CacheFiles: Add calls to path-based security hooks
[linux-2.6.git] / security / security.c
1 /*
2  * Security plug functions
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7  *
8  *      This program is free software; you can redistribute it and/or modify
9  *      it under the terms of the GNU General Public License as published by
10  *      the Free Software Foundation; either version 2 of the License, or
11  *      (at your option) any later version.
12  */
13
14 #include <linux/capability.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/security.h>
19 #include <linux/ima.h>
20
21 /* Boot-time LSM user choice */
22 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
23         CONFIG_DEFAULT_SECURITY;
24
25 /* things that live in capability.c */
26 extern void __init security_fixup_ops(struct security_operations *ops);
27
28 static struct security_operations *security_ops;
29 static struct security_operations default_security_ops = {
30         .name   = "default",
31 };
32
33 static inline int __init verify(struct security_operations *ops)
34 {
35         /* verify the security_operations structure exists */
36         if (!ops)
37                 return -EINVAL;
38         security_fixup_ops(ops);
39         return 0;
40 }
41
42 static void __init do_security_initcalls(void)
43 {
44         initcall_t *call;
45         call = __security_initcall_start;
46         while (call < __security_initcall_end) {
47                 (*call) ();
48                 call++;
49         }
50 }
51
52 /**
53  * security_init - initializes the security framework
54  *
55  * This should be called early in the kernel initialization sequence.
56  */
57 int __init security_init(void)
58 {
59         printk(KERN_INFO "Security Framework initialized\n");
60
61         security_fixup_ops(&default_security_ops);
62         security_ops = &default_security_ops;
63         do_security_initcalls();
64
65         return 0;
66 }
67
68 void reset_security_ops(void)
69 {
70         security_ops = &default_security_ops;
71 }
72
73 /* Save user chosen LSM */
74 static int __init choose_lsm(char *str)
75 {
76         strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
77         return 1;
78 }
79 __setup("security=", choose_lsm);
80
81 /**
82  * security_module_enable - Load given security module on boot ?
83  * @ops: a pointer to the struct security_operations that is to be checked.
84  *
85  * Each LSM must pass this method before registering its own operations
86  * to avoid security registration races. This method may also be used
87  * to check if your LSM is currently loaded during kernel initialization.
88  *
89  * Return true if:
90  *      -The passed LSM is the one chosen by user at boot time,
91  *      -or the passed LSM is configured as the default and the user did not
92  *       choose an alternate LSM at boot time.
93  * Otherwise, return false.
94  */
95 int __init security_module_enable(struct security_operations *ops)
96 {
97         return !strcmp(ops->name, chosen_lsm);
98 }
99
100 /**
101  * register_security - registers a security framework with the kernel
102  * @ops: a pointer to the struct security_options that is to be registered
103  *
104  * This function allows a security module to register itself with the
105  * kernel security subsystem.  Some rudimentary checking is done on the @ops
106  * value passed to this function. You'll need to check first if your LSM
107  * is allowed to register its @ops by calling security_module_enable(@ops).
108  *
109  * If there is already a security module registered with the kernel,
110  * an error will be returned.  Otherwise %0 is returned on success.
111  */
112 int __init register_security(struct security_operations *ops)
113 {
114         if (verify(ops)) {
115                 printk(KERN_DEBUG "%s could not verify "
116                        "security_operations structure.\n", __func__);
117                 return -EINVAL;
118         }
119
120         if (security_ops != &default_security_ops)
121                 return -EAGAIN;
122
123         security_ops = ops;
124
125         return 0;
126 }
127
128 /* Security operations */
129
130 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
131 {
132         return security_ops->ptrace_access_check(child, mode);
133 }
134
135 int security_ptrace_traceme(struct task_struct *parent)
136 {
137         return security_ops->ptrace_traceme(parent);
138 }
139
140 int security_capget(struct task_struct *target,
141                      kernel_cap_t *effective,
142                      kernel_cap_t *inheritable,
143                      kernel_cap_t *permitted)
144 {
145         return security_ops->capget(target, effective, inheritable, permitted);
146 }
147
148 int security_capset(struct cred *new, const struct cred *old,
149                     const kernel_cap_t *effective,
150                     const kernel_cap_t *inheritable,
151                     const kernel_cap_t *permitted)
152 {
153         return security_ops->capset(new, old,
