]> nv-tegra.nvidia Code Review - linux-2.6.git/blob - security/selinux/hooks.c
CRED: Wrap access to SELinux's task SID
[linux-2.6.git] / security / selinux / hooks.c
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
7  *            Chris Vance, <cvance@nai.com>
8  *            Wayne Salamon, <wsalamon@nai.com>
9  *            James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *                                         Eric Paris <eparis@redhat.com>
14  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15  *                          <dgoeddel@trustedcs.com>
16  *  Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
17  *              Paul Moore <paul.moore@hp.com>
18  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19  *                     Yuichi Nakamura <ynakam@hitachisoft.jp>
20  *
21  *      This program is free software; you can redistribute it and/or modify
22  *      it under the terms of the GNU General Public License version 2,
23  *      as published by the Free Software Foundation.
24  */
25
26 #include <linux/init.h>
27 #include <linux/kernel.h>
28 #include <linux/tracehook.h>
29 #include <linux/errno.h>
30 #include <linux/sched.h>
31 #include <linux/security.h>
32 #include <linux/xattr.h>
33 #include <linux/capability.h>
34 #include <linux/unistd.h>
35 #include <linux/mm.h>
36 #include <linux/mman.h>
37 #include <linux/slab.h>
38 #include <linux/pagemap.h>
39 #include <linux/swap.h>
40 #include <linux/spinlock.h>
41 #include <linux/syscalls.h>
42 #include <linux/file.h>
43 #include <linux/fdtable.h>
44 #include <linux/namei.h>
45 #include <linux/mount.h>
46 #include <linux/proc_fs.h>
47 #include <linux/netfilter_ipv4.h>
48 #include <linux/netfilter_ipv6.h>
49 #include <linux/tty.h>
50 #include <net/icmp.h>
51 #include <net/ip.h>             /* for local_port_range[] */
52 #include <net/tcp.h>            /* struct or_callable used in sock_rcv_skb */
53 #include <net/net_namespace.h>
54 #include <net/netlabel.h>
55 #include <linux/uaccess.h>
56 #include <asm/ioctls.h>
57 #include <asm/atomic.h>
58 #include <linux/bitops.h>
59 #include <linux/interrupt.h>
60 #include <linux/netdevice.h>    /* for network interface checks */
61 #include <linux/netlink.h>
62 #include <linux/tcp.h>
63 #include <linux/udp.h>
64 #include <linux/dccp.h>
65 #include <linux/quota.h>
66 #include <linux/un.h>           /* for Unix socket types */
67 #include <net/af_unix.h>        /* for Unix socket types */
68 #include <linux/parser.h>
69 #include <linux/nfs_mount.h>
70 #include <net/ipv6.h>
71 #include <linux/hugetlb.h>
72 #include <linux/personality.h>
73 #include <linux/sysctl.h>
74 #include <linux/audit.h>
75 #include <linux/string.h>
76 #include <linux/selinux.h>
77 #include <linux/mutex.h>
78 #include <linux/posix-timers.h>
79
80 #include "avc.h"
81 #include "objsec.h"
82 #include "netif.h"
83 #include "netnode.h"
84 #include "netport.h"
85 #include "xfrm.h"
86 #include "netlabel.h"
87 #include "audit.h"
88
89 #define XATTR_SELINUX_SUFFIX "selinux"
90 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX
91
92 #define NUM_SEL_MNT_OPTS 4
93
94 extern unsigned int policydb_loaded_version;
95 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
96 extern int selinux_compat_net;
97 extern struct security_operations *security_ops;
98
99 /* SECMARK reference count */
100 atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
101
102 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
103 int selinux_enforcing;
104
105 static int __init enforcing_setup(char *str)
106 {
107         unsigned long enforcing;
108         if (!strict_strtoul(str, 0, &enforcing))
109                 selinux_enforcing = enforcing ? 1 : 0;
110         return 1;
111 }
112 __setup("enforcing=", enforcing_setup);
113 #endif
114
115 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
116 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
117
118 static int __init selinux_enabled_setup(char *str)
119 {
120         unsigned long enabled;
121         if (!strict_strtoul(str, 0, &enabled))
122                 selinux_enabled = enabled ? 1 : 0;
123         return 1;
124 }
125 __setup("selinux=", selinux_enabled_setup);
126 #else
127 int selinux_enabled = 1;
128 #endif
129
130
131 /*
132  * Minimal support for a secondary security module,
133  * just to allow the use of the capability module.
134  */
135 static struct security_operations *secondary_ops;
136
137 /* Lists of inode and superblock security structures initialized
138    before the policy was loaded. */
139 static LIST_HEAD(superblock_security_head);
140 static DEFINE_SPINLOCK(sb_security_lock);
141
142 static struct kmem_cache *sel_inode_cache;
143
144 /**
145  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
146  *
147  * Description:
148  * This function checks the SECMARK reference counter to see if any SECMARK
149  * targets are currently configured, if the reference counter is greater than
150  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
151  * enabled, false (0) if SECMARK is disabled.
152  *
153  */
154 static int selinux_secmark_enabled(void)
155 {
156         return (atomic_read(&selinux_secmark_refcount) > 0);
157 }
158
159 /* Allocate and free functions for each kind of security blob. */
160
161 static int cred_alloc_security(struct cred *cred)
162 {
163         struct task_security_struct *tsec;
164
165         tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
166         if (!tsec)
167                 return -ENOMEM;
168
169         tsec->osid = tsec->sid = SECINITSID_UNLABELED;
170         cred->security = tsec;
171
172         return 0;
173 }
174
175 /*
176  * get the security ID of a task
177  */
178 static inline u32 task_sid(const struct task_struct *task)
179 {
180         const struct task_security_struct *tsec;
181         u32 sid;
182
183         rcu_read_lock();
184         tsec = __task_cred(task)->security;
185         sid = tsec->sid;
186         rcu_read_unlock();
187         return sid;
188 }
189
190 /*
191  * get the security ID of the current task
192  */
193 static inline u32 current_sid(void)
194 {
195         const struct task_security_struct *tsec = current_cred()->security;
196
197         return tsec->sid;
198 }
199
200 static int inode_alloc_security(struct inode *inode)
201 {
202         struct inode_security_struct *isec;
203         u32 sid = current_sid();
204
205         isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
206         if (!isec)
207                 return -ENOMEM;
208
209         mutex_init(&isec->lock);
210         INIT_LIST_HEAD(&isec->list);
211         isec->inode = inode;
212         isec->sid = SECINITSID_UNLABELED;
213         isec->sclass = SECCLASS_FILE;
214         isec->task_sid = sid;
215         inode->i_security = isec;
216
217         return 0;
218 }
219
220 static void inode_free_security(struct inode *inode)
221 {
222         struct inode_security_struct *isec = inode->i_security;
223         struct superblock_security_struct *sbsec = inode->i_sb->s_security;
224
225         spin_lock(&sbsec->isec_lock);
226         if (!list_empty(&isec->list))
227                 list_del_init(&isec->list);
228         spin_unlock(&sbsec->isec_lock);
229
230         inode->i_security = NULL;
231         kmem_cache_free(sel_inode_cache, isec);
232 }
233
234 static int file_alloc_security(struct file *file)
235 {
236         struct file_security_struct *fsec;
237         u32 sid = current_sid();
238
239         fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
240         if (!fsec)
241                 return -ENOMEM;
242
243         fsec->sid = sid;
244         fsec->fown_sid = sid;
245         file->f_security = fsec;
246
247         return 0;
248 }
249
250 static void file_free_security(struct file *file)
251 {
252         struct file_security_struct *fsec = file->f_security;
253         file->f_security = NULL;
254         kfree(fsec);
255 }
256
257 static int superblock_alloc_security(struct super_block *sb)
258 {
259         struct superblock_security_struct *sbsec;
260
261         sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
262         if (!sbsec)
263                 return -ENOMEM;
264
265         mutex_init(&sbsec->lock);
266         INIT_LIST_HEAD(&sbsec->list);
267         INIT_LIST_HEAD(&sbsec->isec_head);
268         spin_lock_init(&sbsec->isec_lock);
269         sbsec->sb = sb;
270         sbsec->sid = SECINITSID_UNLABELED;
271         sbsec->def_sid = SECINITSID_FILE;
272         sbsec->mntpoint_sid = SECINITSID_UNLABELED;
273         sb->s_security = sbsec;
274
275         return 0;
276 }
277
278 static void superblock_free_security(struct super_block *sb)
279 {
280         struct superblock_security_struct *sbsec = sb->s_security;
281
282         spin_lock(&sb_security_lock);
283         if (!list_empty(&sbsec->list))
284                 list_del_init(&sbsec->list);
285         spin_unlock(&sb_security_lock);
286
287         sb->s_security = NULL;
288         kfree(sbsec);
289 }
290
291 static int sk_alloc_security(struct sock *sk, int family, gfp_t priority)
292 {
293         struct sk_security_struct *ssec;
294
295         ssec = kzalloc(sizeof(*ssec), priority);
296         if (!ssec)
297                 return -ENOMEM;
298
299         ssec->peer_sid = SECINITSID_UNLABELED;
300         ssec->sid = SECINITSID_UNLABELED;
301         sk->sk_security = ssec;
302
303         selinux_netlbl_sk_security_reset(ssec, family);
304
305         return 0;
306 }
307
308 static void sk_free_security(struct sock *sk)
309 {
310         struct sk_security_struct *ssec = sk->sk_security;
311
312         sk->sk_security = NULL;
313         selinux_netlbl_sk_security_free(ssec);
314         kfree(ssec);
315 }
316
317 /* The security server must be initialized before
318    any labeling or access decisions can be provided. */
319 extern int ss_initialized;
320
321 /* The file system's label must be initialized prior to use. */
322
323 static char *labeling_behaviors[6] = {
324         "uses xattr",
325         "uses transition SIDs",
326         "uses task SIDs",
327         "uses genfs_contexts",
328         "not configured for labeling",
329         "uses mountpoint labeling",
330 };
331
332 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
333
334 static inline int inode_doinit(struct inode *inode)
335 {
336         return inode_doinit_with_dentry(inode, NULL);
337 }
338
339 enum {
340         Opt_error = -1,
341         Opt_context = 1,
342         Opt_fscontext = 2,
343         Opt_defcontext = 3,
344         Opt_rootcontext = 4,
345 };
346
347 static const match_table_t tokens = {
348         {Opt_context, CONTEXT_STR "%s"},
349         {Opt_fscontext, FSCONTEXT_STR "%s"},
350         {Opt_defcontext, DEFCONTEXT_STR "%s"},
351         {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
352         {Opt_error, NULL},
353 };
354
355 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
356
357 static int may_context_mount_sb_relabel(u32 sid,
358                         struct superblock_security_struct *sbsec,
359                         const struct cred *cred)
360 {
361         const struct task_security_struct *tsec = cred->security;
362         int rc;
363
364         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
365                           FILESYSTEM__RELABELFROM, NULL);
366         if (rc)
367                 return rc;
368
369         rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
370                           FILESYSTEM__RELABELTO, NULL);
371         return rc;
372 }
373
374 static int may_context_mount_inode_relabel(u32 sid,
375                         struct superblock_security_struct *sbsec,
376                         const struct cred *cred)
377 {
378         const struct task_security_struct *tsec = cred->security;
379         int rc;
380         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
381                           FILESYSTEM__RELABELFROM, NULL);
382         if (rc)
383                 return rc;
384
385         rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
386                           FILESYSTEM__ASSOCIATE, NULL);
387         return rc;
388 }
389
390 static int sb_finish_set_opts(struct super_block *sb)
391 {
392         struct superblock_security_struct *sbsec = sb->s_security;
393         struct dentry *root = sb->s_root;
394         struct inode *root_inode = root->d_inode;
395         int rc = 0;
396
397         if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
398                 /* Make sure that the xattr handler exists and that no
399                    error other than -ENODATA is returned by getxattr on
400                    the root directory.  -ENODATA is ok, as this may be
401                    the first boot of the SELinux kernel before we have
402                    assigned xattr values to the filesystem. */
403                 if (!root_inode->i_op->getxattr) {
404                         printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
405                                "xattr support\n", sb->s_id, sb->s_type->name);
406                         rc = -EOPNOTSUPP;
407                         goto out;
408                 }
409                 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
410                 if (rc < 0 && rc != -ENODATA) {
411                         if (rc == -EOPNOTSUPP)
412                                 printk(KERN_WARNING "SELinux: (dev %s, type "
413                                        "%s) has no security xattr handler\n",
414                                        sb->s_id, sb->s_type->name);
415                         else
416                                 printk(KERN_WARNING "SELinux: (dev %s, type "
417                                        "%s) getxattr errno %d\n", sb->s_id,
418                                        sb->s_type->name, -rc);
419                         goto out;
420                 }
421         }
422
423         sbsec->initialized = 1;
424
425         if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
426                 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
427                        sb->s_id, sb->s_type->name);
428         else
429                 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
430                        sb->s_id, sb->s_type->name,
431                        labeling_behaviors[sbsec->behavior-1]);
432
433         /* Initialize the root inode. */
434         rc = inode_doinit_with_dentry(root_inode, root);
435
436         /* Initialize any other inodes associated with the superblock, e.g.
437            inodes created prior to initial policy load or inodes created
438            during get_sb by a pseudo filesystem that directly
439            populates itself. */
440         spin_lock(&sbsec->isec_lock);
441 next_inode:
442         if (!list_empty(&sbsec->isec_head)) {
443                 struct inode_security_struct *isec =
444                                 list_entry(sbsec->isec_head.next,
445                                            struct inode_security_struct, list);
446                 struct inode *inode = isec->inode;
447                 spin_unlock(&sbsec->isec_lock);
448                 inode = igrab(inode);
449                 if (inode) {
450                         if (!IS_PRIVATE(inode))
451                                 inode_doinit(inode);
452                         iput(inode);
453                 }
454                 spin_lock(&sbsec->isec_lock);
455                 list_del_init(&isec->list);
456                 goto next_inode;
457         }
458         spin_unlock(&sbsec->isec_lock);
459 out:
460         return rc;
461 }
462
463 /*
464  * This function should allow an FS to ask what it's mount security
465  * options were so it can use those later for submounts, displaying
466  * mount options, or whatever.
467  */
468 static int selinux_get_mnt_opts(const struct super_block *sb,
469                                 struct security_mnt_opts *opts)
470 {
471         int rc = 0, i;
472         struct superblock_security_struct *sbsec = sb->s_security;
473         char *context = NULL;
474         u32 len;
475         char tmp;
476
477         security_init_mnt_opts(opts);
478
479         if (!sbsec->initialized)
480                 return -EINVAL;
481
482         if (!ss_initialized)
483                 return -EINVAL;
484
485         /*
486          * if we ever use sbsec flags for anything other than tracking mount
487          * settings this is going to need a mask
488          */
489         tmp = sbsec->flags;
490         /* count the number of mount options for this sb */
491         for (i = 0; i < 8; i++) {
492                 if (tmp & 0x01)
493                         opts->num_mnt_opts++;
494                 tmp >>= 1;
495         }
496
497         opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
498         if (!opts->mnt_opts) {
499                 rc = -ENOMEM;
500                 goto out_free;
501         }
502
503         opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
504         if (!opts->mnt_opts_flags) {
505                 rc = -ENOMEM;
506                 goto out_free;
507         }
508
509         i = 0;
510         if (sbsec->flags & FSCONTEXT_MNT) {
511                 rc = security_sid_to_context(sbsec->sid, &context, &len);
512                 if (rc)
513                         goto out_free;
514                 opts->mnt_opts[i] = context;
515                 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
516         }
517         if (sbsec->flags & CONTEXT_MNT) {
518                 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
519                 if (rc)
520                         goto out_free;
521                 opts->mnt_opts[i] = context;
522                 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
523         }
524         if (sbsec->flags & DEFCONTEXT_MNT) {
525                 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
526                 if (rc)
527                         goto out_free;
528                 opts->mnt_opts[i] = context;
529                 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
530         }
531         if (sbsec->flags & ROOTCONTEXT_MNT) {
532                 struct inode *root = sbsec->sb->s_root->d_inode;
533                 struct inode_security_struct *isec = root->i_security;
534
535                 rc = security_sid_to_context(isec->sid, &context, &len);
536                 if (rc)
537                         goto out_free;
538                 opts->mnt_opts[i] = context;
539                 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
540         }
541
542         BUG_ON(i != opts->num_mnt_opts);
543
544         return 0;
545
546 out_free:
547         security_free_mnt_opts(opts);
548         return rc;
549 }
550
551 static int bad_option(struct superblock_security_struct *sbsec, char flag,
552                       u32 old_sid, u32 new_sid)
553 {
554         /* check if the old mount command had the same options */
555         if (sbsec->initialized)
556                 if (!(sbsec->flags & flag) ||
557                     (old_sid != new_sid))
558                         return 1;
559
560         /* check if we were passed the same options twice,
561          * aka someone passed context=a,context=b
562          */
563         if (!sbsec->initialized)
564                 if (sbsec->flags & flag)
565                         return 1;
566         return 0;
567 }
568
569 /*
570  * Allow filesystems with binary mount data to explicitly set mount point
571  * labeling information.
572  */
573 static int selinux_set_mnt_opts(struct super_block *sb,
574                                 struct security_mnt_opts *opts)
575 {
576         const struct cred *cred = current_cred();
577         int rc = 0, i;
578         struct superblock_security_struct *sbsec = sb->s_security;
579         const char *name = sb->s_type->name;
580         struct inode *inode = sbsec->sb->s_root->d_inode;
581         struct inode_security_struct *root_isec = inode->i_security;
582         u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
583         u32 defcontext_sid = 0;
584         char **mount_options = opts->mnt_opts;
585         int *flags = opts->mnt_opts_flags;
586         int num_opts = opts->num_mnt_opts;
587
588         mutex_lock(&sbsec->lock);
589
590         if (!ss_initialized) {
591                 if (!num_opts) {
592                         /* Defer initialization until selinux_complete_init,
593                            after the initial policy is loaded and the security
594                            server is ready to handle calls. */
595                         spin_lock(&sb_security_lock);
596                         if (list_empty(&sbsec->list))
597                                 list_add(&sbsec->list, &superblock_security_head);
598                         spin_unlock(&sb_security_lock);
599                         goto out;
600                 }
601                 rc = -EINVAL;
602                 printk(KERN_WARNING "SELinux: Unable to set superblock options "
603                         "before the security server is initialized\n");
604                 goto out;
605         }
606
607         /*
608          * Binary mount data FS will come through this function twice.  Once
609          * from an explicit call and once from the generic calls from the vfs.
610          * Since the generic VFS calls will not contain any security mount data
611          * we need to skip the double mount verification.
612          *
613          * This does open a hole in which we will not notice if the first
614          * mount using this sb set explict options and a second mount using
615          * this sb does not set any security options.  (The first options
616          * will be used for both mounts)
617          */
618         if (sbsec->initialized && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
619             && (num_opts == 0))
620                 goto out;
621
622         /*
623          * parse the mount options, check if they are valid sids.
624          * also check if someone is trying to mount the same sb more
625          * than once with different security options.
626          */
627         for (i = 0; i < num_opts; i++) {
628                 u32 sid;
629                 rc = security_context_to_sid(mount_options[i],
630                                              strlen(mount_options[i]), &sid);
631                 if (rc) {
632                         printk(KERN_WARNING "SELinux: security_context_to_sid"
633                                "(%s) failed for (dev %s, type %s) errno=%d\n",
634                                mount_options[i], sb->s_id, name, rc);
635                         goto out;
636                 }
637                 switch (flags[i]) {
638                 case FSCONTEXT_MNT:
639                         fscontext_sid = sid;
640
641                         if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
642                                         fscontext_sid))
643                                 goto out_double_mount;
644
645                         sbsec->flags |= FSCONTEXT_MNT;
646                         break;
647                 case CONTEXT_MNT:
648                         context_sid = sid;
649
650                         if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
651                                         context_sid))
652                                 goto out_double_mount;
653
654                         sbsec->flags |= CONTEXT_MNT;
655                         break;
656                 case ROOTCONTEXT_MNT:
657                         rootcontext_sid = sid;
658
659                         if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
660                                         rootcontext_sid))
661                                 goto out_double_mount;
662
663                         sbsec->flags |= ROOTCONTEXT_MNT;
664
665                         break;
666                 case DEFCONTEXT_MNT:
667                         defcontext_sid = sid;
668
669                         if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
670                                         defcontext_sid))
671                                 goto out_double_mount;
672
673                         sbsec->flags |= DEFCONTEXT_MNT;
674
675                         break;
676                 default:
677                         rc = -EINVAL;
678                         goto out;
679                 }
680         }
681
682         if (sbsec->initialized) {
683                 /* previously mounted with options, but not on this attempt? */
684                 if (sbsec->flags && !num_opts)
685                         goto out_double_mount;
686                 rc = 0;
687                 goto out;
688         }
689
690         if (strcmp(sb->s_type->name, "proc") == 0)
691                 sbsec->proc = 1;
692
693         /* Determine the labeling behavior to use for this filesystem type. */
694         rc = security_fs_use(sb->s_type->name, &sbsec->behavior, &sbsec->sid);
695         if (rc) {
696                 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
697                        __func__, sb->s_type->name, rc);
698                 goto out;
699         }
700
701         /* sets the context of the superblock for the fs being mounted. */
702         if (fscontext_sid) {
703                 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
704                 if (rc)
705                         goto out;
706
707                 sbsec->sid = fscontext_sid;
708         }
709
710         /*
711          * Switch to using mount point labeling behavior.
712          * sets the label used on all file below the mountpoint, and will set
713          * the superblock context if not already set.
