LSM: imbed ima calls in the security hooks
[linux-2.6.git] / security / security.c
1 /*
2  * Security plug functions
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7  *
8  *      This program is free software; you can redistribute it and/or modify
9  *      it under the terms of the GNU General Public License as published by
10  *      the Free Software Foundation; either version 2 of the License, or
11  *      (at your option) any later version.
12  */
13
14 #include <linux/capability.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/security.h>
19 #include <linux/ima.h>
20
21 /* Boot-time LSM user choice */
22 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1];
23
24 /* things that live in capability.c */
25 extern struct security_operations default_security_ops;
26 extern void security_fixup_ops(struct security_operations *ops);
27
28 struct security_operations *security_ops;       /* Initialized to NULL */
29
30 static inline int verify(struct security_operations *ops)
31 {
32         /* verify the security_operations structure exists */
33         if (!ops)
34                 return -EINVAL;
35         security_fixup_ops(ops);
36         return 0;
37 }
38
39 static void __init do_security_initcalls(void)
40 {
41         initcall_t *call;
42         call = __security_initcall_start;
43         while (call < __security_initcall_end) {
44                 (*call) ();
45                 call++;
46         }
47 }
48
49 /**
50  * security_init - initializes the security framework
51  *
52  * This should be called early in the kernel initialization sequence.
53  */
54 int __init security_init(void)
55 {
56         printk(KERN_INFO "Security Framework initialized\n");
57
58         security_fixup_ops(&default_security_ops);
59         security_ops = &default_security_ops;
60         do_security_initcalls();
61
62         return 0;
63 }
64
65 /* Save user chosen LSM */
66 static int __init choose_lsm(char *str)
67 {
68         strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
69         return 1;
70 }
71 __setup("security=", choose_lsm);
72
73 /**
74  * security_module_enable - Load given security module on boot ?
75  * @ops: a pointer to the struct security_operations that is to be checked.
76  *
77  * Each LSM must pass this method before registering its own operations
78  * to avoid security registration races. This method may also be used
79  * to check if your LSM is currently loaded during kernel initialization.
80  *
81  * Return true if:
82  *      -The passed LSM is the one chosen by user at boot time,
83  *      -or user didn't specify a specific LSM and we're the first to ask
84  *       for registration permission,
85  *      -or the passed LSM is currently loaded.
86  * Otherwise, return false.
87  */
88 int __init security_module_enable(struct security_operations *ops)
89 {
90         if (!*chosen_lsm)
91                 strncpy(chosen_lsm, ops->name, SECURITY_NAME_MAX);
92         else if (strncmp(ops->name, chosen_lsm, SECURITY_NAME_MAX))
93                 return 0;
94
95         return 1;
96 }
97
98 /**
99  * register_security - registers a security framework with the kernel
100  * @ops: a pointer to the struct security_options that is to be registered
101  *
102  * This function allows a security module to register itself with the
103  * kernel security subsystem.  Some rudimentary checking is done on the @ops
104  * value passed to this function. You'll need to check first if your LSM
105  * is allowed to register its @ops by calling security_module_enable(@ops).
106  *
107  * If there is already a security module registered with the kernel,
108  * an error will be returned.  Otherwise %0 is returned on success.