154                                     effective, inheritable, permitted);
155 }
156
157 int security_capable(int cap)
158 {
159         return security_ops->capable(current, current_cred(), cap,
160                                      SECURITY_CAP_AUDIT);
161 }
162
163 int security_real_capable(struct task_struct *tsk, int cap)
164 {
165         const struct cred *cred;
166         int ret;
167
168         cred = get_task_cred(tsk);
169         ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_AUDIT);
170         put_cred(cred);
171         return ret;
172 }
173
174 int security_real_capable_noaudit(struct task_struct *tsk, int cap)
175 {
176         const struct cred *cred;
177         int ret;
178
179         cred = get_task_cred(tsk);
180         ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_NOAUDIT);
181         put_cred(cred);
182         return ret;
183 }
184
185 int security_sysctl(struct ctl_table *table, int op)
186 {
187         return security_ops->sysctl(table, op);
188 }
189
190 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
191 {
192         return security_ops->quotactl(cmds, type, id, sb);
193 }
194
195 int security_quota_on(struct dentry *dentry)
196 {
197         return security_ops->quota_on(dentry);
198 }
199
200 int security_syslog(int type)
201 {
202         return security_ops->syslog(type);
203 }
204
205 int security_settime(struct timespec *ts, struct timezone *tz)
206 {
207         return security_ops->settime(ts, tz);
208 }
209
210 int security_vm_enough_memory(long pages)
211 {
212         WARN_ON(current->mm == NULL);
213         return security_ops->vm_enough_memory(current->mm, pages);
214 }
215
216 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
217 {
218         WARN_ON(mm == NULL);
219         return security_ops->vm_enough_memory(mm, pages);
220 }
221
222 int security_vm_enough_memory_kern(long pages)
223 {
224         /* If current->mm is a kernel thread then we will pass NULL,
225            for this specific case that is fine */
226         return security_ops->vm_enough_memory(current->mm, pages);
227 }
228
229 int security_bprm_set_creds(struct linux_binprm *bprm)
230 {
231         return security_ops->bprm_set_creds(bprm);
232 }
233
234 int security_bprm_check(struct linux_binprm *bprm)
235 {
236         int ret;
237
238         ret = security_ops->bprm_check_security(bprm);
239         if (ret)
240                 return ret;
241         return ima_bprm_check(bprm);
242 }
243
244 void security_bprm_committing_creds(struct linux_binprm *bprm)
245 {
246         security_ops->bprm_committing_creds(bprm);
247 }
248
249 void security_bprm_committed_creds(struct linux_binprm *bprm)
250 {
251         security_ops->bprm_committed_creds(bprm);
252 }
253
254 int security_bprm_secureexec(struct linux_binprm *bprm)
255 {
256         return security_ops->bprm_secureexec(bprm);
257 }
258
259 int security_sb_alloc(struct super_block *sb)
260 {
261         return security_ops->sb_alloc_security(sb);
262 }
263
264 void security_sb_free(struct super_block *sb)
265 {
266         security_ops->sb_free_security(sb);
267 }
268
269 int security_sb_copy_data(char *orig, char *copy)
270 {
271         return security_ops->sb_copy_data(orig, copy);
272 }
273 EXPORT_SYMBOL(security_sb_copy_data);
274
275 int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
276 {
277         return security_ops->sb_kern_mount(sb, flags, data);
278 }
279
280 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
281 {
282         return security_ops->sb_show_options(m, sb);
283 }
284
285 int security_sb_statfs(struct dentry *dentry)
286 {
287         return security_ops->sb_statfs(dentry);
288 }
289
290 int security_sb_mount(char *dev_name, struct path *path,
291                        char *type, unsigned long flags, void *data)
292 {
293         return security_ops->sb_mount(dev_name, path, type, flags, data);
294 }
295
296 int security_sb_umount(struct vfsmount *mnt, int flags)
297 {
298         return security_ops->sb_umount(mnt, flags);
299 }
300
301 int security_sb_pivotroot(struct path *old_path, struct path *new_path)
302 {
303         return security_ops->sb_pivotroot(old_path, new_path);
304 }
305
306 int security_sb_set_mnt_opts(struct super_block *sb,
307                                 struct security_mnt_opts *opts)
308 {
309         return security_ops->sb_set_mnt_opts(sb, opts);
310 }
311 EXPORT_SYMBOL(security_sb_set_mnt_opts);
312
313 void security_sb_clone_mnt_opts(const struct super_block *oldsb,
314                                 struct super_block *newsb)
315 {
316         security_ops->sb_clone_mnt_opts(oldsb, newsb);
317 }
318 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
319
320 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
321 {
322         return security_ops->sb_parse_opts_str(options, opts);
323 }
324 EXPORT_SYMBOL(security_sb_parse_opts_str);
325
326 int security_inode_alloc(struct inode *inode)
327 {
328         inode->i_security = NULL;
329         return security_ops->inode_alloc_security(inode);
330 }
331