714          */
715         if (context_sid) {
716                 if (!fscontext_sid) {
717                         rc = may_context_mount_sb_relabel(context_sid, sbsec,
718                                                           cred);
719                         if (rc)
720                                 goto out;
721                         sbsec->sid = context_sid;
722                 } else {
723                         rc = may_context_mount_inode_relabel(context_sid, sbsec,
724                                                              cred);
725                         if (rc)
726                                 goto out;
727                 }
728                 if (!rootcontext_sid)
729                         rootcontext_sid = context_sid;
730
731                 sbsec->mntpoint_sid = context_sid;
732                 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
733         }
734
735         if (rootcontext_sid) {
736                 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
737                                                      cred);
738                 if (rc)
739                         goto out;
740
741                 root_isec->sid = rootcontext_sid;
742                 root_isec->initialized = 1;
743         }
744
745         if (defcontext_sid) {
746                 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
747                         rc = -EINVAL;
748                         printk(KERN_WARNING "SELinux: defcontext option is "
749                                "invalid for this filesystem type\n");
750                         goto out;
751                 }
752
753                 if (defcontext_sid != sbsec->def_sid) {
754                         rc = may_context_mount_inode_relabel(defcontext_sid,
755                                                              sbsec, cred);
756                         if (rc)
757                                 goto out;
758                 }
759
760                 sbsec->def_sid = defcontext_sid;
761         }
762
763         rc = sb_finish_set_opts(sb);
764 out:
765         mutex_unlock(&sbsec->lock);
766         return rc;
767 out_double_mount:
768         rc = -EINVAL;
769         printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
770                "security settings for (dev %s, type %s)\n", sb->s_id, name);
771         goto out;
772 }
773
774 static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
775                                         struct super_block *newsb)
776 {
777         const struct superblock_security_struct *oldsbsec = oldsb->s_security;
778         struct superblock_security_struct *newsbsec = newsb->s_security;
779
780         int set_fscontext =     (oldsbsec->flags & FSCONTEXT_MNT);
781         int set_context =       (oldsbsec->flags & CONTEXT_MNT);
782         int set_rootcontext =   (oldsbsec->flags & ROOTCONTEXT_MNT);
783
784         /*
785          * if the parent was able to be mounted it clearly had no special lsm
786          * mount options.  thus we can safely put this sb on the list and deal
787          * with it later
788          */
789         if (!ss_initialized) {
790                 spin_lock(&sb_security_lock);
791                 if (list_empty(&newsbsec->list))
792                         list_add(&newsbsec->list, &superblock_security_head);
793                 spin_unlock(&sb_security_lock);
794                 return;
795         }
796
797         /* how can we clone if the old one wasn't set up?? */
798         BUG_ON(!oldsbsec->initialized);
799
800         /* if fs is reusing a sb, just let its options stand... */
801         if (newsbsec->initialized)
802                 return;
803
804         mutex_lock(&newsbsec->lock);
805
806         newsbsec->flags = oldsbsec->flags;
807
808         newsbsec->sid = oldsbsec->sid;
809         newsbsec->def_sid = oldsbsec->def_sid;
810         newsbsec->behavior = oldsbsec->behavior;
811
812         if (set_context) {
813                 u32 sid = oldsbsec->mntpoint_sid;
814
815                 if (!set_fscontext)
816                         newsbsec->sid = sid;
817                 if (!set_rootcontext) {
818                         struct inode *newinode = newsb->s_root->d_inode;
819                         struct inode_security_struct *newisec = newinode->i_security;
820                         newisec->sid = sid;
821                 }
822                 newsbsec->mntpoint_sid = sid;
823         }
824         if (set_rootcontext) {
825                 const struct inode *oldinode = oldsb->s_root->d_inode;
826                 const struct inode_security_struct *oldisec = oldinode->i_security;
827                 struct inode *newinode = newsb->s_root->d_inode;
828                 struct inode_security_struct *newisec = newinode->i_security;
829
830                 newisec->sid = oldisec->sid;
831         }
832
833         sb_finish_set_opts(newsb);
834         mutex_unlock(&newsbsec->lock);
835 }
836
837 static int selinux_parse_opts_str(char *options,
838                                   struct security_mnt_opts *opts)
839 {
840         char *p;
841         char *context = NULL, *defcontext = NULL;
842         char *fscontext = NULL, *rootcontext = NULL;
843         int rc, num_mnt_opts = 0;
844
845         opts->num_mnt_opts = 0;
846
847         /* Standard string-based options. */
848         while ((p = strsep(&options, "|")) != NULL) {
849                 int token;
850                 substring_t args[MAX_OPT_ARGS];
851
852                 if (!*p)
853                         continue;
854
855                 token = match_token(p, tokens, args);
856
857                 switch (token) {
858                 case Opt_context:
859                         if (context || defcontext) {
860                                 rc = -EINVAL;
861                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
862                                 goto out_err;
863                         }
864                         context = match_strdup(&args[0]);
865                         if (!context) {
866                                 rc = -ENOMEM;
867                                 goto out_err;
868                         }
869                         break;
870
871                 case Opt_fscontext:
872                         if (fscontext) {
873                                 rc = -EINVAL;
874                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
875                                 goto out_err;
876                         }
877                         fscontext = match_strdup(&args[0]);
878                         if (!fscontext) {
879                                 rc = -ENOMEM;
880                                 goto out_err;
881                         }
882                         break;
883
884                 case Opt_rootcontext:
885                         if (rootcontext) {
886                                 rc = -EINVAL;
887                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
888                                 goto out_err;
889                         }
890                         rootcontext = match_strdup(&args[0]);
891                         if (!rootcontext) {
892                                 rc = -ENOMEM;
893                                 goto out_err;
894                         }
895                         break;
896
897                 case Opt_defcontext:
898                         if (context || defcontext) {
899                                 rc = -EINVAL;
900                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
901                                 goto out_err;
902                         }
903                         defcontext = match_strdup(&args[0]);
904                         if (!defcontext) {
905                                 rc = -ENOMEM;
906                                 goto out_err;
907                         }
908                         break;
909
910                 default:
911                         rc = -EINVAL;
912                         printk(KERN_WARNING "SELinux:  unknown mount option\n");
913                         goto out_err;
914
915                 }
916         }
917
918         rc = -ENOMEM;
919         opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
920         if (!opts->mnt_opts)
921                 goto out_err;
922
923         opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
924         if (!opts->mnt_opts_flags) {
925                 kfree(opts->mnt_opts);
926                 goto out_err;
927         }
928
929         if (fscontext) {
930                 opts->mnt_opts[num_mnt_opts] = fscontext;
931                 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
932         }
933         if (context) {
934                 opts->mnt_opts[num_mnt_opts] = context;
935                 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
936         }
937         if (rootcontext) {
938                 opts->mnt_opts[num_mnt_opts] = rootcontext;
939                 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
940         }
941         if (defcontext) {
942                 opts->mnt_opts[num_mnt_opts] = defcontext;
943                 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
944         }
945
946         opts->num_mnt_opts = num_mnt_opts;
947         return 0;
948
949 out_err:
950         kfree(context);
951         kfree(defcontext);
952         kfree(fscontext);
953         kfree(rootcontext);
954         return rc;
955 }
956 /*
957  * string mount options parsing and call set the sbsec
958  */
959 static int superblock_doinit(struct super_block *sb, void *data)
960 {
961         int rc = 0;
962         char *options = data;
963         struct security_mnt_opts opts;
964
965         security_init_mnt_opts(&opts);
966
967         if (!data)
968                 goto out;
969
970         BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
971
972         rc = selinux_parse_opts_str(options, &opts);
973         if (rc)
974                 goto out_err;
975
976 out:
977         rc = selinux_set_mnt_opts(sb, &opts);
978
979 out_err:
980         security_free_mnt_opts(&opts);
981         return rc;
982 }
983
984 static void selinux_write_opts(struct seq_file *m,
985                                struct security_mnt_opts *opts)
986 {
987         int i;
988         char *prefix;
989
990         for (i = 0; i < opts->num_mnt_opts; i++) {
991                 char *has_comma = strchr(opts->mnt_opts[i], ',');
992
993                 switch (opts->mnt_opts_flags[i]) {
994                 case CONTEXT_MNT:
995                         prefix = CONTEXT_STR;
996                         break;
997                 case FSCONTEXT_MNT:
998                         prefix = FSCONTEXT_STR;
999                         break;
1000                 case ROOTCONTEXT_MNT:
1001                         prefix = ROOTCONTEXT_STR;
1002                         break;
1003                 case DEFCONTEXT_MNT:
1004                         prefix = DEFCONTEXT_STR;
1005                         break;
1006                 default:
1007                         BUG();
1008                 };
1009                 /* we need a comma before each option */
1010                 seq_putc(m, ',');
1011                 seq_puts(m, prefix);
1012                 if (has_comma)
1013                         seq_putc(m, '\"');
1014                 seq_puts(m, opts->mnt_opts[i]);
1015                 if (has_comma)
1016                         seq_putc(m, '\"');
1017         }
1018 }
1019
1020 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1021 {
1022         struct security_mnt_opts opts;
1023         int rc;
1024
1025         rc = selinux_get_mnt_opts(sb, &opts);
1026         if (rc) {
1027                 /* before policy load we may get EINVAL, don't show anything */
1028                 if (rc == -EINVAL)
1029                         rc = 0;
1030                 return rc;
1031         }
1032
1033         selinux_write_opts(m, &opts);
1034
1035         security_free_mnt_opts(&opts);
1036
1037         return rc;
1038 }
1039
1040 static inline u16 inode_mode_to_security_class(umode_t mode)
1041 {
1042         switch (mode & S_IFMT) {
1043         case S_IFSOCK:
1044                 return SECCLASS_SOCK_FILE;
1045         case S_IFLNK:
1046                 return SECCLASS_LNK_FILE;
1047         case S_IFREG:
1048                 return SECCLASS_FILE;
1049         case S_IFBLK:
1050                 return SECCLASS_BLK_FILE;
1051         case S_IFDIR:
1052                 return SECCLASS_DIR;
1053         case S_IFCHR:
1054                 return SECCLASS_CHR_FILE;
1055         case S_IFIFO:
1056                 return SECCLASS_FIFO_FILE;
1057
1058         }
1059
1060         return SECCLASS_FILE;
1061 }
1062
1063 static inline int default_protocol_stream(int protocol)
1064 {
1065         return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1066 }
1067
1068 static inline int default_protocol_dgram(int protocol)
1069 {
1070         return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1071 }
1072
1073 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1074 {
1075         switch (family) {
1076         case PF_UNIX:
1077                 switch (type) {
1078                 case SOCK_STREAM:
1079                 case SOCK_SEQPACKET:
1080                         return SECCLASS_UNIX_STREAM_SOCKET;
1081                 case SOCK_DGRAM:
1082                         return SECCLASS_UNIX_DGRAM_SOCKET;
1083                 }
1084                 break;
1085         case PF_INET:
1086         case PF_INET6:
1087                 switch (type) {
1088                 case SOCK_STREAM:
1089                         if (default_protocol_stream(protocol))
1090                                 return SECCLASS_TCP_SOCKET;
1091                         else
1092                                 return SECCLASS_RAWIP_SOCKET;
1093                 case SOCK_DGRAM:
1094                         if (default_protocol_dgram(protocol))
1095                                 return SECCLASS_UDP_SOCKET;
1096                         else
1097                                 return SECCLASS_RAWIP_SOCKET;
1098                 case SOCK_DCCP:
1099                         return SECCLASS_DCCP_SOCKET;
1100                 default:
1101                         return SECCLASS_RAWIP_SOCKET;
1102                 }
1103                 break;
1104         case PF_NETLINK:
1105                 switch (protocol) {
1106                 case NETLINK_ROUTE:
1107                         return SECCLASS_NETLINK_ROUTE_SOCKET;
1108                 case NETLINK_FIREWALL:
1109                         return SECCLASS_NETLINK_FIREWALL_SOCKET;
1110                 case NETLINK_INET_DIAG:
1111                         return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1112                 case NETLINK_NFLOG:
1113                         return SECCLASS_NETLINK_NFLOG_SOCKET;
1114                 case NETLINK_XFRM:
1115                         return SECCLASS_NETLINK_XFRM_SOCKET;
1116                 case NETLINK_SELINUX:
1117                         return SECCLASS_NETLINK_SELINUX_SOCKET;
1118                 case NETLINK_AUDIT:
1119                         return SECCLASS_NETLINK_AUDIT_SOCKET;
1120                 case NETLINK_IP6_FW:
1121                         return SECCLASS_NETLINK_IP6FW_SOCKET;
1122                 case NETLINK_DNRTMSG:
1123                         return SECCLASS_NETLINK_DNRT_SOCKET;
1124                 case NETLINK_KOBJECT_UEVENT:
1125                         return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1126                 default:
1127                         return SECCLASS_NETLINK_SOCKET;
1128                 }
1129         case PF_PACKET:
1130                 return SECCLASS_PACKET_SOCKET;
1131         case PF_KEY:
1132                 return SECCLASS_KEY_SOCKET;
1133         case PF_APPLETALK:
1134                 return SECCLASS_APPLETALK_SOCKET;
1135         }
1136
1137         return SECCLASS_SOCKET;
1138 }
1139
1140 #ifdef CONFIG_PROC_FS
1141 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1142                                 u16 tclass,
1143                                 u32 *sid)
1144 {
1145         int buflen, rc;
1146         char *buffer, *path, *end;
1147
1148         buffer = (char *)__get_free_page(GFP_KERNEL);
1149         if (!buffer)
1150                 return -ENOMEM;
1151
1152         buflen = PAGE_SIZE;
1153         end = buffer+buflen;
1154         *--end = '\0';
1155         buflen--;
1156         path = end-1;
1157         *path = '/';
1158         while (de && de != de->parent) {
1159                 buflen -= de->namelen + 1;
1160                 if (buflen < 0)
1161                         break;
1162                 end -= de->namelen;
1163                 memcpy(end, de->name, de->namelen);
1164                 *--end = '/';
1165                 path = end;
1166                 de = de->parent;
1167         }
1168         rc = security_genfs_sid("proc", path, tclass, sid);
1169         free_page((unsigned long)buffer);
1170         return rc;
1171 }
1172 #else
1173 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1174                                 u16 tclass,
1175                                 u32 *sid)
1176 {
1177         return -EINVAL;
1178 }
1179 #endif
1180
1181 /* The inode's security attributes must be initialized before first use. */
1182 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1183 {
1184         struct superblock_security_struct *sbsec = NULL;
1185         struct inode_security_struct *isec = inode->i_security;
1186         u32 sid;
1187         struct dentry *dentry;
1188 #define INITCONTEXTLEN 255
1189         char *context = NULL;
1190         unsigned len = 0;
1191         int rc = 0;
1192
1193         if (isec->initialized)
1194                 goto out;
1195
1196         mutex_lock(&isec->lock);
1197         if (isec->initialized)
1198                 goto out_unlock;
1199
1200         sbsec = inode->i_sb->s_security;
1201         if (!sbsec->initialized) {
1202                 /* Defer initialization until selinux_complete_init,
1203                    after the initial policy is loaded and the security
1204                    server is ready to handle calls. */
1205                 spin_lock(&sbsec->isec_lock);
1206                 if (list_empty(&isec->list))
1207                         list_add(&isec->list, &sbsec->isec_head);
1208                 spin_unlock(&sbsec->isec_lock);
1209                 goto out_unlock;
1210         }
1211
1212         switch (sbsec->behavior) {
1213         case SECURITY_FS_USE_XATTR:
1214                 if (!inode->i_op->getxattr) {
1215                         isec->sid = sbsec->def_sid;
1216                         break;
1217                 }
1218
1219                 /* Need a dentry, since the xattr API requires one.
1220                    Life would be simpler if we could just pass the inode. */
1221                 if (opt_dentry) {
1222                         /* Called from d_instantiate or d_splice_alias. */
1223                         dentry = dget(opt_dentry);
1224                 } else {
1225                         /* Called from selinux_complete_init, try to find a dentry. */
1226                         dentry = d_find_alias(inode);
1227                 }
1228                 if (!dentry) {
1229                         printk(KERN_WARNING "SELinux: %s:  no dentry for dev=%s "
1230                                "ino=%ld\n", __func__, inode->i_sb->s_id,
1231                                inode->i_ino);
1232                         goto out_unlock;
1233                 }
1234
1235                 len = INITCONTEXTLEN;
1236                 context = kmalloc(len, GFP_NOFS);
1237                 if (!context) {
1238                         rc = -ENOMEM;
1239                         dput(dentry);
1240                         goto out_unlock;
1241                 }
1242                 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1243                                            context, len);
1244                 if (rc == -ERANGE) {
1245                         /* Need a larger buffer.  Query for the right size. */
1246                         rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1247                                                    NULL, 0);
1248                         if (rc < 0) {
1249                                 dput(dentry);
1250                                 goto out_unlock;
1251                         }
1252                         kfree(context);
1253                         len = rc;
1254                         context = kmalloc(len, GFP_NOFS);
1255                         if (!context) {
1256                                 rc = -ENOMEM;
1257                                 dput(dentry);
1258                                 goto out_unlock;
1259                         }
1260                         rc = inode->i_op->getxattr(dentry,
1261                                                    XATTR_NAME_SELINUX,
1262                                                    context, len);
1263                 }
1264                 dput(dentry);
1265                 if (rc < 0) {
1266                         if (rc != -ENODATA) {
1267                                 printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1268                                        "%d for dev=%s ino=%ld\n", __func__,
1269                                        -rc, inode->i_sb->s_id, inode->i_ino);
1270                                 kfree(context);
1271                                 goto out_unlock;
1272                         }
1273                         /* Map ENODATA to the default file SID */
1274                         sid = sbsec->def_sid;
1275                         rc = 0;
1276                 } else {
1277                         rc = security_context_to_sid_default(context, rc, &sid,
1278                                                              sbsec->def_sid,
1279                                                              GFP_NOFS);
1280                         if (rc) {
1281                                 printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1282                                        "returned %d for dev=%s ino=%ld\n",
1283                                        __func__, context, -rc,
1284                                        inode->i_sb->s_id, inode->i_ino);
1285                                 kfree(context);
1286                                 /* Leave with the unlabeled SID */
1287                                 rc = 0;
1288                                 break;
1289                         }
1290                 }
1291                 kfree(context);
1292                 isec->sid = sid;
1293                 break;
1294         case SECURITY_FS_USE_TASK:
1295                 isec->sid = isec->task_sid;
1296                 break;
1297         case SECURITY_FS_USE_TRANS:
1298                 /* Default to the fs SID. */
1299                 isec->sid = sbsec->sid;
1300
1301                 /* Try to obtain a transition SID. */
1302                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1303                 rc = security_transition_sid(isec->task_sid,
1304                                              sbsec->sid,
1305                                              isec->sclass,
1306                                              &sid);
1307                 if (rc)
1308                         goto out_unlock;
1309                 isec->sid = sid;
1310                 break;
1311         case SECURITY_FS_USE_MNTPOINT:
1312                 isec->sid = sbsec->mntpoint_sid;
1313                 break;
1314         default:
1315                 /* Default to the fs superblock SID. */
1316                 isec->sid = sbsec->sid;
1317
1318                 if (sbsec->proc && !S_ISLNK(inode->i_mode)) {
1319                         struct proc_inode *proci = PROC_I(inode);
1320                         if (proci->pde) {
1321                                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1322                                 rc = selinux_proc_get_sid(proci->pde,
1323                                                           isec->sclass,
1324                                                           &sid);
1325                                 if (rc)
1326                                         goto out_unlock;
1327                                 isec->sid = sid;
1328                         }
1329                 }
1330                 break;
1331         }
1332
1333         isec->initialized = 1;
1334
1335 out_unlock:
1336         mutex_unlock(&isec->lock);
1337 out:
1338         if (isec->sclass == SECCLASS_FILE)
1339                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1340         return rc;
1341 }
1342
1343 /* Convert a Linux signal to an access vector. */
1344 static inline u32 signal_to_av(int sig)
1345 {
1346         u32 perm = 0;
1347
1348         switch (sig) {
1349         case SIGCHLD:
1350                 /* Commonly granted from child to parent. */
1351                 perm = PROCESS__SIGCHLD;
1352                 break;
1353         case SIGKILL:
1354                 /* Cannot be caught or ignored */
1355                 perm = PROCESS__SIGKILL;
1356                 break;
1357         case SIGSTOP:
1358                 /* Cannot be caught or ignored */
1359                 perm = PROCESS__SIGSTOP;
1360                 break;
1361         default:
1362                 /* All other signals. */
1363                 perm = PROCESS__SIGNAL;
1364                 break;
1365         }
1366
1367         return perm;
1368 }
1369
1370 /*
1371  * Check permission betweeen a pair of tasks, e.g. signal checks,
1372  * fork check, ptrace check, etc.
1373  * tsk1 is the actor and tsk2 is the target
1374  */
1375 static int task_has_perm(const struct task_struct *tsk1,
1376                          const struct task_struct *tsk2,
1377                          u32 perms)
1378 {
1379         const struct task_security_struct *__tsec1, *__tsec2;
1380         u32 sid1, sid2;
1381
1382         rcu_read_lock();
1383         __tsec1 = __task_cred(tsk1)->security;  sid1 = __tsec1->sid;
1384         __tsec2 = __task_cred(tsk2)->security;  sid2 = __tsec2->sid;
1385         rcu_read_unlock();
1386         return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1387 }
1388
1389 #if CAP_LAST_CAP > 63
1390 #error Fix SELinux to handle capabilities > 63.
1391 #endif
1392
1393 /* Check whether a task is allowed to use a capability. */
1394 static int task_has_capability(struct task_struct *tsk,
1395                                int cap, int audit)
1396 {
1397         struct avc_audit_data ad;
1398         struct av_decision avd;
1399         u16 sclass;
1400         u32 sid = task_sid(tsk);
1401         u32 av = CAP_TO_MASK(cap);
1402         int rc;
1403
1404         AVC_AUDIT_DATA_INIT(&ad, CAP);
1405         ad.tsk = tsk;
1406         ad.u.cap = cap;
1407
1408         switch (CAP_TO_INDEX(cap)) {
1409         case 0:
1410                 sclass = SECCLASS_CAPABILITY;
1411                 break;
1412         case 1:
1413                 sclass = SECCLASS_CAPABILITY2;
1414                 break;
1415         default:
1416                 printk(KERN_ERR
1417                        "SELinux:  out of range capability %d\n", cap);
1418                 BUG();
1419         }
1420
1421         rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1422         if (audit == SECURITY_CAP_AUDIT)
1423                 avc_audit(sid, sid, sclass, av, &avd, rc, &ad);
1424         return rc;
1425 }
1426
1427 /* Check whether a task is allowed to use a system operation. */
1428 static int task_has_system(struct task_struct *tsk,
1429                            u32 perms)
1430 {
1431         u32 sid = task_sid(tsk);
1432
1433         return avc_has_perm(sid, SECINITSID_KERNEL,
1434                             SECCLASS_SYSTEM, perms, NULL);
1435 }
1436
1437 /* Check whether a task has a particular permission to an inode.
1438    The 'adp' parameter is optional and allows other audit
1439    data to be passed (e.g. the dentry). */
1440 static int inode_has_perm(struct task_struct *tsk,
1441                           struct inode *inode,
1442                           u32 perms,
1443                           struct avc_audit_data *adp)
1444 {
1445         struct inode_security_struct *isec;
1446         struct avc_audit_data ad;
1447         u32 sid;
1448
1449         if (unlikely(IS_PRIVATE(inode)))
1450                 return 0;
1451
1452         sid = task_sid(tsk);
1453         isec = inode->i_security;
1454
1455         if (!adp) {
1456                 adp = &ad;
1457                 AVC_AUDIT_DATA_INIT(&ad, FS);
1458                 ad.u.fs.inode = inode;
1459         }
1460
1461         return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1462 }
1463
1464 /* Same as inode_has_perm, but pass explicit audit data containing
1465    the dentry to help the auditing code to more easily generate the
1466    pathname if needed. */
1467 static inline int dentry_has_perm(struct task_struct *tsk,
1468                                   struct vfsmount *mnt,
1469                                   struct dentry *dentry,
1470                                   u32 av)
1471 {
1472         struct inode *inode = dentry->d_inode;
1473         struct avc_audit_data ad;
1474         AVC_AUDIT_DATA_INIT(&ad, FS);
1475         ad.u.fs.path.mnt = mnt;
1476         ad.u.fs.path.dentry = dentry;
1477         return inode_has_perm(tsk, inode, av, &ad);
1478 }
1479
1480 /* Check whether a task can use an open file descriptor to
1481    access an inode in a given way.  Check access to the
1482    descriptor itself, and then use dentry_has_perm to
1483    check a particular permission to the file.