109  */
110 int register_security(struct security_operations *ops)
111 {
112         if (verify(ops)) {
113                 printk(KERN_DEBUG "%s could not verify "
114                        "security_operations structure.\n", __func__);
115                 return -EINVAL;
116         }
117
118         if (security_ops != &default_security_ops)
119                 return -EAGAIN;
120
121         security_ops = ops;
122
123         return 0;
124 }
125
126 /* Security operations */
127
128 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
129 {
130         return security_ops->ptrace_access_check(child, mode);
131 }
132
133 int security_ptrace_traceme(struct task_struct *parent)
134 {
135         return security_ops->ptrace_traceme(parent);
136 }
137
138 int security_capget(struct task_struct *target,
139                      kernel_cap_t *effective,
140                      kernel_cap_t *inheritable,
141                      kernel_cap_t *permitted)
142 {
143         return security_ops->capget(target, effective, inheritable, permitted);
144 }
145
146 int security_capset(struct cred *new, const struct cred *old,
147                     const kernel_cap_t *effective,
148                     const kernel_cap_t *inheritable,
149                     const kernel_cap_t *permitted)
150 {
151         return security_ops->capset(new, old,
152                                     effective, inheritable, permitted);
153 }
154
155 int security_capable(int cap)
156 {
157         return security_ops->capable(current, current_cred(), cap,
158                                      SECURITY_CAP_AUDIT);
159 }
160
161 int security_real_capable(struct task_struct *tsk, int cap)
162 {
163         const struct cred *cred;
164         int ret;
165
166         cred = get_task_cred(tsk);
167         ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_AUDIT);
168         put_cred(cred);
169         return ret;
170 }
171
172 int security_real_capable_noaudit(struct task_struct *tsk, int cap)
173 {
174         const struct cred *cred;
175         int ret;
176
177         cred = get_task_cred(tsk);
178         ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_NOAUDIT);
179         put_cred(cred);
180         return ret;
181 }
182
183 int security_acct(struct file *file)
184 {
185         return security_ops->acct(file);
186 }
187
188 int security_sysctl(struct ctl_table *table, int op)
189 {
190         return security_ops->sysctl(table, op);
191 }
192
193 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
194 {
195         return security_ops->quotactl(cmds, type, id, sb);
196 }
197
198 int security_quota_on(struct dentry *dentry)
199 {
200         return security_ops->quota_on(dentry);
201 }
202
203 int security_syslog(int type)
204 {
205         return security_ops->syslog(type);
206 }
207
208 int security_settime(struct timespec *ts, struct timezone *tz)
209 {
210         return security_ops->settime(ts, tz);
211 }
212
213 int security_vm_enough_memory(long pages)
214 {
215         WARN_ON(current->mm == NULL);
216         return security_ops->vm_enough_memory(current->mm, pages);
217 }
218
219 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
220 {
221         WARN_ON(mm == NULL);
222         return security_ops->vm_enough_memory(mm, pages);
223 }
224
225 int security_vm_enough_memory_kern(long pages)
226 {
227         /* If current->mm is a kernel thread then we will pass NULL,
228            for this specific case that is fine */
229         return security_ops->vm_enough_memory(current->mm, pages);
230 }
231
232 int security_bprm_set_creds(struct linux_binprm *bprm)
233 {
234         return security_ops->bprm_set_creds(bprm);
235 }
236
237 int security_bprm_check(struct linux_binprm *bprm)
238 {
239         int ret;
240
241         ret = security_ops->bprm_check_security(bprm);
242         if (ret)
243                 return ret;
244         return ima_bprm_check(bprm);
245 }
246
247 void security_bprm_committing_creds(struct linux_binprm *bprm)
248 {
249         security_ops->bprm_committing_creds(bprm);
250 }
251
252 void security_bprm_committed_creds(struct linux_binprm *bprm)
253 {
254         security_ops->bprm_committed_creds(bprm);
255 }
256
257 int security_bprm_secureexec(struct linux_binprm *bprm)
258 {
259         return security_ops->bprm_secureexec(bprm);
260 }
261
262 int security_sb_alloc(struct super_block *sb)
263 {
264         return security_ops->sb_alloc_security(sb);
265 }
266
267 void security_sb_free(struct super_block *sb)
268 {
269         security_ops->sb_free_security(sb);
270 }
271
272 int security_sb_copy_data(char *orig, char *copy)
273 {
274         return security_ops->sb_copy_data(orig, copy);
275 }
276 EXPORT_SYMBOL(security_sb_copy_data);
277
278 int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
