup(&args[0]);
876                         if (!context) {
877                                 rc = -ENOMEM;
878                                 goto out_err;
879                         }
880                         break;
881
882                 case Opt_fscontext:
883                         if (fscontext) {
884                                 rc = -EINVAL;
885                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
886                                 goto out_err;
887                         }
888                         fscontext = match_strdup(&args[0]);
889                         if (!fscontext) {
890                                 rc = -ENOMEM;
891                                 goto out_err;
892                         }
893                         break;
894
895                 case Opt_rootcontext:
896                         if (rootcontext) {
897                                 rc = -EINVAL;
898                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
899                                 goto out_err;
900                         }
901                         rootcontext = match_strdup(&args[0]);
902                         if (!rootcontext) {
903                                 rc = -ENOMEM;
904                                 goto out_err;
905                         }
906                         break;
907
908                 case Opt_defcontext:
909                         if (context || defcontext) {
910                                 rc = -EINVAL;
911                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
912                                 goto out_err;
913                         }
914                         defcontext = match_strdup(&args[0]);
915                         if (!defcontext) {
916                                 rc = -ENOMEM;
917                                 goto out_err;
918                         }
919                         break;
920
921                 default:
922                         rc = -EINVAL;
923                         printk(KERN_WARNING "SELinux:  unknown mount option\n");
924                         goto out_err;
925
926                 }
927         }
928
929         rc = -ENOMEM;
930         opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
931         if (!opts->mnt_opts)
932                 goto out_err;
933
934         opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
935         if (!opts->mnt_opts_flags) {
936                 kfree(opts->mnt_opts);
937                 goto out_err;
938         }
939
940         if (fscontext) {
941                 opts->mnt_opts[num_mnt_opts] = fscontext;
942                 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
943         }
944         if (context) {
945                 opts->mnt_opts[num_mnt_opts] = context;
946                 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
947         }
948         if (rootcontext) {
949                 opts->mnt_opts[num_mnt_opts] = rootcontext;
950                 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
951         }
952         if (defcontext) {
953                 opts->mnt_opts[num_mnt_opts] = defcontext;
954                 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
955         }
956
957         opts->num_mnt_opts = num_mnt_opts;
958         return 0;
959
960 out_err:
961         kfree(context);
962         kfree(defcontext);
963         kfree(fscontext);
964         kfree(rootcontext);
965         return rc;
966 }
967 /*
968  * string mount options parsing and call set the sbsec
969  */
970 static int superblock_doinit(struct super_block *sb, void *data)
971 {
972         int rc = 0;
973         char *options = data;
974         struct security_mnt_opts opts;
975
976         security_init_mnt_opts(&opts);
977
978         if (!data)
979                 goto out;
980
981         BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
982
983         rc = selinux_parse_opts_str(options, &opts);
984         if (rc)
985                 goto out_err;
986
987 out:
988         rc = selinux_set_mnt_opts(sb, &opts);
989
990 out_err:
991         security_free_mnt_opts(&opts);
992         return rc;
993 }
994
995 static void selinux_write_opts(struct seq_file *m,
996                                struct security_mnt_opts *opts)
997 {
998         int i;
999         char *prefix;
1000
1001         for (i = 0; i < opts->num_mnt_opts; i++) {
1002                 char *has_comma = strchr(opts->mnt_opts[i], ',');
1003
1004                 switch (opts->mnt_opts_flags[i]) {
1005                 case CONTEXT_MNT:
1006                         prefix = CONTEXT_STR;
1007                         break;
1008                 case FSCONTEXT_MNT:
1009                         prefix = FSCONTEXT_STR;
1010                         break;
1011                 case ROOTCONTEXT_MNT:
1012                         prefix = ROOTCONTEXT_STR;
1013                         break;
1014                 case DEFCONTEXT_MNT:
1015                         prefix = DEFCONTEXT_STR;
1016                         break;
1017                 default:
1018                         BUG();
1019                 };
1020                 /* we need a comma before each option */
1021                 seq_putc(m, ',');
1022                 seq_puts(m, prefix);
1023                 if (has_comma)
1024                         seq_putc(m, '\"');
1025                 seq_puts(m, opts->mnt_opts[i]);
1026                 if (has_comma)
1027                         seq_putc(m, '\"');
1028         }
1029 }
1030
1031 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1032 {
1033         struct security_mnt_opts opts;
1034         int rc;
1035
1036         rc = selinux_get_mnt_opts(sb, &opts);
1037         if (rc) {
1038                 /* before policy load we may get EINVAL, don't show anything */
1039                 if (rc == -EINVAL)
1040                         rc = 0;
1041                 return rc;
1042         }
1043
1044         selinux_write_opts(m, &opts);
1045
1046         security_free_mnt_opts(&opts);
1047
1048         return rc;
1049 }
1050
1051 static inline u16 inode_mode_to_security_class(umode_t mode)
1052 {
1053         switch (mode & S_IFMT) {
1054         case S_IFSOCK:
1055                 return SECCLASS_SOCK_FILE;
1056         case S_IFLNK:
1057                 return SECCLASS_LNK_FILE;
1058         case S_IFREG:
1059                 return SECCLASS_FILE;
1060         case S_IFBLK:
1061                 return SECCLASS_BLK_FILE;
1062         case S_IFDIR:
1063                 return SECCLASS_DIR;
1064         case S_IFCHR:
1065                 return SECCLASS_CHR_FILE;
1066         case S_IFIFO:
1067                 return SECCLASS_FIFO_FILE;
1068
1069         }
1070
1071         return SECCLASS_FILE;
1072 }
1073
1074 static inline int default_protocol_stream(int protocol)
1075 {
1076         return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1077 }
1078
1079 static inline int default_protocol_dgram(int protocol)
1080 {
1081         return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1082 }
1083
1084 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1085 {
1086         switch (family) {
1087         case PF_UNIX:
1088                 switch (type) {
1089                 case SOCK_STREAM:
1090                 case SOCK_SEQPACKET:
1091                         return SECCLASS_UNIX_STREAM_SOCKET;
1092                 case SOCK_DGRAM:
1093                         return SECCLASS_UNIX_DGRAM_SOCKET;
1094                 }
1095                 break;
1096         case PF_INET:
1097         case PF_INET6:
1098                 switch (type) {
1099                 case SOCK_STREAM:
1100                         if (default_protocol_stream(protocol))
1101                                 return SECCLASS_TCP_SOCKET;
1102                         else
1103                                 return SECCLASS_RAWIP_SOCKET;
1104                 case SOCK_DGRAM:
1105                         if (default_protocol_dgram(protocol))
1106                                 return SECCLASS_UDP_SOCKET;
1107                         else
1108                                 return SECCLASS_RAWIP_SOCKET;
1109                 case SOCK_DCCP:
1110                         return SECCLASS_DCCP_SOCKET;
1111                 default:
1112                         return SECCLASS_RAWIP_SOCKET;
1113                 }
1114                 break;
1115         case PF_NETLINK:
1116                 switch (protocol) {
1117                 case NETLINK_ROUTE:
1118                         return SECCLASS_NETLINK_ROUTE_SOCKET;
1119                 case NETLINK_FIREWALL:
1120                         return SECCLASS_NETLINK_FIREWALL_SOCKET;
1121                 case NETLINK_INET_DIAG:
1122                         return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1123                 case NETLINK_NFLOG:
1124                         return SECCLASS_NETLINK_NFLOG_SOCKET;
1125                 case NETLINK_XFRM:
1126                         return SECCLASS_NETLINK_XFRM_SOCKET;
1127                 case NETLINK_SELINUX:
1128                         return SECCLASS_NETLINK_SELINUX_SOCKET;
1129                 case NETLINK_AUDIT:
1130                         return SECCLASS_NETLINK_AUDIT_SOCKET;
1131                 case NETLINK_IP6_FW:
1132                         return SECCLASS_NETLINK_IP6FW_SOCKET;
1133                 case NETLINK_DNRTMSG:
1134                         return SECCLASS_NETLINK_DNRT_SOCKET;
1135                 case NETLINK_KOBJECT_UEVENT:
1136                         return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1137                 default:
1138                         return SECCLASS_NETLINK_SOCKET;
1139                 }
1140         case PF_PACKET:
1141                 return SECCLASS_PACKET_SOCKET;
1142         case PF_KEY:
1143                 return SECCLASS_KEY_SOCKET;
1144         case PF_APPLETALK:
1145                 return SECCLASS_APPLETALK_SOCKET;
1146         }
1147
1148         return SECCLASS_SOCKET;
1149 }
1150
1151 #ifdef CONFIG_PROC_FS
1152 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1153                                 u16 tclass,
1154                                 u32 *sid)
1155 {
1156         int buflen, rc;
1157         char *buffer, *path, *end;
1158
1159         buffer = (char *)__get_free_page(GFP_KERNEL);
1160         if (!buffer)
1161                 return -ENOMEM;
1162
1163         buflen = PAGE_SIZE;
1164         end = buffer+buflen;
1165         *--end = '\0';
1166         buflen--;
1167         path = end-1;
1168         *path = '/';
1169         while (de && de != de->parent) {
1170                 buflen -= de->namelen + 1;
1171                 if (buflen < 0)
1172                         break;
1173                 end -= de->namelen;
1174                 memcpy(end, de->name, de->namelen);
1175                 *--end = '/';
1176                 path = end;
1177                 de = de->parent;
1178         }
1179         rc = security_genfs_sid("proc", path, tclass, sid);
1180         free_page((unsigned long)buffer);
1181         return rc;
1182 }
1183 #else
1184 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1185                                 u16 tclass,
1186                                 u32 *sid)
1187 {
1188         return -EINVAL;
1189 }
1190 #endif
1191
1192 /* The inode's security attributes must be initialized before first use. */
1193 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1194 {
1195         struct superblock_security_struct *sbsec = NULL;
1196         struct inode_security_struct *isec = inode->i_security;
1197         u32 sid;
1198         struct dentry *dentry;
1199 #define INITCONTEXTLEN 255
1200         char *context = NULL;
1201         unsigned len = 0;
1202         int rc = 0;
1203
1204         if (isec->initialized)
1205                 goto out;
1206
1207         mutex_lock(&isec->lock);
1208         if (isec->initialized)
1209                 goto out_unlock;
1210
1211         sbsec = inode->i_sb->s_security;
1212         if (!sbsec->initialized) {
1213                 /* Defer initialization until selinux_complete_init,
1214                    after the initial policy is loaded and the security
1215                    server is ready to handle calls. */
1216                 spin_lock(&sbsec->isec_lock);
1217                 if (list_empty(&isec->list))
1218                         list_add(&isec->list, &sbsec->isec_head);
1219                 spin_unlock(&sbsec->isec_lock);
1220                 goto out_unlock;
1221         }
1222
1223         switch (sbsec->behavior) {
1224         case SECURITY_FS_USE_XATTR:
1225                 if (!inode->i_op->getxattr) {
1226                         isec->sid = sbsec->def_sid;
1227                         break;
1228                 }
1229
1230                 /* Need a dentry, since the xattr API requires one.
1231                    Life would be simpler if we could just pass the inode. */
1232                 if (opt_dentry) {
1233                         /* Called from d_instantiate or d_splice_alias. */
1234                         dentry = dget(opt_dentry);
1235                 } else {
1236                         /* Called from selinux_complete_init, try to find a dentry. */
1237                         dentry = d_find_alias(inode);
1238                 }
1239                 if (!dentry) {
1240                         printk(KERN_WARNING "SELinux: %s:  no dentry for dev=%s "
1241                                "ino=%ld\n", __func__, inode->i_sb->s_id,
1242                                inode->i_ino);
1243                         goto out_unlock;
1244                 }
1245
1246                 len = INITCONTEXTLEN;
1247                 context = kmalloc(len, GFP_NOFS);
1248                 if (!context) {
1249                         rc = -ENOMEM;
1250                         dput(dentry);
1251                         goto out_unlock;
1252                 }
1253                 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1254                                            context, len);
1255                 if (rc == -ERANGE) {
1256                         /* Need a larger buffer.  Query for the right size. */
1257                         rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1258                                                    NULL, 0);
1259                         if (rc < 0) {
1260                                 dput(dentry);
1261                                 goto out_unlock;
1262                         }
1263                         kfree(context);
1264                         len = rc;
1265                         context = kmalloc(len, GFP_NOFS);
1266                         if (!context) {
1267                                 rc = -ENOMEM;
1268                                 dput(dentry);
1269                                 goto out_unlock;
1270                         }
1271                         rc = inode->i_op->getxattr(dentry,
1272                                                    XATTR_NAME_SELINUX,
1273                                                    context, len);
1274                 }
1275                 dput(dentry);
1276                 if (rc < 0) {
1277                         if (rc != -ENODATA) {
1278                                 printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1279                                        "%d for dev=%s ino=%ld\n", __func__,
1280                                        -rc, inode->i_sb->s_id, inode->i_ino);
1281                                 kfree(context);
1282                                 goto out_unlock;
1283                         }
1284                         /* Map ENODATA to the default file SID */
1285                         sid = sbsec->def_sid;
1286                         rc = 0;
1287                 } else {
1288                         rc = security_context_to_sid_default(context, rc, &sid,
1289                                                              sbsec->def_sid,
1290                                                              GFP_NOFS);
1291                         if (rc) {
1292                                 printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1293                                        "returned %d for dev=%s ino=%ld\n",
1294                                        __func__, context, -rc,
1295                                        inode->i_sb->s_id, inode->i_ino);
1296                                 kfree(context);
1297                                 /* Leave with the unlabeled SID */
1298                                 rc = 0;
1299                                 break;
1300                         }
1301                 }
1302                 kfree(context);
1303                 isec->sid = sid;
1304                 break;
1305         case SECURITY_FS_USE_TASK:
1306                 isec->sid = isec->task_sid;
1307                 break;
1308         case SECURITY_FS_USE_TRANS:
1309                 /* Default to the fs SID. */
1310                 isec->sid = sbsec->sid;
1311
1312                 /* Try to obtain a transition SID. */
1313                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1314                 rc = security_transition_sid(isec->task_sid,
1315                                              sbsec->sid,
1316                                              isec->sclass,
1317                                              &sid);
1318                 if (rc)
1319                         goto out_unlock;
1320                 isec->sid = sid;
1321                 break;
1322         case SECURITY_FS_USE_MNTPOINT:
1323                 isec->sid = sbsec->mntpoint_sid;
1324                 break;
1325         default:
1326                 /* Default to the fs superblock SID. */
1327                 isec->sid = sbsec->sid;
1328
1329                 if (sbsec->proc && !S_ISLNK(inode->i_mode)) {
1330                         struct proc_inode *proci = PROC_I(inode);
1331                         if (proci->pde) {
1332                                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1333                                 rc = selinux_proc_get_sid(proci->pde,
1334                                                           isec->sclass,
1335                                                           &sid);
1336                                 if (rc)
1337                                         goto out_unlock;
1338                                 isec->sid = sid;
1339                         }
1340                 }
1341                 break;
1342         }
1343
1344         isec->initialized = 1;
1345
1346 out_unlock:
1347         mutex_unlock(&isec->lock);
1348 out:
1349         if (isec->sclass == SECCLASS_FILE)
1350                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1351         return rc;
1352 }
1353
1354 /* Convert a Linux signal to an access vector. */
1355 static inline u32 signal_to_av(int sig)
1356 {
1357         u32 perm = 0;
1358
1359         switch (sig) {
1360         case SIGCHLD:
1361                 /* Commonly granted from child to parent. */
1362                 perm = PROCESS__SIGCHLD;
1363                 break;
1364         case SIGKILL:
1365                 /* Cannot be caught or ignored */
1366                 perm = PROCESS__SIGKILL;
1367                 break;
1368         case SIGSTOP:
1369                 /* Cannot be caught or ignored */
1370                 perm = PROCESS__SIGSTOP;
1371                 break;
1372         default:
1373                 /* All other signals. */
1374                 perm = PROCESS__SIGNAL;
1375                 break;
1376         }
1377
1378         return perm;
1379 }
1380
1381 /*
1382  * Check permission between a pair of credentials
1383  * fork check, ptrace check, etc.
1384  */
1385 static int cred_has_perm(const struct cred *actor,
1386                          const struct cred *target,
1387                          u32 perms)
1388 {
1389         u32 asid = cred_sid(actor), tsid = cred_sid(target);
1390
1391         return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1392 }
1393
1394 /*
1395  * Check permission between a pair of tasks, e.g. signal checks,
1396  * fork check, ptrace check, etc.
1397  * tsk1 is the actor and tsk2 is the target
1398  * - this uses the default subjective creds of tsk1
1399  */
1400 static int task_has_perm(const struct task_struct *tsk1,
1401                          const struct task_struct *tsk2,
1402                          u32 perms)
1403 {
1404         const struct task_security_struct *__tsec1, *__tsec2;
1405         u32 sid1, sid2;
1406
1407         rcu_read_lock();
1408         __tsec1 = __task_cred(tsk1)->security;  sid1 = __tsec1->sid;
1409         __tsec2 = __task_cred(tsk2)->security;  sid2 = __tsec2->sid;
1410         rcu_read_unlock();
1411         return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1412 }
1413
1414 /*
1415  * Check permission between current and another task, e.g. signal checks,
1416  * fork check, ptrace check, etc.
1417  * current is the actor and tsk2 is the target
1418  * - this uses current's subjective creds
1419  */
1420 static int current_has_perm(const struct task_struct *tsk,
1421                             u32 perms)
1422 {
1423         u32 sid, tsid;
1424
1425         sid = current_sid();
1426         tsid = task_sid(tsk);
1427         return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1428 }
1429
1430 #if CAP_LAST_CAP > 63
1431 #error Fix SELinux to handle capabilities > 63.
1432 #endif
1433
1434 /* Check whether a task is allowed to use a capability. */
1435 static int task_has_capability(struct task_struct *tsk,
1436                                int cap, int audit)
1437 {
1438         struct avc_audit_data ad;
1439         struct av_decision avd;
1440         u16 sclass;
1441         u32 sid = task_sid(tsk);
1442         u32 av = CAP_TO_MASK(cap);
1443         int rc;
1444
1445         AVC_AUDIT_DATA_INIT(&ad, CAP);
1446         ad.tsk = tsk;
1447         ad.u.cap = cap;
1448
1449         switch (CAP_TO_INDEX(cap)) {
1450         case 0:
1451                 sclass = SECCLASS_CAPABILITY;
1452                 break;
1453         case 1:
1454                 sclass = SECCLASS_CAPABILITY2;
1455                 break;
1456         default:
1457                 printk(KERN_ERR
1458                        "SELinux:  out of range capability %d\n", cap);
1459                 BUG();
1460         }
1461
1462         rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1463         if (audit == SECURITY_CAP_AUDIT)
1464                 avc_audit(sid, sid, sclass, av, &avd, rc, &ad);
1465         return rc;
1466 }
1467
1468 /* Check whether a task is allowed to use a system operation. */
1469 static int task_has_system(struct task_struct *tsk,
1470                            u32 perms)
1471 {
1472         u32 sid = task_sid(tsk);
1473
1474         return avc_has_perm(sid, SECINITSID_KERNEL,
1475                             SECCLASS_SYSTEM, perms, NULL);
1476 }
1477
1478 /* Check whether a task has a particular permission to an inode.