1484    Access to the descriptor is implicitly granted if it
1485    has the same SID as the process.  If av is zero, then
1486    access to the file is not checked, e.g. for cases
1487    where only the descriptor is affected like seek. */
1488 static int file_has_perm(struct task_struct *tsk,
1489                                 struct file *file,
1490                                 u32 av)
1491 {
1492         struct file_security_struct *fsec = file->f_security;
1493         struct inode *inode = file->f_path.dentry->d_inode;
1494         struct avc_audit_data ad;
1495         u32 sid = task_sid(tsk);
1496         int rc;
1497
1498         AVC_AUDIT_DATA_INIT(&ad, FS);
1499         ad.u.fs.path = file->f_path;
1500
1501         if (sid != fsec->sid) {
1502                 rc = avc_has_perm(sid, fsec->sid,
1503                                   SECCLASS_FD,
1504                                   FD__USE,
1505                                   &ad);
1506                 if (rc)
1507                         return rc;
1508         }
1509
1510         /* av is zero if only checking access to the descriptor. */
1511         if (av)
1512                 return inode_has_perm(tsk, inode, av, &ad);
1513
1514         return 0;
1515 }
1516
1517 /* Check whether a task can create a file. */
1518 static int may_create(struct inode *dir,
1519                       struct dentry *dentry,
1520                       u16 tclass)
1521 {
1522         const struct cred *cred = current_cred();
1523         const struct task_security_struct *tsec = cred->security;
1524         struct inode_security_struct *dsec;
1525         struct superblock_security_struct *sbsec;
1526         u32 sid, newsid;
1527         struct avc_audit_data ad;
1528         int rc;
1529
1530         dsec = dir->i_security;
1531         sbsec = dir->i_sb->s_security;
1532
1533         sid = tsec->sid;
1534         newsid = tsec->create_sid;
1535
1536         AVC_AUDIT_DATA_INIT(&ad, FS);
1537         ad.u.fs.path.dentry = dentry;
1538
1539         rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1540                           DIR__ADD_NAME | DIR__SEARCH,
1541                           &ad);
1542         if (rc)
1543                 return rc;
1544
1545         if (!newsid || sbsec->behavior == SECURITY_FS_USE_MNTPOINT) {
1546                 rc = security_transition_sid(sid, dsec->sid, tclass, &newsid);
1547                 if (rc)
1548                         return rc;
1549         }
1550
1551         rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1552         if (rc)
1553                 return rc;
1554
1555         return avc_has_perm(newsid, sbsec->sid,
1556                             SECCLASS_FILESYSTEM,
1557                             FILESYSTEM__ASSOCIATE, &ad);
1558 }
1559
1560 /* Check whether a task can create a key. */
1561 static int may_create_key(u32 ksid,
1562                           struct task_struct *ctx)
1563 {
1564         u32 sid = task_sid(ctx);
1565
1566         return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1567 }
1568
1569 #define MAY_LINK        0
1570 #define MAY_UNLINK      1
1571 #define MAY_RMDIR       2
1572
1573 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1574 static int may_link(struct inode *dir,
1575                     struct dentry *dentry,
1576                     int kind)
1577
1578 {
1579         struct inode_security_struct *dsec, *isec;
1580         struct avc_audit_data ad;
1581         u32 sid = current_sid();
1582         u32 av;
1583         int rc;
1584
1585         dsec = dir->i_security;
1586         isec = dentry->d_inode->i_security;
1587
1588         AVC_AUDIT_DATA_INIT(&ad, FS);
1589         ad.u.fs.path.dentry = dentry;
1590
1591         av = DIR__SEARCH;
1592         av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1593         rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1594         if (rc)
1595                 return rc;
1596
1597         switch (kind) {
1598         case MAY_LINK:
1599                 av = FILE__LINK;
1600                 break;
1601         case MAY_UNLINK:
1602                 av = FILE__UNLINK;
1603                 break;
1604         case MAY_RMDIR:
1605                 av = DIR__RMDIR;
1606                 break;
1607         default:
1608                 printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1609                         __func__, kind);
1610                 return 0;
1611         }
1612
1613         rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1614         return rc;
1615 }
1616
1617 static inline int may_rename(struct inode *old_dir,
1618                              struct dentry *old_dentry,
1619                              struct inode *new_dir,
1620                              struct dentry *new_dentry)
1621 {
1622         struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1623         struct avc_audit_data ad;
1624         u32 sid = current_sid();
1625         u32 av;
1626         int old_is_dir, new_is_dir;
1627         int rc;
1628
1629         old_dsec = old_dir->i_security;
1630         old_isec = old_dentry->d_inode->i_security;
1631         old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1632         new_dsec = new_dir->i_security;
1633
1634         AVC_AUDIT_DATA_INIT(&ad, FS);
1635
1636         ad.u.fs.path.dentry = old_dentry;
1637         rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1638                           DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1639         if (rc)
1640                 return rc;
1641         rc = avc_has_perm(sid, old_isec->sid,
1642                           old_isec->sclass, FILE__RENAME, &ad);
1643         if (rc)
1644                 return rc;
1645         if (old_is_dir && new_dir != old_dir) {
1646                 rc = avc_has_perm(sid, old_isec->sid,
1647                                   old_isec->sclass, DIR__REPARENT, &ad);
1648                 if (rc)
1649                         return rc;
1650         }
1651
1652         ad.u.fs.path.dentry = new_dentry;
1653         av = DIR__ADD_NAME | DIR__SEARCH;
1654         if (new_dentry->d_inode)
1655                 av |= DIR__REMOVE_NAME;
1656         rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1657         if (rc)
1658                 return rc;
1659         if (new_dentry->d_inode) {
1660                 new_isec = new_dentry->d_inode->i_security;
1661                 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1662                 rc = avc_has_perm(sid, new_isec->sid,
1663                                   new_isec->sclass,
1664                                   (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1665                 if (rc)
1666                         return rc;
1667         }
1668
1669         return 0;
1670 }
1671
1672 /* Check whether a task can perform a filesystem operation. */
1673 static int superblock_has_perm(struct task_struct *tsk,
1674                                struct super_block *sb,
1675                                u32 perms,
1676                                struct avc_audit_data *ad)
1677 {
1678         struct superblock_security_struct *sbsec;
1679         u32 sid = task_sid(tsk);
1680
1681         sbsec = sb->s_security;
1682         return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1683 }
1684
1685 /* Convert a Linux mode and permission mask to an access vector. */
1686 static inline u32 file_mask_to_av(int mode, int mask)
1687 {
1688         u32 av = 0;
1689
1690         if ((mode & S_IFMT) != S_IFDIR) {
1691                 if (mask & MAY_EXEC)
1692                         av |= FILE__EXECUTE;
1693                 if (mask & MAY_READ)
1694                         av |= FILE__READ;
1695
1696                 if (mask & MAY_APPEND)
1697                         av |= FILE__APPEND;
1698                 else if (mask & MAY_WRITE)
1699                         av |= FILE__WRITE;
1700
1701         } else {
1702                 if (mask & MAY_EXEC)
1703                         av |= DIR__SEARCH;
1704                 if (mask & MAY_WRITE)
1705                         av |= DIR__WRITE;
1706                 if (mask & MAY_READ)
1707                         av |= DIR__READ;
1708         }
1709
1710         return av;
1711 }
1712
1713 /* Convert a Linux file to an access vector. */
1714 static inline u32 file_to_av(struct file *file)
1715 {
1716         u32 av = 0;
1717
1718         if (file->f_mode & FMODE_READ)
1719                 av |= FILE__READ;
1720         if (file->f_mode & FMODE_WRITE) {
1721                 if (file->f_flags & O_APPEND)
1722                         av |= FILE__APPEND;
1723                 else
1724                         av |= FILE__WRITE;
1725         }
1726         if (!av) {
1727                 /*
1728                  * Special file opened with flags 3 for ioctl-only use.
1729                  */
1730                 av = FILE__IOCTL;
1731         }
1732
1733         return av;
1734 }
1735
1736 /*
1737  * Convert a file to an access vector and include the correct open
1738  * open permission.
1739  */
1740 static inline u32 open_file_to_av(struct file *file)
1741 {
1742         u32 av = file_to_av(file);
1743
1744         if (selinux_policycap_openperm) {
1745                 mode_t mode = file->f_path.dentry->d_inode->i_mode;
1746                 /*
1747                  * lnk files and socks do not really have an 'open'
1748                  */
1749                 if (S_ISREG(mode))
1750                         av |= FILE__OPEN;
1751                 else if (S_ISCHR(mode))
1752                         av |= CHR_FILE__OPEN;
1753                 else if (S_ISBLK(mode))
1754                         av |= BLK_FILE__OPEN;
1755                 else if (S_ISFIFO(mode))
1756                         av |= FIFO_FILE__OPEN;
1757                 else if (S_ISDIR(mode))
1758                         av |= DIR__OPEN;
1759                 else
1760                         printk(KERN_ERR "SELinux: WARNING: inside %s with "
1761                                 "unknown mode:%o\n", __func__, mode);
1762         }
1763         return av;
1764 }
1765
1766 /* Hook functions begin here. */
1767
1768 static int selinux_ptrace_may_access(struct task_struct *child,
1769                                      unsigned int mode)
1770 {
1771         int rc;
1772
1773         rc = secondary_ops->ptrace_may_access(child, mode);
1774         if (rc)
1775                 return rc;
1776
1777         if (mode == PTRACE_MODE_READ) {
1778                 u32 sid = current_sid();
1779                 u32 csid = task_sid(child);
1780                 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
1781         }
1782
1783         return task_has_perm(current, child, PROCESS__PTRACE);
1784 }
1785
1786 static int selinux_ptrace_traceme(struct task_struct *parent)
1787 {
1788         int rc;
1789
1790         rc = secondary_ops->ptrace_traceme(parent);
1791         if (rc)
1792                 return rc;
1793
1794         return task_has_perm(parent, current, PROCESS__PTRACE);
1795 }
1796
1797 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1798                           kernel_cap_t *inheritable, kernel_cap_t *permitted)
1799 {
1800         int error;
1801
1802         error = task_has_perm(current, target, PROCESS__GETCAP);
1803         if (error)
1804                 return error;
1805
1806         return secondary_ops->capget(target, effective, inheritable, permitted);
1807 }
1808
1809 static int selinux_capset_check(const kernel_cap_t *effective,
1810                                 const kernel_cap_t *inheritable,
1811                                 const kernel_cap_t *permitted)
1812 {
1813         int error;
1814
1815         error = secondary_ops->capset_check(effective, inheritable, permitted);
1816         if (error)
1817                 return error;
1818
1819         return task_has_perm(current, current, PROCESS__SETCAP);
1820 }
1821
1822 static void selinux_capset_set(const kernel_cap_t *effective,
1823                                const kernel_cap_t *inheritable,
1824                                const kernel_cap_t *permitted)
1825 {
1826         secondary_ops->capset_set(effective, inheritable, permitted);
1827 }
1828
1829 static int selinux_capable(struct task_struct *tsk, int cap, int audit)
1830 {
1831         int rc;
1832
1833         rc = secondary_ops->capable(tsk, cap, audit);
1834         if (rc)
1835                 return rc;
1836
1837         return task_has_capability(tsk, cap, audit);
1838 }
1839
1840 static int selinux_sysctl_get_sid(ctl_table *table, u16 tclass, u32 *sid)
1841 {
1842         int buflen, rc;
1843         char *buffer, *path, *end;
1844
1845         rc = -ENOMEM;
1846         buffer = (char *)__get_free_page(GFP_KERNEL);
1847         if (!buffer)
1848                 goto out;
1849
1850         buflen = PAGE_SIZE;
1851         end = buffer+buflen;
1852         *--end = '\0';
1853         buflen--;
1854         path = end-1;
1855         *path = '/';
1856         while (table) {
1857                 const char *name = table->procname;
1858                 size_t namelen = strlen(name);
1859                 buflen -= namelen + 1;
1860                 if (buflen < 0)
1861                         goto out_free;
1862                 end -= namelen;
1863                 memcpy(end, name, namelen);
1864                 *--end = '/';
1865                 path = end;
1866                 table = table->parent;
1867         }
1868         buflen -= 4;
1869         if (buflen < 0)
1870                 goto out_free;
1871         end -= 4;
1872         memcpy(end, "/sys", 4);
1873         path = end;
1874         rc = security_genfs_sid("proc", path, tclass, sid);
1875 out_free:
1876         free_page((unsigned long)buffer);
1877 out:
1878         return rc;
1879 }
1880
1881 static int selinux_sysctl(ctl_table *table, int op)
1882 {
1883         int error = 0;
1884         u32 av;
1885         u32 tsid, sid;
1886         int rc;
1887
1888         rc = secondary_ops->sysctl(table, op);
1889         if (rc)
1890                 return rc;
1891
1892         sid = current_sid();
1893
1894         rc = selinux_sysctl_get_sid(table, (op == 0001) ?
1895                                     SECCLASS_DIR : SECCLASS_FILE, &tsid);
1896         if (rc) {
1897                 /* Default to the well-defined sysctl SID. */
1898                 tsid = SECINITSID_SYSCTL;
1899         }
1900
1901         /* The op values are "defined" in sysctl.c, thereby creating
1902          * a bad coupling between this module and sysctl.c */
1903         if (op == 001) {
1904                 error = avc_has_perm(sid, tsid,
1905                                      SECCLASS_DIR, DIR__SEARCH, NULL);
1906         } else {
1907                 av = 0;
1908                 if (op & 004)
1909                         av |= FILE__READ;
1910                 if (op & 002)
1911                         av |= FILE__WRITE;
1912                 if (av)
1913                         error = avc_has_perm(sid, tsid,
1914                                              SECCLASS_FILE, av, NULL);
1915         }
1916
1917         return error;
1918 }
1919
1920 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1921 {
1922         int rc = 0;
1923
1924         if (!sb)
1925                 return 0;
1926
1927         switch (cmds) {
1928         case Q_SYNC:
1929         case Q_QUOTAON:
1930         case Q_QUOTAOFF:
1931         case Q_SETINFO:
1932         case Q_SETQUOTA:
1933                 rc = superblock_has_perm(current, sb, FILESYSTEM__QUOTAMOD,
1934                                          NULL);
1935                 break;
1936         case Q_GETFMT:
1937         case Q_GETINFO:
1938         case Q_GETQUOTA:
1939                 rc = superblock_has_perm(current, sb, FILESYSTEM__QUOTAGET,
1940                                          NULL);
1941                 break;
1942         default:
1943                 rc = 0;  /* let the kernel handle invalid cmds */
1944                 break;
1945         }
1946         return rc;
1947 }
1948
1949 static int selinux_quota_on(struct dentry *dentry)
1950 {
1951         return dentry_has_perm(current, NULL, dentry, FILE__QUOTAON);
1952 }
1953
1954 static int selinux_syslog(int type)
1955 {
1956         int rc;
1957
1958         rc = secondary_ops->syslog(type);
1959         if (rc)
1960                 return rc;
1961
1962         switch (type) {
1963         case 3:         /* Read last kernel messages */
1964         case 10:        /* Return size of the log buffer */
1965                 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1966                 break;
1967         case 6:         /* Disable logging to console */
1968         case 7:         /* Enable logging to console */
1969         case 8:         /* Set level of messages printed to console */
1970                 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1971                 break;
1972         case 0:         /* Close log */
1973         case 1:         /* Open log */
1974         case 2:         /* Read from log */
1975         case 4:         /* Read/clear last kernel messages */
1976         case 5:         /* Clear ring buffer */
1977         default:
1978                 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
1979                 break;
1980         }
1981         return rc;
1982 }
1983
1984 /*
1985  * Check that a process has enough memory to allocate a new virtual
1986  * mapping. 0 means there is enough memory for the allocation to
1987  * succeed and -ENOMEM implies there is not.
1988  *
1989  * Note that secondary_ops->capable and task_has_perm_noaudit return 0
1990  * if the capability is granted, but __vm_enough_memory requires 1 if
1991  * the capability is granted.
1992  *
1993  * Do not audit the selinux permission check, as this is applied to all
1994  * processes that allocate mappings.
1995  */
1996 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
1997 {
1998         int rc, cap_sys_admin = 0;
1999
2000         rc = selinux_capable(current, CAP_SYS_ADMIN, SECURITY_CAP_NOAUDIT);
2001         if (rc == 0)
2002                 cap_sys_admin = 1;
2003
2004         return __vm_enough_memory(mm, pages, cap_sys_admin);
2005 }
2006
2007 /* binprm security operations */
2008
2009 static int selinux_bprm_alloc_security(struct linux_binprm *bprm)
2010 {
2011         struct bprm_security_struct *bsec;
2012
2013         bsec = kzalloc(sizeof(struct bprm_security_struct), GFP_KERNEL);
2014         if (!bsec)
2015                 return -ENOMEM;
2016
2017         bsec->sid = SECINITSID_UNLABELED;
2018         bsec->set = 0;
2019
2020         bprm->security = bsec;
2021         return 0;
2022 }
2023
2024 static int selinux_bprm_set_security(struct linux_binprm *bprm)
2025 {
2026         struct task_security_struct *tsec;
2027         struct inode *inode = bprm->file->f_path.dentry->d_inode;
2028         struct inode_security_struct *isec;
2029         struct bprm_security_struct *bsec;
2030         u32 newsid;
2031         struct avc_audit_data ad;
2032         int rc;
2033
2034         rc = secondary_ops->bprm_set_security(bprm);
2035         if (rc)
2036                 return rc;
2037
2038         bsec = bprm->security;
2039
2040         if (bsec->set)
2041                 return 0;
2042
2043         tsec = current_security();
2044         isec = inode->i_security;
2045
2046         /* Default to the current task SID. */
2047         bsec->sid = tsec->sid;
2048
2049         /* Reset fs, key, and sock SIDs on execve. */
2050         tsec->create_sid = 0;
2051         tsec->keycreate_sid = 0;
2052         tsec->sockcreate_sid = 0;
2053
2054         if (tsec->exec_sid) {
2055                 newsid = tsec->exec_sid;
2056                 /* Reset exec SID on execve. */
2057                 tsec->exec_sid = 0;
2058         } else {
2059                 /* Check for a default transition on this program. */
2060                 rc = security_transition_sid(tsec->sid, isec->sid,
2061                                              SECCLASS_PROCESS, &newsid);
2062                 if (rc)
2063                         return rc;
2064         }
2065
2066         AVC_AUDIT_DATA_INIT(&ad, FS);
2067         ad.u.fs.path = bprm->file->f_path;
2068
2069         if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
2070                 newsid = tsec->sid;
2071
2072         if (tsec->sid == newsid) {
2073                 rc = avc_has_perm(tsec->sid, isec->sid,
2074                                   SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2075                 if (rc)
2076                         return rc;
2077         } else {
2078                 /* Check permissions for the transition. */
2079                 rc = avc_has_perm(tsec->sid, newsid,
2080                                   SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2081                 if (rc)
2082                         return rc;
2083
2084                 rc = avc_has_perm(newsid, isec->sid,
2085                                   SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2086                 if (rc)
2087                         return rc;
2088
2089                 /* Clear any possibly unsafe personality bits on exec: */
2090                 current->personality &= ~PER_CLEAR_ON_SETID;
2091
2092                 /* Set the security field to the new SID. */
2093                 bsec->sid = newsid;
2094         }
2095
2096         bsec->set = 1;
2097         return 0;
2098 }
2099
2100 static int selinux_bprm_check_security(struct linux_binprm *bprm)
2101 {
2102         return secondary_ops->bprm_check_security(bprm);
2103 }
2104
2105
2106 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2107 {
2108         const struct cred *cred = current_cred();
2109         const struct task_security_struct *tsec = cred->security;
2110         u32 sid, osid;
2111         int atsecure = 0;
2112
2113         sid = tsec->sid;
2114         osid = tsec->osid;
2115
2116         if (osid != sid) {
2117                 /* Enable secure mode for SIDs transitions unless
2118                    the noatsecure permission is granted between
2119                    the two SIDs, i.e. ahp returns 0. */
2120                 atsecure = avc_has_perm(osid, sid,
2121                                          SECCLASS_PROCESS,
2122                                          PROCESS__NOATSECURE, NULL);
2123         }
2124
2125         return (atsecure || secondary_ops->bprm_secureexec(bprm));
2126 }
2127
2128 static void selinux_bprm_free_security(struct linux_binprm *bprm)
2129 {
2130         kfree(bprm->security);
2131         bprm->security = NULL;
2132 }
2133
2134 extern struct vfsmount *selinuxfs_mount;
2135 extern struct dentry *selinux_null;
2136
2137 /* Derived from fs/exec.c:flush_old_files. */
2138 static inline void flush_unauthorized_files(struct files_struct *files)
2139 {
2140         struct avc_audit_data ad;
2141         struct file *file, *devnull = NULL;
2142         struct tty_struct *tty;
2143         struct fdtable *fdt;
2144         long j = -1;
2145         int drop_tty = 0;
2146
2147         tty = get_current_tty();
2148         if (tty) {
2149                 file_list_lock();
2150                 if (!list_empty(&tty->tty_files)) {
2151                         struct inode *inode;
2152
2153                         /* Revalidate access to controlling tty.
2154                            Use inode_has_perm on the tty inode directly rather
2155                            than using file_has_perm, as this particular open
2156                            file may belong to another process and we are only
2157                            interested in the inode-based check here. */
2158                         file = list_first_entry(&tty->tty_files, struct file, f_u.fu_list);
2159                         inode = file->f_path.dentry->d_inode;
2160                         if (inode_has_perm(current, inode,
2161                                            FILE__READ | FILE__WRITE, NULL)) {
2162                                 drop_tty = 1;
2163                         }
2164                 }
2165                 file_list_unlock();
2166                 tty_kref_put(tty);
2167         }
2168         /* Reset controlling tty. */
2169         if (drop_tty)
2170                 no_tty();
2171
2172         /* Revalidate access to inherited open files. */
2173
2174         AVC_AUDIT_DATA_INIT(&ad, FS);
2175
2176         spin_lock(&files->file_lock);
2177         for (;;) {
2178                 unsigned long set, i;
2179                 int fd;
2180
2181                 j++;
2182                 i = j * __NFDBITS;
2183                 fdt = files_fdtable(files);
2184                 if (i >= fdt->max_fds)
2185                         break;
2186                 set = fdt->open_fds->fds_bits[j];
2187                 if (!set)
2188                         continue;
2189                 spin_unlock(&files->file_lock);
2190                 for ( ; set ; i++, set >>= 1) {
2191                         if (set & 1) {
2192                                 file = fget(i);
2193                                 if (!file)
2194                                         continue;
2195                                 if (file_has_perm(current,
2196                                                   file,
2197                                                   file_to_av(file))) {
2198                                         sys_close(i);
2199                                         fd = get_unused_fd();
2200                                         if (fd != i) {
2201                                                 if (fd >= 0)
2202                                                         put_unused_fd(fd);
2203                                                 fput(file);
2204                                                 continue;
2205                                         }
2206                                         if (devnull) {
2207                                                 get_file(devnull);
2208                                         } else {
2209                                                 devnull = dentry_open(dget(selinux_null), mntget(selinuxfs_mount), O_RDWR);
2210                                                 if (IS_ERR(devnull)) {
2211                                                         devnull = NULL;
2212                                                         put_unused_fd(fd);
2213                                                         fput(file);
2214                                                         continue;
2215                                                 }
2216                                         }
2217                                         fd_install(fd, devnull);
2218                                 }
2219                                 fput(file);
2220                         }
2221                 }
2222                 spin_lock(&files->file_lock);
2223
2224         }
2225         spin_unlock(&files->file_lock);
2226 }
2227
2228 static void selinux_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
2229 {
2230         struct task_security_struct *tsec;
2231         struct bprm_security_struct *bsec;
2232         u32 sid;
2233         int rc;
2234
2235         secondary_ops->bprm_apply_creds(bprm, unsafe);
2236
2237         tsec = current_security();
2238
2239         bsec = bprm->security;
2240         sid = bsec->sid;
2241
2242         tsec->osid = tsec->sid;
2243         bsec->unsafe = 0;
2244         if (tsec->sid != sid) {
2245                 /* Check for shared state.  If not ok, leave SID
2246                    unchanged and kill. */
2247                 if (unsafe & LSM_UNSAFE_SHARE) {
2248                         rc = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
2249                                         PROCESS__SHARE, NULL);
2250                         if (rc) {
2251                                 bsec->unsafe = 1;
2252                                 return;
2253                         }
2254                 }
2255
2256                 /* Check for ptracing, and update the task SID if ok.