279 {
280         return security_ops->sb_kern_mount(sb, flags, data);
281 }
282
283 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
284 {
285         return security_ops->sb_show_options(m, sb);
286 }
287
288 int security_sb_statfs(struct dentry *dentry)
289 {
290         return security_ops->sb_statfs(dentry);
291 }
292
293 int security_sb_mount(char *dev_name, struct path *path,
294                        char *type, unsigned long flags, void *data)
295 {
296         return security_ops->sb_mount(dev_name, path, type, flags, data);
297 }
298
299 int security_sb_check_sb(struct vfsmount *mnt, struct path *path)
300 {
301         return security_ops->sb_check_sb(mnt, path);
302 }
303
304 int security_sb_umount(struct vfsmount *mnt, int flags)
305 {
306         return security_ops->sb_umount(mnt, flags);
307 }
308
309 void security_sb_umount_close(struct vfsmount *mnt)
310 {
311         security_ops->sb_umount_close(mnt);
312 }
313
314 void security_sb_umount_busy(struct vfsmount *mnt)
315 {
316         security_ops->sb_umount_busy(mnt);
317 }
318
319 void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data)
320 {
321         security_ops->sb_post_remount(mnt, flags, data);
322 }
323
324 void security_sb_post_addmount(struct vfsmount *mnt, struct path *mountpoint)
325 {
326         security_ops->sb_post_addmount(mnt, mountpoint);
327 }
328
329 int security_sb_pivotroot(struct path *old_path, struct path *new_path)
330 {
331         return security_ops->sb_pivotroot(old_path, new_path);
332 }
333
334 void security_sb_post_pivotroot(struct path *old_path, struct path *new_path)
335 {
336         security_ops->sb_post_pivotroot(old_path, new_path);
337 }
338
339 int security_sb_set_mnt_opts(struct super_block *sb,
340                                 struct security_mnt_opts *opts)
341 {
342         return security_ops->sb_set_mnt_opts(sb, opts);
343 }
344 EXPORT_SYMBOL(security_sb_set_mnt_opts);
345
346 void security_sb_clone_mnt_opts(const struct super_block *oldsb,
347                                 struct super_block *newsb)
348 {
349         security_ops->sb_clone_mnt_opts(oldsb, newsb);
350 }
351 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
352
353 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
354 {
355         return security_ops->sb_parse_opts_str(options, opts);
356 }
357 EXPORT_SYMBOL(security_sb_parse_opts_str);
358
359 int security_inode_alloc(struct inode *inode)
360 {
361         int ret;
362
363         inode->i_security = NULL;
364         ret =  security_ops->inode_alloc_security(inode);
365         if (ret)
366                 return ret;
367         ret = ima_inode_alloc(inode);
368         if (ret)
369                 security_inode_free(inode);
370         return ret;
371 }
372
373 void security_inode_free(struct inode *inode)
374 {
375         ima_inode_free(inode);
376         security_ops->inode_free_security(inode);
377 }
378
379 int security_inode_init_security(struct inode *inode, struct inode *dir,
380                                   char **name, void **value, size_t *len)
381 {
382         if (unlikely(IS_PRIVATE(inode)))
383                 return -EOPNOTSUPP;
384         return security_ops->inode_init_security(inode, dir, name, value, len);
385 }
386 EXPORT_SYMBOL(security_inode_init_security);
387
388 #ifdef CONFIG_SECURITY_PATH
389 int security_path_mknod(struct path *path, struct dentry *dentry, int mode,
390                         unsigned int dev)
391 {
392         if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
393                 return 0;
394         return security_ops->path_mknod(path, dentry, mode, dev);
395 }
396 EXPORT_SYMBOL(security_path_mknod);
397
398 int security_path_mkdir(struct path *path, struct dentry *dentry, int mode)
399 {
400         if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
401                 return 0;
402         return security_ops->path_mkdir(path, dentry, mode);
403 }
404
405 int security_path_rmdir(struct path *path, struct dentry *dentry)
406 {
407         if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
408                 return 0;
409         return security_ops->path_rmdir(path, dentry);
410 }
411
412 int security_path_unlink(struct path *path, struct dentry *dentry)
413 {
414         if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
415                 return 0;
416         return security_ops->path_unlink(path, dentry);
417 }
418
419 int security_path_symlink(struct path *path, struct dentry *dentry,
420                           const char *old_name)
421 {
422         if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
423                 return 0;
424         return security_ops->path_symlink(path, dentry, old_name);
425 }
426
427 int security_path_link(struct dentry *old_dentry, struct path *new_dir,