1479    The 'adp' parameter is optional and allows other audit
1480    data to be passed (e.g. the dentry). */
1481 static int inode_has_perm(const struct cred *cred,
1482                           struct inode *inode,
1483                           u32 perms,
1484                           struct avc_audit_data *adp)
1485 {
1486         struct inode_security_struct *isec;
1487         struct avc_audit_data ad;
1488         u32 sid;
1489
1490         if (unlikely(IS_PRIVATE(inode)))
1491                 return 0;
1492
1493         sid = cred_sid(cred);
1494         isec = inode->i_security;
1495
1496         if (!adp) {
1497                 adp = &ad;
1498                 AVC_AUDIT_DATA_INIT(&ad, FS);
1499                 ad.u.fs.inode = inode;
1500         }
1501
1502         return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1503 }
1504
1505 /* Same as inode_has_perm, but pass explicit audit data containing
1506    the dentry to help the auditing code to more easily generate the
1507    pathname if needed. */
1508 static inline int dentry_has_perm(const struct cred *cred,
1509                                   struct vfsmount *mnt,
1510                                   struct dentry *dentry,
1511                                   u32 av)
1512 {
1513         struct inode *inode = dentry->d_inode;
1514         struct avc_audit_data ad;
1515
1516         AVC_AUDIT_DATA_INIT(&ad, FS);
1517         ad.u.fs.path.mnt = mnt;
1518         ad.u.fs.path.dentry = dentry;
1519         return inode_has_perm(cred, inode, av, &ad);
1520 }
1521
1522 /* Check whether a task can use an open file descriptor to
1523    access an inode in a given way.  Check access to the
1524    descriptor itself, and then use dentry_has_perm to
1525    check a particular permission to the file.
1526    Access to the descriptor is implicitly granted if it
1527    has the same SID as the process.  If av is zero, then
1528    access to the file is not checked, e.g. for cases
1529    where only the descriptor is affected like seek. */
1530 static int file_has_perm(const struct cred *cred,
1531                          struct file *file,
1532                          u32 av)
1533 {
1534         struct file_security_struct *fsec = file->f_security;
1535         struct inode *inode = file->f_path.dentry->d_inode;
1536         struct avc_audit_data ad;
1537         u32 sid = cred_sid(cred);
1538         int rc;
1539
1540         AVC_AUDIT_DATA_INIT(&ad, FS);
1541         ad.u.fs.path = file->f_path;
1542
1543         if (sid != fsec->sid) {
1544                 rc = avc_has_perm(sid, fsec->sid,
1545                                   SECCLASS_FD,
1546                                   FD__USE,
1547                                   &ad);
1548                 if (rc)
1549                         goto out;
1550         }
1551
1552         /* av is zero if only checking access to the descriptor. */
1553         rc = 0;
1554         if (av)
1555                 rc = inode_has_perm(cred, inode, av, &ad);
1556
1557 out:
1558         return rc;
1559 }
1560
1561 /* Check whether a task can create a file. */
1562 static int may_create(struct inode *dir,
1563                       struct dentry *dentry,
1564                       u16 tclass)
1565 {
1566         const struct cred *cred = current_cred();
1567         const struct task_security_struct *tsec = cred->security;
1568         struct inode_security_struct *dsec;
1569         struct superblock_security_struct *sbsec;
1570         u32 sid, newsid;
1571         struct avc_audit_data ad;
1572         int rc;
1573
1574         dsec = dir->i_security;
1575         sbsec = dir->i_sb->s_security;
1576
1577         sid = tsec->sid;
1578         newsid = tsec->create_sid;
1579
1580         AVC_AUDIT_DATA_INIT(&ad, FS);
1581         ad.u.fs.path.dentry = dentry;
1582
1583         rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1584                           DIR__ADD_NAME | DIR__SEARCH,
1585                           &ad);
1586         if (rc)
1587                 return rc;
1588
1589         if (!newsid || sbsec->behavior == SECURITY_FS_USE_MNTPOINT) {
1590                 rc = security_transition_sid(sid, dsec->sid, tclass, &newsid);
1591                 if (rc)
1592                         return rc;
1593         }
1594
1595         rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1596         if (rc)
1597                 return rc;
1598
1599         return avc_has_perm(newsid, sbsec->sid,
1600                             SECCLASS_FILESYSTEM,
1601                             FILESYSTEM__ASSOCIATE, &ad);
1602 }
1603
1604 /* Check whether a task can create a key. */
1605 static int may_create_key(u32 ksid,
1606                           struct task_struct *ctx)
1607 {
1608         u32 sid = task_sid(ctx);
1609
1610         return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1611 }
1612
1613 #define MAY_LINK        0
1614 #define MAY_UNLINK      1
1615 #define MAY_RMDIR       2
1616
1617 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1618 static int may_link(struct inode *dir,
1619                     struct dentry *dentry,
1620                     int kind)
1621
1622 {
1623         struct inode_security_struct *dsec, *isec;
1624         struct avc_audit_data ad;
1625         u32 sid = current_sid();
1626         u32 av;
1627         int rc;
1628
1629         dsec = dir->i_security;
1630         isec = dentry->d_inode->i_security;
1631
1632         AVC_AUDIT_DATA_INIT(&ad, FS);
1633         ad.u.fs.path.dentry = dentry;
1634
1635         av = DIR__SEARCH;
1636         av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1637         rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1638         if (rc)
1639                 return rc;
1640
1641         switch (kind) {
1642         case MAY_LINK:
1643                 av = FILE__LINK;
1644                 break;
1645         case MAY_UNLINK:
1646                 av = FILE__UNLINK;
1647                 break;
1648         case MAY_RMDIR:
1649                 av = DIR__RMDIR;
1650                 break;
1651         default:
1652                 printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1653                         __func__, kind);
1654                 return 0;
1655         }
1656
1657         rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1658         return rc;
1659 }
1660
1661 static inline int may_rename(struct inode *old_dir,
1662                              struct dentry *old_dentry,
1663                              struct inode *new_dir,
1664                              struct dentry *new_dentry)
1665 {
1666         struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1667         struct avc_audit_data ad;
1668         u32 sid = current_sid();
1669         u32 av;
1670         int old_is_dir, new_is_dir;
1671         int rc;
1672
1673         old_dsec = old_dir->i_security;
1674         old_isec = old_dentry->d_inode->i_security;
1675         old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1676         new_dsec = new_dir->i_security;
1677
1678         AVC_AUDIT_DATA_INIT(&ad, FS);
1679
1680         ad.u.fs.path.dentry = old_dentry;
1681         rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1682                           DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1683         if (rc)
1684                 return rc;
1685         rc = avc_has_perm(sid, old_isec->sid,
1686                           old_isec->sclass, FILE__RENAME, &ad);
1687         if (rc)
1688                 return rc;
1689         if (old_is_dir && new_dir != old_dir) {
1690                 rc = avc_has_perm(sid, old_isec->sid,
1691                                   old_isec->sclass, DIR__REPARENT, &ad);
1692                 if (rc)
1693                         return rc;
1694         }
1695
1696         ad.u.fs.path.dentry = new_dentry;
1697         av = DIR__ADD_NAME | DIR__SEARCH;
1698         if (new_dentry->d_inode)
1699                 av |= DIR__REMOVE_NAME;
1700         rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1701         if (rc)
1702                 return rc;
1703         if (new_dentry->d_inode) {
1704                 new_isec = new_dentry->d_inode->i_security;
1705                 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1706                 rc = avc_has_perm(sid, new_isec->sid,
1707                                   new_isec->sclass,
1708                                   (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1709                 if (rc)
1710                         return rc;
1711         }
1712
1713         return 0;
1714 }
1715
1716 /* Check whether a task can perform a filesystem operation. */
1717 static int superblock_has_perm(const struct cred *cred,
1718                                struct super_block *sb,
1719                                u32 perms,
1720                                struct avc_audit_data *ad)
1721 {
1722         struct superblock_security_struct *sbsec;
1723         u32 sid = cred_sid(cred);
1724
1725         sbsec = sb->s_security;
1726         return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1727 }
1728
1729 /* Convert a Linux mode and permission mask to an access vector. */
1730 static inline u32 file_mask_to_av(int mode, int mask)
1731 {
1732         u32 av = 0;
1733
1734         if ((mode & S_IFMT) != S_IFDIR) {
1735                 if (mask & MAY_EXEC)
1736                         av |= FILE__EXECUTE;
1737                 if (mask & MAY_READ)
1738                         av |= FILE__READ;
1739
1740                 if (mask & MAY_APPEND)
1741                         av |= FILE__APPEND;
1742                 else if (mask & MAY_WRITE)
1743                         av |= FILE__WRITE;
1744
1745         } else {
1746                 if (mask & MAY_EXEC)
1747                         av |= DIR__SEARCH;
1748                 if (mask & MAY_WRITE)
1749                         av |= DIR__WRITE;
1750                 if (mask & MAY_READ)
1751                         av |= DIR__READ;
1752         }
1753
1754         return av;
1755 }
1756
1757 /* Convert a Linux file to an access vector. */
1758 static inline u32 file_to_av(struct file *file)
1759 {
1760         u32 av = 0;
1761
1762         if (file->f_mode & FMODE_READ)
1763                 av |= FILE__READ;
1764         if (file->f_mode & FMODE_WRITE) {
1765                 if (file->f_flags & O_APPEND)
1766                         av |= FILE__APPEND;
1767                 else
1768                         av |= FILE__WRITE;
1769         }
1770         if (!av) {
1771                 /*
1772                  * Special file opened with flags 3 for ioctl-only use.
1773                  */
1774                 av = FILE__IOCTL;
1775         }
1776
1777         return av;
1778 }
1779
1780 /*
1781  * Convert a file to an access vector and include the correct open
1782  * open permission.
1783  */
1784 static inline u32 open_file_to_av(struct file *file)
1785 {
1786         u32 av = file_to_av(file);
1787
1788         if (selinux_policycap_openperm) {
1789                 mode_t mode = file->f_path.dentry->d_inode->i_mode;
1790                 /*
1791                  * lnk files and socks do not really have an 'open'
1792                  */
1793                 if (S_ISREG(mode))
1794                         av |= FILE__OPEN;
1795                 else if (S_ISCHR(mode))
1796                         av |= CHR_FILE__OPEN;
1797                 else if (S_ISBLK(mode))
1798                         av |= BLK_FILE__OPEN;
1799                 else if (S_ISFIFO(mode))
1800                         av |= FIFO_FILE__OPEN;
1801                 else if (S_ISDIR(mode))
1802                         av |= DIR__OPEN;
1803                 else
1804                         printk(KERN_ERR "SELinux: WARNING: inside %s with "
1805                                 "unknown mode:%o\n", __func__, mode);
1806         }
1807         return av;
1808 }
1809
1810 /* Hook functions begin here. */
1811
1812 static int selinux_ptrace_may_access(struct task_struct *child,
1813                                      unsigned int mode)
1814 {
1815         int rc;
1816
1817         rc = secondary_ops->ptrace_may_access(child, mode);
1818         if (rc)
1819                 return rc;
1820
1821         if (mode == PTRACE_MODE_READ) {
1822                 u32 sid = current_sid();
1823                 u32 csid = task_sid(child);
1824                 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
1825         }
1826
1827         return current_has_perm(child, PROCESS__PTRACE);
1828 }
1829
1830 static int selinux_ptrace_traceme(struct task_struct *parent)
1831 {
1832         int rc;
1833
1834         rc = secondary_ops->ptrace_traceme(parent);
1835         if (rc)
1836                 return rc;
1837
1838         return task_has_perm(parent, current, PROCESS__PTRACE);
1839 }
1840
1841 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1842                           kernel_cap_t *inheritable, kernel_cap_t *permitted)
1843 {
1844         int error;
1845
1846         error = current_has_perm(target, PROCESS__GETCAP);
1847         if (error)
1848                 return error;
1849
1850         return secondary_ops->capget(target, effective, inheritable, permitted);
1851 }
1852
1853 static int selinux_capset(struct cred *new, const struct cred *old,
1854                           const kernel_cap_t *effective,
1855                           const kernel_cap_t *inheritable,
1856                           const kernel_cap_t *permitted)
1857 {
1858         int error;
1859
1860         error = secondary_ops->capset(new, old,
1861                                       effective, inheritable, permitted);
1862         if (error)
1863                 return error;
1864
1865         return cred_has_perm(old, new, PROCESS__SETCAP);
1866 }
1867
1868 static int selinux_capable(struct task_struct *tsk, int cap, int audit)
1869 {
1870         int rc;
1871
1872         rc = secondary_ops->capable(tsk, cap, audit);
1873         if (rc)
1874                 return rc;
1875
1876         return task_has_capability(tsk, cap, audit);
1877 }
1878
1879 static int selinux_sysctl_get_sid(ctl_table *table, u16 tclass, u32 *sid)
1880 {
1881         int buflen, rc;
1882         char *buffer, *path, *end;
1883
1884         rc = -ENOMEM;
1885         buffer = (char *)__get_free_page(GFP_KERNEL);
1886         if (!buffer)
1887                 goto out;
1888
1889         buflen = PAGE_SIZE;
1890         end = buffer+buflen;
1891         *--end = '\0';
1892         buflen--;
1893         path = end-1;
1894         *path = '/';
1895         while (table) {
1896                 const char *name = table->procname;
1897                 size_t namelen = strlen(name);
1898                 buflen -= namelen + 1;
1899                 if (buflen < 0)
1900                         goto out_free;
1901                 end -= namelen;
1902                 memcpy(end, name, namelen);
1903                 *--end = '/';
1904                 path = end;
1905                 table = table->parent;
1906         }
1907         buflen -= 4;
1908         if (buflen < 0)
1909                 goto out_free;
1910         end -= 4;
1911         memcpy(end, "/sys", 4);
1912         path = end;
1913         rc = security_genfs_sid("proc", path, tclass, sid);
1914 out_free:
1915         free_page((unsigned long)buffer);
1916 out:
1917         return rc;
1918 }
1919
1920 static int selinux_sysctl(ctl_table *table, int op)
1921 {
1922         int error = 0;
1923         u32 av;
1924         u32 tsid, sid;
1925         int rc;
1926
1927         rc = secondary_ops->sysctl(table, op);
1928         if (rc)
1929                 return rc;
1930
1931         sid = current_sid();
1932
1933         rc = selinux_sysctl_get_sid(table, (op == 0001) ?
1934                                     SECCLASS_DIR : SECCLASS_FILE, &tsid);
1935         if (rc) {
1936                 /* Default to the well-defined sysctl SID. */
1937                 tsid = SECINITSID_SYSCTL;
1938         }
1939
1940         /* The op values are "defined" in sysctl.c, thereby creating
1941          * a bad coupling between this module and sysctl.c */
1942         if (op == 001) {
1943                 error = avc_has_perm(sid, tsid,
1944                                      SECCLASS_DIR, DIR__SEARCH, NULL);
1945         } else {
1946                 av = 0;
1947                 if (op & 004)
1948                         av |= FILE__READ;
1949                 if (op & 002)
1950                         av |= FILE__WRITE;
1951                 if (av)
1952                         error = avc_has_perm(sid, tsid,
1953                                              SECCLASS_FILE, av, NULL);
1954         }
1955
1956         return error;
1957 }
1958
1959 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1960 {
1961         const struct cred *cred = current_cred();
1962         int rc = 0;
1963
1964         if (!sb)
1965                 return 0;
1966
1967         switch (cmds) {
1968         case Q_SYNC:
1969         case Q_QUOTAON:
1970         case Q_QUOTAOFF:
1971         case Q_SETINFO:
1972         case Q_SETQUOTA:
1973                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
1974                 break;
1975         case Q_GETFMT:
1976         case Q_GETINFO:
1977         case Q_GETQUOTA:
1978                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
1979                 break;
1980         default:
1981                 rc = 0;  /* let the kernel handle invalid cmds */
1982                 break;
1983         }
1984         return rc;
1985 }
1986
1987 static int selinux_quota_on(struct dentry *dentry)
1988 {
1989         const struct cred *cred = current_cred();
1990
1991         return dentry_has_perm(cred, NULL, dentry, FILE__QUOTAON);
1992 }
1993
1994 static int selinux_syslog(int type)
1995 {
1996         int rc;
1997
1998         rc = secondary_ops->syslog(type);
1999         if (rc)
2000                 return rc;
2001
2002         switch (type) {
2003         case 3:         /* Read last kernel messages */
2004         case 10:        /* Return size of the log buffer */
2005                 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
2006                 break;
2007         case 6:         /* Disable logging to console */
2008         case 7:         /* Enable logging to console */
2009         case 8:         /* Set level of messages printed to console */
2010                 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
2011                 break;
2012         case 0:         /* Close log */
2013         case 1:         /* Open log */
2014         case 2:         /* Read from log */
2015         case 4:         /* Read/clear last kernel messages */
2016         case 5:         /* Clear ring buffer */
2017         default:
2018                 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
2019                 break;
2020         }
2021         return rc;
2022 }
2023
2024 /*
2025  * Check that a process has enough memory to allocate a new virtual
2026  * mapping. 0 means there is enough memory for the allocation to
2027  * succeed and -ENOMEM implies there is not.
2028  *
2029  * Note that secondary_ops->capable and task_has_perm_noaudit return 0
2030  * if the capability is granted, but __vm_enough_memory requires 1 if
2031  * the capability is granted.
2032  *
2033  * Do not audit the selinux permission check, as this is applied to all
2034  * processes that allocate mappings.
2035  */
2036 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2037 {
2038         int rc, cap_sys_admin = 0;
2039
2040         rc = selinux_capable(current, CAP_SYS_ADMIN, SECURITY_CAP_NOAUDIT);
2041         if (rc == 0)
2042                 cap_sys_admin = 1;
2043
2044         return __vm_enough_memory(mm, pages, cap_sys_admin);
2045 }
2046
2047 /* binprm security operations */
2048
2049 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2050 {
2051         const struct task_security_struct *old_tsec;
2052         struct task_security_struct *new_tsec;
2053         struct inode_security_struct *isec;
2054         struct avc_audit_data ad;
2055         struct inode *inode = bprm->file->f_path.dentry->d_inode;
2056         int rc;
2057
2058         rc = secondary_ops->bprm_set_creds(bprm);
2059         if (rc)
2060                 return rc;
2061
2062         /* SELinux context only depends on initial program or script and not
2063          * the script interpreter */
2064         if (bprm->cred_prepared)
2065                 return 0;
2066
2067         old_tsec = current_security();
2068         new_tsec = bprm->cred->security;
2069         isec = inode->i_security;
2070
2071         /* Default to the current task SID. */
2072         new_tsec->sid = old_tsec->sid;
2073         new_tsec->osid = old_tsec->sid;
2074
2075         /* Reset fs, key, and sock SIDs on execve. */
2076         new_tsec->create_sid = 0;
2077         new_tsec->keycreate_sid = 0;
2078         new_tsec->sockcreate_sid = 0;
2079
2080         if (old_tsec->exec_sid) {
2081                 new_tsec->sid = old_tsec->exec_sid;
2082                 /* Reset exec SID on execve. */
2083                 new_tsec->exec_sid = 0;
2084         } else {
2085                 /* Check for a default transition on this program. */
2086                 rc = security_transition_sid(old_tsec->sid, isec->sid,
2087                                              SECCLASS_PROCESS, &new_tsec->sid);
2088                 if (rc)
2089                         return rc;
2090         }
2091
2092         AVC_AUDIT_DATA_INIT(&ad, FS);
2093         ad.u.fs.path = bprm->file->f_path;
2094
2095         if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
2096                 new_tsec->sid = old_tsec->sid;
2097
2098         if (new_tsec->sid == old_tsec->sid) {
2099                 rc = avc_has_perm(old_tsec->sid, isec->sid,
2100                                   SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2101                 if (rc)
2102                         return rc;
2103         } else {
2104                 /* Check permissions for the transition. */
2105                 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2106                                   SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2107                 if (rc)
2108                         return rc;
2109
2110                 rc = avc_has_perm(new_tsec->sid, isec->sid,
2111                                   SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2112                 if (rc)
2113                         return rc;
2114
2115                 /* Check for shared state */
2116                 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2117                         rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2118                                           SECCLASS_PROCESS, PROCESS__SHARE,
2119                                           NULL);
2120                         if (rc)
2121                                 return -EPERM;
2122                 }
2123
2124                 /* Make sure that anyone attempting to ptrace over a task that
2125                  * changes its SID has the appropriate permit */
2126                 if (bprm->unsafe &
2127                     (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2128                         struct task_struct *tracer;
2129                         struct task_security_struct *sec;
2130                         u32 ptsid = 0;
2131
2132                         rcu_read_lock();
2133                         tracer = tracehook_tracer_task(current);
2134                         if (likely(tracer != NULL)) {
2135                                 sec = __task_cred(tracer)->security;
2136                                 ptsid = sec->sid;
2137                         }
2138                         rcu_read_unlock();
2139
2140                         if (ptsid != 0) {
2141                                 rc = avc_has_perm(ptsid, new_tsec->sid,
2142                                                   SECCLASS_PROCESS,
2143                                                   PROCESS__PTRACE, NULL);
2144                                 if (rc)
2145                                         return -EPERM;
2146                         }
2147                 }
2148
2149                 /* Clear any possibly unsafe personality bits on exec: */
2150                 bprm->per_clear |= PER_CLEAR_ON_SETID;
2151         }
2152
2153         return 0;
2154 }
2155
2156 static int selinux_bprm_check_security(struct linux_binprm *bprm)
2157 {
2158         return secondary_ops->bprm_check_security(bprm);
2159 }
2160
2161 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2162 {
2163         const struct cred *cred = current_cred();
2164         const struct task_security_struct *tsec = cred->security;
2165         u32 sid, osid;
2166         int atsecure = 0;
2167
2168         sid = tsec->sid;
2169         osid = tsec->osid;
2170
2171         if (osid != sid) {
2172                 /* Enable secure mode for SIDs transitions unless
2173                    the noatsecure permission is granted between
2174                    the two SIDs, i.e. ahp returns 0. */
2175                 atsecure = avc_has_perm(osid, sid,
2176                                         SECCLASS_PROCESS,
2177                                         PROCESS__NOATSECURE, NULL);
2178         }
2179
2180         return (atsecure || secondary_ops->bprm_secureexec(bprm));
2181 }
2182
2183 extern struct vfsmount *selinuxfs_mount;
2184 extern struct dentry *selinux_null;
2185
2186 /* Derived from fs/exec.c:flush_old_files. */
2187 static inline void flush_unauthorized_files(const struct cred *cred,
2188                                             struct files_struct *files)
2189 {
2190         struct avc_audit_data ad;
2191         struct file *file, *devnull = NULL;
2192         struct tty_struct *tty;
2193         struct fdtable *fdt;
2194         long j = -1;
2195         int drop_tty = 0;
2196
2197         tty = get_current_tty();
2198         if (tty) {
2199                 file_list_lock();
2200                 if (!list_empty(&tty->tty_files)) {
2201                         struct inode *inode;
2202
2203                         /* Revalidate access to controlling tty.