2257                    Otherwise, leave SID unchanged and kill. */
2258                 if (unsafe & (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2259                         struct task_struct *tracer;
2260                         struct task_security_struct *sec;
2261                         u32 ptsid = 0;
2262
2263                         rcu_read_lock();
2264                         tracer = tracehook_tracer_task(current);
2265                         if (likely(tracer != NULL)) {
2266                                 sec = __task_cred(tracer)->security;
2267                                 ptsid = sec->sid;
2268                         }
2269                         rcu_read_unlock();
2270
2271                         if (ptsid != 0) {
2272                                 rc = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
2273                                                   PROCESS__PTRACE, NULL);
2274                                 if (rc) {
2275                                         bsec->unsafe = 1;
2276                                         return;
2277                                 }
2278                         }
2279                 }
2280                 tsec->sid = sid;
2281         }
2282 }
2283
2284 /*
2285  * called after apply_creds without the task lock held
2286  */
2287 static void selinux_bprm_post_apply_creds(struct linux_binprm *bprm)
2288 {
2289         struct task_security_struct *tsec;
2290         struct rlimit *rlim, *initrlim;
2291         struct itimerval itimer;
2292         struct bprm_security_struct *bsec;
2293         struct sighand_struct *psig;
2294         int rc, i;
2295         unsigned long flags;
2296
2297         tsec = current_security();
2298         bsec = bprm->security;
2299
2300         if (bsec->unsafe) {
2301                 force_sig_specific(SIGKILL, current);
2302                 return;
2303         }
2304         if (tsec->osid == tsec->sid)
2305                 return;
2306
2307         /* Close files for which the new task SID is not authorized. */
2308         flush_unauthorized_files(current->files);
2309
2310         /* Check whether the new SID can inherit signal state
2311            from the old SID.  If not, clear itimers to avoid
2312            subsequent signal generation and flush and unblock
2313            signals. This must occur _after_ the task SID has
2314           been updated so that any kill done after the flush
2315           will be checked against the new SID. */
2316         rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
2317                           PROCESS__SIGINH, NULL);
2318         if (rc) {
2319                 memset(&itimer, 0, sizeof itimer);
2320                 for (i = 0; i < 3; i++)
2321                         do_setitimer(i, &itimer, NULL);
2322                 flush_signals(current);
2323                 spin_lock_irq(&current->sighand->siglock);
2324                 flush_signal_handlers(current, 1);
2325                 sigemptyset(&current->blocked);
2326                 recalc_sigpending();
2327                 spin_unlock_irq(&current->sighand->siglock);
2328         }
2329
2330         /* Always clear parent death signal on SID transitions. */
2331         current->pdeath_signal = 0;
2332
2333         /* Check whether the new SID can inherit resource limits
2334            from the old SID.  If not, reset all soft limits to
2335            the lower of the current task's hard limit and the init
2336            task's soft limit.  Note that the setting of hard limits
2337            (even to lower them) can be controlled by the setrlimit
2338            check. The inclusion of the init task's soft limit into
2339            the computation is to avoid resetting soft limits higher
2340            than the default soft limit for cases where the default
2341            is lower than the hard limit, e.g. RLIMIT_CORE or
2342            RLIMIT_STACK.*/
2343         rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
2344                           PROCESS__RLIMITINH, NULL);
2345         if (rc) {
2346                 for (i = 0; i < RLIM_NLIMITS; i++) {
2347                         rlim = current->signal->rlim + i;
2348                         initrlim = init_task.signal->rlim+i;
2349                         rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2350                 }
2351                 update_rlimit_cpu(rlim->rlim_cur);
2352         }
2353
2354         /* Wake up the parent if it is waiting so that it can
2355            recheck wait permission to the new task SID. */
2356         read_lock_irq(&tasklist_lock);
2357         psig = current->parent->sighand;
2358         spin_lock_irqsave(&psig->siglock, flags);
2359         wake_up_interruptible(&current->parent->signal->wait_chldexit);
2360         spin_unlock_irqrestore(&psig->siglock, flags);
2361         read_unlock_irq(&tasklist_lock);
2362 }
2363
2364 /* superblock security operations */
2365
2366 static int selinux_sb_alloc_security(struct super_block *sb)
2367 {
2368         return superblock_alloc_security(sb);
2369 }
2370
2371 static void selinux_sb_free_security(struct super_block *sb)
2372 {
2373         superblock_free_security(sb);
2374 }
2375
2376 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2377 {
2378         if (plen > olen)
2379                 return 0;
2380
2381         return !memcmp(prefix, option, plen);
2382 }
2383
2384 static inline int selinux_option(char *option, int len)
2385 {
2386         return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2387                 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2388                 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2389                 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len));
2390 }
2391
2392 static inline void take_option(char **to, char *from, int *first, int len)
2393 {
2394         if (!*first) {
2395                 **to = ',';
2396                 *to += 1;
2397         } else
2398                 *first = 0;
2399         memcpy(*to, from, len);
2400         *to += len;
2401 }
2402
2403 static inline void take_selinux_option(char **to, char *from, int *first,
2404                                        int len)
2405 {
2406         int current_size = 0;
2407
2408         if (!*first) {
2409                 **to = '|';
2410                 *to += 1;
2411         } else
2412                 *first = 0;
2413
2414         while (current_size < len) {
2415                 if (*from != '"') {
2416                         **to = *from;
2417                         *to += 1;
2418                 }
2419                 from += 1;
2420                 current_size += 1;
2421         }
2422 }
2423
2424 static int selinux_sb_copy_data(char *orig, char *copy)
2425 {
2426         int fnosec, fsec, rc = 0;
2427         char *in_save, *in_curr, *in_end;
2428         char *sec_curr, *nosec_save, *nosec;
2429         int open_quote = 0;
2430
2431         in_curr = orig;
2432         sec_curr = copy;
2433
2434         nosec = (char *)get_zeroed_page(GFP_KERNEL);
2435         if (!nosec) {
2436                 rc = -ENOMEM;
2437                 goto out;
2438         }
2439
2440         nosec_save = nosec;
2441         fnosec = fsec = 1;
2442         in_save = in_end = orig;
2443
2444         do {
2445                 if (*in_end == '"')
2446                         open_quote = !open_quote;
2447                 if ((*in_end == ',' && open_quote == 0) ||
2448                                 *in_end == '\0') {
2449                         int len = in_end - in_curr;
2450
2451                         if (selinux_option(in_curr, len))
2452                                 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2453                         else
2454                                 take_option(&nosec, in_curr, &fnosec, len);
2455
2456                         in_curr = in_end + 1;
2457                 }
2458         } while (*in_end++);
2459
2460         strcpy(in_save, nosec_save);
2461         free_page((unsigned long)nosec_save);
2462 out:
2463         return rc;
2464 }
2465
2466 static int selinux_sb_kern_mount(struct super_block *sb, void *data)
2467 {
2468         struct avc_audit_data ad;
2469         int rc;
2470
2471         rc = superblock_doinit(sb, data);
2472         if (rc)
2473                 return rc;
2474
2475         AVC_AUDIT_DATA_INIT(&ad, FS);
2476         ad.u.fs.path.dentry = sb->s_root;
2477         return superblock_has_perm(current, sb, FILESYSTEM__MOUNT, &ad);
2478 }
2479
2480 static int selinux_sb_statfs(struct dentry *dentry)
2481 {
2482         struct avc_audit_data ad;
2483
2484         AVC_AUDIT_DATA_INIT(&ad, FS);
2485         ad.u.fs.path.dentry = dentry->d_sb->s_root;
2486         return superblock_has_perm(current, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2487 }
2488
2489 static int selinux_mount(char *dev_name,
2490                          struct path *path,
2491                          char *type,
2492                          unsigned long flags,
2493                          void *data)
2494 {
2495         int rc;
2496
2497         rc = secondary_ops->sb_mount(dev_name, path, type, flags, data);
2498         if (rc)
2499                 return rc;
2500
2501         if (flags & MS_REMOUNT)
2502                 return superblock_has_perm(current, path->mnt->mnt_sb,
2503                                            FILESYSTEM__REMOUNT, NULL);
2504         else
2505                 return dentry_has_perm(current, path->mnt, path->dentry,
2506                                        FILE__MOUNTON);
2507 }
2508
2509 static int selinux_umount(struct vfsmount *mnt, int flags)
2510 {
2511         int rc;
2512
2513         rc = secondary_ops->sb_umount(mnt, flags);
2514         if (rc)
2515                 return rc;
2516
2517         return superblock_has_perm(current, mnt->mnt_sb,
2518                                    FILESYSTEM__UNMOUNT, NULL);
2519 }
2520
2521 /* inode security operations */
2522
2523 static int selinux_inode_alloc_security(struct inode *inode)
2524 {
2525         return inode_alloc_security(inode);
2526 }
2527
2528 static void selinux_inode_free_security(struct inode *inode)
2529 {
2530         inode_free_security(inode);
2531 }
2532
2533 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2534                                        char **name, void **value,
2535                                        size_t *len)
2536 {
2537         const struct cred *cred = current_cred();
2538         const struct task_security_struct *tsec = cred->security;
2539         struct inode_security_struct *dsec;
2540         struct superblock_security_struct *sbsec;
2541         u32 sid, newsid, clen;
2542         int rc;
2543         char *namep = NULL, *context;
2544
2545         dsec = dir->i_security;
2546         sbsec = dir->i_sb->s_security;
2547
2548         sid = tsec->sid;
2549         newsid = tsec->create_sid;
2550
2551         if (!newsid || sbsec->behavior == SECURITY_FS_USE_MNTPOINT) {
2552                 rc = security_transition_sid(sid, dsec->sid,
2553                                              inode_mode_to_security_class(inode->i_mode),
2554                                              &newsid);
2555                 if (rc) {
2556                         printk(KERN_WARNING "%s:  "
2557                                "security_transition_sid failed, rc=%d (dev=%s "
2558                                "ino=%ld)\n",
2559                                __func__,
2560                                -rc, inode->i_sb->s_id, inode->i_ino);
2561                         return rc;
2562                 }
2563         }
2564
2565         /* Possibly defer initialization to selinux_complete_init. */
2566         if (sbsec->initialized) {
2567                 struct inode_security_struct *isec = inode->i_security;
2568                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2569                 isec->sid = newsid;
2570                 isec->initialized = 1;
2571         }
2572
2573         if (!ss_initialized || sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2574                 return -EOPNOTSUPP;
2575
2576         if (name) {
2577                 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS);
2578                 if (!namep)
2579                         return -ENOMEM;
2580                 *name = namep;
2581         }
2582
2583         if (value && len) {
2584                 rc = security_sid_to_context_force(newsid, &context, &clen);
2585                 if (rc) {
2586                         kfree(namep);
2587                         return rc;
2588                 }
2589                 *value = context;
2590                 *len = clen;
2591         }
2592
2593         return 0;
2594 }
2595
2596 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2597 {
2598         return may_create(dir, dentry, SECCLASS_FILE);
2599 }
2600
2601 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2602 {
2603         int rc;
2604
2605         rc = secondary_ops->inode_link(old_dentry, dir, new_dentry);
2606         if (rc)
2607                 return rc;
2608         return may_link(dir, old_dentry, MAY_LINK);
2609 }
2610
2611 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2612 {
2613         int rc;
2614
2615         rc = secondary_ops->inode_unlink(dir, dentry);
2616         if (rc)
2617                 return rc;
2618         return may_link(dir, dentry, MAY_UNLINK);
2619 }
2620
2621 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2622 {
2623         return may_create(dir, dentry, SECCLASS_LNK_FILE);
2624 }
2625
2626 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2627 {
2628         return may_create(dir, dentry, SECCLASS_DIR);
2629 }
2630
2631 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2632 {
2633         return may_link(dir, dentry, MAY_RMDIR);
2634 }
2635
2636 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2637 {
2638         int rc;
2639
2640         rc = secondary_ops->inode_mknod(dir, dentry, mode, dev);
2641         if (rc)
2642                 return rc;
2643
2644         return may_create(dir, dentry, inode_mode_to_security_class(mode));
2645 }
2646
2647 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2648                                 struct inode *new_inode, struct dentry *new_dentry)
2649 {
2650         return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2651 }
2652
2653 static int selinux_inode_readlink(struct dentry *dentry)
2654 {
2655         return dentry_has_perm(current, NULL, dentry, FILE__READ);
2656 }
2657
2658 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2659 {
2660         int rc;
2661
2662         rc = secondary_ops->inode_follow_link(dentry, nameidata);
2663         if (rc)
2664                 return rc;
2665         return dentry_has_perm(current, NULL, dentry, FILE__READ);
2666 }
2667
2668 static int selinux_inode_permission(struct inode *inode, int mask)
2669 {
2670         int rc;
2671
2672         rc = secondary_ops->inode_permission(inode, mask);
2673         if (rc)
2674                 return rc;
2675
2676         if (!mask) {
2677                 /* No permission to check.  Existence test. */
2678                 return 0;
2679         }
2680
2681         return inode_has_perm(current, inode,
2682                               file_mask_to_av(inode->i_mode, mask), NULL);
2683 }
2684
2685 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2686 {
2687         int rc;
2688
2689         rc = secondary_ops->inode_setattr(dentry, iattr);
2690         if (rc)
2691                 return rc;
2692
2693         if (iattr->ia_valid & ATTR_FORCE)
2694                 return 0;
2695
2696         if (iattr->ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2697                                ATTR_ATIME_SET | ATTR_MTIME_SET))
2698                 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2699
2700         return dentry_has_perm(current, NULL, dentry, FILE__WRITE);
2701 }
2702
2703 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2704 {
2705         return dentry_has_perm(current, mnt, dentry, FILE__GETATTR);
2706 }
2707
2708 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2709 {
2710         if (!strncmp(name, XATTR_SECURITY_PREFIX,
2711                      sizeof XATTR_SECURITY_PREFIX - 1)) {
2712                 if (!strcmp(name, XATTR_NAME_CAPS)) {
2713                         if (!capable(CAP_SETFCAP))
2714                                 return -EPERM;
2715                 } else if (!capable(CAP_SYS_ADMIN)) {
2716                         /* A different attribute in the security namespace.
2717                            Restrict to administrator. */
2718                         return -EPERM;
2719                 }
2720         }
2721
2722         /* Not an attribute we recognize, so just check the
2723            ordinary setattr permission. */
2724         return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2725 }
2726
2727 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2728                                   const void *value, size_t size, int flags)
2729 {
2730         struct inode *inode = dentry->d_inode;
2731         struct inode_security_struct *isec = inode->i_security;
2732         struct superblock_security_struct *sbsec;
2733         struct avc_audit_data ad;
2734         u32 newsid, sid = current_sid();
2735         int rc = 0;
2736
2737         if (strcmp(name, XATTR_NAME_SELINUX))
2738                 return selinux_inode_setotherxattr(dentry, name);
2739
2740         sbsec = inode->i_sb->s_security;
2741         if (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2742                 return -EOPNOTSUPP;
2743
2744         if (!is_owner_or_cap(inode))
2745                 return -EPERM;
2746
2747         AVC_AUDIT_DATA_INIT(&ad, FS);
2748         ad.u.fs.path.dentry = dentry;
2749
2750         rc = avc_has_perm(sid, isec->sid, isec->sclass,
2751                           FILE__RELABELFROM, &ad);
2752         if (rc)
2753                 return rc;
2754
2755         rc = security_context_to_sid(value, size, &newsid);
2756         if (rc == -EINVAL) {
2757                 if (!capable(CAP_MAC_ADMIN))
2758                         return rc;
2759                 rc = security_context_to_sid_force(value, size, &newsid);
2760         }
2761         if (rc)
2762                 return rc;
2763
2764         rc = avc_has_perm(sid, newsid, isec->sclass,
2765                           FILE__RELABELTO, &ad);
2766         if (rc)
2767                 return rc;
2768
2769         rc = security_validate_transition(isec->sid, newsid, sid,
2770                                           isec->sclass);
2771         if (rc)
2772                 return rc;
2773
2774         return avc_has_perm(newsid,
2775                             sbsec->sid,
2776                             SECCLASS_FILESYSTEM,
2777                             FILESYSTEM__ASSOCIATE,
2778                             &ad);
2779 }
2780
2781 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2782                                         const void *value, size_t size,
2783                                         int flags)
2784 {
2785         struct inode *inode = dentry->d_inode;
2786         struct inode_security_struct *isec = inode->i_security;
2787         u32 newsid;
2788         int rc;
2789
2790         if (strcmp(name, XATTR_NAME_SELINUX)) {
2791                 /* Not an attribute we recognize, so nothing to do. */
2792                 return;
2793         }
2794
2795         rc = security_context_to_sid_force(value, size, &newsid);
2796         if (rc) {
2797                 printk(KERN_ERR "SELinux:  unable to map context to SID"
2798                        "for (%s, %lu), rc=%d\n",
2799                        inode->i_sb->s_id, inode->i_ino, -rc);
2800                 return;
2801         }
2802
2803         isec->sid = newsid;
2804         return;
2805 }
2806
2807 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2808 {
2809         return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2810 }
2811
2812 static int selinux_inode_listxattr(struct dentry *dentry)
2813 {
2814         return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2815 }
2816
2817 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
2818 {
2819         if (strcmp(name, XATTR_NAME_SELINUX))
2820                 return selinux_inode_setotherxattr(dentry, name);
2821
2822         /* No one is allowed to remove a SELinux security label.
2823            You can change the label, but all data must be labeled. */
2824         return -EACCES;
2825 }
2826
2827 /*
2828  * Copy the inode security context value to the user.
2829  *
2830  * Permission check is handled by selinux_inode_getxattr hook.
2831  */
2832 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2833 {
2834         u32 size;
2835         int error;
2836         char *context = NULL;
2837         struct inode_security_struct *isec = inode->i_security;
2838
2839         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2840                 return -EOPNOTSUPP;
2841
2842         /*
2843          * If the caller has CAP_MAC_ADMIN, then get the raw context
2844          * value even if it is not defined by current policy; otherwise,
2845          * use the in-core value under current policy.
2846          * Use the non-auditing forms of the permission checks since
2847          * getxattr may be called by unprivileged processes commonly
2848          * and lack of permission just means that we fall back to the
2849          * in-core context value, not a denial.
2850          */
2851         error = selinux_capable(current, CAP_MAC_ADMIN, SECURITY_CAP_NOAUDIT);
2852         if (!error)
2853                 error = security_sid_to_context_force(isec->sid, &context,
2854                                                       &size);
2855         else
2856                 error = security_sid_to_context(isec->sid, &context, &size);
2857         if (error)
2858                 return error;
2859         error = size;
2860         if (alloc) {
2861                 *buffer = context;
2862                 goto out_nofree;
2863         }
2864         kfree(context);
2865 out_nofree:
2866         return error;
2867 }
2868
2869 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2870                                      const void *value, size_t size, int flags)
2871 {
2872         struct inode_security_struct *isec = inode->i_security;
2873         u32 newsid;
2874         int rc;
2875
2876         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2877                 return -EOPNOTSUPP;
2878
2879         if (!value || !size)
2880                 return -EACCES;
2881
2882         rc = security_context_to_sid((void *)value, size, &newsid);
2883         if (rc)
2884                 return rc;
2885
2886         isec->sid = newsid;
2887         return 0;
2888 }
2889
2890 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2891 {
2892         const int len = sizeof(XATTR_NAME_SELINUX);
2893         if (buffer && len <= buffer_size)
2894                 memcpy(buffer, XATTR_NAME_SELINUX, len);
2895         return len;
2896 }
2897
2898 static int selinux_inode_need_killpriv(struct dentry *dentry)
2899 {
2900         return secondary_ops->inode_need_killpriv(dentry);
2901 }
2902
2903 static int selinux_inode_killpriv(struct dentry *dentry)
2904 {
2905         return secondary_ops->inode_killpriv(dentry);
2906 }
2907
2908 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
2909 {
2910         struct inode_security_struct *isec = inode->i_security;
2911         *secid = isec->sid;
2912 }
2913
2914 /* file security operations */
2915
2916 static int selinux_revalidate_file_permission(struct file *file, int mask)
2917 {
2918         int rc;
2919         struct inode *inode = file->f_path.dentry->d_inode;
2920
2921         if (!mask) {
2922                 /* No permission to check.  Existence test. */
2923                 return 0;
2924         }
2925
2926         /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2927         if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2928                 mask |= MAY_APPEND;
2929
2930         rc = file_has_perm(current, file,
2931                            file_mask_to_av(inode->i_mode, mask));
2932         if (rc)
2933                 return rc;
2934
2935         return selinux_netlbl_inode_permission(inode, mask);
2936 }
2937
2938 static int selinux_file_permission(struct file *file, int mask)
2939 {
2940         struct inode *inode = file->f_path.dentry->d_inode;
2941         struct file_security_struct *fsec = file->f_security;
2942         struct inode_security_struct *isec = inode->i_security;
2943         u32 sid = current_sid();
2944
2945         if (!mask) {
2946                 /* No permission to check.  Existence test. */
2947                 return 0;
2948         }
2949
2950         if (sid == fsec->sid && fsec->isid == isec->sid
2951             && fsec->pseqno == avc_policy_seqno())
2952                 return selinux_netlbl_inode_permission(inode, mask);
2953
2954         return selinux_revalidate_file_permission(file, mask);
2955 }
2956
2957 static int selinux_file_alloc_security(struct file *file)
2958 {
2959         return file_alloc_security(file);
2960 }
2961
2962 static void selinux_file_free_security(struct file *file)
2963 {
2964         file_free_security(file);
2965 }
2966
2967 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2968                               unsigned long arg)
2969 {
2970         u32 av = 0;
2971
2972         if (_IOC_DIR(cmd) & _IOC_WRITE)
2973                 av |= FILE__WRITE;
2974         if (_IOC_DIR(cmd) & _IOC_READ)
2975                 av |= FILE__READ;
2976         if (!av)
2977                 av = FILE__IOCTL;
2978
2979         return file_has_perm(current, file, av);
2980 }
2981
2982 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
2983 {
2984 #ifndef CONFIG_PPC32
2985         if ((prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
2986                 /*
2987                  * We are making executable an anonymous mapping or a
2988                  * private file mapping that will also be writable.