428                        struct dentry *new_dentry)
429 {
430         if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
431                 return 0;
432         return security_ops->path_link(old_dentry, new_dir, new_dentry);
433 }
434
435 int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
436                          struct path *new_dir, struct dentry *new_dentry)
437 {
438         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
439                      (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
440                 return 0;
441         return security_ops->path_rename(old_dir, old_dentry, new_dir,
442                                          new_dentry);
443 }
444
445 int security_path_truncate(struct path *path, loff_t length,
446                            unsigned int time_attrs)
447 {
448         if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
449                 return 0;
450         return security_ops->path_truncate(path, length, time_attrs);
451 }
452
453 int security_path_chmod(struct dentry *dentry, struct vfsmount *mnt,
454                         mode_t mode)
455 {
456         if (unlikely(IS_PRIVATE(dentry->d_inode)))
457                 return 0;
458         return security_ops->path_chmod(dentry, mnt, mode);
459 }
460
461 int security_path_chown(struct path *path, uid_t uid, gid_t gid)
462 {
463         if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
464                 return 0;
465         return security_ops->path_chown(path, uid, gid);
466 }
467
468 int security_path_chroot(struct path *path)
469 {
470         return security_ops->path_chroot(path);
471 }
472 #endif
473
474 int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
475 {
476         if (unlikely(IS_PRIVATE(dir)))
477                 return 0;
478         return security_ops->inode_create(dir, dentry, mode);
479 }
480 EXPORT_SYMBOL_GPL(security_inode_create);
481
482 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
483                          struct dentry *new_dentry)
484 {
485         if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
486                 return 0;
487         return security_ops->inode_link(old_dentry, dir, new_dentry);
488 }
489
490 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
491 {
492         if (unlikely(IS_PRIVATE(dentry->d_inode)))
493                 return 0;
494         return security_ops->inode_unlink(dir, dentry);
495 }
496
497 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
498                             const char *old_name)
499 {
500         if (unlikely(IS_PRIVATE(dir)))
501                 return 0;
502         return security_ops->inode_symlink(dir, dentry, old_name);
503 }
504
505 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
506 {
507         if (unlikely(IS_PRIVATE(dir)))
508                 return 0;
509         return security_ops->inode_mkdir(dir, dentry, mode);
510 }
511 EXPORT_SYMBOL_GPL(security_inode_mkdir);
512
513 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
514 {
515         if (unlikely(IS_PRIVATE(dentry->d_inode)))
516                 return 0;
517         return security_ops->inode_rmdir(dir, dentry);
518 }
519
520 int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
521 {
522         if (unlikely(IS_PRIVATE(dir)))
523                 return 0;
524         return security_ops->inode_mknod(dir, dentry, mode, dev);
525 }
526
527 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
528                            struct inode *new_dir, struct dentry *new_dentry)
529 {
530         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
531             (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
532                 return 0;
533         return security_ops->inode_rename(old_dir, old_dentry,
534                                            new_dir, new_dentry);
535 }
536
537 int security_inode_readlink(struct dentry *dentry)
538 {
539         if (unlikely(IS_PRIVATE(dentry->d_inode)))
540                 return 0;
541         return security_ops->inode_readlink(dentry);
542 }
543
544 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
545 {
546         if (unlikely(IS_PRIVATE(dentry->d_inode)))
547                 return 0;
548         return security_ops->inode_follow_link(dentry, nd);
549 }
550
551 int security_inode_permission(struct inode *inode, int mask)
552 {
553         if (unlikely(IS_PRIVATE(inode)))
554                 return 0;
555         return security_ops->inode_permission(inode, mask);
556 }
557
558 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
559 {
560         if (unlikely(IS_PRIVATE(dentry->d_inode)))
561                 return 0;
562         return security_ops->inode_setattr(dentry, attr);
563 }
564 EXPORT_SYMBOL_GPL(security_inode_setattr);
565