2204                            Use inode_has_perm on the tty inode directly rather
2205                            than using file_has_perm, as this particular open
2206                            file may belong to another process and we are only
2207                            interested in the inode-based check here. */
2208                         file = list_first_entry(&tty->tty_files, struct file, f_u.fu_list);
2209                         inode = file->f_path.dentry->d_inode;
2210                         if (inode_has_perm(cred, inode,
2211                                            FILE__READ | FILE__WRITE, NULL)) {
2212                                 drop_tty = 1;
2213                         }
2214                 }
2215                 file_list_unlock();
2216                 tty_kref_put(tty);
2217         }
2218         /* Reset controlling tty. */
2219         if (drop_tty)
2220                 no_tty();
2221
2222         /* Revalidate access to inherited open files. */
2223
2224         AVC_AUDIT_DATA_INIT(&ad, FS);
2225
2226         spin_lock(&files->file_lock);
2227         for (;;) {
2228                 unsigned long set, i;
2229                 int fd;
2230
2231                 j++;
2232                 i = j * __NFDBITS;
2233                 fdt = files_fdtable(files);
2234                 if (i >= fdt->max_fds)
2235                         break;
2236                 set = fdt->open_fds->fds_bits[j];
2237                 if (!set)
2238                         continue;
2239                 spin_unlock(&files->file_lock);
2240                 for ( ; set ; i++, set >>= 1) {
2241                         if (set & 1) {
2242                                 file = fget(i);
2243                                 if (!file)
2244                                         continue;
2245                                 if (file_has_perm(cred,
2246                                                   file,
2247                                                   file_to_av(file))) {
2248                                         sys_close(i);
2249                                         fd = get_unused_fd();
2250                                         if (fd != i) {
2251                                                 if (fd >= 0)
2252                                                         put_unused_fd(fd);
2253                                                 fput(file);
2254                                                 continue;
2255                                         }
2256                                         if (devnull) {
2257                                                 get_file(devnull);
2258                                         } else {
2259                                                 devnull = dentry_open(
2260                                                         dget(selinux_null),
2261                                                         mntget(selinuxfs_mount),
2262                                                         O_RDWR, cred);
2263                                                 if (IS_ERR(devnull)) {
2264                                                         devnull = NULL;
2265                                                         put_unused_fd(fd);
2266                                                         fput(file);
2267                                                         continue;
2268                                                 }
2269                                         }
2270                                         fd_install(fd, devnull);
2271                                 }
2272                                 fput(file);
2273                         }
2274                 }
2275                 spin_lock(&files->file_lock);
2276
2277         }
2278         spin_unlock(&files->file_lock);
2279 }
2280
2281 /*
2282  * Prepare a process for imminent new credential changes due to exec
2283  */
2284 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2285 {
2286         struct task_security_struct *new_tsec;
2287         struct rlimit *rlim, *initrlim;
2288         int rc, i;
2289
2290         secondary_ops->bprm_committing_creds(bprm);
2291
2292         new_tsec = bprm->cred->security;
2293         if (new_tsec->sid == new_tsec->osid)
2294                 return;
2295
2296         /* Close files for which the new task SID is not authorized. */
2297         flush_unauthorized_files(bprm->cred, current->files);
2298
2299         /* Always clear parent death signal on SID transitions. */
2300         current->pdeath_signal = 0;
2301
2302         /* Check whether the new SID can inherit resource limits from the old
2303          * SID.  If not, reset all soft limits to the lower of the current
2304          * task's hard limit and the init task's soft limit.
2305          *
2306          * Note that the setting of hard limits (even to lower them) can be
2307          * controlled by the setrlimit check.  The inclusion of the init task's
2308          * soft limit into the computation is to avoid resetting soft limits
2309          * higher than the default soft limit for cases where the default is
2310          * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2311          */
2312         rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2313                           PROCESS__RLIMITINH, NULL);
2314         if (rc) {
2315                 for (i = 0; i < RLIM_NLIMITS; i++) {
2316                         rlim = current->signal->rlim + i;
2317                         initrlim = init_task.signal->rlim + i;
2318                         rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2319                 }
2320                 update_rlimit_cpu(rlim->rlim_cur);
2321         }
2322 }
2323
2324 /*
2325  * Clean up the process immediately after the installation of new credentials
2326  * due to exec
2327  */
2328 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2329 {
2330         const struct task_security_struct *tsec = current_security();
2331         struct itimerval itimer;
2332         struct sighand_struct *psig;
2333         u32 osid, sid;
2334         int rc, i;
2335         unsigned long flags;
2336
2337         secondary_ops->bprm_committed_creds(bprm);
2338
2339         osid = tsec->osid;
2340         sid = tsec->sid;
2341
2342         if (sid == osid)
2343                 return;
2344
2345         /* Check whether the new SID can inherit signal state from the old SID.
2346          * If not, clear itimers to avoid subsequent signal generation and
2347          * flush and unblock signals.
2348          *
2349          * This must occur _after_ the task SID has been updated so that any
2350          * kill done after the flush will be checked against the new SID.
2351          */
2352         rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2353         if (rc) {
2354                 memset(&itimer, 0, sizeof itimer);
2355                 for (i = 0; i < 3; i++)
2356                         do_setitimer(i, &itimer, NULL);
2357                 flush_signals(current);
2358                 spin_lock_irq(&current->sighand->siglock);
2359                 flush_signal_handlers(current, 1);
2360                 sigemptyset(&current->blocked);
2361                 recalc_sigpending();
2362                 spin_unlock_irq(&current->sighand->siglock);
2363         }
2364
2365         /* Wake up the parent if it is waiting so that it can recheck
2366          * wait permission to the new task SID. */
2367         read_lock_irq(&tasklist_lock);
2368         psig = current->parent->sighand;
2369         spin_lock_irqsave(&psig->siglock, flags);
2370         wake_up_interruptible(&current->parent->signal->wait_chldexit);
2371         spin_unlock_irqrestore(&psig->siglock, flags);
2372         read_unlock_irq(&tasklist_lock);
2373 }
2374
2375 /* superblock security operations */
2376
2377 static int selinux_sb_alloc_security(struct super_block *sb)
2378 {
2379         return superblock_alloc_security(sb);
2380 }
2381
2382 static void selinux_sb_free_security(struct super_block *sb)
2383 {
2384         superblock_free_security(sb);
2385 }
2386
2387 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2388 {
2389         if (plen > olen)
2390                 return 0;
2391
2392         return !memcmp(prefix, option, plen);
2393 }
2394
2395 static inline int selinux_option(char *option, int len)
2396 {
2397         return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2398                 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2399                 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2400                 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len));
2401 }
2402
2403 static inline void take_option(char **to, char *from, int *first, int len)
2404 {
2405         if (!*first) {
2406                 **to = ',';
2407                 *to += 1;
2408         } else
2409                 *first = 0;
2410         memcpy(*to, from, len);
2411         *to += len;
2412 }
2413
2414 static inline void take_selinux_option(char **to, char *from, int *first,
2415                                        int len)
2416 {
2417         int current_size = 0;
2418
2419         if (!*first) {
2420                 **to = '|';
2421                 *to += 1;
2422         } else
2423                 *first = 0;
2424
2425         while (current_size < len) {
2426                 if (*from != '"') {
2427                         **to = *from;
2428                         *to += 1;
2429                 }
2430                 from += 1;
2431                 current_size += 1;
2432         }
2433 }
2434
2435 static int selinux_sb_copy_data(char *orig, char *copy)
2436 {
2437         int fnosec, fsec, rc = 0;
2438         char *in_save, *in_curr, *in_end;
2439         char *sec_curr, *nosec_save, *nosec;
2440         int open_quote = 0;
2441
2442         in_curr = orig;
2443         sec_curr = copy;
2444
2445         nosec = (char *)get_zeroed_page(GFP_KERNEL);
2446         if (!nosec) {
2447                 rc = -ENOMEM;
2448                 goto out;
2449         }
2450
2451         nosec_save = nosec;
2452         fnosec = fsec = 1;
2453         in_save = in_end = orig;
2454
2455         do {
2456                 if (*in_end == '"')
2457                         open_quote = !open_quote;
2458                 if ((*in_end == ',' && open_quote == 0) ||
2459                                 *in_end == '\0') {
2460                         int len = in_end - in_curr;
2461
2462                         if (selinux_option(in_curr, len))
2463                                 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2464                         else
2465                                 take_option(&nosec, in_curr, &fnosec, len);
2466
2467                         in_curr = in_end + 1;
2468                 }
2469         } while (*in_end++);
2470
2471         strcpy(in_save, nosec_save);
2472         free_page((unsigned long)nosec_save);
2473 out:
2474         return rc;
2475 }
2476
2477 static int selinux_sb_kern_mount(struct super_block *sb, void *data)
2478 {
2479         const struct cred *cred = current_cred();
2480         struct avc_audit_data ad;
2481         int rc;
2482
2483         rc = superblock_doinit(sb, data);
2484         if (rc)
2485                 return rc;
2486
2487         AVC_AUDIT_DATA_INIT(&ad, FS);
2488         ad.u.fs.path.dentry = sb->s_root;
2489         return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2490 }
2491
2492 static int selinux_sb_statfs(struct dentry *dentry)
2493 {
2494         const struct cred *cred = current_cred();
2495         struct avc_audit_data ad;
2496
2497         AVC_AUDIT_DATA_INIT(&ad, FS);
2498         ad.u.fs.path.dentry = dentry->d_sb->s_root;
2499         return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2500 }
2501
2502 static int selinux_mount(char *dev_name,
2503                          struct path *path,
2504                          char *type,
2505                          unsigned long flags,
2506                          void *data)
2507 {
2508         const struct cred *cred = current_cred();
2509         int rc;
2510
2511         rc = secondary_ops->sb_mount(dev_name, path, type, flags, data);
2512         if (rc)
2513                 return rc;
2514
2515         if (flags & MS_REMOUNT)
2516                 return superblock_has_perm(cred, path->mnt->mnt_sb,
2517                                            FILESYSTEM__REMOUNT, NULL);
2518         else
2519                 return dentry_has_perm(cred, path->mnt, path->dentry,
2520                                        FILE__MOUNTON);
2521 }
2522
2523 static int selinux_umount(struct vfsmount *mnt, int flags)
2524 {
2525         const struct cred *cred = current_cred();
2526         int rc;
2527
2528         rc = secondary_ops->sb_umount(mnt, flags);
2529         if (rc)
2530                 return rc;
2531
2532         return superblock_has_perm(cred, mnt->mnt_sb,
2533                                    FILESYSTEM__UNMOUNT, NULL);
2534 }
2535
2536 /* inode security operations */
2537
2538 static int selinux_inode_alloc_security(struct inode *inode)
2539 {
2540         return inode_alloc_security(inode);
2541 }
2542
2543 static void selinux_inode_free_security(struct inode *inode)
2544 {
2545         inode_free_security(inode);
2546 }
2547
2548 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2549                                        char **name, void **value,
2550                                        size_t *len)
2551 {
2552         const struct cred *cred = current_cred();
2553         const struct task_security_struct *tsec = cred->security;
2554         struct inode_security_struct *dsec;
2555         struct superblock_security_struct *sbsec;
2556         u32 sid, newsid, clen;
2557         int rc;
2558         char *namep = NULL, *context;
2559
2560         dsec = dir->i_security;
2561         sbsec = dir->i_sb->s_security;
2562
2563         sid = tsec->sid;
2564         newsid = tsec->create_sid;
2565
2566         if (!newsid || sbsec->behavior == SECURITY_FS_USE_MNTPOINT) {
2567                 rc = security_transition_sid(sid, dsec->sid,
2568                                              inode_mode_to_security_class(inode->i_mode),
2569                                              &newsid);
2570                 if (rc) {
2571                         printk(KERN_WARNING "%s:  "
2572                                "security_transition_sid failed, rc=%d (dev=%s "
2573                                "ino=%ld)\n",
2574                                __func__,
2575                                -rc, inode->i_sb->s_id, inode->i_ino);
2576                         return rc;
2577                 }
2578         }
2579
2580         /* Possibly defer initialization to selinux_complete_init. */
2581         if (sbsec->initialized) {
2582                 struct inode_security_struct *isec = inode->i_security;
2583                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2584                 isec->sid = newsid;
2585                 isec->initialized = 1;
2586         }
2587
2588         if (!ss_initialized || sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2589                 return -EOPNOTSUPP;
2590
2591         if (name) {
2592                 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS);
2593                 if (!namep)
2594                         return -ENOMEM;
2595                 *name = namep;
2596         }
2597
2598         if (value && len) {
2599                 rc = security_sid_to_context_force(newsid, &context, &clen);
2600                 if (rc) {
2601                         kfree(namep);
2602                         return rc;
2603                 }
2604                 *value = context;
2605                 *len = clen;
2606         }
2607
2608         return 0;
2609 }
2610
2611 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2612 {
2613         return may_create(dir, dentry, SECCLASS_FILE);
2614 }
2615
2616 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2617 {
2618         int rc;
2619
2620         rc = secondary_ops->inode_link(old_dentry, dir, new_dentry);
2621         if (rc)
2622                 return rc;
2623         return may_link(dir, old_dentry, MAY_LINK);
2624 }
2625
2626 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2627 {
2628         int rc;
2629
2630         rc = secondary_ops->inode_unlink(dir, dentry);
2631         if (rc)
2632                 return rc;
2633         return may_link(dir, dentry, MAY_UNLINK);
2634 }
2635
2636 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2637 {
2638         return may_create(dir, dentry, SECCLASS_LNK_FILE);
2639 }
2640
2641 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2642 {
2643         return may_create(dir, dentry, SECCLASS_DIR);
2644 }
2645
2646 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2647 {
2648         return may_link(dir, dentry, MAY_RMDIR);
2649 }
2650
2651 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2652 {
2653         int rc;
2654
2655         rc = secondary_ops->inode_mknod(dir, dentry, mode, dev);
2656         if (rc)
2657                 return rc;
2658
2659         return may_create(dir, dentry, inode_mode_to_security_class(mode));
2660 }
2661
2662 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2663                                 struct inode *new_inode, struct dentry *new_dentry)
2664 {
2665         return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2666 }
2667
2668 static int selinux_inode_readlink(struct dentry *dentry)
2669 {
2670         const struct cred *cred = current_cred();
2671
2672         return dentry_has_perm(cred, NULL, dentry, FILE__READ);
2673 }
2674
2675 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2676 {
2677         const struct cred *cred = current_cred();
2678         int rc;
2679
2680         rc = secondary_ops->inode_follow_link(dentry, nameidata);
2681         if (rc)
2682                 return rc;
2683         return dentry_has_perm(cred, NULL, dentry, FILE__READ);
2684 }
2685
2686 static int selinux_inode_permission(struct inode *inode, int mask)
2687 {
2688         const struct cred *cred = current_cred();
2689         int rc;
2690
2691         rc = secondary_ops->inode_permission(inode, mask);
2692         if (rc)
2693                 return rc;
2694
2695         if (!mask) {
2696                 /* No permission to check.  Existence test. */
2697                 return 0;
2698         }
2699
2700         return inode_has_perm(cred, inode,
2701                               file_mask_to_av(inode->i_mode, mask), NULL);
2702 }
2703
2704 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2705 {
2706         const struct cred *cred = current_cred();
2707         int rc;
2708
2709         rc = secondary_ops->inode_setattr(dentry, iattr);
2710         if (rc)
2711                 return rc;
2712
2713         if (iattr->ia_valid & ATTR_FORCE)
2714                 return 0;
2715
2716         if (iattr->ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2717                                ATTR_ATIME_SET | ATTR_MTIME_SET))
2718                 return dentry_has_perm(cred, NULL, dentry, FILE__SETATTR);
2719
2720         return dentry_has_perm(cred, NULL, dentry, FILE__WRITE);
2721 }
2722
2723 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2724 {
2725         const struct cred *cred = current_cred();
2726
2727         return dentry_has_perm(cred, mnt, dentry, FILE__GETATTR);
2728 }
2729
2730 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2731 {
2732         const struct cred *cred = current_cred();
2733
2734         if (!strncmp(name, XATTR_SECURITY_PREFIX,
2735                      sizeof XATTR_SECURITY_PREFIX - 1)) {
2736                 if (!strcmp(name, XATTR_NAME_CAPS)) {
2737                         if (!capable(CAP_SETFCAP))
2738                                 return -EPERM;
2739                 } else if (!capable(CAP_SYS_ADMIN)) {
2740                         /* A different attribute in the security namespace.