332 void security_inode_free(struct inode *inode)
333 {
334         ima_inode_free(inode);
335         security_ops->inode_free_security(inode);
336 }
337
338 int security_inode_init_security(struct inode *inode, struct inode *dir,
339                                   char **name, void **value, size_t *len)
340 {
341         if (unlikely(IS_PRIVATE(inode)))
342                 return -EOPNOTSUPP;
343         return security_ops->inode_init_security(inode, dir, name, value, len);
344 }
345 EXPORT_SYMBOL(security_inode_init_security);
346
347 #ifdef CONFIG_SECURITY_PATH
348 int security_path_mknod(struct path *dir, struct dentry *dentry, int mode,
349                         unsigned int dev)
350 {
351         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
352                 return 0;
353         return security_ops->path_mknod(dir, dentry, mode, dev);
354 }
355 EXPORT_SYMBOL(security_path_mknod);
356
357 int security_path_mkdir(struct path *dir, struct dentry *dentry, int mode)
358 {
359         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
360                 return 0;
361         return security_ops->path_mkdir(dir, dentry, mode);
362 }
363 EXPORT_SYMBOL(security_path_mkdir);
364
365 int security_path_rmdir(struct path *dir, struct dentry *dentry)
366 {
367         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
368                 return 0;
369         return security_ops->path_rmdir(dir, dentry);
370 }
371
372 int security_path_unlink(struct path *dir, struct dentry *dentry)
373 {
374         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
375                 return 0;
376         return security_ops->path_unlink(dir, dentry);
377 }
378 EXPORT_SYMBOL(security_path_unlink);
379
380 int security_path_symlink(struct path *dir, struct dentry *dentry,
381                           const char *old_name)
382 {
383         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
384                 return 0;
385         return security_ops->path_symlink(dir, dentry, old_name);
386 }
387
388 int security_path_link(struct dentry *old_dentry, struct path *new_dir,
389                        struct dentry *new_dentry)
390 {
391         if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
392                 return 0;
393         return security_ops->path_link(old_dentry, new_dir, new_dentry);
394 }
395
396 int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
397                          struct path *new_dir, struct dentry *new_dentry)
398 {
399         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
400                      (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
401                 return 0;
402         return security_ops->path_rename(old_dir, old_dentry, new_dir,
403                                          new_dentry);
404 }
405 EXPORT_SYMBOL(security_path_rename);
406
407 int security_path_truncate(struct path *path)
408 {
409         if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
410                 return 0;
411         return security_ops->path_truncate(path);
412 }
413
414 int security_path_chmod(struct dentry *dentry, struct vfsmount *mnt,
415                         mode_t mode)
416 {
417         if (unlikely(IS_PRIVATE(dentry->d_inode)))
418                 return 0;
419         return security_ops->path_chmod(dentry, mnt, mode);
420 }
421
422 int security_path_chown(struct path *path, uid_t uid, gid_t gid)
423 {
424         if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
425                 return 0;
426         return security_ops->path_chown(path, uid, gid);
427 }
428
429 int security_path_chroot(struct path *path)
430 {
431         return security_ops->path_chroot(path);
432 }
433 #endif
434
435 int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
436 {
437         if (unlikely(IS_PRIVATE(dir)))
438                 return 0;
439         return security_ops->inode_create(dir, dentry, mode);
440 }
441 EXPORT_SYMBOL_GPL(security_inode_create);
442
443 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
444                          struct dentry *new_dentry)
445 {
446         if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
447                 return 0;
448         return security_ops->inode_link(old_dentry, dir, new_dentry);
449 }
450
451 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
452 {
453         if (unlikely(IS_PRIVATE(dentry->d_inode)))
454                 return 0;
455         return security_ops->inode_unlink(dir, dentry);
456 }
457
458 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
459                             const char *old_name)
460 {
461         if (unlikely(IS_PRIVATE(dir)))
462                 return 0;
463         return security_ops->inode_symlink(dir, dentry, old_name);
464 }
465
466 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
467 {
468         if (unlikely(IS_PRIVATE(dir)))
469                 return 0;
470         return security_ops->inode_mkdir(dir, dentry, mode);
471 }
472 EXPORT_SYMBOL_GPL(security_inode_mkdir);
473