566 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
567 {
568         if (unlikely(IS_PRIVATE(dentry->d_inode)))
569                 return 0;
570         return security_ops->inode_getattr(mnt, dentry);
571 }
572
573 void security_inode_delete(struct inode *inode)
574 {
575         if (unlikely(IS_PRIVATE(inode)))
576                 return;
577         security_ops->inode_delete(inode);
578 }
579
580 int security_inode_setxattr(struct dentry *dentry, const char *name,
581                             const void *value, size_t size, int flags)
582 {
583         if (unlikely(IS_PRIVATE(dentry->d_inode)))
584                 return 0;
585         return security_ops->inode_setxattr(dentry, name, value, size, flags);
586 }
587
588 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
589                                   const void *value, size_t size, int flags)
590 {
591         if (unlikely(IS_PRIVATE(dentry->d_inode)))
592                 return;
593         security_ops->inode_post_setxattr(dentry, name, value, size, flags);
594 }
595
596 int security_inode_getxattr(struct dentry *dentry, const char *name)
597 {
598         if (unlikely(IS_PRIVATE(dentry->d_inode)))
599                 return 0;
600         return security_ops->inode_getxattr(dentry, name);
601 }
602
603 int security_inode_listxattr(struct dentry *dentry)
604 {
605         if (unlikely(IS_PRIVATE(dentry->d_inode)))
606                 return 0;
607         return security_ops->inode_listxattr(dentry);
608 }
609
610 int security_inode_removexattr(struct dentry *dentry, const char *name)
611 {
612         if (unlikely(IS_PRIVATE(dentry->d_inode)))
613                 return 0;
614         return security_ops->inode_removexattr(dentry, name);
615 }
616
617 int security_inode_need_killpriv(struct dentry *dentry)
618 {
619         return security_ops->inode_need_killpriv(dentry);
620 }
621
622 int security_inode_killpriv(struct dentry *dentry)
623 {
624         return security_ops->inode_killpriv(dentry);
625 }
626
627 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
628 {
629         if (unlikely(IS_PRIVATE(inode)))
630                 return 0;
631         return security_ops->inode_getsecurity(inode, name, buffer, alloc);
632 }
633
634 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
635 {
636         if (unlikely(IS_PRIVATE(inode)))
637                 return 0;
638         return security_ops->inode_setsecurity(inode, name, value, size, flags);
639 }
640
641 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
642 {
643         if (unlikely(IS_PRIVATE(inode)))
644                 return 0;
645         return security_ops->inode_listsecurity(inode, buffer, buffer_size);
646 }
647
648 void security_inode_getsecid(const struct inode *inode, u32 *secid)
649 {
650         security_ops->inode_getsecid(inode, secid);
651 }
652
653 int security_file_permission(struct file *file, int mask)
654 {
655         return security_ops->file_permission(file, mask);
656 }
657
658 int security_file_alloc(struct file *file)
659 {
660         return security_ops->file_alloc_security(file);
661 }
662
663 void security_file_free(struct file *file)
664 {
665         security_ops->file_free_security(file);
666         if (file->f_dentry)
667                 ima_file_free(file);
668 }
669
670 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
671 {
672         return security_ops->file_ioctl(file, cmd, arg);
673 }
674
675 int security_file_mmap(struct file *file, unsigned long reqprot,
676                         unsigned long prot, unsigned long flags,
677                         unsigned long addr, unsigned long addr_only)
678 {
679         int ret;
680
681         ret = security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
682         if (ret)
683                 return ret;
684         return ima_file_mmap(file, prot);
685 }
686
687 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
688                             unsigned long prot)
689 {
690         return security_ops->file_mprotect(vma, reqprot, prot);
691 }
692
693 int security_file_lock(struct file *file, unsigned int cmd)
694 {
695         return security_ops->file_lock(file, cmd);
696 }
697
698 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
699 {
700         return security_ops->file_fcntl(file, cmd, arg);
701 }
702
703 int security_file_set_fowner(struct file *file)
704 {
705         return security_ops->file_set_fowner(file);
706 }
707
708 int security_file_send_sigiotask(struct task_struct *tsk,
709                                   struct fown_struct *fown, int sig)
710 {
711         return security_ops->file_send_sigiotask(tsk, fown, sig);
712 }
713
714 int security_file_receive(struct file *file)
715 {
716         return security_ops->file_receive(file);
717 }
718