2989                  * This has an additional check.
2990                  */
2991                 int rc = task_has_perm(current, current, PROCESS__EXECMEM);
2992                 if (rc)
2993                         return rc;
2994         }
2995 #endif
2996
2997         if (file) {
2998                 /* read access is always possible with a mapping */
2999                 u32 av = FILE__READ;
3000
3001                 /* write access only matters if the mapping is shared */
3002                 if (shared && (prot & PROT_WRITE))
3003                         av |= FILE__WRITE;
3004
3005                 if (prot & PROT_EXEC)
3006                         av |= FILE__EXECUTE;
3007
3008                 return file_has_perm(current, file, av);
3009         }
3010         return 0;
3011 }
3012
3013 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
3014                              unsigned long prot, unsigned long flags,
3015                              unsigned long addr, unsigned long addr_only)
3016 {
3017         int rc = 0;
3018         u32 sid = current_sid();
3019
3020         if (addr < mmap_min_addr)
3021                 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3022                                   MEMPROTECT__MMAP_ZERO, NULL);
3023         if (rc || addr_only)
3024                 return rc;
3025
3026         if (selinux_checkreqprot)
3027                 prot = reqprot;
3028
3029         return file_map_prot_check(file, prot,
3030                                    (flags & MAP_TYPE) == MAP_SHARED);
3031 }
3032
3033 static int selinux_file_mprotect(struct vm_area_struct *vma,
3034                                  unsigned long reqprot,
3035                                  unsigned long prot)
3036 {
3037         int rc;
3038
3039         rc = secondary_ops->file_mprotect(vma, reqprot, prot);
3040         if (rc)
3041                 return rc;
3042
3043         if (selinux_checkreqprot)
3044                 prot = reqprot;
3045
3046 #ifndef CONFIG_PPC32
3047         if ((prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3048                 rc = 0;
3049                 if (vma->vm_start >= vma->vm_mm->start_brk &&
3050                     vma->vm_end <= vma->vm_mm->brk) {
3051                         rc = task_has_perm(current, current,
3052                                            PROCESS__EXECHEAP);
3053                 } else if (!vma->vm_file &&
3054                            vma->vm_start <= vma->vm_mm->start_stack &&
3055                            vma->vm_end >= vma->vm_mm->start_stack) {
3056                         rc = task_has_perm(current, current, PROCESS__EXECSTACK);
3057                 } else if (vma->vm_file && vma->anon_vma) {
3058                         /*
3059                          * We are making executable a file mapping that has
3060                          * had some COW done. Since pages might have been
3061                          * written, check ability to execute the possibly
3062                          * modified content.  This typically should only
3063                          * occur for text relocations.
3064                          */
3065                         rc = file_has_perm(current, vma->vm_file,
3066                                            FILE__EXECMOD);
3067                 }
3068                 if (rc)
3069                         return rc;
3070         }
3071 #endif
3072
3073         return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3074 }
3075
3076 static int selinux_file_lock(struct file *file, unsigned int cmd)
3077 {
3078         return file_has_perm(current, file, FILE__LOCK);
3079 }
3080
3081 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3082                               unsigned long arg)
3083 {
3084         int err = 0;
3085
3086         switch (cmd) {
3087         case F_SETFL:
3088                 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3089                         err = -EINVAL;
3090                         break;
3091                 }
3092
3093                 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3094                         err = file_has_perm(current, file, FILE__WRITE);
3095                         break;
3096                 }
3097                 /* fall through */
3098         case F_SETOWN:
3099         case F_SETSIG:
3100         case F_GETFL:
3101         case F_GETOWN:
3102         case F_GETSIG:
3103                 /* Just check FD__USE permission */
3104                 err = file_has_perm(current, file, 0);
3105                 break;
3106         case F_GETLK:
3107         case F_SETLK:
3108         case F_SETLKW:
3109 #if BITS_PER_LONG == 32
3110         case F_GETLK64:
3111         case F_SETLK64:
3112         case F_SETLKW64:
3113 #endif
3114                 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3115                         err = -EINVAL;
3116                         break;
3117                 }
3118                 err = file_has_perm(current, file, FILE__LOCK);
3119                 break;
3120         }
3121
3122         return err;
3123 }
3124
3125 static int selinux_file_set_fowner(struct file *file)
3126 {
3127         struct file_security_struct *fsec;
3128
3129         fsec = file->f_security;
3130         fsec->fown_sid = current_sid();
3131
3132         return 0;
3133 }
3134
3135 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3136                                        struct fown_struct *fown, int signum)
3137 {
3138         struct file *file;
3139         u32 sid = current_sid();
3140         u32 perm;
3141         struct file_security_struct *fsec;
3142
3143         /* struct fown_struct is never outside the context of a struct file */
3144         file = container_of(fown, struct file, f_owner);
3145
3146         fsec = file->f_security;
3147
3148         if (!signum)
3149                 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3150         else
3151                 perm = signal_to_av(signum);
3152
3153         return avc_has_perm(fsec->fown_sid, sid,
3154                             SECCLASS_PROCESS, perm, NULL);
3155 }
3156
3157 static int selinux_file_receive(struct file *file)
3158 {
3159         return file_has_perm(current, file, file_to_av(file));
3160 }
3161
3162 static int selinux_dentry_open(struct file *file)
3163 {
3164         struct file_security_struct *fsec;
3165         struct inode *inode;
3166         struct inode_security_struct *isec;
3167         inode = file->f_path.dentry->d_inode;
3168         fsec = file->f_security;
3169         isec = inode->i_security;
3170         /*
3171          * Save inode label and policy sequence number
3172          * at open-time so that selinux_file_permission
3173          * can determine whether revalidation is necessary.
3174          * Task label is already saved in the file security
3175          * struct as its SID.
3176          */
3177         fsec->isid = isec->sid;
3178         fsec->pseqno = avc_policy_seqno();
3179         /*
3180          * Since the inode label or policy seqno may have changed
3181          * between the selinux_inode_permission check and the saving
3182          * of state above, recheck that access is still permitted.
3183          * Otherwise, access might never be revalidated against the
3184          * new inode label or new policy.
3185          * This check is not redundant - do not remove.
3186          */
3187         return inode_has_perm(current, inode, open_file_to_av(file), NULL);
3188 }
3189
3190 /* task security operations */
3191
3192 static int selinux_task_create(unsigned long clone_flags)
3193 {
3194         int rc;
3195
3196         rc = secondary_ops->task_create(clone_flags);
3197         if (rc)
3198                 return rc;
3199
3200         return task_has_perm(current, current, PROCESS__FORK);
3201 }
3202
3203 static int selinux_cred_alloc_security(struct cred *cred)
3204 {
3205         struct task_security_struct *tsec1, *tsec2;
3206         int rc;
3207
3208         tsec1 = current_security();
3209
3210         rc = cred_alloc_security(cred);
3211         if (rc)
3212                 return rc;
3213         tsec2 = cred->security;
3214
3215         tsec2->osid = tsec1->osid;
3216         tsec2->sid = tsec1->sid;
3217
3218         /* Retain the exec, fs, key, and sock SIDs across fork */
3219         tsec2->exec_sid = tsec1->exec_sid;
3220         tsec2->create_sid = tsec1->create_sid;
3221         tsec2->keycreate_sid = tsec1->keycreate_sid;
3222         tsec2->sockcreate_sid = tsec1->sockcreate_sid;
3223
3224         return 0;
3225 }
3226
3227 /*
3228  * detach and free the LSM part of a set of credentials
3229  */
3230 static void selinux_cred_free(struct cred *cred)
3231 {
3232         struct task_security_struct *tsec = cred->security;
3233         cred->security = NULL;
3234         kfree(tsec);
3235 }
3236
3237 static int selinux_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
3238 {
3239         /* Since setuid only affects the current process, and
3240            since the SELinux controls are not based on the Linux
3241            identity attributes, SELinux does not need to control
3242            this operation.  However, SELinux does control the use
3243            of the CAP_SETUID and CAP_SETGID capabilities using the
3244            capable hook. */
3245         return 0;
3246 }
3247
3248 static int selinux_task_post_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
3249 {
3250         return secondary_ops->task_post_setuid(id0, id1, id2, flags);
3251 }
3252
3253 static int selinux_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
3254 {
3255         /* See the comment for setuid above. */
3256         return 0;
3257 }
3258
3259 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3260 {
3261         return task_has_perm(current, p, PROCESS__SETPGID);
3262 }
3263
3264 static int selinux_task_getpgid(struct task_struct *p)
3265 {
3266         return task_has_perm(current, p, PROCESS__GETPGID);
3267 }
3268
3269 static int selinux_task_getsid(struct task_struct *p)
3270 {
3271         return task_has_perm(current, p, PROCESS__GETSESSION);
3272 }
3273
3274 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3275 {
3276         *secid = task_sid(p);
3277 }
3278
3279 static int selinux_task_setgroups(struct group_info *group_info)
3280 {
3281         /* See the comment for setuid above. */
3282         return 0;
3283 }
3284
3285 static int selinux_task_setnice(struct task_struct *p, int nice)
3286 {
3287         int rc;
3288
3289         rc = secondary_ops->task_setnice(p, nice);
3290         if (rc)
3291                 return rc;
3292
3293         return task_has_perm(current, p, PROCESS__SETSCHED);
3294 }
3295
3296 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3297 {
3298         int rc;
3299
3300         rc = secondary_ops->task_setioprio(p, ioprio);
3301         if (rc)
3302                 return rc;
3303
3304         return task_has_perm(current, p, PROCESS__SETSCHED);
3305 }
3306
3307 static int selinux_task_getioprio(struct task_struct *p)
3308 {
3309         return task_has_perm(current, p, PROCESS__GETSCHED);
3310 }
3311
3312 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
3313 {
3314         struct rlimit *old_rlim = current->signal->rlim + resource;
3315         int rc;
3316
3317         rc = secondary_ops->task_setrlimit(resource, new_rlim);
3318         if (rc)
3319                 return rc;
3320
3321         /* Control the ability to change the hard limit (whether
3322            lowering or raising it), so that the hard limit can
3323            later be used as a safe reset point for the soft limit
3324            upon context transitions. See selinux_bprm_apply_creds. */
3325         if (old_rlim->rlim_max != new_rlim->rlim_max)
3326                 return task_has_perm(current, current, PROCESS__SETRLIMIT);
3327
3328         return 0;
3329 }
3330
3331 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp)
3332 {
3333         int rc;
3334
3335         rc = secondary_ops->task_setscheduler(p, policy, lp);
3336         if (rc)
3337                 return rc;
3338
3339         return task_has_perm(current, p, PROCESS__SETSCHED);
3340 }
3341
3342 static int selinux_task_getscheduler(struct task_struct *p)
3343 {
3344         return task_has_perm(current, p, PROCESS__GETSCHED);
3345 }
3346
3347 static int selinux_task_movememory(struct task_struct *p)
3348 {
3349         return task_has_perm(current, p, PROCESS__SETSCHED);
3350 }
3351
3352 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3353                                 int sig, u32 secid)
3354 {
3355         u32 perm;
3356         int rc;
3357
3358         rc = secondary_ops->task_kill(p, info, sig, secid);
3359         if (rc)
3360                 return rc;
3361
3362         if (!sig)
3363                 perm = PROCESS__SIGNULL; /* null signal; existence test */
3364         else
3365                 perm = signal_to_av(sig);
3366         if (secid)
3367                 rc = avc_has_perm(secid, task_sid(p),
3368                                   SECCLASS_PROCESS, perm, NULL);
3369         else
3370                 rc = task_has_perm(current, p, perm);
3371         return rc;
3372 }
3373
3374 static int selinux_task_prctl(int option,
3375                               unsigned long arg2,
3376                               unsigned long arg3,
3377                               unsigned long arg4,
3378                               unsigned long arg5,
3379                               long *rc_p)
3380 {
3381         /* The current prctl operations do not appear to require
3382            any SELinux controls since they merely observe or modify
3383            the state of the current process. */
3384         return secondary_ops->task_prctl(option, arg2, arg3, arg4, arg5, rc_p);
3385 }
3386
3387 static int selinux_task_wait(struct task_struct *p)
3388 {
3389         return task_has_perm(p, current, PROCESS__SIGCHLD);
3390 }
3391
3392 static void selinux_task_reparent_to_init(struct task_struct *p)
3393 {
3394         struct task_security_struct *tsec;
3395
3396         secondary_ops->task_reparent_to_init(p);
3397
3398         tsec = p->cred->security;
3399         tsec->osid = tsec->sid;
3400         tsec->sid = SECINITSID_KERNEL;
3401         return;
3402 }
3403
3404 static void selinux_task_to_inode(struct task_struct *p,
3405                                   struct inode *inode)
3406 {
3407         struct inode_security_struct *isec = inode->i_security;
3408         u32 sid = task_sid(p);
3409
3410         isec->sid = sid;
3411         isec->initialized = 1;
3412 }
3413
3414 /* Returns error only if unable to parse addresses */
3415 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3416                         struct avc_audit_data *ad, u8 *proto)
3417 {
3418         int offset, ihlen, ret = -EINVAL;
3419         struct iphdr _iph, *ih;
3420
3421         offset = skb_network_offset(skb);
3422         ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3423         if (ih == NULL)
3424                 goto out;
3425
3426         ihlen = ih->ihl * 4;
3427         if (ihlen < sizeof(_iph))
3428                 goto out;
3429
3430         ad->u.net.v4info.saddr = ih->saddr;
3431         ad->u.net.v4info.daddr = ih->daddr;
3432         ret = 0;
3433
3434         if (proto)
3435                 *proto = ih->protocol;
3436
3437         switch (ih->protocol) {
3438         case IPPROTO_TCP: {
3439                 struct tcphdr _tcph, *th;
3440
3441                 if (ntohs(ih->frag_off) & IP_OFFSET)
3442                         break;
3443
3444                 offset += ihlen;
3445                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3446                 if (th == NULL)
3447                         break;
3448
3449                 ad->u.net.sport = th->source;
3450                 ad->u.net.dport = th->dest;
3451                 break;
3452         }
3453
3454         case IPPROTO_UDP: {
3455                 struct udphdr _udph, *uh;
3456
3457                 if (ntohs(ih->frag_off) & IP_OFFSET)
3458                         break;
3459
3460                 offset += ihlen;
3461                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3462                 if (uh == NULL)
3463                         break;
3464
3465                 ad->u.net.sport = uh->source;
3466                 ad->u.net.dport = uh->dest;
3467                 break;
3468         }
3469
3470         case IPPROTO_DCCP: {
3471                 struct dccp_hdr _dccph, *dh;
3472
3473                 if (ntohs(ih->frag_off) & IP_OFFSET)
3474                         break;
3475
3476                 offset += ihlen;
3477                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3478                 if (dh == NULL)
3479                         break;
3480
3481                 ad->u.net.sport = dh->dccph_sport;
3482                 ad->u.net.dport = dh->dccph_dport;
3483                 break;
3484         }
3485
3486         default:
3487                 break;
3488         }
3489 out:
3490         return ret;
3491 }
3492
3493 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3494
3495 /* Returns error only if unable to parse addresses */
3496 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3497                         struct avc_audit_data *ad, u8 *proto)
3498 {
3499         u8 nexthdr;
3500         int ret = -EINVAL, offset;
3501         struct ipv6hdr _ipv6h, *ip6;
3502
3503         offset = skb_network_offset(skb);
3504         ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3505         if (ip6 == NULL)
3506                 goto out;
3507
3508         ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
3509         ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
3510         ret = 0;
3511
3512         nexthdr = ip6->nexthdr;
3513         offset += sizeof(_ipv6h);
3514         offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
3515         if (offset < 0)
3516                 goto out;
3517
3518         if (proto)
3519                 *proto = nexthdr;
3520
3521         switch (nexthdr) {
3522         case IPPROTO_TCP: {
3523                 struct tcphdr _tcph, *th;
3524
3525                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3526                 if (th == NULL)
3527                         break;
3528
3529                 ad->u.net.sport = th->source;
3530                 ad->u.net.dport = th->dest;
3531                 break;
3532         }
3533
3534         case IPPROTO_UDP: {
3535                 struct udphdr _udph, *uh;
3536
3537                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3538                 if (uh == NULL)
3539                         break;
3540
3541                 ad->u.net.sport = uh->source;
3542                 ad->u.net.dport = uh->dest;
3543                 break;
3544         }
3545
3546         case IPPROTO_DCCP: {
3547                 struct dccp_hdr _dccph, *dh;
3548
3549                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3550                 if (dh == NULL)
3551                         break;
3552
3553                 ad->u.net.sport = dh->dccph_sport;
3554                 ad->u.net.dport = dh->dccph_dport;
3555                 break;
3556         }
3557
3558         /* includes fragments */
3559         default:
3560                 break;
3561         }
3562 out:
3563         return ret;
3564 }
3565
3566 #endif /* IPV6 */
3567
3568 static int selinux_parse_skb(struct sk_buff *skb, struct avc_audit_data *ad,
3569                              char **_addrp, int src, u8 *proto)
3570 {
3571         char *addrp;
3572         int ret;
3573
3574         switch (ad->u.net.family) {
3575         case PF_INET:
3576                 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3577                 if (ret)
3578                         goto parse_error;
3579                 addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3580                                        &ad->u.net.v4info.daddr);
3581                 goto okay;
3582
3583 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3584         case PF_INET6:
3585                 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3586                 if (ret)
3587                         goto parse_error;
3588                 addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3589                                        &ad->u.net.v6info.daddr);
3590                 goto okay;
3591 #endif  /* IPV6 */
3592         default:
3593                 addrp = NULL;
3594                 goto okay;
3595         }
3596
3597 parse_error:
3598         printk(KERN_WARNING
3599                "SELinux: failure in selinux_parse_skb(),"
3600                " unable to parse packet\n");
3601         return ret;
3602
3603 okay:
3604         if (_addrp)
3605                 *_addrp = addrp;
3606         return 0;
3607 }
3608
3609 /**
3610  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3611  * @skb: the packet
3612  * @family: protocol family
3613  * @sid: the packet's peer label SID
3614  *
3615  * Description:
3616  * Check the various different forms of network peer labeling and determine
3617  * the peer label/SID for the packet; most of the magic actually occurs in
3618  * the security server function security_net_peersid_cmp().  The function
3619  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3620  * or -EACCES if @sid is invalid due to inconsistencies with the different
3621  * peer labels.
3622  *
3623  */
3624 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3625 {
3626         int err;
3627         u32 xfrm_sid;
3628         u32 nlbl_sid;
3629         u32 nlbl_type;
3630
3631         selinux_skb_xfrm_sid(skb, &xfrm_sid);
3632         selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3633
3634         err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3635         if (unlikely(err)) {
3636                 printk(KERN_WARNING
3637                        "SELinux: failure in selinux_skb_peerlbl_sid(),"
3638                        " unable to determine packet's peer label\n");
3639                 return -EACCES;
3640         }
3641
3642         return 0;
3643 }
3644
3645 /* socket security operations */
3646 static int socket_has_perm(struct task_struct *task, struct socket *sock,
3647                            u32 perms)
3648 {
3649         struct inode_security_struct *isec;
3650         struct avc_audit_data ad;
3651         u32 sid;
3652         int err = 0;
3653
3654         isec = SOCK_INODE(sock)->i_security;
3655
3656         if (isec->sid == SECINITSID_KERNEL)
3657                 goto out;
3658         sid = task_sid(task);
3659
3660         AVC_AUDIT_DATA_INIT(&ad, NET);
3661         ad.u.net.sk = sock->sk;
3662         err = avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
3663
3664 out:
3665         return err;
3666 }
3667
3668 static int selinux_socket_create(int family, int type,
3669                                  int protocol, int kern)
3670 {
3671         const struct cred *cred = current_cred();
3672         const struct task_security_struct *tsec = cred->security;
3673         u32 sid, newsid;
3674         u16 secclass;
3675         int err = 0;
3676
3677         if (kern)
3678                 goto out;
3679
3680         sid = tsec->sid;
3681         newsid = tsec->sockcreate_sid ?: sid;
3682
3683         secclass = socket_type_to_security_class(family, type, protocol);
3684         err = avc_has_perm(sid, newsid, secclass, SOCKET__CREATE, NULL);
3685
3686 out:
3687         return err;
3688 }
3689
3690 static int selinux_socket_post_create(struct socket *sock, int family,
3691                                       int type, int protocol, int kern)
3692 {
3693         const struct cred *cred = current_cred();
3694         const struct task_security_struct *tsec = cred->security;
3695         struct inode_security_struct *isec;
3696         struct sk_security_struct *sksec;
3697         u32 sid, newsid;
3698         int err = 0;
3699
3700         sid = tsec->sid;
3701         newsid = tsec->sockcreate_sid;
3702
3703         isec = SOCK_INODE(sock)->i_security;
3704
3705         if (kern)
3706                 isec->sid = SECINITSID_KERNEL;
3707         else if (newsid)
3708                 isec->sid = newsid;
3709         else
3710                 isec->sid = sid;
3711
3712         isec->sclass = socket_type_to_security_class(family, type, protocol);
3713         isec->initialized = 1;
3714
3715         if (sock->sk) {
3716                 sksec = sock->sk->sk_security;
3717                 sksec->sid = isec->sid;
3718                 sksec->sclass = isec->sclass;
3719                 err = selinux_netlbl_socket_post_create(sock);
3720         }
3721
3722         return err;
3723 }
3724
3725 /* Range of port numbers used to automatically bind.
3726    Need to determine whether we should perform a name_bind
3727    permission check between the socket and the port number. */
3728
3729 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3730 {
3731         u16 family;
3732         int err;
3733
3734         err = socket_has_perm(current, sock, SOCKET__BIND);
3735         if (err)
3736                 goto out;
3737
3738         /*
3739          * If PF_INET or PF_INET6, check name_bind permission for the port.
3740          * Multiple address binding for SCTP is not supported yet: we just
3741          * check the first address now.