474 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
475 {
476         if (unlikely(IS_PRIVATE(dentry->d_inode)))
477                 return 0;
478         return security_ops->inode_rmdir(dir, dentry);
479 }
480
481 int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
482 {
483         if (unlikely(IS_PRIVATE(dir)))
484                 return 0;
485         return security_ops->inode_mknod(dir, dentry, mode, dev);
486 }
487
488 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
489                            struct inode *new_dir, struct dentry *new_dentry)
490 {
491         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
492             (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
493                 return 0;
494         return security_ops->inode_rename(old_dir, old_dentry,
495                                            new_dir, new_dentry);
496 }
497
498 int security_inode_readlink(struct dentry *dentry)
499 {
500         if (unlikely(IS_PRIVATE(dentry->d_inode)))
501                 return 0;
502         return security_ops->inode_readlink(dentry);
503 }
504
505 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
506 {
507         if (unlikely(IS_PRIVATE(dentry->d_inode)))
508                 return 0;
509         return security_ops->inode_follow_link(dentry, nd);
510 }
511
512 int security_inode_permission(struct inode *inode, int mask)
513 {
514         if (unlikely(IS_PRIVATE(inode)))
515                 return 0;
516         return security_ops->inode_permission(inode, mask);
517 }
518
519 int security_inode_exec_permission(struct inode *inode, unsigned int flags)
520 {
521         if (unlikely(IS_PRIVATE(inode)))
522                 return 0;
523         if (flags)
524                 return -ECHILD;
525         return security_ops->inode_permission(inode, MAY_EXEC);
526 }
527
528 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
529 {
530         if (unlikely(IS_PRIVATE(dentry->d_inode)))
531                 return 0;
532         return security_ops->inode_setattr(dentry, attr);
533 }
534 EXPORT_SYMBOL_GPL(security_inode_setattr);
535
536 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
537 {
538         if (unlikely(IS_PRIVATE(dentry->d_inode)))
539                 return 0;
540         return security_ops->inode_getattr(mnt, dentry);
541 }
542
543 int security_inode_setxattr(struct dentry *dentry, const char *name,
544                             const void *value, size_t size, int flags)
545 {
546         if (unlikely(IS_PRIVATE(dentry->d_inode)))
547                 return 0;
548         return security_ops->inode_setxattr(dentry, name, value, size, flags);
549 }
550
551 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
552                                   const void *value, size_t size, int flags)
553 {
554         if (unlikely(IS_PRIVATE(dentry->d_inode)))
555                 return;
556         security_ops->inode_post_setxattr(dentry, name, value, size, flags);
557 }
558
559 int security_inode_getxattr(struct dentry *dentry, const char *name)
560 {
561         if (unlikely(IS_PRIVATE(dentry->d_inode)))
562                 return 0;
563         return security_ops->inode_getxattr(dentry, name);
564 }
565
566 int security_inode_listxattr(struct dentry *dentry)
567 {
568         if (unlikely(IS_PRIVATE(dentry->d_inode)))
569                 return 0;
570         return security_ops->inode_listxattr(dentry);
571 }
572
573 int security_inode_removexattr(struct dentry *dentry, const char *name)
574 {
575         if (unlikely(IS_PRIVATE(dentry->d_inode)))
576                 return 0;
577         return security_ops->inode_removexattr(dentry, name);
578 }
579
580 int security_inode_need_killpriv(struct dentry *dentry)
581 {
582         return security_ops->inode_need_killpriv(dentry);
583 }
584
585 int security_inode_killpriv(struct dentry *dentry)
586 {
587         return security_ops->inode_killpriv(dentry);
588 }
589
590 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
591 {
592         if (unlikely(IS_PRIVATE(inode)))
593                 return -EOPNOTSUPP;
594         return security_ops->inode_getsecurity(inode, name, buffer, alloc);
595 }
596
597 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
598 {
599         if (unlikely(IS_PRIVATE(inode)))
600                 return -EOPNOTSUPP;
601         return security_ops->inode_setsecurity(inode, name, value, size, flags);
602 }
603
604 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
605 {
606         if (unlikely(IS_PRIVATE(inode)))
607                 return 0;
608         return security_ops->inode_listsecurity(inode, buffer, buffer_size);
609 }
610
611 void security_inode_getsecid(const struct inode *inode, u32 *secid)
612 {
613         security_ops->inode_getsecid(inode, secid);
614 }
615
616 int security_file_permission(struct file *file, int mask)
617 {
618         int ret;
619
620         ret = security_ops->file_permission(file, mask);
621         if (ret)
622                 return ret;
623
624         return fsnotify_perm(file, mask);
625 }
626