719 int security_dentry_open(struct file *file, const struct cred *cred)
720 {
721         return security_ops->dentry_open(file, cred);
722 }
723
724 int security_task_create(unsigned long clone_flags)
725 {
726         return security_ops->task_create(clone_flags);
727 }
728
729 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
730 {
731         return security_ops->cred_alloc_blank(cred, gfp);
732 }
733
734 void security_cred_free(struct cred *cred)
735 {
736         security_ops->cred_free(cred);
737 }
738
739 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
740 {
741         return security_ops->cred_prepare(new, old, gfp);
742 }
743
744 void security_commit_creds(struct cred *new, const struct cred *old)
745 {
746         security_ops->cred_commit(new, old);
747 }
748
749 void security_transfer_creds(struct cred *new, const struct cred *old)
750 {
751         security_ops->cred_transfer(new, old);
752 }
753
754 int security_kernel_act_as(struct cred *new, u32 secid)
755 {
756         return security_ops->kernel_act_as(new, secid);
757 }
758
759 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
760 {
761         return security_ops->kernel_create_files_as(new, inode);
762 }
763
764 int security_kernel_module_request(void)
765 {
766         return security_ops->kernel_module_request();
767 }
768
769 int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
770 {
771         return security_ops->task_setuid(id0, id1, id2, flags);
772 }
773
774 int security_task_fix_setuid(struct cred *new, const struct cred *old,
775                              int flags)
776 {
777         return security_ops->task_fix_setuid(new, old, flags);
778 }
779
780 int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
781 {
782         return security_ops->task_setgid(id0, id1, id2, flags);
783 }
784
785 int security_task_setpgid(struct task_struct *p, pid_t pgid)
786 {
787         return security_ops->task_setpgid(p, pgid);
788 }
789
790 int security_task_getpgid(struct task_struct *p)
791 {
792         return security_ops->task_getpgid(p);
793 }
794
795 int security_task_getsid(struct task_struct *p)
796 {
797         return security_ops->task_getsid(p);
798 }
799
800 void security_task_getsecid(struct task_struct *p, u32 *secid)
801 {
802         security_ops->task_getsecid(p, secid);
803 }
804 EXPORT_SYMBOL(security_task_getsecid);
805
806 int security_task_setgroups(struct group_info *group_info)
807 {
808         return security_ops->task_setgroups(group_info);
809 }
810
811 int security_task_setnice(struct task_struct *p, int nice)
812 {
813         return security_ops->task_setnice(p, nice);
814 }
815
816 int security_task_setioprio(struct task_struct *p, int ioprio)
817 {
818         return security_ops->task_setioprio(p, ioprio);
819 }
820
821 int security_task_getioprio(struct task_struct *p)
822 {
823         return security_ops->task_getioprio(p);
824 }
825
826 int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
827 {
828         return security_ops->task_setrlimit(resource, new_rlim);
829 }
830
831 int security_task_setscheduler(struct task_struct *p,
832                                 int policy, struct sched_param *lp)
833 {
834         return security_ops->task_setscheduler(p, policy, lp);
835 }
836
837 int security_task_getscheduler(struct task_struct *p)
838 {
839         return security_ops->task_getscheduler(p);
840 }
841
842 int security_task_movememory(struct task_struct *p)
843 {
844         return security_ops->task_movememory(p);
845 }
846
847 int security_task_kill(struct task_struct *p, struct siginfo *info,
848                         int sig, u32 secid)
849 {
850         return security_ops->task_kill(p, info, sig, secid);
851 }
852
853 int security_task_wait(struct task_struct *p)
854 {
855         return security_ops->task_wait(p);
856 }
857
858 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
859                          unsigned long arg4, unsigned long arg5)
860 {
861         return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
862 }
863
864 void security_task_to_inode(struct task_struct *p, struct inode *inode)
865 {
866         security_ops->task_to_inode(p, inode);
867 }
868
869 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
870 {
871         return security_ops->ipc_permission(ipcp, flag);
872 }
873
874 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
875 {
876         security_ops->ipc_getsecid(ipcp, secid);
877 }
878
879 int security_msg_msg_alloc(struct msg_msg *msg)
880 {
881         return security_ops->msg_msg_alloc_security(msg);
882 }
883
884 void security_msg_msg_free(struct msg_msg *msg)
885 {
886         security_ops->msg_msg_free_security(msg);
887 }
888
889 int security_msg_queue_alloc(struct msg_queue *msq)
890 {
891         return security_ops->msg_queue_alloc_security(msq);