2741                            Restrict to administrator. */
2742                         return -EPERM;
2743                 }
2744         }
2745
2746         /* Not an attribute we recognize, so just check the
2747            ordinary setattr permission. */
2748         return dentry_has_perm(cred, NULL, dentry, FILE__SETATTR);
2749 }
2750
2751 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2752                                   const void *value, size_t size, int flags)
2753 {
2754         struct inode *inode = dentry->d_inode;
2755         struct inode_security_struct *isec = inode->i_security;
2756         struct superblock_security_struct *sbsec;
2757         struct avc_audit_data ad;
2758         u32 newsid, sid = current_sid();
2759         int rc = 0;
2760
2761         if (strcmp(name, XATTR_NAME_SELINUX))
2762                 return selinux_inode_setotherxattr(dentry, name);
2763
2764         sbsec = inode->i_sb->s_security;
2765         if (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2766                 return -EOPNOTSUPP;
2767
2768         if (!is_owner_or_cap(inode))
2769                 return -EPERM;
2770
2771         AVC_AUDIT_DATA_INIT(&ad, FS);
2772         ad.u.fs.path.dentry = dentry;
2773
2774         rc = avc_has_perm(sid, isec->sid, isec->sclass,
2775                           FILE__RELABELFROM, &ad);
2776         if (rc)
2777                 return rc;
2778
2779         rc = security_context_to_sid(value, size, &newsid);
2780         if (rc == -EINVAL) {
2781                 if (!capable(CAP_MAC_ADMIN))
2782                         return rc;
2783                 rc = security_context_to_sid_force(value, size, &newsid);
2784         }
2785         if (rc)
2786                 return rc;
2787
2788         rc = avc_has_perm(sid, newsid, isec->sclass,
2789                           FILE__RELABELTO, &ad);
2790         if (rc)
2791                 return rc;
2792
2793         rc = security_validate_transition(isec->sid, newsid, sid,
2794                                           isec->sclass);
2795         if (rc)
2796                 return rc;
2797
2798         return avc_has_perm(newsid,
2799                             sbsec->sid,
2800                             SECCLASS_FILESYSTEM,
2801                             FILESYSTEM__ASSOCIATE,
2802                             &ad);
2803 }
2804
2805 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2806                                         const void *value, size_t size,
2807                                         int flags)
2808 {
2809         struct inode *inode = dentry->d_inode;
2810         struct inode_security_struct *isec = inode->i_security;
2811         u32 newsid;
2812         int rc;
2813
2814         if (strcmp(name, XATTR_NAME_SELINUX)) {
2815                 /* Not an attribute we recognize, so nothing to do. */
2816                 return;
2817         }
2818
2819         rc = security_context_to_sid_force(value, size, &newsid);
2820         if (rc) {
2821                 printk(KERN_ERR "SELinux:  unable to map context to SID"
2822                        "for (%s, %lu), rc=%d\n",
2823                        inode->i_sb->s_id, inode->i_ino, -rc);
2824                 return;
2825         }
2826
2827         isec->sid = newsid;
2828         return;
2829 }
2830
2831 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2832 {
2833         const struct cred *cred = current_cred();
2834
2835         return dentry_has_perm(cred, NULL, dentry, FILE__GETATTR);
2836 }
2837
2838 static int selinux_inode_listxattr(struct dentry *dentry)
2839 {
2840         const struct cred *cred = current_cred();
2841
2842         return dentry_has_perm(cred, NULL, dentry, FILE__GETATTR);
2843 }
2844
2845 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
2846 {
2847         if (strcmp(name, XATTR_NAME_SELINUX))
2848                 return selinux_inode_setotherxattr(dentry, name);
2849
2850         /* No one is allowed to remove a SELinux security label.
2851            You can change the label, but all data must be labeled. */
2852         return -EACCES;
2853 }
2854
2855 /*
2856  * Copy the inode security context value to the user.
2857  *
2858  * Permission check is handled by selinux_inode_getxattr hook.
2859  */
2860 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2861 {
2862         u32 size;
2863         int error;
2864         char *context = NULL;
2865         struct inode_security_struct *isec = inode->i_security;
2866
2867         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2868                 return -EOPNOTSUPP;
2869
2870         /*
2871          * If the caller has CAP_MAC_ADMIN, then get the raw context
2872          * value even if it is not defined by current policy; otherwise,
2873          * use the in-core value under current policy.
2874          * Use the non-auditing forms of the permission checks since
2875          * getxattr may be called by unprivileged processes commonly
2876          * and lack of permission just means that we fall back to the
2877          * in-core context value, not a denial.
2878          */
2879         error = selinux_capable(current, CAP_MAC_ADMIN, SECURITY_CAP_NOAUDIT);
2880         if (!error)
2881                 error = security_sid_to_context_force(isec->sid, &context,
2882                                                       &size);
2883         else
2884                 error = security_sid_to_context(isec->sid, &context, &size);
2885         if (error)
2886                 return error;
2887         error = size;
2888         if (alloc) {
2889                 *buffer = context;
2890                 goto out_nofree;
2891         }
2892         kfree(context);
2893 out_nofree:
2894         return error;
2895 }
2896
2897 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2898                                      const void *value, size_t size, int flags)
2899 {
2900         struct inode_security_struct *isec = inode->i_security;
2901         u32 newsid;
2902         int rc;
2903
2904         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2905                 return -EOPNOTSUPP;
2906
2907         if (!value || !size)
2908                 return -EACCES;
2909
2910         rc = security_context_to_sid((void *)value, size, &newsid);
2911         if (rc)
2912                 return rc;
2913
2914         isec->sid = newsid;
2915         return 0;
2916 }
2917
2918 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2919 {
2920         const int len = sizeof(XATTR_NAME_SELINUX);
2921         if (buffer && len <= buffer_size)
2922                 memcpy(buffer, XATTR_NAME_SELINUX, len);
2923         return len;
2924 }
2925
2926 static int selinux_inode_need_killpriv(struct dentry *dentry)
2927 {
2928         return secondary_ops->inode_need_killpriv(dentry);
2929 }
2930
2931 static int selinux_inode_killpriv(struct dentry *dentry)
2932 {
2933         return secondary_ops->inode_killpriv(dentry);
2934 }
2935
2936 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
2937 {
2938         struct inode_security_struct *isec = inode->i_security;
2939         *secid = isec->sid;
2940 }
2941
2942 /* file security operations */
2943
2944 static int selinux_revalidate_file_permission(struct file *file, int mask)
2945 {
2946         const struct cred *cred = current_cred();
2947         int rc;
2948         struct inode *inode = file->f_path.dentry->d_inode;
2949
2950         if (!mask) {
2951                 /* No permission to check.  Existence test. */
2952                 return 0;
2953         }
2954
2955         /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2956         if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2957                 mask |= MAY_APPEND;
2958
2959         rc = file_has_perm(cred, file,
2960                            file_mask_to_av(inode->i_mode, mask));
2961         if (rc)
2962                 return rc;
2963
2964         return selinux_netlbl_inode_permission(inode, mask);
2965 }
2966
2967 static int selinux_file_permission(struct file *file, int mask)
2968 {
2969         struct inode *inode = file->f_path.dentry->d_inode;
2970         struct file_security_struct *fsec = file->f_security;
2971         struct inode_security_struct *isec = inode->i_security;
2972         u32 sid = current_sid();
2973
2974         if (!mask) {
2975                 /* No permission to check.  Existence test. */
2976                 return 0;
2977         }
2978
2979         if (sid == fsec->sid && fsec->isid == isec->sid
2980             && fsec->pseqno == avc_policy_seqno())
2981                 return selinux_netlbl_inode_permission(inode, mask);
2982
2983         return selinux_revalidate_file_permission(file, mask);
2984 }
2985
2986 static int selinux_file_alloc_security(struct file *file)
2987 {
2988         return file_alloc_security(file);
2989 }
2990
2991 static void selinux_file_free_security(struct file *file)
2992 {
2993         file_free_security(file);
2994 }
2995
2996 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2997                               unsigned long arg)
2998 {
2999         const struct cred *cred = current_cred();
3000         u32 av = 0;
3001
3002         if (_IOC_DIR(cmd) & _IOC_WRITE)
3003                 av |= FILE__WRITE;
3004         if (_IOC_DIR(cmd) & _IOC_READ)
3005                 av |= FILE__READ;
3006         if (!av)
3007                 av = FILE__IOCTL;
3008
3009         return file_has_perm(cred, file, av);
3010 }
3011
3012 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3013 {
3014         const struct cred *cred = current_cred();
3015         int rc = 0;
3016
3017 #ifndef CONFIG_PPC32
3018         if ((prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
3019                 /*
3020                  * We are making executable an anonymous mapping or a
3021                  * private file mapping that will also be writable.
3022                  * This has an additional check.
3023                  */
3024                 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3025                 if (rc)
3026                         goto error;
3027         }
3028 #endif
3029
3030         if (file) {
3031                 /* read access is always possible with a mapping */
3032                 u32 av = FILE__READ;
3033
3034                 /* write access only matters if the mapping is shared */
3035                 if (shared && (prot & PROT_WRITE))
3036                         av |= FILE__WRITE;
3037
3038                 if (prot & PROT_EXEC)
3039                         av |= FILE__EXECUTE;
3040
3041                 return file_has_perm(cred, file, av);
3042         }
3043
3044 error:
3045         return rc;
3046 }
3047
3048 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
3049                              unsigned long prot, unsigned long flags,
3050                              unsigned long addr, unsigned long addr_only)
3051 {
3052         int rc = 0;
3053         u32 sid = current_sid();
3054
3055         if (addr < mmap_min_addr)
3056                 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3057                                   MEMPROTECT__MMAP_ZERO, NULL);
3058         if (rc || addr_only)
3059                 return rc;
3060
3061         if (selinux_checkreqprot)
3062                 prot = reqprot;
3063
3064         return file_map_prot_check(file, prot,
3065                                    (flags & MAP_TYPE) == MAP_SHARED);
3066 }
3067
3068 static int selinux_file_mprotect(struct vm_area_struct *vma,
3069                                  unsigned long reqprot,
3070                                  unsigned long prot)
3071 {
3072         const struct cred *cred = current_cred();
3073         int rc;
3074
3075         rc = secondary_ops->file_mprotect(vma, reqprot, prot);
3076         if (rc)
3077                 return rc;
3078
3079         if (selinux_checkreqprot)
3080                 prot = reqprot;
3081
3082 #ifndef CONFIG_PPC32
3083         if ((prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3084                 rc = 0;
3085                 if (vma->vm_start >= vma->vm_mm->start_brk &&
3086                     vma->vm_end <= vma->vm_mm->brk) {
3087                         rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3088                 } else if (!vma->vm_file &&
3089                            vma->vm_start <= vma->vm_mm->start_stack &&
3090                            vma->vm_end >= vma->vm_mm->start_stack) {
3091                         rc = current_has_perm(current, PROCESS__EXECSTACK);
3092                 } else if (vma->vm_file && vma->anon_vma) {
3093                         /*
3094                          * We are making executable a file mapping that has
3095                          * had some COW done. Since pages might have been
3096                          * written, check ability to execute the possibly
3097                          * modified content.  This typically should only
3098                          * occur for text relocations.
3099                          */
3100                         rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3101                 }
3102                 if (rc)
3103                         return rc;
3104         }
3105 #endif
3106
3107         return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3108 }
3109
3110 static int selinux_file_lock(struct file *file, unsigned int cmd)
3111 {
3112         const struct cred *cred = current_cred();
3113
3114         return file_has_perm(cred, file, FILE__LOCK);
3115 }
3116
3117 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3118                               unsigned long arg)
3119 {
3120         const struct cred *cred = current_cred();
3121         int err = 0;
3122
3123         switch (cmd) {
3124         case F_SETFL:
3125                 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3126                         err = -EINVAL;
3127                         break;
3128                 }
3129
3130                 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3131                         err = file_has_perm(cred, file, FILE__WRITE);
3132                         break;
3133                 }
3134                 /* fall through */
3135         case F_SETOWN:
3136         case F_SETSIG:
3137         case F_GETFL:
3138         case F_GETOWN:
3139         case F_GETSIG:
3140                 /* Just check FD__USE permission */
3141                 err = file_has_perm(cred, file, 0);
3142                 break;
3143         case F_GETLK:
3144         case F_SETLK:
3145         case F_SETLKW:
3146 #if BITS_PER_LONG == 32
3147         case F_GETLK64:
3148         case F_SETLK64:
3149         case F_SETLKW64:
3150 #endif
3151                 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3152                         err = -EINVAL;
3153                         break;
3154                 }
3155                 err = file_has_perm(cred, file, FILE__LOCK);
3156                 break;
3157         }
3158
3159         return err;
3160 }
3161
3162 static int selinux_file_set_fowner(struct file *file)
3163 {
3164         struct file_security_struct *fsec;
3165
3166         fsec = file->f_security;
3167         fsec->fown_sid = current_sid();
3168
3169         return 0;
3170 }
3171
3172 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3173                                        struct fown_struct *fown, int signum)
3174 {
3175         struct file *file;
3176         u32 sid = current_sid();
3177         u32 perm;
3178         struct file_security_struct *fsec;
3179
3180         /* struct fown_struct is never outside the context of a struct file */
3181         file = container_of(fown, struct file, f_owner);
3182
3183         fsec = file->f_security;
3184
3185         if (!signum)
3186                 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3187         else
3188                 perm = signal_to_av(signum);
3189
3190         return avc_has_perm(fsec->fown_sid, sid,
3191                             SECCLASS_PROCESS, perm, NULL);
3192 }
3193
3194 static int selinux_file_receive(struct file *file)
3195 {
3196         const struct cred *cred = current_cred();
3197
3198         return file_has_perm(cred, file, file_to_av(file));
3199 }
3200
3201 static int selinux_dentry_open(struct file *file, const struct cred *cred)
3202 {
3203         struct file_security_struct *fsec;
3204         struct inode *inode;
3205         struct inode_security_struct *isec;
3206
3207         inode = file->f_path.dentry->d_inode;
3208         fsec = file->f_security;
3209         isec = inode->i_security;
3210         /*
3211          * Save inode label and policy sequence number
3212          * at open-time so that selinux_file_permission
3213          * can determine whether revalidation is necessary.
3214          * Task label is already saved in the file security
3215          * struct as its SID.
3216          */
3217         fsec->isid = isec->sid;
3218         fsec->pseqno = avc_policy_seqno();
3219         /*
3220          * Since the inode label or policy seqno may have changed
3221          * between the selinux_inode_permission check and the saving
3222          * of state above, recheck that access is still permitted.
3223          * Otherwise, access might never be revalidated against the
3224          * new inode label or new policy.
3225          * This check is not redundant - do not remove.
3226          */
3227         return inode_has_perm(cred, inode, open_file_to_av(file), NULL);
3228 }
3229
3230 /* task security operations */
3231
3232 static int selinux_task_create(unsigned long clone_flags)
3233 {
3234         int rc;
3235
3236         rc = secondary_ops->task_create(clone_flags);
3237         if (rc)
3238                 return rc;
3239
3240         return current_has_perm(current, PROCESS__FORK);
3241 }
3242
3243 /*
3244  * detach and free the LSM part of a set of credentials
3245  */
3246 static void selinux_cred_free(struct cred *cred)
3247 {
3248         struct task_security_struct *tsec = cred->security;
3249         cred->security = NULL;
3250         kfree(tsec);
3251 }
3252
3253 /*
3254  * prepare a new set of credentials for modification
3255  */
3256 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3257                                 gfp_t gfp)
3258 {
3259         const struct task_security_struct *old_tsec;
3260         struct task_security_struct *tsec;
3261
3262         old_tsec = old->security;
3263
3264         tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3265         if (!tsec)
3266                 return -ENOMEM;
3267
3268         new->security = tsec;
3269         return 0;
3270 }
3271
3272 /*
3273  * commit new credentials
3274  */
3275 static void selinux_cred_commit(struct cred *new, const struct cred *old)
3276 {
3277         secondary_ops->cred_commit(new, old);
3278 }
3279
3280 /*
3281  * set the security data for a kernel service
3282  * - all the creation contexts are set to unlabelled
3283  */
3284 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3285 {
3286         struct task_security_struct *tsec = new->security;
3287         u32 sid = current_sid();
3288         int ret;
3289
3290         ret = avc_has_perm(sid, secid,
3291                            SECCLASS_KERNEL_SERVICE,
3292                            KERNEL_SERVICE__USE_AS_OVERRIDE,
3293                            NULL);
3294         if (ret == 0) {
3295                 tsec->sid = secid;
3296                 tsec->create_sid = 0;
3297                 tsec->keycreate_sid = 0;
3298                 tsec->sockcreate_sid = 0;
3299         }
3300         return ret;
3301 }
3302
3303 /*
3304  * set the file creation context in a security record to the same as the
3305  * objective context of the specified inode
3306  */
3307 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3308 {
3309         struct inode_security_struct *isec = inode->i_security;
3310         struct task_security_struct *tsec = new->security;
3311         u32 sid = current_sid();
3312         int ret;
3313
3314         ret = avc_has_perm(sid, isec->sid,
3315                            SECCLASS_KERNEL_SERVICE,
3316                            KERNEL_SERVICE__CREATE_FILES_AS,
3317                            NULL);
3318
3319         if (ret == 0)
3320                 tsec->create_sid = isec->sid;
3321         return 0;
3322 }
3323
3324 static int selinux_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
3325 {
3326         /* Since setuid only affects the current process, and
3327            since the SELinux controls are not based on the Linux
3328            identity attributes, SELinux does not need to control
3329            this operation.  However, SELinux does control the use
3330            of the CAP_SETUID and CAP_SETGID capabilities using the
3331            capable hook. */
3332         return 0;
3333 }