627 int security_file_alloc(struct file *file)
628 {
629         return security_ops->file_alloc_security(file);
630 }
631
632 void security_file_free(struct file *file)
633 {
634         security_ops->file_free_security(file);
635 }
636
637 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
638 {
639         return security_ops->file_ioctl(file, cmd, arg);
640 }
641
642 int security_file_mmap(struct file *file, unsigned long reqprot,
643                         unsigned long prot, unsigned long flags,
644                         unsigned long addr, unsigned long addr_only)
645 {
646         int ret;
647
648         ret = security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
649         if (ret)
650                 return ret;
651         return ima_file_mmap(file, prot);
652 }
653
654 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
655                             unsigned long prot)
656 {
657         return security_ops->file_mprotect(vma, reqprot, prot);
658 }
659
660 int security_file_lock(struct file *file, unsigned int cmd)
661 {
662         return security_ops->file_lock(file, cmd);
663 }
664
665 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
666 {
667         return security_ops->file_fcntl(file, cmd, arg);
668 }
669
670 int security_file_set_fowner(struct file *file)
671 {
672         return security_ops->file_set_fowner(file);
673 }
674
675 int security_file_send_sigiotask(struct task_struct *tsk,
676                                   struct fown_struct *fown, int sig)
677 {
678         return security_ops->file_send_sigiotask(tsk, fown, sig);
679 }
680
681 int security_file_receive(struct file *file)
682 {
683         return security_ops->file_receive(file);
684 }
685
686 int security_dentry_open(struct file *file, const struct cred *cred)
687 {
688         int ret;
689
690         ret = security_ops->dentry_open(file, cred);
691         if (ret)
692                 return ret;
693
694         return fsnotify_perm(file, MAY_OPEN);
695 }
696
697 int security_task_create(unsigned long clone_flags)
698 {
699         return security_ops->task_create(clone_flags);
700 }
701
702 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
703 {
704         return security_ops->cred_alloc_blank(cred, gfp);
705 }
706
707 void security_cred_free(struct cred *cred)
708 {
709         security_ops->cred_free(cred);
710 }
711
712 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
713 {
714         return security_ops->cred_prepare(new, old, gfp);
715 }
716
717 void security_transfer_creds(struct cred *new, const struct cred *old)
718 {
719         security_ops->cred_transfer(new, old);
720 }
721
722 int security_kernel_act_as(struct cred *new, u32 secid)
723 {
724         return security_ops->kernel_act_as(new, secid);
725 }
726
727 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
728 {
729         return security_ops->kernel_create_files_as(new, inode);
730 }
731
732 int security_kernel_module_request(char *kmod_name)
733 {
734         return security_ops->kernel_module_request(kmod_name);
735 }
736
737 int security_task_fix_setuid(struct cred *new, const struct cred *old,
738                              int flags)
739 {
740         return security_ops->task_fix_setuid(new, old, flags);
741 }
742
743 int security_task_setpgid(struct task_struct *p, pid_t pgid)
744 {
745         return security_ops->task_setpgid(p, pgid);
746 }
747
748 int security_task_getpgid(struct task_struct *p)
749 {
750         return security_ops->task_getpgid(p);
751 }
752
753 int security_task_getsid(struct task_struct *p)
754 {
755         return security_ops->task_getsid(p);
756 }
757
758 void security_task_getsecid(struct task_struct *p, u32 *secid)
759 {
760         security_ops->task_getsecid(p, secid);
761 }
762 EXPORT_SYMBOL(security_task_getsecid);
763
764 int security_task_setnice(struct task_struct *p, int nice)
765 {
766         return security_ops->task_setnice(p, nice);
767 }
768
769 int security_task_setioprio(struct task_struct *p, int ioprio)
770 {
771         return security_ops->task_setioprio(p, ioprio);
772 }
773
774 int security_task_getioprio(struct task_struct *p)
775 {
776         return security_ops->task_getioprio(p);
777 }
778
779 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
780                 struct rlimit *new_rlim)
781 {
782         return security_ops->task_setrlimit(p, resource, new_rlim);
783 }
784
785 int security_task_setscheduler(struct task_struct *p)
786 {
787         return security_ops->task_setscheduler(p);
788 }
789
790 int security_task_getscheduler(struct task_struct *p)
791 {
792         return security_ops->task_getscheduler(p);
793 }
794
795 int security_task_movememory(struct task_struct *p)
796 {
797         return security_ops->task_movememory(p);
798 }
799
800 int security_task_kill(struct task_struct *p, struct siginfo *info,
801                         int sig, u32 secid)
802 {
803         return security_ops->task_kill(p, info, sig, secid);
804 }
805
806 int security_task_wait(struct task_struct *p)
807 {