892 }
893
894 void security_msg_queue_free(struct msg_queue *msq)
895 {
896         security_ops->msg_queue_free_security(msq);
897 }
898
899 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
900 {
901         return security_ops->msg_queue_associate(msq, msqflg);
902 }
903
904 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
905 {
906         return security_ops->msg_queue_msgctl(msq, cmd);
907 }
908
909 int security_msg_queue_msgsnd(struct msg_queue *msq,
910                                struct msg_msg *msg, int msqflg)
911 {
912         return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
913 }
914
915 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
916                                struct task_struct *target, long type, int mode)
917 {
918         return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
919 }
920
921 int security_shm_alloc(struct shmid_kernel *shp)
922 {
923         return security_ops->shm_alloc_security(shp);
924 }
925
926 void security_shm_free(struct shmid_kernel *shp)
927 {
928         security_ops->shm_free_security(shp);
929 }
930
931 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
932 {
933         return security_ops->shm_associate(shp, shmflg);
934 }
935
936 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
937 {
938         return security_ops->shm_shmctl(shp, cmd);
939 }
940
941 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
942 {
943         return security_ops->shm_shmat(shp, shmaddr, shmflg);
944 }
945
946 int security_sem_alloc(struct sem_array *sma)
947 {
948         return security_ops->sem_alloc_security(sma);
949 }
950
951 void security_sem_free(struct sem_array *sma)
952 {
953         security_ops->sem_free_security(sma);
954 }
955
956 int security_sem_associate(struct sem_array *sma, int semflg)
957 {
958         return security_ops->sem_associate(sma, semflg);
959 }
960
961 int security_sem_semctl(struct sem_array *sma, int cmd)
962 {
963         return security_ops->sem_semctl(sma, cmd);
964 }
965
966 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
967                         unsigned nsops, int alter)
968 {
969         return security_ops->sem_semop(sma, sops, nsops, alter);
970 }
971
972 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
973 {
974         if (unlikely(inode && IS_PRIVATE(inode)))
975                 return;
976         security_ops->d_instantiate(dentry, inode);
977 }
978 EXPORT_SYMBOL(security_d_instantiate);
979
980 int security_getprocattr(struct task_struct *p, char *name, char **value)
981 {
982         return security_ops->getprocattr(p, name, value);
983 }
984
985 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
986 {
987         return security_ops->setprocattr(p, name, value, size);
988 }
989
990 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
991 {
992         return security_ops->netlink_send(sk, skb);
993 }
994
995 int security_netlink_recv(struct sk_buff *skb, int cap)
996 {
997         return security_ops->netlink_recv(skb, cap);
998 }
999 EXPORT_SYMBOL(security_netlink_recv);
1000
1001 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1002 {
1003         return security_ops->secid_to_secctx(secid, secdata, seclen);
1004 }
1005 EXPORT_SYMBOL(security_secid_to_secctx);
1006
1007 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1008 {
1009         return security_ops->secctx_to_secid(secdata, seclen, secid);
1010 }
1011 EXPORT_SYMBOL(security_secctx_to_secid);
1012
1013 void security_release_secctx(char *secdata, u32 seclen)
1014 {
1015         security_ops->release_secctx(secdata, seclen);
1016 }
1017 EXPORT_SYMBOL(security_release_secctx);
1018
1019 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1020 {
1021         return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
1022 }
1023 EXPORT_SYMBOL(security_inode_notifysecctx);
1024
1025 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1026 {
1027         return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
1028 }
1029 EXPORT_SYMBOL(security_inode_setsecctx);
1030
1031 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1032 {
1033         return security_ops->inode_getsecctx(inode, ctx, ctxlen);
1034 }
1035 EXPORT_SYMBOL(security_inode_getsecctx);
1036
1037 #ifdef CONFIG_SECURITY_NETWORK
1038
1039 int security_unix_stream_connect(struct socket *sock, struct socket *other,
1040                                  struct sock *newsk)
1041 {
1042         return security_ops->unix_stream_connect(sock, other, newsk);
1043 }
1044 EXPORT_SYMBOL(security_unix_stream_connect);
1045
1046 int security_unix_may_send(struct socket *sock,  struct socket *other)
1047 {
1048         return security_ops->unix_may_send(sock, other);
1049 }
1050 EXPORT_SYMBOL(security_unix_may_send);
1051