3334
3335 static int selinux_task_fix_setuid(struct cred *new, const struct cred *old,
3336                                    int flags)
3337 {
3338         return secondary_ops->task_fix_setuid(new, old, flags);
3339 }
3340
3341 static int selinux_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
3342 {
3343         /* See the comment for setuid above. */
3344         return 0;
3345 }
3346
3347 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3348 {
3349         return current_has_perm(p, PROCESS__SETPGID);
3350 }
3351
3352 static int selinux_task_getpgid(struct task_struct *p)
3353 {
3354         return current_has_perm(p, PROCESS__GETPGID);
3355 }
3356
3357 static int selinux_task_getsid(struct task_struct *p)
3358 {
3359         return current_has_perm(p, PROCESS__GETSESSION);
3360 }
3361
3362 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3363 {
3364         *secid = task_sid(p);
3365 }
3366
3367 static int selinux_task_setgroups(struct group_info *group_info)
3368 {
3369         /* See the comment for setuid above. */
3370         return 0;
3371 }
3372
3373 static int selinux_task_setnice(struct task_struct *p, int nice)
3374 {
3375         int rc;
3376
3377         rc = secondary_ops->task_setnice(p, nice);
3378         if (rc)
3379                 return rc;
3380
3381         return current_has_perm(p, PROCESS__SETSCHED);
3382 }
3383
3384 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3385 {
3386         int rc;
3387
3388         rc = secondary_ops->task_setioprio(p, ioprio);
3389         if (rc)
3390                 return rc;
3391
3392         return current_has_perm(p, PROCESS__SETSCHED);
3393 }
3394
3395 static int selinux_task_getioprio(struct task_struct *p)
3396 {
3397         return current_has_perm(p, PROCESS__GETSCHED);
3398 }
3399
3400 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
3401 {
3402         struct rlimit *old_rlim = current->signal->rlim + resource;
3403         int rc;
3404
3405         rc = secondary_ops->task_setrlimit(resource, new_rlim);
3406         if (rc)
3407                 return rc;
3408
3409         /* Control the ability to change the hard limit (whether
3410            lowering or raising it), so that the hard limit can
3411            later be used as a safe reset point for the soft limit
3412            upon context transitions.  See selinux_bprm_committing_creds. */
3413         if (old_rlim->rlim_max != new_rlim->rlim_max)
3414                 return current_has_perm(current, PROCESS__SETRLIMIT);
3415
3416         return 0;
3417 }
3418
3419 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp)
3420 {
3421         int rc;
3422
3423         rc = secondary_ops->task_setscheduler(p, policy, lp);
3424         if (rc)
3425                 return rc;
3426
3427         return current_has_perm(p, PROCESS__SETSCHED);
3428 }
3429
3430 static int selinux_task_getscheduler(struct task_struct *p)
3431 {
3432         return current_has_perm(p, PROCESS__GETSCHED);
3433 }
3434
3435 static int selinux_task_movememory(struct task_struct *p)
3436 {
3437         return current_has_perm(p, PROCESS__SETSCHED);
3438 }
3439
3440 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3441                                 int sig, u32 secid)
3442 {
3443         u32 perm;
3444         int rc;
3445
3446         rc = secondary_ops->task_kill(p, info, sig, secid);
3447         if (rc)
3448                 return rc;
3449
3450         if (!sig)
3451                 perm = PROCESS__SIGNULL; /* null signal; existence test */
3452         else
3453                 perm = signal_to_av(sig);
3454         if (secid)
3455                 rc = avc_has_perm(secid, task_sid(p),
3456                                   SECCLASS_PROCESS, perm, NULL);
3457         else
3458                 rc = current_has_perm(p, perm);
3459         return rc;
3460 }
3461
3462 static int selinux_task_prctl(int option,
3463                               unsigned long arg2,
3464                               unsigned long arg3,
3465                               unsigned long arg4,
3466                               unsigned long arg5)
3467 {
3468         /* The current prctl operations do not appear to require
3469            any SELinux controls since they merely observe or modify
3470            the state of the current process. */
3471         return secondary_ops->task_prctl(option, arg2, arg3, arg4, arg5);
3472 }
3473
3474 static int selinux_task_wait(struct task_struct *p)
3475 {
3476         return task_has_perm(p, current, PROCESS__SIGCHLD);
3477 }
3478
3479 static void selinux_task_to_inode(struct task_struct *p,
3480                                   struct inode *inode)
3481 {
3482         struct inode_security_struct *isec = inode->i_security;
3483         u32 sid = task_sid(p);
3484
3485         isec->sid = sid;
3486         isec->initialized = 1;
3487 }
3488
3489 /* Returns error only if unable to parse addresses */
3490 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3491                         struct avc_audit_data *ad, u8 *proto)
3492 {
3493         int offset, ihlen, ret = -EINVAL;
3494         struct iphdr _iph, *ih;
3495
3496         offset = skb_network_offset(skb);
3497         ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3498         if (ih == NULL)
3499                 goto out;
3500
3501         ihlen = ih->ihl * 4;
3502         if (ihlen < sizeof(_iph))
3503                 goto out;
3504
3505         ad->u.net.v4info.saddr = ih->saddr;
3506         ad->u.net.v4info.daddr = ih->daddr;
3507         ret = 0;
3508
3509         if (proto)
3510                 *proto = ih->protocol;
3511
3512         switch (ih->protocol) {
3513         case IPPROTO_TCP: {
3514                 struct tcphdr _tcph, *th;
3515
3516                 if (ntohs(ih->frag_off) & IP_OFFSET)
3517                         break;
3518
3519                 offset += ihlen;
3520                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3521                 if (th == NULL)
3522                         break;
3523
3524                 ad->u.net.sport = th->source;
3525                 ad->u.net.dport = th->dest;
3526                 break;
3527         }
3528
3529         case IPPROTO_UDP: {
3530                 struct udphdr _udph, *uh;
3531
3532                 if (ntohs(ih->frag_off) & IP_OFFSET)
3533                         break;
3534
3535                 offset += ihlen;
3536                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3537                 if (uh == NULL)
3538                         break;
3539
3540                 ad->u.net.sport = uh->source;
3541                 ad->u.net.dport = uh->dest;
3542                 break;
3543         }
3544
3545         case IPPROTO_DCCP: {
3546                 struct dccp_hdr _dccph, *dh;
3547
3548                 if (ntohs(ih->frag_off) & IP_OFFSET)
3549                         break;
3550
3551                 offset += ihlen;
3552                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3553                 if (dh == NULL)
3554                         break;
3555
3556                 ad->u.net.sport = dh->dccph_sport;
3557                 ad->u.net.dport = dh->dccph_dport;
3558                 break;
3559         }
3560
3561         default:
3562                 break;
3563         }
3564 out:
3565         return ret;
3566 }
3567
3568 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3569
3570 /* Returns error only if unable to parse addresses */
3571 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3572                         struct avc_audit_data *ad, u8 *proto)
3573 {
3574         u8 nexthdr;
3575         int ret = -EINVAL, offset;
3576         struct ipv6hdr _ipv6h, *ip6;
3577
3578         offset = skb_network_offset(skb);
3579         ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3580         if (ip6 == NULL)
3581                 goto out;
3582
3583         ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
3584         ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
3585         ret = 0;
3586
3587         nexthdr = ip6->nexthdr;
3588         offset += sizeof(_ipv6h);
3589         offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
3590         if (offset < 0)
3591                 goto out;
3592
3593         if (proto)
3594                 *proto = nexthdr;
3595
3596         switch (nexthdr) {
3597         case IPPROTO_TCP: {
3598                 struct tcphdr _tcph, *th;
3599
3600                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3601                 if (th == NULL)
3602                         break;
3603
3604                 ad->u.net.sport = th->source;
3605                 ad->u.net.dport = th->dest;
3606                 break;
3607         }
3608
3609         case IPPROTO_UDP: {
3610                 struct udphdr _udph, *uh;
3611
3612                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3613                 if (uh == NULL)
3614                         break;
3615
3616                 ad->u.net.sport = uh->source;
3617                 ad->u.net.dport = uh->dest;
3618                 break;
3619         }
3620
3621         case IPPROTO_DCCP: {
3622                 struct dccp_hdr _dccph, *dh;
3623
3624                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3625                 if (dh == NULL)
3626                         break;
3627
3628                 ad->u.net.sport = dh->dccph_sport;
3629                 ad->u.net.dport = dh->dccph_dport;
3630                 break;
3631         }
3632
3633         /* includes fragments */
3634         default:
3635                 break;
3636         }
3637 out:
3638         return ret;
3639 }
3640
3641 #endif /* IPV6 */
3642
3643 static int selinux_parse_skb(struct sk_buff *skb, struct avc_audit_data *ad,
3644                              char **_addrp, int src, u8 *proto)
3645 {
3646         char *addrp;
3647         int ret;
3648
3649         switch (ad->u.net.family) {
3650         case PF_INET:
3651                 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3652                 if (ret)
3653                         goto parse_error;
3654                 addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3655                                        &ad->u.net.v4info.daddr);
3656                 goto okay;
3657
3658 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3659         case PF_INET6:
3660                 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3661                 if (ret)
3662                         goto parse_error;
3663                 addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3664                                        &ad->u.net.v6info.daddr);
3665                 goto okay;
3666 #endif  /* IPV6 */
3667         default:
3668                 addrp = NULL;
3669                 goto okay;
3670         }
3671
3672 parse_error:
3673         printk(KERN_WARNING
3674                "SELinux: failure in selinux_parse_skb(),"
3675                " unable to parse packet\n");
3676         return ret;
3677
3678 okay:
3679         if (_addrp)
3680                 *_addrp = addrp;
3681         return 0;
3682 }
3683
3684 /**
3685  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3686  * @skb: the packet
3687  * @family: protocol family
3688  * @sid: the packet's peer label SID
3689  *
3690  * Description:
3691  * Check the various different forms of network peer labeling and determine
3692  * the peer label/SID for the packet; most of the magic actually occurs in
3693  * the security server function security_net_peersid_cmp().  The function
3694  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3695  * or -EACCES if @sid is invalid due to inconsistencies with the different
3696  * peer labels.
3697  *
3698  */
3699 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3700 {
3701         int err;
3702         u32 xfrm_sid;
3703         u32 nlbl_sid;
3704         u32 nlbl_type;
3705
3706         selinux_skb_xfrm_sid(skb, &xfrm_sid);
3707         selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3708
3709         err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3710         if (unlikely(err)) {
3711                 printk(KERN_WARNING
3712                        "SELinux: failure in selinux_skb_peerlbl_sid(),"
3713                        " unable to determine packet's peer label\n");
3714                 return -EACCES;
3715         }
3716
3717         return 0;
3718 }
3719
3720 /* socket security operations */
3721 static int socket_has_perm(struct task_struct *task, struct socket *sock,
3722                            u32 perms)
3723 {
3724         struct inode_security_struct *isec;
3725         struct avc_audit_data ad;
3726         u32 sid;
3727         int err = 0;
3728
3729         isec = SOCK_INODE(sock)->i_security;
3730
3731         if (isec->sid == SECINITSID_KERNEL)
3732                 goto out;
3733         sid = task_sid(task);
3734
3735         AVC_AUDIT_DATA_INIT(&ad, NET);
3736         ad.u.net.sk = sock->sk;
3737         err = avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
3738
3739 out:
3740         return err;
3741 }
3742
3743 static int selinux_socket_create(int family, int type,
3744                                  int protocol, int kern)
3745 {
3746         const struct cred *cred = current_cred();
3747         const struct task_security_struct *tsec = cred->security;
3748         u32 sid, newsid;
3749         u16 secclass;
3750         int err = 0;
3751
3752         if (kern)
3753                 goto out;
3754
3755         sid = tsec->sid;
3756         newsid = tsec->sockcreate_sid ?: sid;
3757
3758         secclass = socket_type_to_security_class(family, type, protocol);
3759         err = avc_has_perm(sid, newsid, secclass, SOCKET__CREATE, NULL);
3760
3761 out:
3762         return err;
3763 }
3764
3765 static int selinux_socket_post_create(struct socket *sock, int family,
3766                                       int type, int protocol, int kern)
3767 {
3768         const struct cred *cred = current_cred();
3769         const struct task_security_struct *tsec = cred->security;
3770         struct inode_security_struct *isec;
3771         struct sk_security_struct *sksec;
3772         u32 sid, newsid;
3773         int err = 0;
3774
3775         sid = tsec->sid;
3776         newsid = tsec->sockcreate_sid;
3777
3778         isec = SOCK_INODE(sock)->i_security;
3779
3780         if (kern)
3781                 isec->sid = SECINITSID_KERNEL;
3782         else if (newsid)
3783                 isec->sid = newsid;
3784         else
3785                 isec->sid = sid;
3786
3787         isec->sclass = socket_type_to_security_class(family, type, protocol);
3788         isec->initialized = 1;
3789
3790         if (sock->sk) {
3791                 sksec = sock->sk->sk_security;
3792                 sksec->sid = isec->sid;
3793                 sksec->sclass = isec->sclass;
3794                 err = selinux_netlbl_socket_post_create(sock);
3795         }
3796
3797         return err;
3798 }
3799
3800 /* Range of port numbers used to automatically bind.
3801    Need to determine whether we should perform a name_bind
3802    permission check between the socket and the port number. */
3803
3804 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3805 {
3806         u16 family;
3807         int err;
3808
3809         err = socket_has_perm(current, sock, SOCKET__BIND);
3810         if (err)
3811                 goto out;
3812
3813         /*
3814          * If PF_INET or PF_INET6, check name_bind permission for the port.
3815          * Multiple address binding for SCTP is not supported yet: we just
3816          * check the first address now.
3817          */
3818         family = sock->sk->sk_family;
3819         if (family == PF_INET || family == PF_INET6) {
3820                 char *addrp;
3821                 struct inode_security_struct *isec;
3822                 struct avc_audit_data ad;
3823                 struct sockaddr_in *addr4 = NULL;
3824                 struct sockaddr_in6 *addr6 = NULL;
3825                 unsigned short snum;
3826                 struct sock *sk = sock->sk;
3827                 u32 sid, node_perm;
3828
3829                 isec = SOCK_INODE(sock)->i_security;
3830
3831                 if (family == PF_INET) {
3832                         addr4 = (struct sockaddr_in *)address;
3833                         snum = ntohs(addr4->sin_port);
3834                         addrp = (char *)&addr4->sin_addr.s_addr;
3835                 } else {
3836                         addr6 = (struct sockaddr_in6 *)address;
3837                         snum = ntohs(addr6->sin6_port);
3838                         addrp = (char *)&addr6->sin6_addr.s6_addr;
3839                 }
3840
3841                 if (snum) {
3842                         int low, high;
3843
3844                         inet_get_local_port_range(&low, &high);
3845
3846                         if (snum < max(PROT_SOCK, low) || snum > high) {
3847                                 err = sel_netport_sid(sk->sk_protocol,
3848                                                       snum, &sid);
3849                                 if (err)
3850                                         goto out;
3851                                 AVC_AUDIT_DATA_INIT(&ad, NET);
3852                                 ad.u.net.sport = htons(snum);
3853                                 ad.u.net.family = family;
3854                                 err = avc_has_perm(isec->sid, sid,
3855                                                    isec->sclass,
3856                                                    SOCKET__NAME_BIND, &ad);
3857                                 if (err)
3858                                         goto out;
3859                         }
3860                 }
3861
3862                 switch (isec->sclass) {
3863                 case SECCLASS_TCP_SOCKET:
3864                         node_perm = TCP_SOCKET__NODE_BIND;
3865                         break;
3866
3867                 case SECCLASS_UDP_SOCKET:
3868                         node_perm = UDP_SOCKET__NODE_BIND;
3869                         break;
3870
3871                 case SECCLASS_DCCP_SOCKET:
3872                         node_perm = DCCP_SOCKET__NODE_BIND;
3873                         break;
3874
3875                 default:
3876                         node_perm = RAWIP_SOCKET__NODE_BIND;
3877                         break;
3878                 }
3879
3880                 err = sel_netnode_sid(addrp, family, &sid);
3881                 if (err)
3882                         goto out;
3883
3884                 AVC_AUDIT_DATA_INIT(&ad, NET);
3885                 ad.u.net.sport = htons(snum);
3886                 ad.u.net.family = family;
3887
3888                 if (family == PF_INET)
3889                         ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3890                 else
3891                         ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3892
3893                 err = avc_has_perm(isec->sid, sid,
3894                                    isec->sclass, node_perm, &ad);
3895                 if (err)
3896                         goto out;
3897         }
3898 out:
3899         return err;
3900 }
3901
3902 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3903 {
3904         struct sock *sk = sock->sk;
3905         struct inode_security_struct *isec;
3906         int err;
3907
3908         err = socket_has_perm(current, sock, SOCKET__CONNECT);
3909         if (err)
3910                 return err;
3911
3912         /*
3913          * If a TCP or DCCP socket, check name_connect permission for the port.
3914          */
3915         isec = SOCK_INODE(sock)->i_security;
3916         if (isec->sclass == SECCLASS_TCP_SOCKET ||
3917             isec->sclass == SECCLASS_DCCP_SOCKET) {
3918                 struct avc_audit_data ad;
3919                 struct sockaddr_in *addr4 = NULL;
3920                 struct sockaddr_in6 *addr6 = NULL;
3921                 unsigned short snum;
3922                 u32 sid, perm;
3923
3924                 if (sk->sk_family == PF_INET) {
3925                         addr4 = (struct sockaddr_in *)address;
3926                         if (addrlen < sizeof(struct sockaddr_in))
3927                                 return -EINVAL;
3928                         snum = ntohs(addr4->sin_port);
3929                 } else {
3930                         addr6 = (struct sockaddr_in6 *)address;
3931                         if (addrlen < SIN6_LEN_RFC2133)
3932                                 return -EINVAL;
3933                         snum = ntohs(addr6->sin6_port);
3934                 }
3935
3936                 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
3937                 if (err)
3938                         goto out;
3939
3940                 perm = (isec->sclass == SECCLASS_TCP_SOCKET) ?