3742          */
3743         family = sock->sk->sk_family;
3744         if (family == PF_INET || family == PF_INET6) {
3745                 char *addrp;
3746                 struct inode_security_struct *isec;
3747                 struct avc_audit_data ad;
3748                 struct sockaddr_in *addr4 = NULL;
3749                 struct sockaddr_in6 *addr6 = NULL;
3750                 unsigned short snum;
3751                 struct sock *sk = sock->sk;
3752                 u32 sid, node_perm;
3753
3754                 isec = SOCK_INODE(sock)->i_security;
3755
3756                 if (family == PF_INET) {
3757                         addr4 = (struct sockaddr_in *)address;
3758                         snum = ntohs(addr4->sin_port);
3759                         addrp = (char *)&addr4->sin_addr.s_addr;
3760                 } else {
3761                         addr6 = (struct sockaddr_in6 *)address;
3762                         snum = ntohs(addr6->sin6_port);
3763                         addrp = (char *)&addr6->sin6_addr.s6_addr;
3764                 }
3765
3766                 if (snum) {
3767                         int low, high;
3768
3769                         inet_get_local_port_range(&low, &high);
3770
3771                         if (snum < max(PROT_SOCK, low) || snum > high) {
3772                                 err = sel_netport_sid(sk->sk_protocol,
3773                                                       snum, &sid);
3774                                 if (err)
3775                                         goto out;
3776                                 AVC_AUDIT_DATA_INIT(&ad, NET);
3777                                 ad.u.net.sport = htons(snum);
3778                                 ad.u.net.family = family;
3779                                 err = avc_has_perm(isec->sid, sid,
3780                                                    isec->sclass,
3781                                                    SOCKET__NAME_BIND, &ad);
3782                                 if (err)
3783                                         goto out;
3784                         }
3785                 }
3786
3787                 switch (isec->sclass) {
3788                 case SECCLASS_TCP_SOCKET:
3789                         node_perm = TCP_SOCKET__NODE_BIND;
3790                         break;
3791
3792                 case SECCLASS_UDP_SOCKET:
3793                         node_perm = UDP_SOCKET__NODE_BIND;
3794                         break;
3795
3796                 case SECCLASS_DCCP_SOCKET:
3797                         node_perm = DCCP_SOCKET__NODE_BIND;
3798                         break;
3799
3800                 default:
3801                         node_perm = RAWIP_SOCKET__NODE_BIND;
3802                         break;
3803                 }
3804
3805                 err = sel_netnode_sid(addrp, family, &sid);
3806                 if (err)
3807                         goto out;
3808
3809                 AVC_AUDIT_DATA_INIT(&ad, NET);
3810                 ad.u.net.sport = htons(snum);
3811                 ad.u.net.family = family;
3812
3813                 if (family == PF_INET)
3814                         ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3815                 else
3816                         ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3817
3818                 err = avc_has_perm(isec->sid, sid,
3819                                    isec->sclass, node_perm, &ad);
3820                 if (err)
3821                         goto out;
3822         }
3823 out:
3824         return err;
3825 }
3826
3827 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3828 {
3829         struct sock *sk = sock->sk;
3830         struct inode_security_struct *isec;
3831         int err;
3832
3833         err = socket_has_perm(current, sock, SOCKET__CONNECT);
3834         if (err)
3835                 return err;
3836
3837         /*
3838          * If a TCP or DCCP socket, check name_connect permission for the port.
3839          */
3840         isec = SOCK_INODE(sock)->i_security;
3841         if (isec->sclass == SECCLASS_TCP_SOCKET ||
3842             isec->sclass == SECCLASS_DCCP_SOCKET) {
3843                 struct avc_audit_data ad;
3844                 struct sockaddr_in *addr4 = NULL;
3845                 struct sockaddr_in6 *addr6 = NULL;
3846                 unsigned short snum;
3847                 u32 sid, perm;
3848
3849                 if (sk->sk_family == PF_INET) {
3850                         addr4 = (struct sockaddr_in *)address;
3851                         if (addrlen < sizeof(struct sockaddr_in))
3852                                 return -EINVAL;
3853                         snum = ntohs(addr4->sin_port);
3854                 } else {
3855                         addr6 = (struct sockaddr_in6 *)address;
3856                         if (addrlen < SIN6_LEN_RFC2133)
3857                                 return -EINVAL;
3858                         snum = ntohs(addr6->sin6_port);
3859                 }
3860
3861                 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
3862                 if (err)
3863                         goto out;
3864
3865                 perm = (isec->sclass == SECCLASS_TCP_SOCKET) ?
3866                        TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3867
3868                 AVC_AUDIT_DATA_INIT(&ad, NET);
3869                 ad.u.net.dport = htons(snum);
3870                 ad.u.net.family = sk->sk_family;
3871                 err = avc_has_perm(isec->sid, sid, isec->sclass, perm, &ad);
3872                 if (err)
3873                         goto out;
3874         }
3875
3876         err = selinux_netlbl_socket_connect(sk, address);
3877
3878 out:
3879         return err;
3880 }
3881
3882 static int selinux_socket_listen(struct socket *sock, int backlog)
3883 {
3884         return socket_has_perm(current, sock, SOCKET__LISTEN);
3885 }
3886
3887 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3888 {
3889         int err;
3890         struct inode_security_struct *isec;
3891         struct inode_security_struct *newisec;
3892
3893         err = socket_has_perm(current, sock, SOCKET__ACCEPT);
3894         if (err)
3895                 return err;
3896
3897         newisec = SOCK_INODE(newsock)->i_security;
3898
3899         isec = SOCK_INODE(sock)->i_security;
3900         newisec->sclass = isec->sclass;
3901         newisec->sid = isec->sid;
3902         newisec->initialized = 1;
3903
3904         return 0;
3905 }
3906
3907 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3908                                   int size)
3909 {
3910         int rc;
3911
3912         rc = socket_has_perm(current, sock, SOCKET__WRITE);
3913         if (rc)
3914                 return rc;
3915
3916         return selinux_netlbl_inode_permission(SOCK_INODE(sock), MAY_WRITE);
3917 }
3918
3919 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3920                                   int size, int flags)
3921 {
3922         return socket_has_perm(current, sock, SOCKET__READ);
3923 }
3924
3925 static int selinux_socket_getsockname(struct socket *sock)
3926 {
3927         return socket_has_perm(current, sock, SOCKET__GETATTR);
3928 }
3929
3930 static int selinux_socket_getpeername(struct socket *sock)
3931 {
3932         return socket_has_perm(current, sock, SOCKET__GETATTR);
3933 }
3934
3935 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
3936 {
3937         int err;
3938
3939         err = socket_has_perm(current, sock, SOCKET__SETOPT);
3940         if (err)
3941                 return err;
3942
3943         return selinux_netlbl_socket_setsockopt(sock, level, optname);
3944 }
3945
3946 static int selinux_socket_getsockopt(struct socket *sock, int level,
3947                                      int optname)
3948 {
3949         return socket_has_perm(current, sock, SOCKET__GETOPT);
3950 }
3951
3952 static int selinux_socket_shutdown(struct socket *sock, int how)
3953 {
3954         return socket_has_perm(current, sock, SOCKET__SHUTDOWN);
3955 }
3956
3957 static int selinux_socket_unix_stream_connect(struct socket *sock,
3958                                               struct socket *other,
3959                                               struct sock *newsk)
3960 {
3961         struct sk_security_struct *ssec;
3962         struct inode_security_struct *isec;
3963         struct inode_security_struct *other_isec;
3964         struct avc_audit_data ad;
3965         int err;
3966
3967         err = secondary_ops->unix_stream_connect(sock, other, newsk);
3968         if (err)
3969                 return err;
3970
3971         isec = SOCK_INODE(sock)->i_security;
3972         other_isec = SOCK_INODE(other)->i_security;
3973
3974         AVC_AUDIT_DATA_INIT(&ad, NET);
3975         ad.u.net.sk = other->sk;
3976
3977         err = avc_has_perm(isec->sid, other_isec->sid,
3978                            isec->sclass,
3979                            UNIX_STREAM_SOCKET__CONNECTTO, &ad);
3980         if (err)
3981                 return err;
3982
3983         /* connecting socket */
3984         ssec = sock->sk->sk_security;
3985         ssec->peer_sid = other_isec->sid;
3986
3987         /* server child socket */
3988         ssec = newsk->sk_security;
3989         ssec->peer_sid = isec->sid;
3990         err = security_sid_mls_copy(other_isec->sid, ssec->peer_sid, &ssec->sid);
3991
3992         return err;
3993 }
3994
3995 static int selinux_socket_unix_may_send(struct socket *sock,
3996                                         struct socket *other)
3997 {
3998         struct inode_security_struct *isec;
3999         struct inode_security_struct *other_isec;
4000         struct avc_audit_data ad;
4001         int err;
4002
4003         isec = SOCK_INODE(sock)->i_security;
4004         other_isec = SOCK_INODE(other)->i_security;
4005
4006         AVC_AUDIT_DATA_INIT(&ad, NET);
4007         ad.u.net.sk = other->sk;
4008
4009         err = avc_has_perm(isec->sid, other_isec->sid,
4010                            isec->sclass, SOCKET__SENDTO, &ad);
4011         if (err)
4012                 return err;
4013
4014         return 0;
4015 }
4016
4017 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
4018                                     u32 peer_sid,
4019                                     struct avc_audit_data *ad)
4020 {
4021         int err;
4022         u32 if_sid;
4023         u32 node_sid;
4024
4025         err = sel_netif_sid(ifindex, &if_sid);
4026         if (err)
4027                 return err;
4028         err = avc_has_perm(peer_sid, if_sid,
4029                            SECCLASS_NETIF, NETIF__INGRESS, ad);
4030         if (err)
4031                 return err;
4032
4033         err = sel_netnode_sid(addrp, family, &node_sid);
4034         if (err)
4035                 return err;
4036         return avc_has_perm(peer_sid, node_sid,
4037                             SECCLASS_NODE, NODE__RECVFROM, ad);
4038 }
4039
4040 static int selinux_sock_rcv_skb_iptables_compat(struct sock *sk,
4041                                                 struct sk_buff *skb,
4042                                                 struct avc_audit_data *ad,
4043                                                 u16 family,
4044                                                 char *addrp)
4045 {
4046         int err;
4047         struct sk_security_struct *sksec = sk->sk_security;
4048         u16 sk_class;
4049         u32 netif_perm, node_perm, recv_perm;
4050         u32 port_sid, node_sid, if_sid, sk_sid;
4051
4052         sk_sid = sksec->sid;
4053         sk_class = sksec->sclass;
4054
4055         switch (sk_class) {
4056         case SECCLASS_UDP_SOCKET:
4057                 netif_perm = NETIF__UDP_RECV;
4058                 node_perm = NODE__UDP_RECV;
4059                 recv_perm = UDP_SOCKET__RECV_MSG;
4060                 break;
4061         case SECCLASS_TCP_SOCKET:
4062                 netif_perm = NETIF__TCP_RECV;
4063                 node_perm = NODE__TCP_RECV;
4064                 recv_perm = TCP_SOCKET__RECV_MSG;
4065                 break;
4066         case SECCLASS_DCCP_SOCKET:
4067                 netif_perm = NETIF__DCCP_RECV;
4068                 node_perm = NODE__DCCP_RECV;
4069                 recv_perm = DCCP_SOCKET__RECV_MSG;
4070                 break;
4071         default:
4072                 netif_perm = NETIF__RAWIP_RECV;
4073                 node_perm = NODE__RAWIP_RECV;
4074                 recv_perm = 0;
4075                 break;
4076         }
4077
4078         err = sel_netif_sid(skb->iif, &if_sid);
4079         if (err)
4080                 return err;
4081         err = avc_has_perm(sk_sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
4082         if (err)
4083                 return err;
4084
4085         err = sel_netnode_sid(addrp, family, &node_sid);
4086         if (err)
4087                 return err;
4088         err = avc_has_perm(sk_sid, node_sid, SECCLASS_NODE, node_perm, ad);
4089         if (err)
4090                 return err;
4091
4092         if (!recv_perm)
4093                 return 0;
4094         err = sel_netport_sid(sk->sk_protocol,
4095                               ntohs(ad->u.net.sport), &port_sid);
4096         if (unlikely(err)) {
4097                 printk(KERN_WARNING
4098                        "SELinux: failure in"
4099                        " selinux_sock_rcv_skb_iptables_compat(),"
4100                        " network port label not found\n");
4101                 return err;
4102         }
4103         return avc_has_perm(sk_sid, port_sid, sk_class, recv_perm, ad);
4104 }
4105
4106 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4107                                        u16 family)
4108 {
4109         int err;
4110         struct sk_security_struct *sksec = sk->sk_security;
4111         u32 peer_sid;
4112         u32 sk_sid = sksec->sid;
4113         struct avc_audit_data ad;
4114         char *addrp;
4115
4116         AVC_AUDIT_DATA_INIT(&ad, NET);
4117         ad.u.net.netif = skb->iif;
4118         ad.u.net.family = family;
4119         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4120         if (err)
4121                 return err;
4122
4123         if (selinux_compat_net)
4124                 err = selinux_sock_rcv_skb_iptables_compat(sk, skb, &ad,
4125                                                            family, addrp);
4126         else
4127                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4128                                    PACKET__RECV, &ad);
4129         if (err)
4130                 return err;
4131
4132         if (selinux_policycap_netpeer) {
4133                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4134                 if (err)
4135                         return err;
4136                 err = avc_has_perm(sk_sid, peer_sid,
4137                                    SECCLASS_PEER, PEER__RECV, &ad);
4138                 if (err)
4139                         selinux_netlbl_err(skb, err, 0);
4140         } else {
4141                 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4142                 if (err)
4143                         return err;
4144                 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4145         }
4146
4147         return err;
4148 }
4149
4150 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4151 {
4152         int err;
4153         struct sk_security_struct *sksec = sk->sk_security;
4154         u16 family = sk->sk_family;
4155         u32 sk_sid = sksec->sid;
4156         struct avc_audit_data ad;
4157         char *addrp;
4158         u8 secmark_active;
4159         u8 peerlbl_active;
4160
4161         if (family != PF_INET && family != PF_INET6)
4162                 return 0;
4163
4164         /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4165         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4166                 family = PF_INET;
4167
4168         /* If any sort of compatibility mode is enabled then handoff processing
4169          * to the selinux_sock_rcv_skb_compat() function to deal with the
4170          * special handling.  We do this in an attempt to keep this function
4171          * as fast and as clean as possible. */
4172         if (selinux_compat_net || !selinux_policycap_netpeer)
4173                 return selinux_sock_rcv_skb_compat(sk, skb, family);
4174
4175         secmark_active = selinux_secmark_enabled();
4176         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4177         if (!secmark_active && !peerlbl_active)
4178                 return 0;
4179
4180         AVC_AUDIT_DATA_INIT(&ad, NET);
4181         ad.u.net.netif = skb->iif;
4182         ad.u.net.family = family;
4183         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4184         if (err)
4185                 return err;
4186
4187         if (peerlbl_active) {
4188                 u32 peer_sid;
4189
4190                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4191                 if (err)
4192                         return err;
4193                 err = selinux_inet_sys_rcv_skb(skb->iif, addrp, family,
4194                                                peer_sid, &ad);
4195                 if (err) {
4196                         selinux_netlbl_err(skb, err, 0);
4197                         return err;
4198                 }
4199                 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4200                                    PEER__RECV, &ad);
4201                 if (err)
4202                         selinux_netlbl_err(skb, err, 0);
4203         }
4204
4205         if (secmark_active) {
4206                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4207                                    PACKET__RECV, &ad);
4208                 if (err)
4209                         return err;
4210         }
4211
4212         return err;
4213 }
4214
4215 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4216                                             int __user *optlen, unsigned len)
4217 {
4218         int err = 0;
4219         char *scontext;
4220         u32 scontext_len;
4221         struct sk_security_struct *ssec;
4222         struct inode_security_struct *isec;
4223         u32 peer_sid = SECSID_NULL;
4224
4225         isec = SOCK_INODE(sock)->i_security;
4226
4227         if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4228             isec->sclass == SECCLASS_TCP_SOCKET) {
4229                 ssec = sock->sk->sk_security;
4230                 peer_sid = ssec->peer_sid;
4231         }
4232         if (peer_sid == SECSID_NULL) {
4233                 err = -ENOPROTOOPT;
4234                 goto out;
4235         }
4236
4237         err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4238
4239         if (err)
4240                 goto out;
4241
4242         if (scontext_len > len) {
4243                 err = -ERANGE;
4244                 goto out_len;
4245         }
4246
4247         if (copy_to_user(optval, scontext, scontext_len))
4248                 err = -EFAULT;
4249
4250 out_len:
4251         if (put_user(scontext_len, optlen))
4252                 err = -EFAULT;
4253
4254         kfree(scontext);
4255 out:
4256         return err;
4257 }
4258
4259 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4260 {
4261         u32 peer_secid = SECSID_NULL;
4262         u16 family;
4263
4264         if (skb && skb->protocol == htons(ETH_P_IP))
4265                 family = PF_INET;
4266         else if (skb && skb->protocol == htons(ETH_P_IPV6))
4267                 family = PF_INET6;
4268         else if (sock)
4269                 family = sock->sk->sk_family;
4270         else
4271                 goto out;
4272
4273         if (sock && family == PF_UNIX)
4274                 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4275         else if (skb)
4276                 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4277
4278 out:
4279         *secid = peer_secid;
4280         if (peer_secid == SECSID_NULL)
4281                 return -EINVAL;
4282         return 0;
4283 }
4284
4285 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4286 {
4287         return sk_alloc_security(sk, family, priority);
4288 }
4289
4290 static void selinux_sk_free_security(struct sock *sk)
4291 {
4292         sk_free_security(sk);
4293 }
4294
4295 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4296 {
4297         struct sk_security_struct *ssec = sk->sk_security;
4298         struct sk_security_struct *newssec = newsk->sk_security;
4299
4300         newssec->sid = ssec->sid;
4301         newssec->peer_sid = ssec->peer_sid;
4302         newssec->sclass = ssec->sclass;
4303
4304         selinux_netlbl_sk_security_reset(newssec, newsk->sk_family);
4305 }
4306
4307 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4308 {
4309         if (!sk)
4310                 *secid = SECINITSID_ANY_SOCKET;
4311         else {
4312                 struct sk_security_struct *sksec = sk->sk_security;
4313
4314                 *secid = sksec->sid;
4315         }
4316 }
4317
4318 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4319 {
4320         struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4321         struct sk_security_struct *sksec = sk->sk_security;
4322
4323         if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4324             sk->sk_family == PF_UNIX)
4325                 isec->sid = sksec->sid;
4326         sksec->sclass = isec->sclass;
4327 }
4328
4329 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4330                                      struct request_sock *req)
4331 {
4332         struct sk_security_struct *sksec = sk->sk_security;
4333         int err;
4334         u16 family = sk->sk_family;
4335         u32 newsid;
4336         u32 peersid;
4337
4338         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4339         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4340                 family = PF_INET;
4341
4342         err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4343         if (err)
4344                 return err;
4345         if (peersid == SECSID_NULL) {
4346                 req->secid = sksec->sid;
4347                 req->peer_secid = SECSID_NULL;
4348                 return 0;
4349         }
4350
4351         err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4352         if (err)
4353                 return err;
4354
4355         req->secid = newsid;
4356         req->peer_secid = peersid;
4357         return 0;
4358 }
4359
4360 static void selinux_inet_csk_clone(struct sock *newsk,
4361                                    const struct request_sock *req)
4362 {
4363         struct sk_security_struct *newsksec = newsk->sk_security;
4364
4365         newsksec->sid = req->secid;
4366         newsksec->peer_sid = req->peer_secid;
4367         /* NOTE: Ideally, we should also get the isec->sid for the
4368            new socket in sync, but we don't have the isec available yet.