808         return security_ops->task_wait(p);
809 }
810
811 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
812                          unsigned long arg4, unsigned long arg5)
813 {
814         return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
815 }
816
817 void security_task_to_inode(struct task_struct *p, struct inode *inode)
818 {
819         security_ops->task_to_inode(p, inode);
820 }
821
822 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
823 {
824         return security_ops->ipc_permission(ipcp, flag);
825 }
826
827 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
828 {
829         security_ops->ipc_getsecid(ipcp, secid);
830 }
831
832 int security_msg_msg_alloc(struct msg_msg *msg)
833 {
834         return security_ops->msg_msg_alloc_security(msg);
835 }
836
837 void security_msg_msg_free(struct msg_msg *msg)
838 {
839         security_ops->msg_msg_free_security(msg);
840 }
841
842 int security_msg_queue_alloc(struct msg_queue *msq)
843 {
844         return security_ops->msg_queue_alloc_security(msq);
845 }
846
847 void security_msg_queue_free(struct msg_queue *msq)
848 {
849         security_ops->msg_queue_free_security(msq);
850 }
851
852 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
853 {
854         return security_ops->msg_queue_associate(msq, msqflg);
855 }
856
857 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
858 {
859         return security_ops->msg_queue_msgctl(msq, cmd);
860 }
861
862 int security_msg_queue_msgsnd(struct msg_queue *msq,
863                                struct msg_msg *msg, int msqflg)
864 {
865         return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
866 }
867
868 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
869                                struct task_struct *target, long type, int mode)
870 {
871         return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
872 }
873
874 int security_shm_alloc(struct shmid_kernel *shp)
875 {
876         return security_ops->shm_alloc_security(shp);
877 }
878
879 void security_shm_free(struct shmid_kernel *shp)
880 {
881         security_ops->shm_free_security(shp);
882 }
883
884 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
885 {
886         return security_ops->shm_associate(shp, shmflg);
887 }
888
889 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
890 {
891         return security_ops->shm_shmctl(shp, cmd);
892 }
893
894 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
895 {
896         return security_ops->shm_shmat(shp, shmaddr, shmflg);
897 }
898
899 int security_sem_alloc(struct sem_array *sma)
900 {
901         return security_ops->sem_alloc_security(sma);
902 }
903
904 void security_sem_free(struct sem_array *sma)
905 {
906         security_ops->sem_free_security(sma);
907 }
908
909 int security_sem_associate(struct sem_array *sma, int semflg)
910 {
911         return security_ops->sem_associate(sma, semflg);
912 }
913
914 int security_sem_semctl(struct sem_array *sma, int cmd)
915 {
916         return security_ops->sem_semctl(sma, cmd);
917 }
918
919 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
920                         unsigned nsops, int alter)
921 {
922         return security_ops->sem_semop(sma, sops, nsops, alter);
923 }
924
925 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
926 {
927         if (unlikely(inode && IS_PRIVATE(inode)))
928                 return;
929         security_ops->d_instantiate(dentry, inode);
930 }
931 EXPORT_SYMBOL(security_d_instantiate);
932
933 int security_getprocattr(struct task_struct *p, char *name, char **value)
934 {
935         return security_ops->getprocattr(p, name, value);
936 }
937
938 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
939 {
940         return security_ops->setprocattr(p, name, value, size);
941 }
942
943 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
944 {
945         return security_ops->netlink_send(sk, skb);
946 }
947
948 int security_netlink_recv(struct sk_buff *skb, int cap)
949 {
950         return security_ops->netlink_recv(skb, cap);
951 }
952 EXPORT_SYMBOL(security_netlink_recv);
953
954 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
955 {
956         return security_ops->secid_to_secctx(secid, secdata, seclen);
957 }
958 EXPORT_SYMBOL(security_secid_to_secctx);
959
960 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
961 {
962         return security_ops->secctx_to_secid(secdata, seclen, secid);
963 }
964 EXPORT_SYMBOL(security_secctx_to_secid);
965
966 void security_release_secctx(char *secdata, u32 seclen)
967 {
968         security_ops->release_secctx(secdata, seclen);
969 }
970 EXPORT_SYMBOL(security_release_secctx);
971
972 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
973 {
974         return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
975 }
976 EXPORT_SYMBOL(security_inode_notifysecctx);
977
978 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
979 {
980         return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
981 }
982 EXPORT_SYMBOL(security_inode_setsecctx);