3941                        TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3942
3943                 AVC_AUDIT_DATA_INIT(&ad, NET);
3944                 ad.u.net.dport = htons(snum);
3945                 ad.u.net.family = sk->sk_family;
3946                 err = avc_has_perm(isec->sid, sid, isec->sclass, perm, &ad);
3947                 if (err)
3948                         goto out;
3949         }
3950
3951         err = selinux_netlbl_socket_connect(sk, address);
3952
3953 out:
3954         return err;
3955 }
3956
3957 static int selinux_socket_listen(struct socket *sock, int backlog)
3958 {
3959         return socket_has_perm(current, sock, SOCKET__LISTEN);
3960 }
3961
3962 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3963 {
3964         int err;
3965         struct inode_security_struct *isec;
3966         struct inode_security_struct *newisec;
3967
3968         err = socket_has_perm(current, sock, SOCKET__ACCEPT);
3969         if (err)
3970                 return err;
3971
3972         newisec = SOCK_INODE(newsock)->i_security;
3973
3974         isec = SOCK_INODE(sock)->i_security;
3975         newisec->sclass = isec->sclass;
3976         newisec->sid = isec->sid;
3977         newisec->initialized = 1;
3978
3979         return 0;
3980 }
3981
3982 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3983                                   int size)
3984 {
3985         int rc;
3986
3987         rc = socket_has_perm(current, sock, SOCKET__WRITE);
3988         if (rc)
3989                 return rc;
3990
3991         return selinux_netlbl_inode_permission(SOCK_INODE(sock), MAY_WRITE);
3992 }
3993
3994 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3995                                   int size, int flags)
3996 {
3997         return socket_has_perm(current, sock, SOCKET__READ);
3998 }
3999
4000 static int selinux_socket_getsockname(struct socket *sock)
4001 {
4002         return socket_has_perm(current, sock, SOCKET__GETATTR);
4003 }
4004
4005 static int selinux_socket_getpeername(struct socket *sock)
4006 {
4007         return socket_has_perm(current, sock, SOCKET__GETATTR);
4008 }
4009
4010 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4011 {
4012         int err;
4013
4014         err = socket_has_perm(current, sock, SOCKET__SETOPT);
4015         if (err)
4016                 return err;
4017
4018         return selinux_netlbl_socket_setsockopt(sock, level, optname);
4019 }
4020
4021 static int selinux_socket_getsockopt(struct socket *sock, int level,
4022                                      int optname)
4023 {
4024         return socket_has_perm(current, sock, SOCKET__GETOPT);
4025 }
4026
4027 static int selinux_socket_shutdown(struct socket *sock, int how)
4028 {
4029         return socket_has_perm(current, sock, SOCKET__SHUTDOWN);
4030 }
4031
4032 static int selinux_socket_unix_stream_connect(struct socket *sock,
4033                                               struct socket *other,
4034                                               struct sock *newsk)
4035 {
4036         struct sk_security_struct *ssec;
4037         struct inode_security_struct *isec;
4038         struct inode_security_struct *other_isec;
4039         struct avc_audit_data ad;
4040         int err;
4041
4042         err = secondary_ops->unix_stream_connect(sock, other, newsk);
4043         if (err)
4044                 return err;
4045
4046         isec = SOCK_INODE(sock)->i_security;
4047         other_isec = SOCK_INODE(other)->i_security;
4048
4049         AVC_AUDIT_DATA_INIT(&ad, NET);
4050         ad.u.net.sk = other->sk;
4051
4052         err = avc_has_perm(isec->sid, other_isec->sid,
4053                            isec->sclass,
4054                            UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4055         if (err)
4056                 return err;
4057
4058         /* connecting socket */
4059         ssec = sock->sk->sk_security;
4060         ssec->peer_sid = other_isec->sid;
4061
4062         /* server child socket */
4063         ssec = newsk->sk_security;
4064         ssec->peer_sid = isec->sid;
4065         err = security_sid_mls_copy(other_isec->sid, ssec->peer_sid, &ssec->sid);
4066
4067         return err;
4068 }
4069
4070 static int selinux_socket_unix_may_send(struct socket *sock,
4071                                         struct socket *other)
4072 {
4073         struct inode_security_struct *isec;
4074         struct inode_security_struct *other_isec;
4075         struct avc_audit_data ad;
4076         int err;
4077
4078         isec = SOCK_INODE(sock)->i_security;
4079         other_isec = SOCK_INODE(other)->i_security;
4080
4081         AVC_AUDIT_DATA_INIT(&ad, NET);
4082         ad.u.net.sk = other->sk;
4083
4084         err = avc_has_perm(isec->sid, other_isec->sid,
4085                            isec->sclass, SOCKET__SENDTO, &ad);
4086         if (err)
4087                 return err;
4088
4089         return 0;
4090 }
4091
4092 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
4093                                     u32 peer_sid,
4094                                     struct avc_audit_data *ad)
4095 {
4096         int err;
4097         u32 if_sid;
4098         u32 node_sid;
4099
4100         err = sel_netif_sid(ifindex, &if_sid);
4101         if (err)
4102                 return err;
4103         err = avc_has_perm(peer_sid, if_sid,
4104                            SECCLASS_NETIF, NETIF__INGRESS, ad);
4105         if (err)
4106                 return err;
4107
4108         err = sel_netnode_sid(addrp, family, &node_sid);
4109         if (err)
4110                 return err;
4111         return avc_has_perm(peer_sid, node_sid,
4112                             SECCLASS_NODE, NODE__RECVFROM, ad);
4113 }
4114
4115 static int selinux_sock_rcv_skb_iptables_compat(struct sock *sk,
4116                                                 struct sk_buff *skb,
4117                                                 struct avc_audit_data *ad,
4118                                                 u16 family,
4119                                                 char *addrp)
4120 {
4121         int err;
4122         struct sk_security_struct *sksec = sk->sk_security;
4123         u16 sk_class;
4124         u32 netif_perm, node_perm, recv_perm;
4125         u32 port_sid, node_sid, if_sid, sk_sid;
4126
4127         sk_sid = sksec->sid;
4128         sk_class = sksec->sclass;
4129
4130         switch (sk_class) {
4131         case SECCLASS_UDP_SOCKET:
4132                 netif_perm = NETIF__UDP_RECV;
4133                 node_perm = NODE__UDP_RECV;
4134                 recv_perm = UDP_SOCKET__RECV_MSG;
4135                 break;
4136         case SECCLASS_TCP_SOCKET:
4137                 netif_perm = NETIF__TCP_RECV;
4138                 node_perm = NODE__TCP_RECV;
4139                 recv_perm = TCP_SOCKET__RECV_MSG;
4140                 break;
4141         case SECCLASS_DCCP_SOCKET:
4142                 netif_perm = NETIF__DCCP_RECV;
4143                 node_perm = NODE__DCCP_RECV;
4144                 recv_perm = DCCP_SOCKET__RECV_MSG;
4145                 break;
4146         default:
4147                 netif_perm = NETIF__RAWIP_RECV;
4148                 node_perm = NODE__RAWIP_RECV;
4149                 recv_perm = 0;
4150                 break;
4151         }
4152
4153         err = sel_netif_sid(skb->iif, &if_sid);
4154         if (err)
4155                 return err;
4156         err = avc_has_perm(sk_sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
4157         if (err)
4158                 return err;
4159
4160         err = sel_netnode_sid(addrp, family, &node_sid);
4161         if (err)
4162                 return err;
4163         err = avc_has_perm(sk_sid, node_sid, SECCLASS_NODE, node_perm, ad);
4164         if (err)
4165                 return err;
4166
4167         if (!recv_perm)
4168                 return 0;
4169         err = sel_netport_sid(sk->sk_protocol,
4170                               ntohs(ad->u.net.sport), &port_sid);
4171         if (unlikely(err)) {
4172                 printk(KERN_WARNING
4173                        "SELinux: failure in"
4174                        " selinux_sock_rcv_skb_iptables_compat(),"
4175                        " network port label not found\n");
4176                 return err;
4177         }
4178         return avc_has_perm(sk_sid, port_sid, sk_class, recv_perm, ad);
4179 }
4180
4181 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4182                                        u16 family)
4183 {
4184         int err;
4185         struct sk_security_struct *sksec = sk->sk_security;
4186         u32 peer_sid;
4187         u32 sk_sid = sksec->sid;
4188         struct avc_audit_data ad;
4189         char *addrp;
4190
4191         AVC_AUDIT_DATA_INIT(&ad, NET);
4192         ad.u.net.netif = skb->iif;
4193         ad.u.net.family = family;
4194         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4195         if (err)
4196                 return err;
4197
4198         if (selinux_compat_net)
4199                 err = selinux_sock_rcv_skb_iptables_compat(sk, skb, &ad,
4200                                                            family, addrp);
4201         else
4202                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4203                                    PACKET__RECV, &ad);
4204         if (err)
4205                 return err;
4206
4207         if (selinux_policycap_netpeer) {
4208                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4209                 if (err)
4210                         return err;
4211                 err = avc_has_perm(sk_sid, peer_sid,
4212                                    SECCLASS_PEER, PEER__RECV, &ad);
4213                 if (err)
4214                         selinux_netlbl_err(skb, err, 0);
4215         } else {
4216                 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4217                 if (err)
4218                         return err;
4219                 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4220         }
4221
4222         return err;
4223 }
4224
4225 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4226 {
4227         int err;
4228         struct sk_security_struct *sksec = sk->sk_security;
4229         u16 family = sk->sk_family;
4230         u32 sk_sid = sksec->sid;
4231         struct avc_audit_data ad;
4232         char *addrp;
4233         u8 secmark_active;
4234         u8 peerlbl_active;
4235
4236         if (family != PF_INET && family != PF_INET6)
4237                 return 0;
4238
4239         /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4240         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4241                 family = PF_INET;
4242
4243         /* If any sort of compatibility mode is enabled then handoff processing
4244          * to the selinux_sock_rcv_skb_compat() function to deal with the
4245          * special handling.  We do this in an attempt to keep this function
4246          * as fast and as clean as possible. */
4247         if (selinux_compat_net || !selinux_policycap_netpeer)
4248                 return selinux_sock_rcv_skb_compat(sk, skb, family);
4249
4250         secmark_active = selinux_secmark_enabled();
4251         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4252         if (!secmark_active && !peerlbl_active)
4253                 return 0;
4254
4255         AVC_AUDIT_DATA_INIT(&ad, NET);
4256         ad.u.net.netif = skb->iif;
4257         ad.u.net.family = family;
4258         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4259         if (err)
4260                 return err;
4261
4262         if (peerlbl_active) {
4263                 u32 peer_sid;
4264
4265                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4266                 if (err)
4267                         return err;
4268                 err = selinux_inet_sys_rcv_skb(skb->iif, addrp, family,
4269                                                peer_sid, &ad);
4270                 if (err) {
4271                         selinux_netlbl_err(skb, err, 0);
4272                         return err;
4273                 }
4274                 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4275                                    PEER__RECV, &ad);
4276                 if (err)
4277                         selinux_netlbl_err(skb, err, 0);
4278         }
4279
4280         if (secmark_active) {
4281                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4282                                    PACKET__RECV, &ad);
4283                 if (err)
4284                         return err;
4285         }
4286
4287         return err;
4288 }
4289
4290 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4291                                             int __user *optlen, unsigned len)
4292 {
4293         int err = 0;
4294         char *scontext;
4295         u32 scontext_len;
4296         struct sk_security_struct *ssec;
4297         struct inode_security_struct *isec;
4298         u32 peer_sid = SECSID_NULL;
4299
4300         isec = SOCK_INODE(sock)->i_security;
4301
4302         if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4303             isec->sclass == SECCLASS_TCP_SOCKET) {
4304                 ssec = sock->sk->sk_security;
4305                 peer_sid = ssec->peer_sid;
4306         }
4307         if (peer_sid == SECSID_NULL) {
4308                 err = -ENOPROTOOPT;
4309                 goto out;
4310         }
4311
4312         err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4313
4314         if (err)
4315                 goto out;
4316
4317         if (scontext_len > len) {
4318                 err = -ERANGE;
4319                 goto out_len;
4320         }
4321
4322         if (copy_to_user(optval, scontext, scontext_len))
4323                 err = -EFAULT;
4324
4325 out_len:
4326         if (put_user(scontext_len, optlen))
4327                 err = -EFAULT;
4328
4329         kfree(scontext);
4330 out:
4331         return err;
4332 }
4333
4334 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4335 {
4336         u32 peer_secid = SECSID_NULL;
4337         u16 family;
4338
4339         if (skb && skb->protocol == htons(ETH_P_IP))
4340                 family = PF_INET;
4341         else if (skb && skb->protocol == htons(ETH_P_IPV6))
4342                 family = PF_INET6;
4343         else if (sock)
4344                 family = sock->sk->sk_family;
4345         else
4346                 goto out;
4347
4348         if (sock && family == PF_UNIX)
4349                 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4350         else if (skb)
4351                 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4352
4353 out:
4354         *secid = peer_secid;
4355         if (peer_secid == SECSID_NULL)
4356                 return -EINVAL;
4357         return 0;
4358 }
4359
4360 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4361 {
4362         return sk_alloc_security(sk, family, priority);
4363 }
4364
4365 static void selinux_sk_free_security(struct sock *sk)
4366 {
4367         sk_free_security(sk);
4368 }
4369
4370 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4371 {
4372         struct sk_security_struct *ssec = sk->sk_security;
4373         struct sk_security_struct *newssec = newsk->sk_security;
4374
4375         newssec->sid = ssec->sid;
4376         newssec->peer_sid = ssec->peer_sid;
4377         newssec->sclass = ssec->sclass;
4378
4379         selinux_netlbl_sk_security_reset(newssec, newsk->sk_family);
4380 }
4381
4382 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4383 {
4384         if (!sk)
4385                 *secid = SECINITSID_ANY_SOCKET;
4386         else {
4387                 struct sk_security_struct *sksec = sk->sk_security;
4388
4389                 *secid = sksec->sid;
4390         }
4391 }
4392
4393 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4394 {
4395         struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4396         struct sk_security_struct *sksec = sk->sk_security;
4397
4398         if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4399             sk->sk_family == PF_UNIX)
4400                 isec->sid = sksec->sid;
4401         sksec->sclass = isec->sclass;
4402 }
4403
4404 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4405                                      struct request_sock *req)
4406 {
4407         struct sk_security_struct *sksec = sk->sk_security;
4408         int err;
4409         u16 family = sk->sk_family;
4410         u32 newsid;
4411         u32 peersid;
4412
4413         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4414         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4415                 family = PF_INET;
4416
4417         err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4418         if (err)
4419                 return err;
4420         if (peersid == SECSID_NULL) {
4421                 req->secid = sksec->sid;
4422                 req->peer_secid = SECSID_NULL;
4423                 return 0;
4424         }
4425
4426         err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4427         if (err)
4428                 return err;
4429
4430         req->secid = newsid;
4431         req->peer_secid = peersid;
4432         return 0;
4433 }
4434
4435 static void selinux_inet_csk_clone(struct sock *newsk,
4436                                    const struct request_sock *req)
4437 {
4438         struct sk_security_struct *newsksec = newsk->sk_security;
4439
4440         newsksec->sid = req->secid;
4441         newsksec->peer_sid = req->peer_secid;
4442         /* NOTE: Ideally, we should also get the isec->sid for the
4443            new socket in sync, but we don't have the isec available yet.
4444            So we will wait until sock_graft to do it, by which
4445            time it will have been created and available. */
4446
4447         /* We don't need to take any sort of lock here as we are the only
4448          * thread with access to newsksec */
4449         selinux_netlbl_sk_security_reset(newsksec, req->rsk_ops->family);
4450 }
4451
4452 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4453 {
4454         u16 family = sk->sk_family;
4455         struct sk_security_struct *sksec = sk->sk_security;
4456
4457         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4458         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4459                 family = PF_INET;
4460
4461         selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4462
4463         selinux_netlbl_inet_conn_established(sk, family);
4464 }
4465
4466 static void selinux_req_classify_flow(const struct request_sock *req,
4467                                       struct flowi *fl)
4468 {
4469         fl->secid = req->secid;
4470 }
4471
4472 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4473 {
4474         int err = 0;
4475         u32 perm;
4476         struct nlmsghdr *nlh;
4477         struct socket *sock = sk->sk_socket;
4478         struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
4479
4480         if (skb->len < NLMSG_SPACE(0)) {
4481                 err = -EINVAL;
4482                 goto out;
4483         }
4484         nlh = nlmsg_hdr(skb);
4485
4486         err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm);
4487         if (err) {
4488                 if (err == -EINVAL) {
4489                         audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4490                                   "SELinux:  unrecognized netlink message"
4491                                   " type=%hu for sclass=%hu\n",
4492                                   nlh->nlmsg_type, isec->sclass);
4493                         if (!selinux_enforcing || security_get_allow_unknown())
4494                                 err = 0;
4495                 }
4496
4497                 /* Ignore */
4498                 if (err == -ENOENT)
4499                         err = 0;
4500                 goto out;
4501         }
4502
4503         err = socket_has_perm(current, sock, perm);
4504 out:
4505         return err;
4506 }
4507
4508 #ifdef CONFIG_NETFILTER
4509
4510 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4511                                        u16 family)
4512 {
4513         int err;
4514         char *addrp;
4515         u32 peer_sid;
4516         struct avc_audit_data ad;
4517         u8 secmark_active;
4518         u8 netlbl_active;
4519         u8 peerlbl_active;
4520
4521         if (!selinux_policycap_netpeer)
4522                 return NF_ACCEPT;
4523
4524         secmark_active = selinux_secmark_enabled();
4525         netlbl_active = netlbl_enabled();
4526         peerlbl_active = netlbl_active || selinux_xfrm_enabled();
4527         if (!secmark_active && !peerlbl_active)
4528                 return NF_ACCEPT;
4529
4530         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4531                 return NF_DROP;
4532
4533         AVC_AUDIT_DATA_INIT(&ad, NET);
4534         ad.u.net.netif = ifindex;
4535         ad.u.net.family = family;
4536         if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4537                 return NF_DROP;
4538
4539         if (peerlbl_active) {
4540                 err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4541                                                peer_sid, &ad);
4542                 if (err) {
4543                         selinux_netlbl_err(skb, err, 1);
4544                         return NF_DROP;
4545                 }
4546         }
4547
4548         if (secmark_active)
4549                 if (avc_has_perm(peer_sid, skb->secmark,
4550                                  SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4551                         return NF_DROP;
4552
4553         if (netlbl_active)
4554                 /* we do this in the FORWARD path and not the POST_ROUTING
4555                  * path because we want to make sure we apply the necessary
4556                  * labeling before IPsec is applied so we can leverage AH
4557                  * protection */
4558                 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4559                         return NF_DROP;
4560
4561         return NF_ACCEPT;
4562 }
4563
4564 static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4565                                          struct sk_buff *skb,
4566                                          const struct net_device *in,
4567                                          const struct net_device *out,
4568                                          int (*okfn)(struct sk_buff *))
4569 {
4570         return selinux_ip_forward(skb, in->ifindex, PF_INET);
4571 }
4572
4573 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4574 static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4575                                          struct sk_buff *skb,
4576                                          const struct net_device *in,
4577                                          const struct net_device *out,
4578                                          int (*okfn)(struct sk_buff *))
4579 {
4580         return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4581 }
4582 #endif  /* IPV6 */
4583
4584 static unsigned int selinux_ip_output(struct sk_buff *skb,
4585                                       u16 family)
4586 {
4587         u32 sid;
4588
4589         if (!netlbl_enabled())
4590                 return NF_ACCEPT;
4591
4592         /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4593          * because we want to make sure we apply the necessary labeling
4594          * before IPsec is applied so we can leverage AH protection */
4595         if (skb->sk) {
4596                 struct sk_security_struct *sksec = skb->sk->sk_security;
4597                 sid = sksec->sid;
4598         } else
4599                 sid = SECINITSID_KERNEL;
4600         if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4601                 return NF_DROP;
4602
4603         return NF_ACCEPT;
4604 }
4605
4606 static unsigned int selinux_ipv4_output(unsigned int hooknum,
4607                                         struct sk_buff *skb,
4608                                         const struct net_device *in,
4609                                         const struct net_device *out,
4610                                         int (*okfn)(struct sk_buff *))
4611 {
4612         return selinux_ip_output(skb, PF_INET);
4613 }
4614
4615 static int selinux_ip_postroute_iptables_compat(struct sock *sk,
4616                                                 int ifindex,
4617                                                 struct avc_audit_data *ad,
4618                                                 u16 family, char *addrp)
4619 {
4620         int err;
4621         struct sk_security_struct *sksec = sk->sk_security;
4622         u16 sk_class;
4623         u32 netif_perm, node_perm, send_perm;
4624         u32 port_sid, node_sid, if_sid, sk_sid;
4625
4626         sk_sid = sksec->sid;
4627         sk_class = sksec->sclass;
4628
4629         switch (sk_class) {
4630         case SECCLASS_UDP_SOCKET:
4631                 netif_perm = NETIF__UDP_SEND;
4632                 node_perm = NODE__UDP_SEND;
4633                 send_perm = UDP_SOCKET__SEND_MSG;
4634                 break;
4635         case SECCLASS_TCP_SOCKET:
4636                 netif_perm = NETIF__TCP_SEND;
4637                 node_perm = NODE__TCP_SEND;
4638                 send_perm = TCP_SOCKET__SEND_MSG;
4639                 break;
4640         case SECCLASS_DCCP_SOCKET:
4641                 netif_perm = NETIF__DCCP_SEND;
4642                 node_perm = NODE__DCCP_SEND;
4643                 send_perm = DCCP_SOCKET__SEND_MSG;
4644                 break;
4645         default:
4646                 netif_perm = NETIF__RAWIP_SEND;
4647                 node_perm = NODE__RAWIP_SEND;
4648                 send_perm = 0;
4649                 break;
4650         }
4651
4652         err = sel_netif_sid(ifindex, &if_sid);
4653         if (err)
4654                 return err;
4655         err = avc_has_perm(sk_sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
4656                 return err;
4657
4658         err = sel_netnode_sid(addrp, family, &node_sid);
4659         if (err)
4660                 return err;
4661         err = avc_has_perm(sk_sid, node_sid, SECCLASS_NODE, node_perm, ad);
4662         if (err)
4663                 return err;
4664
4665         if (send_perm != 0)
4666                 return 0;
4667
4668         err = sel_netport_sid(sk->sk_protocol,
4669                               ntohs(ad->u.net.dport), &port_sid);
4670         if (unlikely(err)) {
4671                 printk(KERN_WARNING
4672                        "SELinux: failure in"
4673                        " selinux_ip_postroute_iptables_compat(),"
4674                        " network port label not found\n");
4675                 return err;
4676         }
4677         return avc_has_perm(sk_sid, port_sid, sk_class, send_perm, ad);
4678 }
4679
4680 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4681                                                 int ifindex,
4682                                                 u16 family)
4683 {
4684         struct sock *sk = skb->sk;
4685         struct sk_security_struct *sksec;
4686         struct avc_audit_data ad;
4687         char *addrp;
4688         u8 proto;
4689
4690         if (sk == NULL)
4691                 return NF_ACCEPT;
4692         sksec = sk->sk_security;
4693
4694         AVC_AUDIT_DATA_INIT(&ad, NET);
4695         ad.u.net.netif = ifindex;
4696         ad.u.net.family = family;
4697         if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4698                 return NF_DROP;
4699
4700         if (selinux_compat_net) {
4701                 if (selinux_ip_postroute_iptables_compat(skb->sk, ifindex,
4702                                                          &ad, family, addrp))
4703                         return NF_DROP;
4704         } else {
4705                 if (avc_has_perm(sksec->sid, skb->secmark,
4706                                  SECCLASS_PACKET, PACKET__SEND, &ad))
4707                         return NF_DROP;
4708         }
4709
4710         if (selinux_policycap_netpeer)
4711                 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4712                         return NF_DROP;
4713
4714         return NF_ACCEPT;
4715 }
4716
4717 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4718                                          u16 family)
4719 {
4720         u32 secmark_perm;
4721         u32 peer_sid;
4722         struct sock *sk;
4723         struct avc_audit_data ad;
4724         char *addrp;
4725         u8 secmark_active;
4726         u8 peerlbl_active;
4727
4728         /* If any sort of compatibility mode is enabled then handoff processing
4729          * to the selinux_ip_postroute_compat() function to deal with the
4730          * special handling.  We do this in an attempt to keep this function
4731          * as fast and as clean as possible. */
4732         if (selinux_compat_net || !selinux_policycap_netpeer)
4733                 return selinux_ip_postroute_compat(skb, ifindex, family);
4734
4735         /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4736          * packet transformation so allow the packet to pass without any checks
4737          * since we'll have another chance to perform access control checks
4738          * when the packet is on it's final way out.