4369            So we will wait until sock_graft to do it, by which
4370            time it will have been created and available. */
4371
4372         /* We don't need to take any sort of lock here as we are the only
4373          * thread with access to newsksec */
4374         selinux_netlbl_sk_security_reset(newsksec, req->rsk_ops->family);
4375 }
4376
4377 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4378 {
4379         u16 family = sk->sk_family;
4380         struct sk_security_struct *sksec = sk->sk_security;
4381
4382         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4383         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4384                 family = PF_INET;
4385
4386         selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4387
4388         selinux_netlbl_inet_conn_established(sk, family);
4389 }
4390
4391 static void selinux_req_classify_flow(const struct request_sock *req,
4392                                       struct flowi *fl)
4393 {
4394         fl->secid = req->secid;
4395 }
4396
4397 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4398 {
4399         int err = 0;
4400         u32 perm;
4401         struct nlmsghdr *nlh;
4402         struct socket *sock = sk->sk_socket;
4403         struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
4404
4405         if (skb->len < NLMSG_SPACE(0)) {
4406                 err = -EINVAL;
4407                 goto out;
4408         }
4409         nlh = nlmsg_hdr(skb);
4410
4411         err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm);
4412         if (err) {
4413                 if (err == -EINVAL) {
4414                         audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4415                                   "SELinux:  unrecognized netlink message"
4416                                   " type=%hu for sclass=%hu\n",
4417                                   nlh->nlmsg_type, isec->sclass);
4418                         if (!selinux_enforcing || security_get_allow_unknown())
4419                                 err = 0;
4420                 }
4421
4422                 /* Ignore */
4423                 if (err == -ENOENT)
4424                         err = 0;
4425                 goto out;
4426         }
4427
4428         err = socket_has_perm(current, sock, perm);
4429 out:
4430         return err;
4431 }
4432
4433 #ifdef CONFIG_NETFILTER
4434
4435 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4436                                        u16 family)
4437 {
4438         int err;
4439         char *addrp;
4440         u32 peer_sid;
4441         struct avc_audit_data ad;
4442         u8 secmark_active;
4443         u8 netlbl_active;
4444         u8 peerlbl_active;
4445
4446         if (!selinux_policycap_netpeer)
4447                 return NF_ACCEPT;
4448
4449         secmark_active = selinux_secmark_enabled();
4450         netlbl_active = netlbl_enabled();
4451         peerlbl_active = netlbl_active || selinux_xfrm_enabled();
4452         if (!secmark_active && !peerlbl_active)
4453                 return NF_ACCEPT;
4454
4455         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4456                 return NF_DROP;
4457
4458         AVC_AUDIT_DATA_INIT(&ad, NET);
4459         ad.u.net.netif = ifindex;
4460         ad.u.net.family = family;
4461         if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4462                 return NF_DROP;
4463
4464         if (peerlbl_active) {
4465                 err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4466                                                peer_sid, &ad);
4467                 if (err) {
4468                         selinux_netlbl_err(skb, err, 1);
4469                         return NF_DROP;
4470                 }
4471         }
4472
4473         if (secmark_active)
4474                 if (avc_has_perm(peer_sid, skb->secmark,
4475                                  SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4476                         return NF_DROP;
4477
4478         if (netlbl_active)
4479                 /* we do this in the FORWARD path and not the POST_ROUTING
4480                  * path because we want to make sure we apply the necessary
4481                  * labeling before IPsec is applied so we can leverage AH
4482                  * protection */
4483                 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4484                         return NF_DROP;
4485
4486         return NF_ACCEPT;
4487 }
4488
4489 static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4490                                          struct sk_buff *skb,
4491                                          const struct net_device *in,
4492                                          const struct net_device *out,
4493                                          int (*okfn)(struct sk_buff *))
4494 {
4495         return selinux_ip_forward(skb, in->ifindex, PF_INET);
4496 }
4497
4498 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4499 static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4500                                          struct sk_buff *skb,
4501                                          const struct net_device *in,
4502                                          const struct net_device *out,
4503                                          int (*okfn)(struct sk_buff *))
4504 {
4505         return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4506 }
4507 #endif  /* IPV6 */
4508
4509 static unsigned int selinux_ip_output(struct sk_buff *skb,
4510                                       u16 family)
4511 {
4512         u32 sid;
4513
4514         if (!netlbl_enabled())
4515                 return NF_ACCEPT;
4516
4517         /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4518          * because we want to make sure we apply the necessary labeling
4519          * before IPsec is applied so we can leverage AH protection */
4520         if (skb->sk) {
4521                 struct sk_security_struct *sksec = skb->sk->sk_security;
4522                 sid = sksec->sid;
4523         } else
4524                 sid = SECINITSID_KERNEL;
4525         if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4526                 return NF_DROP;
4527
4528         return NF_ACCEPT;
4529 }
4530
4531 static unsigned int selinux_ipv4_output(unsigned int hooknum,
4532                                         struct sk_buff *skb,
4533                                         const struct net_device *in,
4534                                         const struct net_device *out,
4535                                         int (*okfn)(struct sk_buff *))
4536 {
4537         return selinux_ip_output(skb, PF_INET);
4538 }
4539
4540 static int selinux_ip_postroute_iptables_compat(struct sock *sk,
4541                                                 int ifindex,
4542                                                 struct avc_audit_data *ad,
4543                                                 u16 family, char *addrp)
4544 {
4545         int err;
4546         struct sk_security_struct *sksec = sk->sk_security;
4547         u16 sk_class;
4548         u32 netif_perm, node_perm, send_perm;
4549         u32 port_sid, node_sid, if_sid, sk_sid;
4550
4551         sk_sid = sksec->sid;
4552         sk_class = sksec->sclass;
4553
4554         switch (sk_class) {
4555         case SECCLASS_UDP_SOCKET:
4556                 netif_perm = NETIF__UDP_SEND;
4557                 node_perm = NODE__UDP_SEND;
4558                 send_perm = UDP_SOCKET__SEND_MSG;
4559                 break;
4560         case SECCLASS_TCP_SOCKET:
4561                 netif_perm = NETIF__TCP_SEND;
4562                 node_perm = NODE__TCP_SEND;
4563                 send_perm = TCP_SOCKET__SEND_MSG;
4564                 break;
4565         case SECCLASS_DCCP_SOCKET:
4566                 netif_perm = NETIF__DCCP_SEND;
4567                 node_perm = NODE__DCCP_SEND;
4568                 send_perm = DCCP_SOCKET__SEND_MSG;
4569                 break;
4570         default:
4571                 netif_perm = NETIF__RAWIP_SEND;
4572                 node_perm = NODE__RAWIP_SEND;
4573                 send_perm = 0;
4574                 break;
4575         }
4576
4577         err = sel_netif_sid(ifindex, &if_sid);
4578         if (err)
4579                 return err;
4580         err = avc_has_perm(sk_sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
4581                 return err;
4582
4583         err = sel_netnode_sid(addrp, family, &node_sid);
4584         if (err)
4585                 return err;
4586         err = avc_has_perm(sk_sid, node_sid, SECCLASS_NODE, node_perm, ad);
4587         if (err)
4588                 return err;
4589
4590         if (send_perm != 0)
4591                 return 0;
4592
4593         err = sel_netport_sid(sk->sk_protocol,
4594                               ntohs(ad->u.net.dport), &port_sid);
4595         if (unlikely(err)) {
4596                 printk(KERN_WARNING
4597                        "SELinux: failure in"
4598                        " selinux_ip_postroute_iptables_compat(),"
4599                        " network port label not found\n");
4600                 return err;
4601         }
4602         return avc_has_perm(sk_sid, port_sid, sk_class, send_perm, ad);
4603 }
4604
4605 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4606                                                 int ifindex,
4607                                                 u16 family)
4608 {
4609         struct sock *sk = skb->sk;
4610         struct sk_security_struct *sksec;
4611         struct avc_audit_data ad;
4612         char *addrp;
4613         u8 proto;
4614
4615         if (sk == NULL)
4616                 return NF_ACCEPT;
4617         sksec = sk->sk_security;
4618
4619         AVC_AUDIT_DATA_INIT(&ad, NET);
4620         ad.u.net.netif = ifindex;
4621         ad.u.net.family = family;
4622         if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4623                 return NF_DROP;
4624
4625         if (selinux_compat_net) {
4626                 if (selinux_ip_postroute_iptables_compat(skb->sk, ifindex,
4627                                                          &ad, family, addrp))
4628                         return NF_DROP;
4629         } else {
4630                 if (avc_has_perm(sksec->sid, skb->secmark,
4631                                  SECCLASS_PACKET, PACKET__SEND, &ad))
4632                         return NF_DROP;
4633         }
4634
4635         if (selinux_policycap_netpeer)
4636                 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4637                         return NF_DROP;
4638
4639         return NF_ACCEPT;
4640 }
4641
4642 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4643                                          u16 family)
4644 {
4645         u32 secmark_perm;
4646         u32 peer_sid;
4647         struct sock *sk;
4648         struct avc_audit_data ad;
4649         char *addrp;
4650         u8 secmark_active;
4651         u8 peerlbl_active;
4652
4653         /* If any sort of compatibility mode is enabled then handoff processing
4654          * to the selinux_ip_postroute_compat() function to deal with the
4655          * special handling.  We do this in an attempt to keep this function
4656          * as fast and as clean as possible. */
4657         if (selinux_compat_net || !selinux_policycap_netpeer)
4658                 return selinux_ip_postroute_compat(skb, ifindex, family);
4659
4660         /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4661          * packet transformation so allow the packet to pass without any checks
4662          * since we'll have another chance to perform access control checks
4663          * when the packet is on it's final way out.
4664          * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4665          *       is NULL, in this case go ahead and apply access control. */
4666         if (skb->dst != NULL && skb->dst->xfrm != NULL)
4667                 return NF_ACCEPT;
4668
4669         secmark_active = selinux_secmark_enabled();
4670         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4671         if (!secmark_active && !peerlbl_active)
4672                 return NF_ACCEPT;
4673
4674         /* if the packet is being forwarded then get the peer label from the
4675          * packet itself; otherwise check to see if it is from a local
4676          * application or the kernel, if from an application get the peer label
4677          * from the sending socket, otherwise use the kernel's sid */
4678         sk = skb->sk;
4679         if (sk == NULL) {
4680                 switch (family) {
4681                 case PF_INET:
4682                         if (IPCB(skb)->flags & IPSKB_FORWARDED)
4683                                 secmark_perm = PACKET__FORWARD_OUT;
4684                         else
4685                                 secmark_perm = PACKET__SEND;
4686                         break;
4687                 case PF_INET6:
4688                         if (IP6CB(skb)->flags & IP6SKB_FORWARDED)
4689                                 secmark_perm = PACKET__FORWARD_OUT;
4690                         else
4691                                 secmark_perm = PACKET__SEND;
4692                         break;
4693                 default:
4694                         return NF_DROP;
4695                 }
4696                 if (secmark_perm == PACKET__FORWARD_OUT) {
4697                         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4698                                 return NF_DROP;
4699                 } else
4700                         peer_sid = SECINITSID_KERNEL;
4701         } else {
4702                 struct sk_security_struct *sksec = sk->sk_security;
4703                 peer_sid = sksec->sid;
4704                 secmark_perm = PACKET__SEND;
4705         }
4706
4707         AVC_AUDIT_DATA_INIT(&ad, NET);
4708         ad.u.net.netif = ifindex;
4709         ad.u.net.family = family;
4710         if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4711                 return NF_DROP;
4712
4713         if (secmark_active)
4714                 if (avc_has_perm(peer_sid, skb->secmark,
4715                                  SECCLASS_PACKET, secmark_perm, &ad))
4716                         return NF_DROP;
4717
4718         if (peerlbl_active) {
4719                 u32 if_sid;
4720                 u32 node_sid;
4721
4722                 if (sel_netif_sid(ifindex, &if_sid))
4723                         return NF_DROP;
4724                 if (avc_has_perm(peer_sid, if_sid,
4725                                  SECCLASS_NETIF, NETIF__EGRESS, &ad))
4726                         return NF_DROP;
4727
4728                 if (sel_netnode_sid(addrp, family, &node_sid))
4729                         return NF_DROP;
4730                 if (avc_has_perm(peer_sid, node_sid,
4731                                  SECCLASS_NODE, NODE__SENDTO, &ad))
4732                         return NF_DROP;
4733         }
4734
4735         return NF_ACCEPT;
4736 }
4737
4738 static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4739                                            struct sk_buff *skb,
4740                                            const struct net_device *in,
4741                                            const struct net_device *out,
4742                                            int (*okfn)(struct sk_buff *))
4743 {
4744         return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4745 }
4746
4747 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4748 static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4749                                            struct sk_buff *skb,
4750                                            const struct net_device *in,
4751                                            const struct net_device *out,
4752                                            int (*okfn)(struct sk_buff *))
4753 {
4754         return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4755 }
4756 #endif  /* IPV6 */
4757
4758 #endif  /* CONFIG_NETFILTER */
4759
4760 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4761 {
4762         int err;
4763
4764         err = secondary_ops->netlink_send(sk, skb);
4765         if (err)
4766                 return err;
4767
4768         if (policydb_loaded_version >= POLICYDB_VERSION_NLCLASS)
4769                 err = selinux_nlmsg_perm(sk, skb);
4770
4771         return err;
4772 }
4773
4774 static int selinux_netlink_recv(struct sk_buff *skb, int capability)
4775 {
4776         int err;
4777         struct avc_audit_data ad;
4778
4779         err = secondary_ops->netlink_recv(skb, capability);
4780         if (err)
4781                 return err;
4782
4783         AVC_AUDIT_DATA_INIT(&ad, CAP);
4784         ad.u.cap = capability;
4785
4786         return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid,
4787                             SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad);
4788 }
4789
4790 static int ipc_alloc_security(struct task_struct *task,
4791                               struct kern_ipc_perm *perm,
4792                               u16 sclass)
4793 {
4794         struct ipc_security_struct *isec;
4795         u32 sid;
4796
4797         isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4798         if (!isec)
4799                 return -ENOMEM;
4800
4801         sid = task_sid(task);
4802         isec->sclass = sclass;
4803         isec->sid = sid;
4804         perm->security = isec;
4805
4806         return 0;
4807 }
4808
4809 static void ipc_free_security(struct kern_ipc_perm *perm)
4810 {
4811         struct ipc_security_struct *isec = perm->security;
4812         perm->security = NULL;
4813         kfree(isec);
4814 }
4815
4816 static int msg_msg_alloc_security(struct msg_msg *msg)
4817 {
4818         struct msg_security_struct *msec;
4819
4820         msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4821         if (!msec)
4822                 return -ENOMEM;
4823
4824         msec->sid = SECINITSID_UNLABELED;
4825         msg->security = msec;
4826
4827         return 0;
4828 }
4829
4830 static void msg_msg_free_security(struct msg_msg *msg)
4831 {
4832         struct msg_security_struct *msec = msg->security;
4833
4834         msg->security = NULL;
4835         kfree(msec);
4836 }
4837
4838 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4839                         u32 perms)
4840 {
4841         struct ipc_security_struct *isec;
4842         struct avc_audit_data ad;
4843         u32 sid = current_sid();
4844
4845         isec = ipc_perms->security;
4846
4847         AVC_AUDIT_DATA_INIT(&ad, IPC);
4848         ad.u.ipc_id = ipc_perms->key;
4849
4850         return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
4851 }
4852
4853 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4854 {
4855         return msg_msg_alloc_security(msg);
4856 }
4857
4858 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4859 {
4860         msg_msg_free_security(msg);
4861 }
4862
4863 /* message queue security operations */
4864 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4865 {
4866         struct ipc_security_struct *isec;
4867         struct avc_audit_data ad;
4868         u32 sid = current_sid();
4869         int rc;
4870
4871         rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4872         if (rc)
4873                 return rc;
4874
4875         isec = msq->q_perm.security;
4876
4877         AVC_AUDIT_DATA_INIT(&ad, IPC);
4878         ad.u.ipc_id = msq->q_perm.key;
4879
4880         rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4881                           MSGQ__CREATE, &ad);
4882         if (rc) {
4883                 ipc_free_security(&msq->q_perm);
4884                 return rc;
4885         }
4886         return 0;
4887 }
4888
4889 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4890 {
4891         ipc_free_security(&msq->q_perm);
4892 }
4893
4894 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4895 {
4896         struct ipc_security_struct *isec;
4897         struct avc_audit_data ad;
4898         u32 sid = current_sid();
4899
4900         isec = msq->q_perm.security;
4901
4902         AVC_AUDIT_DATA_INIT(&ad, IPC);
4903         ad.u.ipc_id = msq->q_perm.key;
4904
4905         return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4906                             MSGQ__ASSOCIATE, &ad);
4907 }
4908
4909 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4910 {
4911         int err;
4912         int perms;
4913
4914         switch (cmd) {
4915         case IPC_INFO:
4916         case MSG_INFO:
4917                 /* No specific object, just general system-wide information. */
4918                 return task_has_system(current, SYSTEM__IPC_INFO);
4919         case IPC_STAT:
4920         case MSG_STAT:
4921                 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4922                 break;
4923         case IPC_SET:
4924                 perms = MSGQ__SETATTR;
4925                 break;
4926         case IPC_RMID:
4927                 perms = MSGQ__DESTROY;
4928                 break;
4929         default:
4930                 return 0;
4931         }
4932
4933         err = ipc_has_perm(&msq->q_perm, perms);
4934         return err;
4935 }
4936
4937 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4938 {
4939         struct ipc_security_struct *isec;
4940         struct msg_security_struct *msec;
4941         struct avc_audit_data ad;
4942         u32 sid = current_sid();
4943         int rc;
4944
4945         isec = msq->q_perm.security;
4946         msec = msg->security;
4947
4948         /*
4949          * First time through, need to assign label to the message
4950          */
4951         if (msec->sid == SECINITSID_UNLABELED) {
4952                 /*
4953                  * Compute new sid based on current process and
4954                  * message queue this message will be stored in
4955                  */
4956                 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
4957                                              &msec->sid);
4958                 if (rc)
4959                         return rc;
4960         }
4961
4962         AVC_AUDIT_DATA_INIT(&ad, IPC);
4963         ad.u.ipc_id = msq->q_perm.key;
4964
4965         /* Can this process write to the queue? */
4966         rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4967                           MSGQ__WRITE, &ad);
4968         if (!rc)
4969                 /* Can this process send the message */
4970                 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
4971                                   MSG__SEND, &ad);
4972         if (!rc)
4973                 /* Can the message be put in the queue? */
4974                 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
4975                                   MSGQ__ENQUEUE, &ad);
4976
4977         return rc;
4978 }
4979
4980 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4981                                     struct task_struct *target,
4982                                     long type, int mode)
4983 {
4984         struct ipc_security_struct *isec;
4985         struct msg_security_struct *msec;
4986         struct avc_audit_data ad;
4987         u32 sid = task_sid(target);
4988         int rc;
4989
4990         isec = msq->q_perm.security;
4991         msec = msg->security;
4992
4993         AVC_AUDIT_DATA_INIT(&ad, IPC);
4994         ad.u.ipc_id = msq->q_perm.key;
4995
4996         rc = avc_has_perm(sid, isec->sid,
4997                           SECCLASS_MSGQ, MSGQ__READ, &ad);
4998         if (!rc)
4999                 rc = avc_has_perm(sid, msec->sid,
5000                                   SECCLASS_MSG, MSG__RECEIVE, &ad);
5001         return rc;
5002 }
5003
5004 /* Shared Memory security operations */
5005 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
5006 {
5007         struct ipc_security_struct *isec;
5008         struct avc_audit_data ad;
5009         u32 sid = current_sid();
5010         int rc;
5011
5012         rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
5013         if (rc)
5014                 return rc;
5015
5016         isec = shp->shm_perm.security;
5017
5018         AVC_AUDIT_DATA_INIT(&ad, IPC);
5019         ad.u.ipc_id = shp->shm_perm.key;
5020
5021         rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5022                           SHM__CREATE, &ad);
5023         if (rc) {
5024                 ipc_free_security(&shp->shm_perm);
5025                 return rc;
5026         }
5027         return 0;
5028 }
5029
5030 static void selinux_shm_free_security(struct shmid_kernel *shp)
5031 {
5032         ipc_free_security(&shp->shm_perm);
5033 }
5034
5035 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5036 {
5037         struct ipc_security_struct *isec;
5038         struct avc_audit_data ad;
5039         u32 sid = current_sid();
5040
5041         isec = shp->shm_perm.security;
5042
5043         AVC_AUDIT_DATA_INIT(&ad, IPC);
5044         ad.u.ipc_id = shp->shm_perm.key;
5045
5046         return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5047                             SHM__ASSOCIATE, &ad);
5048 }
5049
5050 /* Note, at this point, shp is locked down */
5051 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5052 {
5053         int perms;
5054         int err;
5055
5056         switch (cmd) {
5057         case IPC_INFO:
5058         case SHM_INFO:
5059                 /* No specific object, just general system-wide information. */
5060                 return task_has_system(current, SYSTEM__IPC_INFO);
5061         case IPC_STAT:
5062         case SHM_STAT:
5063                 perms = SHM__GETATTR | SHM__ASSOCIATE;
5064                 break;
5065         case IPC_SET:
5066                 perms = SHM__SETATTR;
5067                 break;
5068         case SHM_LOCK:
5069         case SHM_UNLOCK:
5070                 perms = SHM__LOCK;
5071                 break;
5072         case IPC_RMID:
5073                 perms = SHM__DESTROY;
5074                 break;
5075         default:
5076                 return 0;
5077         }
5078
5079         err = ipc_has_perm(&shp->shm_perm, perms);
5080         return err;
5081 }
5082
5083 static int selinux_shm_shmat(struct shmid_kernel *shp,
5084                              char __user *shmaddr, int shmflg)
5085 {
5086         u32 perms;
5087         int rc;
5088
5089         rc = secondary_ops->shm_shmat(shp, shmaddr, shmflg);
5090         if (rc)
5091                 return rc;
5092
5093         if (shmflg & SHM_RDONLY)
5094                 perms = SHM__READ;
5095         else
5096                 perms = SHM__READ | SHM__WRITE;
5097
5098         return ipc_has_perm(&shp->shm_perm, perms);
5099 }
5100
5101 /* Semaphore security operations */
5102 static int selinux_sem_alloc_security(struct sem_array *sma)
5103 {
5104         struct ipc_security_struct *isec;
5105         struct avc_audit_data ad;
5106         u32 sid = current_sid();
5107         int rc;
5108
5109         rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5110         if (rc)
5111                 return rc;
5112
5113         isec = sma->sem_perm.security;
5114
5115         AVC_AUDIT_DATA_INIT(&ad, IPC);
5116         ad.u.ipc_id = sma->sem_perm.key;
5117
5118         rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5119                           SEM__CREATE, &ad);
5120         if (rc) {
5121                 ipc_free_security(&sma->sem_perm);
5122                 return rc;
5123         }
5124         return 0;
5125 }
5126
5127 static void selinux_sem_free_security(struct sem_array *sma)
5128 {
5129         ipc_free_security(&sma->sem_perm);
5130 }
5131
5132 static int selinux_sem_associate(struct sem_array *sma, int semflg)
5133 {
5134         struct ipc_security_struct *isec;
5135         struct avc_audit_data ad;
5136         u32 sid = current_sid();
5137
5138         isec = sma->sem_perm.security;
5139
5140         AVC_AUDIT_DATA_INIT(&ad, IPC);
5141         ad.u.ipc_id = sma->sem_perm.key;
5142
5143         return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5144                             SEM__ASSOCIATE, &ad);
5145 }
5146
5147 /* Note, at this point, sma is locked down */
5148 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5149 {
5150         int err;
5151         u32 perms;
5152
5153         switch (cmd) {
5154         case IPC_INFO:
5155         case SEM_INFO:
5156                 /* No specific object, just general system-wide information. */
5157                 return task_has_system(current, SYSTEM__IPC_INFO);
5158         case GETPID:
5159         case GETNCNT:
5160         case GETZCNT:
5161                 perms = SEM__GETATTR;
5162                 break;
5163         case GETVAL:
5164         case GETALL:
5165                 perms = SEM__READ;
5166                 break;
5167         case SETVAL:
5168         case SETALL:
5169                 perms = SEM__WRITE;
5170                 break;
5171         case IPC_RMID:
5172                 perms = SEM__DESTROY;
5173                 break;
5174         case IPC_SET:
5175                 perms = SEM__SETATTR;
5176                 break;
5177         case IPC_STAT:
5178         case SEM_STAT:
5179                 perms = SEM__GETATTR | SEM__ASSOCIATE;
5180                 break;
5181         default:
5182                 return 0;
5183         }
5184
5185         err = ipc_has_perm(&sma->sem_perm, perms);
5186         return err;
5187 }
5188
5189 static int selinux_sem_semop(struct sem_array *sma,
5190                              struct sembuf *sops, unsigned nsops, int alter)
5191 {
5192         u32 perms;
5193
5194         if (alter)
5195                 perms = SEM__READ | SEM__WRITE;
5196         else
5197                 perms = SEM__READ;
5198
5199         return ipc_has_perm(&sma->sem_perm, perms);
5200 }
5201
5202 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5203 {
5204         u32 av = 0;
5205
5206         av = 0;
5207         if (flag & S_IRUGO)
5208                 av |= IPC__UNIX_READ;
5209         if (flag & S_IWUGO)
5210                 av |= IPC__UNIX_WRITE;
5211
5212         if (av == 0)
5213                 return 0;
5214
5215         return ipc_has_perm(ipcp, av);
5216 }
5217
5218 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5219 {
5220         struct ipc_security_struct *isec = ipcp->security;
5221         *secid = isec->sid;
5222 }
5223
5224 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5225 {
5226         if (inode)
5227                 inode_doinit_with_dentry(inode, dentry);
5228 }
5229
5230 static int selinux_getprocattr(struct task_struct *p,
5231                                char *name, char **value)
5232 {
5233         const struct task_security_struct *__tsec;
5234         u32 sid;
5235         int error;
5236         unsigned len;
5237
5238         if (current != p) {
5239                 error = task_has_perm(current, p, PROCESS__GETATTR);
5240                 if (error)
5241                         return error;
5242         }
5243
5244         rcu_read_lock();
5245         __tsec = __task_cred(p)->security;
5246
5247         if (!strcmp(name, "current"))
5248                 sid = __tsec->sid;
5249         else if (!strcmp(name, "prev"))
5250                 sid = __tsec->osid;
5251         else if (!strcmp(name, "exec"))
5252                 sid = __tsec->exec_sid;
5253         else if (!strcmp(name, "fscreate"))
5254                 sid = __tsec->create_sid;
5255         else if (!strcmp(name, "keycreate"))
5256                 sid = __tsec->keycreate_sid;
5257         else if (!strcmp(name, "sockcreate"))
5258                 sid = __tsec->sockcreate_sid;
5259         else
5260                 goto invalid;
5261         rcu_read_unlock();
5262
5263         if (!sid)
5264                 return 0;
5265
5266         error = security_sid_to_context(sid, value, &len);
5267         if (error)
5268                 return error;
5269         return len;
5270
5271 invalid:
5272         rcu_read_unlock();
5273         return -EINVAL;
5274 }
5275
5276 static int selinux_setprocattr(struct task_struct *p,
5277                                char *name, void *value, size_t size)
5278 {
5279         struct task_security_struct *tsec;
5280         struct task_struct *tracer;
5281         u32 sid = 0;
5282         int error;
5283         char *str = value;
5284
5285         if (current != p) {
5286                 /* SELinux only allows a process to change its own
5287                    security attributes. */
5288                 return -EACCES;
5289         }
5290
5291         /*
5292          * Basic control over ability to set these attributes at all.
5293          * current == p, but we'll pass them separately in case the
5294          * above restriction is ever removed.