983
984 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
985 {
986         return security_ops->inode_getsecctx(inode, ctx, ctxlen);
987 }
988 EXPORT_SYMBOL(security_inode_getsecctx);
989
990 #ifdef CONFIG_SECURITY_NETWORK
991
992 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
993 {
994         return security_ops->unix_stream_connect(sock, other, newsk);
995 }
996 EXPORT_SYMBOL(security_unix_stream_connect);
997
998 int security_unix_may_send(struct socket *sock,  struct socket *other)
999 {
1000         return security_ops->unix_may_send(sock, other);
1001 }
1002 EXPORT_SYMBOL(security_unix_may_send);
1003
1004 int security_socket_create(int family, int type, int protocol, int kern)
1005 {
1006         return security_ops->socket_create(family, type, protocol, kern);
1007 }
1008
1009 int security_socket_post_create(struct socket *sock, int family,
1010                                 int type, int protocol, int kern)
1011 {
1012         return security_ops->socket_post_create(sock, family, type,
1013                                                 protocol, kern);
1014 }
1015
1016 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1017 {
1018         return security_ops->socket_bind(sock, address, addrlen);
1019 }
1020
1021 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1022 {
1023         return security_ops->socket_connect(sock, address, addrlen);
1024 }
1025
1026 int security_socket_listen(struct socket *sock, int backlog)
1027 {
1028         return security_ops->socket_listen(sock, backlog);
1029 }
1030
1031 int security_socket_accept(struct socket *sock, struct socket *newsock)
1032 {
1033         return security_ops->socket_accept(sock, newsock);
1034 }
1035
1036 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1037 {
1038         return security_ops->socket_sendmsg(sock, msg, size);
1039 }
1040
1041 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1042                             int size, int flags)
1043 {
1044         return security_ops->socket_recvmsg(sock, msg, size, flags);
1045 }
1046
1047 int security_socket_getsockname(struct socket *sock)
1048 {
1049         return security_ops->socket_getsockname(sock);
1050 }
1051
1052 int security_socket_getpeername(struct socket *sock)
1053 {
1054         return security_ops->socket_getpeername(sock);
1055 }
1056
1057 int security_socket_getsockopt(struct socket *sock, int level, int optname)
1058 {
1059         return security_ops->socket_getsockopt(sock, level, optname);
1060 }
1061
1062 int security_socket_setsockopt(struct socket *sock, int level, int optname)
1063 {
1064         return security_ops->socket_setsockopt(sock, level, optname);
1065 }
1066
1067 int security_socket_shutdown(struct socket *sock, int how)
1068 {
1069         return security_ops->socket_shutdown(sock, how);
1070 }
1071
1072 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1073 {
1074         return security_ops->socket_sock_rcv_skb(sk, skb);
1075 }
1076 EXPORT_SYMBOL(security_sock_rcv_skb);
1077
1078 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1079                                       int __user *optlen, unsigned len)
1080 {
1081         return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1082 }
1083
1084 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1085 {
1086         return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1087 }
1088 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1089
1090 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1091 {
1092         return security_ops->sk_alloc_security(sk, family, priority);
1093 }
1094
1095 void security_sk_free(struct sock *sk)
1096 {
1097         security_ops->sk_free_security(sk);
1098 }
1099
1100 void security_sk_clone(const struct sock *sk, struct sock *newsk)
1101 {
1102         security_ops->sk_clone_security(sk, newsk);
1103 }
1104
1105 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1106 {
1107         security_ops->sk_getsecid(sk, &fl->secid);
1108 }
1109 EXPORT_SYMBOL(security_sk_classify_flow);
1110
1111 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1112 {
1113         security_ops->req_classify_flow(req, fl);
1114 }
1115 EXPORT_SYMBOL(security_req_classify_flow);
1116
1117 void security_sock_graft(struct sock *sk, struct socket *parent)
1118 {
1119         security_ops->sock_graft(sk, parent);
1120 }
1121 EXPORT_SYMBOL(security_sock_graft);
1122
1123 int security_inet_conn_request(struct sock *sk,
1124                         struct sk_buff *skb, struct request_sock *req)
1125 {
1126         return security_ops->inet_conn_request(sk, skb, req);
1127 }
1128 EXPORT_SYMBOL(security_inet_conn_request);
1129
1130 void security_inet_csk_clone(struct sock *newsk,
1131                         const struct request_sock *req)
1132 {
1133         security_ops->inet_csk_clone(newsk, req);
1134 }
1135
1136 void security_inet_conn_established(struct sock *sk,
1137                         struct sk_buff *skb)
1138 {
1139         security_ops->inet_conn_established(sk, skb);
1140 }
1141