4739          * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4740          *       is NULL, in this case go ahead and apply access control. */
4741         if (skb->dst != NULL && skb->dst->xfrm != NULL)
4742                 return NF_ACCEPT;
4743
4744         secmark_active = selinux_secmark_enabled();
4745         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4746         if (!secmark_active && !peerlbl_active)
4747                 return NF_ACCEPT;
4748
4749         /* if the packet is being forwarded then get the peer label from the
4750          * packet itself; otherwise check to see if it is from a local
4751          * application or the kernel, if from an application get the peer label
4752          * from the sending socket, otherwise use the kernel's sid */
4753         sk = skb->sk;
4754         if (sk == NULL) {
4755                 switch (family) {
4756                 case PF_INET:
4757                         if (IPCB(skb)->flags & IPSKB_FORWARDED)
4758                                 secmark_perm = PACKET__FORWARD_OUT;
4759                         else
4760                                 secmark_perm = PACKET__SEND;
4761                         break;
4762                 case PF_INET6:
4763                         if (IP6CB(skb)->flags & IP6SKB_FORWARDED)
4764                                 secmark_perm = PACKET__FORWARD_OUT;
4765                         else
4766                                 secmark_perm = PACKET__SEND;
4767                         break;
4768                 default:
4769                         return NF_DROP;
4770                 }
4771                 if (secmark_perm == PACKET__FORWARD_OUT) {
4772                         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4773                                 return NF_DROP;
4774                 } else
4775                         peer_sid = SECINITSID_KERNEL;
4776         } else {
4777                 struct sk_security_struct *sksec = sk->sk_security;
4778                 peer_sid = sksec->sid;
4779                 secmark_perm = PACKET__SEND;
4780         }
4781
4782         AVC_AUDIT_DATA_INIT(&ad, NET);
4783         ad.u.net.netif = ifindex;
4784         ad.u.net.family = family;
4785         if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4786                 return NF_DROP;
4787
4788         if (secmark_active)
4789                 if (avc_has_perm(peer_sid, skb->secmark,
4790                                  SECCLASS_PACKET, secmark_perm, &ad))
4791                         return NF_DROP;
4792
4793         if (peerlbl_active) {
4794                 u32 if_sid;
4795                 u32 node_sid;
4796
4797                 if (sel_netif_sid(ifindex, &if_sid))
4798                         return NF_DROP;
4799                 if (avc_has_perm(peer_sid, if_sid,
4800                                  SECCLASS_NETIF, NETIF__EGRESS, &ad))
4801                         return NF_DROP;
4802
4803                 if (sel_netnode_sid(addrp, family, &node_sid))
4804                         return NF_DROP;
4805                 if (avc_has_perm(peer_sid, node_sid,
4806                                  SECCLASS_NODE, NODE__SENDTO, &ad))
4807                         return NF_DROP;
4808         }
4809
4810         return NF_ACCEPT;
4811 }
4812
4813 static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4814                                            struct sk_buff *skb,
4815                                            const struct net_device *in,
4816                                            const struct net_device *out,
4817                                            int (*okfn)(struct sk_buff *))
4818 {
4819         return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4820 }
4821
4822 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4823 static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4824                                            struct sk_buff *skb,
4825                                            const struct net_device *in,
4826                                            const struct net_device *out,
4827                                            int (*okfn)(struct sk_buff *))
4828 {
4829         return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4830 }
4831 #endif  /* IPV6 */
4832
4833 #endif  /* CONFIG_NETFILTER */
4834
4835 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4836 {
4837         int err;
4838
4839         err = secondary_ops->netlink_send(sk, skb);
4840         if (err)
4841                 return err;
4842
4843         if (policydb_loaded_version >= POLICYDB_VERSION_NLCLASS)
4844                 err = selinux_nlmsg_perm(sk, skb);
4845
4846         return err;
4847 }
4848
4849 static int selinux_netlink_recv(struct sk_buff *skb, int capability)
4850 {
4851         int err;
4852         struct avc_audit_data ad;
4853
4854         err = secondary_ops->netlink_recv(skb, capability);
4855         if (err)
4856                 return err;
4857
4858         AVC_AUDIT_DATA_INIT(&ad, CAP);
4859         ad.u.cap = capability;
4860
4861         return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid,
4862                             SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad);
4863 }
4864
4865 static int ipc_alloc_security(struct task_struct *task,
4866                               struct kern_ipc_perm *perm,
4867                               u16 sclass)
4868 {
4869         struct ipc_security_struct *isec;
4870         u32 sid;
4871
4872         isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4873         if (!isec)
4874                 return -ENOMEM;
4875
4876         sid = task_sid(task);
4877         isec->sclass = sclass;
4878         isec->sid = sid;
4879         perm->security = isec;
4880
4881         return 0;
4882 }
4883
4884 static void ipc_free_security(struct kern_ipc_perm *perm)
4885 {
4886         struct ipc_security_struct *isec = perm->security;
4887         perm->security = NULL;
4888         kfree(isec);
4889 }
4890
4891 static int msg_msg_alloc_security(struct msg_msg *msg)
4892 {
4893         struct msg_security_struct *msec;
4894
4895         msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4896         if (!msec)
4897                 return -ENOMEM;
4898
4899         msec->sid = SECINITSID_UNLABELED;
4900         msg->security = msec;
4901
4902         return 0;
4903 }
4904
4905 static void msg_msg_free_security(struct msg_msg *msg)
4906 {
4907         struct msg_security_struct *msec = msg->security;
4908
4909         msg->security = NULL;
4910         kfree(msec);
4911 }
4912
4913 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4914                         u32 perms)
4915 {
4916         struct ipc_security_struct *isec;
4917         struct avc_audit_data ad;
4918         u32 sid = current_sid();
4919
4920         isec = ipc_perms->security;
4921
4922         AVC_AUDIT_DATA_INIT(&ad, IPC);
4923         ad.u.ipc_id = ipc_perms->key;
4924
4925         return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
4926 }
4927
4928 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4929 {
4930         return msg_msg_alloc_security(msg);
4931 }
4932
4933 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4934 {
4935         msg_msg_free_security(msg);
4936 }
4937
4938 /* message queue security operations */
4939 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4940 {
4941         struct ipc_security_struct *isec;
4942         struct avc_audit_data ad;
4943         u32 sid = current_sid();
4944         int rc;
4945
4946         rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4947         if (rc)
4948                 return rc;
4949
4950         isec = msq->q_perm.security;
4951
4952         AVC_AUDIT_DATA_INIT(&ad, IPC);
4953         ad.u.ipc_id = msq->q_perm.key;
4954
4955         rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4956                           MSGQ__CREATE, &ad);
4957         if (rc) {
4958                 ipc_free_security(&msq->q_perm);
4959                 return rc;
4960         }
4961         return 0;
4962 }
4963
4964 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4965 {
4966         ipc_free_security(&msq->q_perm);
4967 }
4968
4969 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4970 {
4971         struct ipc_security_struct *isec;
4972         struct avc_audit_data ad;
4973         u32 sid = current_sid();
4974
4975         isec = msq->q_perm.security;
4976
4977         AVC_AUDIT_DATA_INIT(&ad, IPC);
4978         ad.u.ipc_id = msq->q_perm.key;
4979
4980         return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4981                             MSGQ__ASSOCIATE, &ad);
4982 }
4983
4984 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4985 {
4986         int err;
4987         int perms;
4988
4989         switch (cmd) {
4990         case IPC_INFO:
4991         case MSG_INFO:
4992                 /* No specific object, just general system-wide information. */
4993                 return task_has_system(current, SYSTEM__IPC_INFO);
4994         case IPC_STAT:
4995         case MSG_STAT:
4996                 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4997                 break;
4998         case IPC_SET:
4999                 perms = MSGQ__SETATTR;
5000                 break;
5001         case IPC_RMID:
5002                 perms = MSGQ__DESTROY;
5003                 break;
5004         default:
5005                 return 0;
5006         }
5007
5008         err = ipc_has_perm(&msq->q_perm, perms);
5009         return err;
5010 }
5011
5012 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
5013 {
5014         struct ipc_security_struct *isec;
5015         struct msg_security_struct *msec;
5016         struct avc_audit_data ad;
5017         u32 sid = current_sid();
5018         int rc;
5019
5020         isec = msq->q_perm.security;
5021         msec = msg->security;
5022
5023         /*
5024          * First time through, need to assign label to the message
5025          */
5026         if (msec->sid == SECINITSID_UNLABELED) {
5027                 /*
5028                  * Compute new sid based on current process and
5029                  * message queue this message will be stored in
5030                  */
5031                 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
5032                                              &msec->sid);
5033                 if (rc)
5034                         return rc;
5035         }
5036
5037         AVC_AUDIT_DATA_INIT(&ad, IPC);
5038         ad.u.ipc_id = msq->q_perm.key;
5039
5040         /* Can this process write to the queue? */
5041         rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5042                           MSGQ__WRITE, &ad);
5043         if (!rc)
5044                 /* Can this process send the message */
5045                 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
5046                                   MSG__SEND, &ad);
5047         if (!rc)
5048                 /* Can the message be put in the queue? */
5049                 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
5050                                   MSGQ__ENQUEUE, &ad);
5051
5052         return rc;
5053 }
5054
5055 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
5056                                     struct task_struct *target,
5057                                     long type, int mode)
5058 {
5059         struct ipc_security_struct *isec;
5060         struct msg_security_struct *msec;
5061         struct avc_audit_data ad;
5062         u32 sid = task_sid(target);
5063         int rc;
5064
5065         isec = msq->q_perm.security;
5066         msec = msg->security;
5067
5068         AVC_AUDIT_DATA_INIT(&ad, IPC);
5069         ad.u.ipc_id = msq->q_perm.key;
5070
5071         rc = avc_has_perm(sid, isec->sid,
5072                           SECCLASS_MSGQ, MSGQ__READ, &ad);
5073         if (!rc)
5074                 rc = avc_has_perm(sid, msec->sid,
5075                                   SECCLASS_MSG, MSG__RECEIVE, &ad);
5076         return rc;
5077 }
5078
5079 /* Shared Memory security operations */
5080 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
5081 {
5082         struct ipc_security_struct *isec;
5083         struct avc_audit_data ad;
5084         u32 sid = current_sid();
5085         int rc;
5086
5087         rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
5088         if (rc)
5089                 return rc;
5090
5091         isec = shp->shm_perm.security;
5092
5093         AVC_AUDIT_DATA_INIT(&ad, IPC);
5094         ad.u.ipc_id = shp->shm_perm.key;
5095
5096         rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5097                           SHM__CREATE, &ad);
5098         if (rc) {
5099                 ipc_free_security(&shp->shm_perm);
5100                 return rc;
5101         }
5102         return 0;
5103 }
5104
5105 static void selinux_shm_free_security(struct shmid_kernel *shp)
5106 {
5107         ipc_free_security(&shp->shm_perm);
5108 }
5109
5110 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5111 {
5112         struct ipc_security_struct *isec;
5113         struct avc_audit_data ad;
5114         u32 sid = current_sid();
5115
5116         isec = shp->shm_perm.security;
5117
5118         AVC_AUDIT_DATA_INIT(&ad, IPC);
5119         ad.u.ipc_id = shp->shm_perm.key;
5120
5121         return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5122                             SHM__ASSOCIATE, &ad);
5123 }
5124
5125 /* Note, at this point, shp is locked down */
5126 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5127 {
5128         int perms;
5129         int err;
5130
5131         switch (cmd) {
5132         case IPC_INFO:
5133         case SHM_INFO:
5134                 /* No specific object, just general system-wide information. */
5135                 return task_has_system(current, SYSTEM__IPC_INFO);
5136         case IPC_STAT:
5137         case SHM_STAT:
5138                 perms = SHM__GETATTR | SHM__ASSOCIATE;
5139                 break;
5140         case IPC_SET:
5141                 perms = SHM__SETATTR;
5142                 break;
5143         case SHM_LOCK:
5144         case SHM_UNLOCK:
5145                 perms = SHM__LOCK;
5146                 break;
5147         case IPC_RMID:
5148                 perms = SHM__DESTROY;
5149                 break;
5150         default:
5151                 return 0;
5152         }
5153
5154         err = ipc_has_perm(&shp->shm_perm, perms);
5155         return err;
5156 }
5157
5158 static int selinux_shm_shmat(struct shmid_kernel *shp,
5159                              char __user *shmaddr, int shmflg)
5160 {
5161         u32 perms;
5162         int rc;
5163
5164         rc = secondary_ops->shm_shmat(shp, shmaddr, shmflg);
5165         if (rc)
5166                 return rc;
5167
5168         if (shmflg & SHM_RDONLY)
5169                 perms = SHM__READ;
5170         else
5171                 perms = SHM__READ | SHM__WRITE;
5172
5173         return ipc_has_perm(&shp->shm_perm, perms);
5174 }
5175
5176 /* Semaphore security operations */
5177 static int selinux_sem_alloc_security(struct sem_array *sma)
5178 {
5179         struct ipc_security_struct *isec;
5180         struct avc_audit_data ad;
5181         u32 sid = current_sid();
5182         int rc;
5183
5184         rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5185         if (rc)
5186                 return rc;
5187
5188         isec = sma->sem_perm.security;
5189
5190         AVC_AUDIT_DATA_INIT(&ad, IPC);
5191         ad.u.ipc_id = sma->sem_perm.key;
5192
5193         rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5194                           SEM__CREATE, &ad);
5195         if (rc) {
5196                 ipc_free_security(&sma->sem_perm);
5197                 return rc;
5198         }
5199         return 0;
5200 }
5201
5202 static void selinux_sem_free_security(struct sem_array *sma)
5203 {
5204         ipc_free_security(&sma->sem_perm);
5205 }
5206
5207 static int selinux_sem_associate(struct sem_array *sma, int semflg)
5208 {
5209         struct ipc_security_struct *isec;
5210         struct avc_audit_data ad;
5211         u32 sid = current_sid();
5212
5213         isec = sma->sem_perm.security;
5214
5215         AVC_AUDIT_DATA_INIT(&ad, IPC);
5216         ad.u.ipc_id = sma->sem_perm.key;
5217
5218         return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5219                             SEM__ASSOCIATE, &ad);
5220 }
5221
5222 /* Note, at this point, sma is locked down */
5223 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5224 {
5225         int err;
5226         u32 perms;
5227
5228         switch (cmd) {
5229         case IPC_INFO:
5230         case SEM_INFO:
5231                 /* No specific object, just general system-wide information. */
5232                 return task_has_system(current, SYSTEM__IPC_INFO);
5233         case GETPID:
5234         case GETNCNT:
5235         case GETZCNT:
5236                 perms = SEM__GETATTR;
5237                 break;
5238         case GETVAL:
5239         case GETALL:
5240                 perms = SEM__READ;
5241                 break;
5242         case SETVAL:
5243         case SETALL:
5244                 perms = SEM__WRITE;
5245                 break;
5246         case IPC_RMID:
5247                 perms = SEM__DESTROY;
5248                 break;
5249         case IPC_SET:
5250                 perms = SEM__SETATTR;
5251                 break;
5252         case IPC_STAT:
5253         case SEM_STAT:
5254                 perms = SEM__GETATTR | SEM__ASSOCIATE;
5255                 break;
5256         default:
5257                 return 0;
5258         }
5259
5260         err = ipc_has_perm(&sma->sem_perm, perms);
5261         return err;
5262 }
5263
5264 static int selinux_sem_semop(struct sem_array *sma,
5265                              struct sembuf *sops, unsigned nsops, int alter)
5266 {
5267         u32 perms;
5268
5269         if (alter)
5270                 perms = SEM__READ | SEM__WRITE;
5271         else
5272                 perms = SEM__READ;
5273
5274         return ipc_has_perm(&sma->sem_perm, perms);
5275 }
5276
5277 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5278 {
5279         u32 av = 0;
5280
5281         av = 0;
5282         if (flag & S_IRUGO)
5283                 av |= IPC__UNIX_READ;
5284         if (flag & S_IWUGO)
5285                 av |= IPC__UNIX_WRITE;
5286
5287         if (av == 0)
5288                 return 0;
5289
5290         return ipc_has_perm(ipcp, av);
5291 }
5292
5293 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5294 {
5295         struct ipc_security_struct *isec = ipcp->security;
5296         *secid = isec->sid;
5297 }
5298
5299 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5300 {
5301         if (inode)
5302                 inode_doinit_with_dentry(inode, dentry);
5303 }
5304
5305 static int selinux_getprocattr(struct task_struct *p,
5306                                char *name, char **value)
5307 {
5308         const struct task_security_struct *__tsec;
5309         u32 sid;
5310         int error;
5311         unsigned len;
5312
5313         if (current != p) {
5314                 error = current_has_perm(p, PROCESS__GETATTR);
5315                 if (error)
5316                         return error;
5317         }
5318
5319         rcu_read_lock();
5320         __tsec = __task_cred(p)->security;
5321
5322         if (!strcmp(name, "current"))
5323                 sid = __tsec->sid;
5324         else if (!strcmp(name, "prev"))
5325                 sid = __tsec->osid;
5326         else if (!strcmp(name, "exec"))
5327                 sid = __tsec->exec_sid;
5328         else if (!strcmp(name, "fscreate"))
5329                 sid = __tsec->create_sid;
5330         else if (!strcmp(name, "keycreate"))
5331                 sid = __tsec->keycreate_sid;
5332         else if (!strcmp(name, "sockcreate"))
5333                 sid = __tsec->sockcreate_sid;
5334         else
5335                 goto invalid;
5336         rcu_read_unlock();
5337
5338         if (!sid)
5339                 return 0;
5340
5341         error = security_sid_to_context(sid, value, &len);
5342         if (error)
5343                 return error;
5344         return len;
5345
5346 invalid:
5347         rcu_read_unlock();
5348         return -EINVAL;
5349 }
5350
5351 static int selinux_setprocattr(struct task_struct *p,
5352                                char *name, void *value, size_t size)
5353 {
5354         struct task_security_struct *tsec;
5355         struct task_struct *tracer;
5356         struct cred *new;
5357         u32 sid = 0, ptsid;
5358         int error;
5359         char *str = value;
5360
5361         if (current != p) {
5362                 /* SELinux only allows a process to change its own
5363                    security attributes. */
5364                 return -EACCES;
5365         }
5366
5367         /*
5368          * Basic control over ability to set these attributes at all.
5369          * current == p, but we'll pass them separately in case the
5370          * above restriction is ever removed.
5371          */
5372         if (!strcmp(name, "exec"))
5373                 error = current_has_perm(p, PROCESS__SETEXEC);
5374         else if (!strcmp(name, "fscreate"))
5375                 error = current_has_perm(p, PROCESS__SETFSCREATE);
5376         else if (!strcmp(name, "keycreate"))
5377                 error = current_has_perm(p, PROCESS__SETKEYCREATE);
5378         else if (!strcmp(name, "sockcreate"))
5379                 error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5380         else if (!strcmp(name, "current"))
5381                 error = current_has_perm(p, PROCESS__SETCURRENT);
5382         else
5383                 error = -EINVAL;
5384         if (error)
5385                 return error;
5386
5387         /* Obtain a SID for the context, if one was specified. */
5388         if (size && str[1] && str[1] != '\n') {
5389                 if (str[size-1] == '\n') {
5390                         str[size-1] = 0;
5391                         size--;
5392                 }
5393                 error = security_context_to_sid(value, size, &sid);
5394                 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5395                         if (!capable(CAP_MAC_ADMIN))
5396                                 return error;
5397                         error = security_context_to_sid_force(value, size,
5398                                                               &sid);
5399                 }
5400                 if (error)
5401                         return error;
5402         }
5403
5404         new = prepare_creds();
5405         if (!new)
5406                 return -ENOMEM;
5407
5408         /* Permission checking based on the specified context is
5409            performed during the actual operation (execve,
5410            open/mkdir/...), when we know the full context of the
5411            operation.  See selinux_bprm_set_creds for the execve
5412            checks and may_create for the file creation checks. The
5413            operation will then fail if the context is not permitted. */
5414         tsec = new->security;
5415         if (!strcmp(name, "exec")) {
5416                 tsec->exec_sid = sid;
5417         } else if (!strcmp(name, "fscreate")) {
5418                 tsec->create_sid = sid;
5419         } else if (!strcmp(name, "keycreate")) {
5420                 error = may_create_key(sid, p);
5421                 if (error)
5422                         goto abort_change;
5423                 tsec->keycreate_sid = sid;
5424         } else if (!strcmp(name, "sockcreate")) {
5425                 tsec->sockcreate_sid = sid;
5426         } else if (!strcmp(name, "current")) {
5427                 error = -EINVAL;
5428                 if (sid == 0)
5429                         goto abort_change;
5430
5431                 /* Only allow single threaded processes to change context */
5432                 error = -EPERM;
5433                 if (!is_single_threaded(p)) {
5434                         error = security_bounded_transition(tsec->sid, sid);
5435                         if (error)
5436                                 goto abort_change;
5437                 }
5438
5439                 /* Check permissions for the transition. */
5440                 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5441                                      PROCESS__DYNTRANSITION, NULL);
5442                 if (error)
5443                         goto abort_change;
5444
5445                 /* Check for ptracing, and update the task SID if ok.