5295          */
5296         if (!strcmp(name, "exec"))
5297                 error = task_has_perm(current, p, PROCESS__SETEXEC);
5298         else if (!strcmp(name, "fscreate"))
5299                 error = task_has_perm(current, p, PROCESS__SETFSCREATE);
5300         else if (!strcmp(name, "keycreate"))
5301                 error = task_has_perm(current, p, PROCESS__SETKEYCREATE);
5302         else if (!strcmp(name, "sockcreate"))
5303                 error = task_has_perm(current, p, PROCESS__SETSOCKCREATE);
5304         else if (!strcmp(name, "current"))
5305                 error = task_has_perm(current, p, PROCESS__SETCURRENT);
5306         else
5307                 error = -EINVAL;
5308         if (error)
5309                 return error;
5310
5311         /* Obtain a SID for the context, if one was specified. */
5312         if (size && str[1] && str[1] != '\n') {
5313                 if (str[size-1] == '\n') {
5314                         str[size-1] = 0;
5315                         size--;
5316                 }
5317                 error = security_context_to_sid(value, size, &sid);
5318                 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5319                         if (!capable(CAP_MAC_ADMIN))
5320                                 return error;
5321                         error = security_context_to_sid_force(value, size,
5322                                                               &sid);
5323                 }
5324                 if (error)
5325                         return error;
5326         }
5327
5328         /* Permission checking based on the specified context is
5329            performed during the actual operation (execve,
5330            open/mkdir/...), when we know the full context of the
5331            operation.  See selinux_bprm_set_security for the execve
5332            checks and may_create for the file creation checks. The
5333            operation will then fail if the context is not permitted. */
5334         tsec = p->cred->security;
5335         if (!strcmp(name, "exec"))
5336                 tsec->exec_sid = sid;
5337         else if (!strcmp(name, "fscreate"))
5338                 tsec->create_sid = sid;
5339         else if (!strcmp(name, "keycreate")) {
5340                 error = may_create_key(sid, p);
5341                 if (error)
5342                         return error;
5343                 tsec->keycreate_sid = sid;
5344         } else if (!strcmp(name, "sockcreate"))
5345                 tsec->sockcreate_sid = sid;
5346         else if (!strcmp(name, "current")) {
5347                 struct av_decision avd;
5348
5349                 if (sid == 0)
5350                         return -EINVAL;
5351                 /*
5352                  * SELinux allows to change context in the following case only.
5353                  *  - Single threaded processes.
5354                  *  - Multi threaded processes intend to change its context into
5355                  *    more restricted domain (defined by TYPEBOUNDS statement).
5356                  */
5357                 if (atomic_read(&p->mm->mm_users) != 1) {
5358                         struct task_struct *g, *t;
5359                         struct mm_struct *mm = p->mm;
5360                         read_lock(&tasklist_lock);
5361                         do_each_thread(g, t) {
5362                                 if (t->mm == mm && t != p) {
5363                                         read_unlock(&tasklist_lock);
5364                                         error = security_bounded_transition(tsec->sid, sid);
5365                                         if (!error)
5366                                                 goto boundary_ok;
5367
5368                                         return error;
5369                                 }
5370                         } while_each_thread(g, t);
5371                         read_unlock(&tasklist_lock);
5372                 }
5373 boundary_ok:
5374
5375                 /* Check permissions for the transition. */
5376                 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5377                                      PROCESS__DYNTRANSITION, NULL);
5378                 if (error)
5379                         return error;
5380
5381                 /* Check for ptracing, and update the task SID if ok.
5382                    Otherwise, leave SID unchanged and fail. */
5383                 task_lock(p);
5384                 rcu_read_lock();
5385                 tracer = tracehook_tracer_task(p);
5386                 if (tracer != NULL) {
5387                         u32 ptsid = task_sid(tracer);
5388                         rcu_read_unlock();
5389                         error = avc_has_perm_noaudit(ptsid, sid,
5390                                                      SECCLASS_PROCESS,
5391                                                      PROCESS__PTRACE, 0, &avd);
5392                         if (!error)
5393                                 tsec->sid = sid;
5394                         task_unlock(p);
5395                         avc_audit(ptsid, sid, SECCLASS_PROCESS,
5396                                   PROCESS__PTRACE, &avd, error, NULL);
5397                         if (error)
5398                                 return error;
5399                 } else {
5400                         rcu_read_unlock();
5401                         tsec->sid = sid;
5402                         task_unlock(p);
5403                 }
5404         } else
5405                 return -EINVAL;
5406
5407         return size;
5408 }
5409
5410 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5411 {
5412         return security_sid_to_context(secid, secdata, seclen);
5413 }
5414
5415 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5416 {
5417         return security_context_to_sid(secdata, seclen, secid);
5418 }
5419
5420 static void selinux_release_secctx(char *secdata, u32 seclen)
5421 {
5422         kfree(secdata);
5423 }
5424
5425 #ifdef CONFIG_KEYS
5426
5427 static int selinux_key_alloc(struct key *k, struct task_struct *tsk,
5428                              unsigned long flags)
5429 {
5430         const struct task_security_struct *__tsec;
5431         struct key_security_struct *ksec;
5432
5433         ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5434         if (!ksec)
5435                 return -ENOMEM;
5436
5437         rcu_read_lock();
5438         __tsec = __task_cred(tsk)->security;
5439         if (__tsec->keycreate_sid)
5440                 ksec->sid = __tsec->keycreate_sid;
5441         else
5442                 ksec->sid = __tsec->sid;
5443         rcu_read_unlock();
5444
5445         k->security = ksec;
5446         return 0;
5447 }
5448
5449 static void selinux_key_free(struct key *k)
5450 {
5451         struct key_security_struct *ksec = k->security;
5452
5453         k->security = NULL;
5454         kfree(ksec);
5455 }
5456
5457 static int selinux_key_permission(key_ref_t key_ref,
5458                             struct task_struct *ctx,
5459                             key_perm_t perm)
5460 {
5461         struct key *key;
5462         struct key_security_struct *ksec;
5463         u32 sid;
5464
5465         /* if no specific permissions are requested, we skip the
5466            permission check. No serious, additional covert channels
5467            appear to be created. */
5468         if (perm == 0)
5469                 return 0;
5470
5471         sid = task_sid(ctx);
5472
5473         key = key_ref_to_ptr(key_ref);
5474         ksec = key->security;
5475
5476         return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5477 }
5478
5479 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5480 {
5481         struct key_security_struct *ksec = key->security;
5482         char *context = NULL;
5483         unsigned len;
5484         int rc;
5485
5486         rc = security_sid_to_context(ksec->sid, &context, &len);
5487         if (!rc)
5488                 rc = len;
5489         *_buffer = context;
5490         return rc;
5491 }
5492
5493 #endif
5494
5495 static struct security_operations selinux_ops = {
5496         .name =                         "selinux",
5497
5498         .ptrace_may_access =            selinux_ptrace_may_access,
5499         .ptrace_traceme =               selinux_ptrace_traceme,
5500         .capget =                       selinux_capget,
5501         .capset_check =                 selinux_capset_check,
5502         .capset_set =                   selinux_capset_set,
5503         .sysctl =                       selinux_sysctl,
5504         .capable =                      selinux_capable,
5505         .quotactl =                     selinux_quotactl,
5506         .quota_on =                     selinux_quota_on,
5507         .syslog =                       selinux_syslog,
5508         .vm_enough_memory =             selinux_vm_enough_memory,
5509
5510         .netlink_send =                 selinux_netlink_send,
5511         .netlink_recv =                 selinux_netlink_recv,
5512
5513         .bprm_alloc_security =          selinux_bprm_alloc_security,
5514         .bprm_free_security =           selinux_bprm_free_security,
5515         .bprm_apply_creds =             selinux_bprm_apply_creds,
5516         .bprm_post_apply_creds =        selinux_bprm_post_apply_creds,
5517         .bprm_set_security =            selinux_bprm_set_security,
5518         .bprm_check_security =          selinux_bprm_check_security,
5519         .bprm_secureexec =              selinux_bprm_secureexec,
5520
5521         .sb_alloc_security =            selinux_sb_alloc_security,
5522         .sb_free_security =             selinux_sb_free_security,
5523         .sb_copy_data =                 selinux_sb_copy_data,
5524         .sb_kern_mount =                selinux_sb_kern_mount,
5525         .sb_show_options =              selinux_sb_show_options,
5526         .sb_statfs =                    selinux_sb_statfs,
5527         .sb_mount =                     selinux_mount,
5528         .sb_umount =                    selinux_umount,
5529         .sb_set_mnt_opts =              selinux_set_mnt_opts,
5530         .sb_clone_mnt_opts =            selinux_sb_clone_mnt_opts,
5531         .sb_parse_opts_str =            selinux_parse_opts_str,
5532
5533
5534         .inode_alloc_security =         selinux_inode_alloc_security,
5535         .inode_free_security =          selinux_inode_free_security,
5536         .inode_init_security =          selinux_inode_init_security,
5537         .inode_create =                 selinux_inode_create,
5538         .inode_link =                   selinux_inode_link,
5539         .inode_unlink =                 selinux_inode_unlink,
5540         .inode_symlink =                selinux_inode_symlink,
5541         .inode_mkdir =                  selinux_inode_mkdir,
5542         .inode_rmdir =                  selinux_inode_rmdir,
5543         .inode_mknod =                  selinux_inode_mknod,
5544         .inode_rename =                 selinux_inode_rename,
5545         .inode_readlink =               selinux_inode_readlink,
5546         .inode_follow_link =            selinux_inode_follow_link,
5547         .inode_permission =             selinux_inode_permission,
5548         .inode_setattr =                selinux_inode_setattr,
5549         .inode_getattr =                selinux_inode_getattr,
5550         .inode_setxattr =               selinux_inode_setxattr,
5551         .inode_post_setxattr =          selinux_inode_post_setxattr,
5552         .inode_getxattr =               selinux_inode_getxattr,
5553         .inode_listxattr =              selinux_inode_listxattr,
5554         .inode_removexattr =            selinux_inode_removexattr,
5555         .inode_getsecurity =            selinux_inode_getsecurity,
5556         .inode_setsecurity =            selinux_inode_setsecurity,
5557         .inode_listsecurity =           selinux_inode_listsecurity,
5558         .inode_need_killpriv =          selinux_inode_need_killpriv,
5559         .inode_killpriv =               selinux_inode_killpriv,
5560         .inode_getsecid =               selinux_inode_getsecid,
5561
5562         .file_permission =              selinux_file_permission,
5563         .file_alloc_security =          selinux_file_alloc_security,
5564         .file_free_security =           selinux_file_free_security,
5565         .file_ioctl =                   selinux_file_ioctl,
5566         .file_mmap =                    selinux_file_mmap,
5567         .file_mprotect =                selinux_file_mprotect,
5568         .file_lock =                    selinux_file_lock,
5569         .file_fcntl =                   selinux_file_fcntl,
5570         .file_set_fowner =              selinux_file_set_fowner,
5571         .file_send_sigiotask =          selinux_file_send_sigiotask,
5572         .file_receive =                 selinux_file_receive,
5573
5574         .dentry_open =                  selinux_dentry_open,
5575
5576         .task_create =                  selinux_task_create,
5577         .cred_alloc_security =          selinux_cred_alloc_security,
5578         .cred_free =                    selinux_cred_free,
5579         .task_setuid =                  selinux_task_setuid,
5580         .task_post_setuid =             selinux_task_post_setuid,
5581         .task_setgid =                  selinux_task_setgid,
5582         .task_setpgid =                 selinux_task_setpgid,
5583         .task_getpgid =                 selinux_task_getpgid,
5584         .task_getsid =                  selinux_task_getsid,
5585         .task_getsecid =                selinux_task_getsecid,
5586         .task_setgroups =               selinux_task_setgroups,
5587         .task_setnice =                 selinux_task_setnice,
5588         .task_setioprio =               selinux_task_setioprio,
5589         .task_getioprio =               selinux_task_getioprio,
5590         .task_setrlimit =               selinux_task_setrlimit,
5591         .task_setscheduler =            selinux_task_setscheduler,
5592         .task_getscheduler =            selinux_task_getscheduler,
5593         .task_movememory =              selinux_task_movememory,
5594         .task_kill =                    selinux_task_kill,
5595         .task_wait =                    selinux_task_wait,
5596         .task_prctl =                   selinux_task_prctl,
5597         .task_reparent_to_init =        selinux_task_reparent_to_init,
5598         .task_to_inode =                selinux_task_to_inode,
5599
5600         .ipc_permission =               selinux_ipc_permission,
5601         .ipc_getsecid =                 selinux_ipc_getsecid,
5602
5603         .msg_msg_alloc_security =       selinux_msg_msg_alloc_security,
5604         .msg_msg_free_security =        selinux_msg_msg_free_security,
5605
5606         .msg_queue_alloc_security =     selinux_msg_queue_alloc_security,
5607         .msg_queue_free_security =      selinux_msg_queue_free_security,
5608         .msg_queue_associate =          selinux_msg_queue_associate,
5609         .msg_queue_msgctl =             selinux_msg_queue_msgctl,
5610         .msg_queue_msgsnd =             selinux_msg_queue_msgsnd,
5611         .msg_queue_msgrcv =             selinux_msg_queue_msgrcv,
5612
5613         .shm_alloc_security =           selinux_shm_alloc_security,
5614         .shm_free_security =            selinux_shm_free_security,
5615         .shm_associate =                selinux_shm_associate,
5616         .shm_shmctl =                   selinux_shm_shmctl,
5617         .shm_shmat =                    selinux_shm_shmat,
5618
5619         .sem_alloc_security =           selinux_sem_alloc_security,
5620         .sem_free_security =            selinux_sem_free_security,
5621         .sem_associate =                selinux_sem_associate,
5622         .sem_semctl =                   selinux_sem_semctl,
5623         .sem_semop =                    selinux_sem_semop,
5624
5625         .d_instantiate =                selinux_d_instantiate,
5626
5627         .getprocattr =                  selinux_getprocattr,
5628         .setprocattr =                  selinux_setprocattr,
5629
5630         .secid_to_secctx =              selinux_secid_to_secctx,
5631         .secctx_to_secid =              selinux_secctx_to_secid,
5632         .release_secctx =               selinux_release_secctx,
5633
5634         .unix_stream_connect =          selinux_socket_unix_stream_connect,
5635         .unix_may_send =                selinux_socket_unix_may_send,
5636
5637         .socket_create =                selinux_socket_create,
5638         .socket_post_create =           selinux_socket_post_create,
5639         .socket_bind =                  selinux_socket_bind,
5640         .socket_connect =               selinux_socket_connect,
5641         .socket_listen =                selinux_socket_listen,
5642         .socket_accept =                selinux_socket_accept,
5643         .socket_sendmsg =               selinux_socket_sendmsg,
5644         .socket_recvmsg =               selinux_socket_recvmsg,
5645         .socket_getsockname =           selinux_socket_getsockname,
5646         .socket_getpeername =           selinux_socket_getpeername,
5647         .socket_getsockopt =            selinux_socket_getsockopt,
5648         .socket_setsockopt =            selinux_socket_setsockopt,
5649         .socket_shutdown =              selinux_socket_shutdown,
5650         .socket_sock_rcv_skb =          selinux_socket_sock_rcv_skb,
5651         .socket_getpeersec_stream =     selinux_socket_getpeersec_stream,
5652         .socket_getpeersec_dgram =      selinux_socket_getpeersec_dgram,
5653         .sk_alloc_security =            selinux_sk_alloc_security,
5654         .sk_free_security =             selinux_sk_free_security,
5655         .sk_clone_security =            selinux_sk_clone_security,
5656         .sk_getsecid =                  selinux_sk_getsecid,
5657         .sock_graft =                   selinux_sock_graft,
5658         .inet_conn_request =            selinux_inet_conn_request,
5659         .inet_csk_clone =               selinux_inet_csk_clone,
5660         .inet_conn_established =        selinux_inet_conn_established,
5661         .req_classify_flow =            selinux_req_classify_flow,
5662
5663 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5664         .xfrm_policy_alloc_security =   selinux_xfrm_policy_alloc,
5665         .xfrm_policy_clone_security =   selinux_xfrm_policy_clone,
5666         .xfrm_policy_free_security =    selinux_xfrm_policy_free,
5667         .xfrm_policy_delete_security =  selinux_xfrm_policy_delete,
5668         .xfrm_state_alloc_security =    selinux_xfrm_state_alloc,
5669         .xfrm_state_free_security =     selinux_xfrm_state_free,
5670         .xfrm_state_delete_security =   selinux_xfrm_state_delete,
5671         .xfrm_policy_lookup =           selinux_xfrm_policy_lookup,
5672         .xfrm_state_pol_flow_match =    selinux_xfrm_state_pol_flow_match,
5673         .xfrm_decode_session =          selinux_xfrm_decode_session,
5674 #endif
5675
5676 #ifdef CONFIG_KEYS
5677         .key_alloc =                    selinux_key_alloc,
5678         .key_free =                     selinux_key_free,
5679         .key_permission =               selinux_key_permission,
5680         .key_getsecurity =              selinux_key_getsecurity,
5681 #endif
5682
5683 #ifdef CONFIG_AUDIT
5684         .audit_rule_init =              selinux_audit_rule_init,
5685         .audit_rule_known =             selinux_audit_rule_known,
5686         .audit_rule_match =             selinux_audit_rule_match,
5687         .audit_rule_free =              selinux_audit_rule_free,
5688 #endif
5689 };
5690
5691 static __init int selinux_init(void)
5692 {
5693         struct task_security_struct *tsec;
5694
5695         if (!security_module_enable(&selinux_ops)) {
5696                 selinux_enabled = 0;
5697                 return 0;
5698         }
5699
5700         if (!selinux_enabled) {
5701                 printk(KERN_INFO "SELinux:  Disabled at boot.\n");
5702                 return 0;
5703         }
5704
5705         printk(KERN_INFO "SELinux:  Initializing.\n");
5706
5707         /* Set the security state for the initial task. */
5708         if (cred_alloc_security(current->cred))
5709                 panic("SELinux:  Failed to initialize initial task.\n");
5710         tsec = current->cred->security;
5711         tsec->osid = tsec->sid = SECINITSID_KERNEL;
5712
5713         sel_inode_cache = kmem_cache_create("selinux_inode_security",
5714                                             sizeof(struct inode_security_struct),
5715                                             0, SLAB_PANIC, NULL);
5716         avc_init();
5717
5718         secondary_ops = security_ops;
5719         if (!secondary_ops)
5720                 panic("SELinux: No initial security operations\n");
5721         if (register_security(&selinux_ops))
5722                 panic("SELinux: Unable to register with kernel.\n");
5723
5724         if (selinux_enforcing)
5725                 printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
5726         else
5727                 printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
5728
5729         return 0;
5730 }
5731
5732 void selinux_complete_init(void)
5733 {
5734         printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
5735
5736         /* Set up any superblocks initialized prior to the policy load. */
5737         printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
5738         spin_lock(&sb_lock);
5739         spin_lock(&sb_security_lock);
5740 next_sb:
5741         if (!list_empty(&superblock_security_head)) {
5742                 struct superblock_security_struct *sbsec =
5743                                 list_entry(superblock_security_head.next,
5744                                            struct superblock_security_struct,
5745                                            list);
5746                 struct super_block *sb = sbsec->sb;
5747                 sb->s_count++;
5748                 spin_unlock(&sb_security_lock);
5749                 spin_unlock(&sb_lock);
5750                 down_read(&sb->s_umount);
5751                 if (sb->s_root)
5752                         superblock_doinit(sb, NULL);
5753                 drop_super(sb);
5754                 spin_lock(&sb_lock);
5755                 spin_lock(&sb_security_lock);
5756                 list_del_init(&sbsec->list);
5757                 goto next_sb;
5758         }
5759         spin_unlock(&sb_security_lock);
5760         spin_unlock(&sb_lock);
5761 }
5762
5763 /* SELinux requires early initialization in order to label
5764    all processes and objects when they are created. */
5765 security_initcall(selinux_init);
5766
5767 #if defined(CONFIG_NETFILTER)
5768
5769 static struct nf_hook_ops selinux_ipv4_ops[] = {
5770         {
5771                 .hook =         selinux_ipv4_postroute,
5772                 .owner =        THIS_MODULE,
5773                 .pf =           PF_INET,
5774                 .hooknum =      NF_INET_POST_ROUTING,
5775                 .priority =     NF_IP_PRI_SELINUX_LAST,
5776         },
5777         {
5778                 .hook =         selinux_ipv4_forward,
5779                 .owner =        THIS_MODULE,
5780                 .pf =           PF_INET,
5781                 .hooknum =      NF_INET_FORWARD,
5782                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5783         },
5784         {
5785                 .hook =         selinux_ipv4_output,
5786                 .owner =        THIS_MODULE,
5787                 .pf =           PF_INET,
5788                 .hooknum =      NF_INET_LOCAL_OUT,
5789                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5790         }
5791 };
5792
5793 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5794
5795 static struct nf_hook_ops selinux_ipv6_ops[] = {
5796         {
5797                 .hook =         selinux_ipv6_postroute,
5798                 .owner =        THIS_MODULE,
5799                 .pf =           PF_INET6,
5800                 .hooknum =      NF_INET_POST_ROUTING,
5801                 .priority =     NF_IP6_PRI_SELINUX_LAST,
5802         },
5803         {
5804                 .hook =         selinux_ipv6_forward,
5805                 .owner =        THIS_MODULE,
5806                 .pf =           PF_INET6,
5807                 .hooknum =      NF_INET_FORWARD,
5808                 .priority =     NF_IP6_PRI_SELINUX_FIRST,
5809         }
5810 };
5811
5812 #endif  /* IPV6 */
5813
5814 static int __init selinux_nf_ip_init(void)
5815 {
5816         int err = 0;
5817
5818         if (!selinux_enabled)
5819                 goto out;
5820
5821         printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
5822
5823         err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5824         if (err)
5825                 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
5826
5827 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5828         err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5829         if (err)
5830                 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
5831 #endif  /* IPV6 */
5832
5833 out:
5834         return err;
5835 }
5836
5837 __initcall(selinux_nf_ip_init);
5838
5839 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5840 static void selinux_nf_ip_exit(void)
5841 {
5842         printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
5843
5844         nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5845 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5846         nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5847 #endif  /* IPV6 */
5848 }
5849 #endif
5850
5851 #else /* CONFIG_NETFILTER */
5852
5853 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5854 #define selinux_nf_ip_exit()
5855 #endif
5856
5857 #endif /* CONFIG_NETFILTER */
5858
5859 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5860 static int selinux_disabled;
5861
5862 int selinux_disable(void)
5863 {
5864         extern void exit_sel_fs(void);
5865
5866         if (ss_initialized) {
5867                 /* Not permitted after initial policy load. */
5868                 return -EINVAL;
5869         }
5870
5871         if (selinux_disabled) {
5872                 /* Only do this once. */
5873                 return -EINVAL;
5874         }
5875
5876         printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
5877
5878         selinux_disabled = 1;
5879         selinux_enabled = 0;
5880
5881         /* Reset security_ops to the secondary module, dummy or capability. */
5882         security_ops = secondary_ops;
5883
5884         /* Unregister netfilter hooks. */
5885         selinux_nf_ip_exit();
5886
5887         /* Unregister selinuxfs. */
5888         exit_sel_fs();
5889
5890         return 0;
5891 }
5892 #endif