1142 int security_secmark_relabel_packet(u32 secid)
1143 {
1144         return security_ops->secmark_relabel_packet(secid);
1145 }
1146 EXPORT_SYMBOL(security_secmark_relabel_packet);
1147
1148 void security_secmark_refcount_inc(void)
1149 {
1150         security_ops->secmark_refcount_inc();
1151 }
1152 EXPORT_SYMBOL(security_secmark_refcount_inc);
1153
1154 void security_secmark_refcount_dec(void)
1155 {
1156         security_ops->secmark_refcount_dec();
1157 }
1158 EXPORT_SYMBOL(security_secmark_refcount_dec);
1159
1160 int security_tun_dev_create(void)
1161 {
1162         return security_ops->tun_dev_create();
1163 }
1164 EXPORT_SYMBOL(security_tun_dev_create);
1165
1166 void security_tun_dev_post_create(struct sock *sk)
1167 {
1168         return security_ops->tun_dev_post_create(sk);
1169 }
1170 EXPORT_SYMBOL(security_tun_dev_post_create);
1171
1172 int security_tun_dev_attach(struct sock *sk)
1173 {
1174         return security_ops->tun_dev_attach(sk);
1175 }
1176 EXPORT_SYMBOL(security_tun_dev_attach);
1177
1178 #endif  /* CONFIG_SECURITY_NETWORK */
1179
1180 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1181
1182 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1183 {
1184         return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1185 }
1186 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1187
1188 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1189                               struct xfrm_sec_ctx **new_ctxp)
1190 {
1191         return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1192 }
1193
1194 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1195 {
1196         security_ops->xfrm_policy_free_security(ctx);
1197 }
1198 EXPORT_SYMBOL(security_xfrm_policy_free);
1199
1200 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1201 {
1202         return security_ops->xfrm_policy_delete_security(ctx);
1203 }
1204
1205 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1206 {
1207         return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1208 }
1209 EXPORT_SYMBOL(security_xfrm_state_alloc);
1210
1211 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1212                                       struct xfrm_sec_ctx *polsec, u32 secid)
1213 {
1214         if (!polsec)
1215                 return 0;
1216         /*
1217          * We want the context to be taken from secid which is usually
1218          * from the sock.
1219          */
1220         return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1221 }
1222
1223 int security_xfrm_state_delete(struct xfrm_state *x)
1224 {
1225         return security_ops->xfrm_state_delete_security(x);
1226 }
1227 EXPORT_SYMBOL(security_xfrm_state_delete);
1228
1229 void security_xfrm_state_free(struct xfrm_state *x)
1230 {
1231         security_ops->xfrm_state_free_security(x);
1232 }
1233
1234 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1235 {
1236         return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1237 }
1238
1239 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1240                                        struct xfrm_policy *xp, struct flowi *fl)
1241 {
1242         return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1243 }
1244
1245 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1246 {
1247         return security_ops->xfrm_decode_session(skb, secid, 1);
1248 }
1249
1250 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1251 {
1252         int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0);
1253
1254         BUG_ON(rc);
1255 }
1256 EXPORT_SYMBOL(security_skb_classify_flow);
1257
1258 #endif  /* CONFIG_SECURITY_NETWORK_XFRM */
1259
1260 #ifdef CONFIG_KEYS
1261
1262 int security_key_alloc(struct key *key, const struct cred *cred,
1263                        unsigned long flags)
1264 {
1265         return security_ops->key_alloc(key, cred, flags);
1266 }
1267
1268 void security_key_free(struct key *key)
1269 {
1270         security_ops->key_free(key);
1271 }
1272
1273 int security_key_permission(key_ref_t key_ref,
1274                             const struct cred *cred, key_perm_t perm)
1275 {
1276         return security_ops->key_permission(key_ref, cred, perm);
1277 }
1278
1279 int security_key_getsecurity(struct key *key, char **_buffer)
1280 {
1281         return security_ops->key_getsecurity(key, _buffer);
1282 }
1283
1284 #endif  /* CONFIG_KEYS */
1285
1286 #ifdef CONFIG_AUDIT
1287
1288 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1289 {
1290         return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1291 }
1292
1293 int security_audit_rule_known(struct audit_krule *krule)
1294 {
1295         return security_ops->audit_rule_known(krule);
1296 }
1297
1298 void security_audit_rule_free(void *lsmrule)
1299 {
1300         security_ops->audit_rule_free(lsmrule);
1301 }
1302
1303 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1304                               struct audit_context *actx)
1305 {
1306         return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1307 }
1308
1309 #endif /* CONFIG_AUDIT */