5446                    Otherwise, leave SID unchanged and fail. */
5447                 ptsid = 0;
5448                 task_lock(p);
5449                 tracer = tracehook_tracer_task(p);
5450                 if (tracer)
5451                         ptsid = task_sid(tracer);
5452                 task_unlock(p);
5453
5454                 if (tracer) {
5455                         error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5456                                              PROCESS__PTRACE, NULL);
5457                         if (error)
5458                                 goto abort_change;
5459                 }
5460
5461                 tsec->sid = sid;
5462         } else {
5463                 error = -EINVAL;
5464                 goto abort_change;
5465         }
5466
5467         commit_creds(new);
5468         return size;
5469
5470 abort_change:
5471         abort_creds(new);
5472         return error;
5473 }
5474
5475 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5476 {
5477         return security_sid_to_context(secid, secdata, seclen);
5478 }
5479
5480 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5481 {
5482         return security_context_to_sid(secdata, seclen, secid);
5483 }
5484
5485 static void selinux_release_secctx(char *secdata, u32 seclen)
5486 {
5487         kfree(secdata);
5488 }
5489
5490 #ifdef CONFIG_KEYS
5491
5492 static int selinux_key_alloc(struct key *k, const struct cred *cred,
5493                              unsigned long flags)
5494 {
5495         const struct task_security_struct *tsec;
5496         struct key_security_struct *ksec;
5497
5498         ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5499         if (!ksec)
5500                 return -ENOMEM;
5501
5502         tsec = cred->security;
5503         if (tsec->keycreate_sid)
5504                 ksec->sid = tsec->keycreate_sid;
5505         else
5506                 ksec->sid = tsec->sid;
5507
5508         k->security = ksec;
5509         return 0;
5510 }
5511
5512 static void selinux_key_free(struct key *k)
5513 {
5514         struct key_security_struct *ksec = k->security;
5515
5516         k->security = NULL;
5517         kfree(ksec);
5518 }
5519
5520 static int selinux_key_permission(key_ref_t key_ref,
5521                                   const struct cred *cred,
5522                                   key_perm_t perm)
5523 {
5524         struct key *key;
5525         struct key_security_struct *ksec;
5526         u32 sid;
5527
5528         /* if no specific permissions are requested, we skip the
5529            permission check. No serious, additional covert channels
5530            appear to be created. */
5531         if (perm == 0)
5532                 return 0;
5533
5534         sid = cred_sid(cred);
5535
5536         key = key_ref_to_ptr(key_ref);
5537         ksec = key->security;
5538
5539         return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5540 }
5541
5542 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5543 {
5544         struct key_security_struct *ksec = key->security;
5545         char *context = NULL;
5546         unsigned len;
5547         int rc;
5548
5549         rc = security_sid_to_context(ksec->sid, &context, &len);
5550         if (!rc)
5551                 rc = len;
5552         *_buffer = context;
5553         return rc;
5554 }
5555
5556 #endif
5557
5558 static struct security_operations selinux_ops = {
5559         .name =                         "selinux",
5560
5561         .ptrace_may_access =            selinux_ptrace_may_access,
5562         .ptrace_traceme =               selinux_ptrace_traceme,
5563         .capget =                       selinux_capget,
5564         .capset =                       selinux_capset,
5565         .sysctl =                       selinux_sysctl,
5566         .capable =                      selinux_capable,
5567         .quotactl =                     selinux_quotactl,
5568         .quota_on =                     selinux_quota_on,
5569         .syslog =                       selinux_syslog,
5570         .vm_enough_memory =             selinux_vm_enough_memory,
5571
5572         .netlink_send =                 selinux_netlink_send,
5573         .netlink_recv =                 selinux_netlink_recv,
5574
5575         .bprm_set_creds =               selinux_bprm_set_creds,
5576         .bprm_check_security =          selinux_bprm_check_security,
5577         .bprm_committing_creds =        selinux_bprm_committing_creds,
5578         .bprm_committed_creds =         selinux_bprm_committed_creds,
5579         .bprm_secureexec =              selinux_bprm_secureexec,
5580
5581         .sb_alloc_security =            selinux_sb_alloc_security,
5582         .sb_free_security =             selinux_sb_free_security,
5583         .sb_copy_data =                 selinux_sb_copy_data,
5584         .sb_kern_mount =                selinux_sb_kern_mount,
5585         .sb_show_options =              selinux_sb_show_options,
5586         .sb_statfs =                    selinux_sb_statfs,
5587         .sb_mount =                     selinux_mount,
5588         .sb_umount =                    selinux_umount,
5589         .sb_set_mnt_opts =              selinux_set_mnt_opts,
5590         .sb_clone_mnt_opts =            selinux_sb_clone_mnt_opts,
5591         .sb_parse_opts_str =            selinux_parse_opts_str,
5592
5593
5594         .inode_alloc_security =         selinux_inode_alloc_security,
5595         .inode_free_security =          selinux_inode_free_security,
5596         .inode_init_security =          selinux_inode_init_security,
5597         .inode_create =                 selinux_inode_create,
5598         .inode_link =                   selinux_inode_link,
5599         .inode_unlink =                 selinux_inode_unlink,
5600         .inode_symlink =                selinux_inode_symlink,
5601         .inode_mkdir =                  selinux_inode_mkdir,
5602         .inode_rmdir =                  selinux_inode_rmdir,
5603         .inode_mknod =                  selinux_inode_mknod,
5604         .inode_rename =                 selinux_inode_rename,
5605         .inode_readlink =               selinux_inode_readlink,
5606         .inode_follow_link =            selinux_inode_follow_link,
5607         .inode_permission =             selinux_inode_permission,
5608         .inode_setattr =                selinux_inode_setattr,
5609         .inode_getattr =                selinux_inode_getattr,
5610         .inode_setxattr =               selinux_inode_setxattr,
5611         .inode_post_setxattr =          selinux_inode_post_setxattr,
5612         .inode_getxattr =               selinux_inode_getxattr,
5613         .inode_listxattr =              selinux_inode_listxattr,
5614         .inode_removexattr =            selinux_inode_removexattr,
5615         .inode_getsecurity =            selinux_inode_getsecurity,
5616         .inode_setsecurity =            selinux_inode_setsecurity,
5617         .inode_listsecurity =           selinux_inode_listsecurity,
5618         .inode_need_killpriv =          selinux_inode_need_killpriv,
5619         .inode_killpriv =               selinux_inode_killpriv,
5620         .inode_getsecid =               selinux_inode_getsecid,
5621
5622         .file_permission =              selinux_file_permission,
5623         .file_alloc_security =          selinux_file_alloc_security,
5624         .file_free_security =           selinux_file_free_security,
5625         .file_ioctl =                   selinux_file_ioctl,
5626         .file_mmap =                    selinux_file_mmap,
5627         .file_mprotect =                selinux_file_mprotect,
5628         .file_lock =                    selinux_file_lock,
5629         .file_fcntl =                   selinux_file_fcntl,
5630         .file_set_fowner =              selinux_file_set_fowner,
5631         .file_send_sigiotask =          selinux_file_send_sigiotask,
5632         .file_receive =                 selinux_file_receive,
5633
5634         .dentry_open =                  selinux_dentry_open,
5635
5636         .task_create =                  selinux_task_create,
5637         .cred_free =                    selinux_cred_free,
5638         .cred_prepare =                 selinux_cred_prepare,
5639         .cred_commit =                  selinux_cred_commit,
5640         .kernel_act_as =                selinux_kernel_act_as,
5641         .kernel_create_files_as =       selinux_kernel_create_files_as,
5642         .task_setuid =                  selinux_task_setuid,
5643         .task_fix_setuid =              selinux_task_fix_setuid,
5644         .task_setgid =                  selinux_task_setgid,
5645         .task_setpgid =                 selinux_task_setpgid,
5646         .task_getpgid =                 selinux_task_getpgid,
5647         .task_getsid =                  selinux_task_getsid,
5648         .task_getsecid =                selinux_task_getsecid,
5649         .task_setgroups =               selinux_task_setgroups,
5650         .task_setnice =                 selinux_task_setnice,
5651         .task_setioprio =               selinux_task_setioprio,
5652         .task_getioprio =               selinux_task_getioprio,
5653         .task_setrlimit =               selinux_task_setrlimit,
5654         .task_setscheduler =            selinux_task_setscheduler,
5655         .task_getscheduler =            selinux_task_getscheduler,
5656         .task_movememory =              selinux_task_movememory,
5657         .task_kill =                    selinux_task_kill,
5658         .task_wait =                    selinux_task_wait,
5659         .task_prctl =                   selinux_task_prctl,
5660         .task_to_inode =                selinux_task_to_inode,
5661
5662         .ipc_permission =               selinux_ipc_permission,
5663         .ipc_getsecid =                 selinux_ipc_getsecid,
5664
5665         .msg_msg_alloc_security =       selinux_msg_msg_alloc_security,
5666         .msg_msg_free_security =        selinux_msg_msg_free_security,
5667
5668         .msg_queue_alloc_security =     selinux_msg_queue_alloc_security,
5669         .msg_queue_free_security =      selinux_msg_queue_free_security,
5670         .msg_queue_associate =          selinux_msg_queue_associate,
5671         .msg_queue_msgctl =             selinux_msg_queue_msgctl,
5672         .msg_queue_msgsnd =             selinux_msg_queue_msgsnd,
5673         .msg_queue_msgrcv =             selinux_msg_queue_msgrcv,
5674
5675         .shm_alloc_security =           selinux_shm_alloc_security,
5676         .shm_free_security =            selinux_shm_free_security,
5677         .shm_associate =                selinux_shm_associate,
5678         .shm_shmctl =                   selinux_shm_shmctl,
5679         .shm_shmat =                    selinux_shm_shmat,
5680
5681         .sem_alloc_security =           selinux_sem_alloc_security,
5682         .sem_free_security =            selinux_sem_free_security,
5683         .sem_associate =                selinux_sem_associate,
5684         .sem_semctl =                   selinux_sem_semctl,
5685         .sem_semop =                    selinux_sem_semop,
5686
5687         .d_instantiate =                selinux_d_instantiate,
5688
5689         .getprocattr =                  selinux_getprocattr,
5690         .setprocattr =                  selinux_setprocattr,
5691
5692         .secid_to_secctx =              selinux_secid_to_secctx,
5693         .secctx_to_secid =              selinux_secctx_to_secid,
5694         .release_secctx =               selinux_release_secctx,
5695
5696         .unix_stream_connect =          selinux_socket_unix_stream_connect,
5697         .unix_may_send =                selinux_socket_unix_may_send,
5698
5699         .socket_create =                selinux_socket_create,
5700         .socket_post_create =           selinux_socket_post_create,
5701         .socket_bind =                  selinux_socket_bind,
5702         .socket_connect =               selinux_socket_connect,
5703         .socket_listen =                selinux_socket_listen,
5704         .socket_accept =                selinux_socket_accept,
5705         .socket_sendmsg =               selinux_socket_sendmsg,
5706         .socket_recvmsg =               selinux_socket_recvmsg,
5707         .socket_getsockname =           selinux_socket_getsockname,
5708         .socket_getpeername =           selinux_socket_getpeername,
5709         .socket_getsockopt =            selinux_socket_getsockopt,
5710         .socket_setsockopt =            selinux_socket_setsockopt,
5711         .socket_shutdown =              selinux_socket_shutdown,
5712         .socket_sock_rcv_skb =          selinux_socket_sock_rcv_skb,
5713         .socket_getpeersec_stream =     selinux_socket_getpeersec_stream,
5714         .socket_getpeersec_dgram =      selinux_socket_getpeersec_dgram,
5715         .sk_alloc_security =            selinux_sk_alloc_security,
5716         .sk_free_security =             selinux_sk_free_security,
5717         .sk_clone_security =            selinux_sk_clone_security,
5718         .sk_getsecid =                  selinux_sk_getsecid,
5719         .sock_graft =                   selinux_sock_graft,
5720         .inet_conn_request =            selinux_inet_conn_request,
5721         .inet_csk_clone =               selinux_inet_csk_clone,
5722         .inet_conn_established =        selinux_inet_conn_established,
5723         .req_classify_flow =            selinux_req_classify_flow,
5724
5725 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5726         .xfrm_policy_alloc_security =   selinux_xfrm_policy_alloc,
5727         .xfrm_policy_clone_security =   selinux_xfrm_policy_clone,
5728         .xfrm_policy_free_security =    selinux_xfrm_policy_free,
5729         .xfrm_policy_delete_security =  selinux_xfrm_policy_delete,
5730         .xfrm_state_alloc_security =    selinux_xfrm_state_alloc,
5731         .xfrm_state_free_security =     selinux_xfrm_state_free,
5732         .xfrm_state_delete_security =   selinux_xfrm_state_delete,
5733         .xfrm_policy_lookup =           selinux_xfrm_policy_lookup,
5734         .xfrm_state_pol_flow_match =    selinux_xfrm_state_pol_flow_match,
5735         .xfrm_decode_session =          selinux_xfrm_decode_session,
5736 #endif
5737
5738 #ifdef CONFIG_KEYS
5739         .key_alloc =                    selinux_key_alloc,
5740         .key_free =                     selinux_key_free,
5741         .key_permission =               selinux_key_permission,
5742         .key_getsecurity =              selinux_key_getsecurity,
5743 #endif
5744
5745 #ifdef CONFIG_AUDIT
5746         .audit_rule_init =              selinux_audit_rule_init,
5747         .audit_rule_known =             selinux_audit_rule_known,
5748         .audit_rule_match =             selinux_audit_rule_match,
5749         .audit_rule_free =              selinux_audit_rule_free,
5750 #endif
5751 };
5752
5753 static __init int selinux_init(void)
5754 {
5755         if (!security_module_enable(&selinux_ops)) {
5756                 selinux_enabled = 0;
5757                 return 0;
5758         }
5759
5760         if (!selinux_enabled) {
5761                 printk(KERN_INFO "SELinux:  Disabled at boot.\n");
5762                 return 0;
5763         }
5764
5765         printk(KERN_INFO "SELinux:  Initializing.\n");
5766
5767         /* Set the security state for the initial task. */
5768         cred_init_security();
5769
5770         sel_inode_cache = kmem_cache_create("selinux_inode_security",
5771                                             sizeof(struct inode_security_struct),
5772                                             0, SLAB_PANIC, NULL);
5773         avc_init();
5774
5775         secondary_ops = security_ops;
5776         if (!secondary_ops)
5777                 panic("SELinux: No initial security operations\n");
5778         if (register_security(&selinux_ops))
5779                 panic("SELinux: Unable to register with kernel.\n");
5780
5781         if (selinux_enforcing)
5782                 printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
5783         else
5784                 printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
5785
5786         return 0;
5787 }
5788
5789 void selinux_complete_init(void)
5790 {
5791         printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
5792
5793         /* Set up any superblocks initialized prior to the policy load. */
5794         printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
5795         spin_lock(&sb_lock);
5796         spin_lock(&sb_security_lock);
5797 next_sb:
5798         if (!list_empty(&superblock_security_head)) {
5799                 struct superblock_security_struct *sbsec =
5800                                 list_entry(superblock_security_head.next,
5801                                            struct superblock_security_struct,
5802                                            list);
5803                 struct super_block *sb = sbsec->sb;
5804                 sb->s_count++;
5805                 spin_unlock(&sb_security_lock);
5806                 spin_unlock(&sb_lock);
5807                 down_read(&sb->s_umount);
5808                 if (sb->s_root)
5809                         superblock_doinit(sb, NULL);
5810                 drop_super(sb);
5811                 spin_lock(&sb_lock);
5812                 spin_lock(&sb_security_lock);
5813                 list_del_init(&sbsec->list);
5814                 goto next_sb;
5815         }
5816         spin_unlock(&sb_security_lock);
5817         spin_unlock(&sb_lock);
5818 }
5819
5820 /* SELinux requires early initialization in order to label
5821    all processes and objects when they are created. */
5822 security_initcall(selinux_init);
5823
5824 #if defined(CONFIG_NETFILTER)
5825
5826 static struct nf_hook_ops selinux_ipv4_ops[] = {
5827         {
5828                 .hook =         selinux_ipv4_postroute,
5829                 .owner =        THIS_MODULE,
5830                 .pf =           PF_INET,
5831                 .hooknum =      NF_INET_POST_ROUTING,
5832                 .priority =     NF_IP_PRI_SELINUX_LAST,
5833         },
5834         {
5835                 .hook =         selinux_ipv4_forward,
5836                 .owner =        THIS_MODULE,
5837                 .pf =           PF_INET,
5838                 .hooknum =      NF_INET_FORWARD,
5839                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5840         },
5841         {
5842                 .hook =         selinux_ipv4_output,
5843                 .owner =        THIS_MODULE,
5844                 .pf =           PF_INET,
5845                 .hooknum =      NF_INET_LOCAL_OUT,
5846                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5847         }
5848 };
5849
5850 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5851
5852 static struct nf_hook_ops selinux_ipv6_ops[] = {
5853         {
5854                 .hook =         selinux_ipv6_postroute,
5855                 .owner =        THIS_MODULE,
5856                 .pf =           PF_INET6,
5857                 .hooknum =      NF_INET_POST_ROUTING,
5858                 .priority =     NF_IP6_PRI_SELINUX_LAST,
5859         },
5860         {
5861                 .hook =         selinux_ipv6_forward,
5862                 .owner =        THIS_MODULE,
5863                 .pf =           PF_INET6,
5864                 .hooknum =      NF_INET_FORWARD,
5865                 .priority =     NF_IP6_PRI_SELINUX_FIRST,
5866         }
5867 };
5868
5869 #endif  /* IPV6 */
5870
5871 static int __init selinux_nf_ip_init(void)
5872 {
5873         int err = 0;
5874
5875         if (!selinux_enabled)
5876                 goto out;
5877
5878         printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
5879
5880         err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5881         if (err)
5882                 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
5883
5884 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5885         err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5886         if (err)
5887                 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
5888 #endif  /* IPV6 */
5889
5890 out:
5891         return err;
5892 }
5893
5894 __initcall(selinux_nf_ip_init);
5895
5896 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5897 static void selinux_nf_ip_exit(void)
5898 {
5899         printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
5900
5901         nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5902 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5903         nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5904 #endif  /* IPV6 */
5905 }
5906 #endif
5907
5908 #else /* CONFIG_NETFILTER */
5909
5910 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5911 #define selinux_nf_ip_exit()
5912 #endif
5913
5914 #endif /* CONFIG_NETFILTER */
5915
5916 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5917 static int selinux_disabled;
5918
5919 int selinux_disable(void)
5920 {
5921         extern void exit_sel_fs(void);
5922
5923         if (ss_initialized) {
5924                 /* Not permitted after initial policy load. */
5925                 return -EINVAL;
5926         }
5927
5928         if (selinux_disabled) {
5929                 /* Only do this once. */
5930                 return -EINVAL;
5931         }
5932
5933         printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
5934
5935         selinux_disabled = 1;
5936         selinux_enabled = 0;
5937
5938         /* Reset security_ops to the secondary module, dummy or capability. */
5939         security_ops = secondary_ops;
5940
5941         /* Unregister netfilter hooks. */
5942         selinux_nf_ip_exit();
5943
5944         /* Unregister selinuxfs. */
5945         exit_sel_fs();
5946
5947         return 0;
5948 }
5949 #endif