1052 int security_socket_create(int family, int type, int protocol, int kern)
1053 {
1054         return security_ops->socket_create(family, type, protocol, kern);
1055 }
1056
1057 int security_socket_post_create(struct socket *sock, int family,
1058                                 int type, int protocol, int kern)
1059 {
1060         return security_ops->socket_post_create(sock, family, type,
1061                                                 protocol, kern);
1062 }
1063
1064 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1065 {
1066         return security_ops->socket_bind(sock, address, addrlen);
1067 }
1068
1069 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1070 {
1071         return security_ops->socket_connect(sock, address, addrlen);
1072 }
1073
1074 int security_socket_listen(struct socket *sock, int backlog)
1075 {
1076         return security_ops->socket_listen(sock, backlog);
1077 }
1078
1079 int security_socket_accept(struct socket *sock, struct socket *newsock)
1080 {
1081         return security_ops->socket_accept(sock, newsock);
1082 }
1083
1084 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1085 {
1086         return security_ops->socket_sendmsg(sock, msg, size);
1087 }
1088
1089 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1090                             int size, int flags)
1091 {
1092         return security_ops->socket_recvmsg(sock, msg, size, flags);
1093 }
1094
1095 int security_socket_getsockname(struct socket *sock)
1096 {
1097         return security_ops->socket_getsockname(sock);
1098 }
1099
1100 int security_socket_getpeername(struct socket *sock)
1101 {
1102         return security_ops->socket_getpeername(sock);
1103 }
1104
1105 int security_socket_getsockopt(struct socket *sock, int level, int optname)
1106 {
1107         return security_ops->socket_getsockopt(sock, level, optname);
1108 }
1109
1110 int security_socket_setsockopt(struct socket *sock, int level, int optname)
1111 {
1112         return security_ops->socket_setsockopt(sock, level, optname);
1113 }
1114
1115 int security_socket_shutdown(struct socket *sock, int how)
1116 {
1117         return security_ops->socket_shutdown(sock, how);
1118 }
1119
1120 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1121 {
1122         return security_ops->socket_sock_rcv_skb(sk, skb);
1123 }
1124 EXPORT_SYMBOL(security_sock_rcv_skb);
1125
1126 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1127                                       int __user *optlen, unsigned len)
1128 {
1129         return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1130 }
1131
1132 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1133 {
1134         return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1135 }
1136 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1137
1138 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1139 {
1140         return security_ops->sk_alloc_security(sk, family, priority);
1141 }
1142
1143 void security_sk_free(struct sock *sk)
1144 {
1145         security_ops->sk_free_security(sk);
1146 }
1147
1148 void security_sk_clone(const struct sock *sk, struct sock *newsk)
1149 {
1150         security_ops->sk_clone_security(sk, newsk);
1151 }
1152
1153 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1154 {
1155         security_ops->sk_getsecid(sk, &fl->secid);
1156 }
1157 EXPORT_SYMBOL(security_sk_classify_flow);
1158
1159 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1160 {
1161         security_ops->req_classify_flow(req, fl);
1162 }
1163 EXPORT_SYMBOL(security_req_classify_flow);
1164
1165 void security_sock_graft(struct sock *sk, struct socket *parent)
1166 {
1167         security_ops->sock_graft(sk, parent);
1168 }
1169 EXPORT_SYMBOL(security_sock_graft);
1170
1171 int security_inet_conn_request(struct sock *sk,
1172                         struct sk_buff *skb, struct request_sock *req)
1173 {
1174         return security_ops->inet_conn_request(sk, skb, req);
1175 }
1176 EXPORT_SYMBOL(security_inet_conn_request);
1177
1178 void security_inet_csk_clone(struct sock *newsk,
1179                         const struct request_sock *req)
1180 {
1181         security_ops->inet_csk_clone(newsk, req);
1182 }
1183
1184 void security_inet_conn_established(struct sock *sk,
1185                         struct sk_buff *skb)
1186 {
1187         security_ops->inet_conn_established(sk, skb);
1188 }
1189
1190 int security_tun_dev_create(void)
1191 {
1192         return security_ops->tun_dev_create();
1193 }
1194 EXPORT_SYMBOL(security_tun_dev_create);
1195
1196 void security_tun_dev_post_create(struct sock *sk)
1197 {
1198         return security_ops->tun_dev_post_create(sk);
1199 }
1200 EXPORT_SYMBOL(security_tun_dev_post_create);
1201
1202 int security_tun_dev_attach(struct sock *sk)
1203 {
1204         return security_ops->tun_dev_attach(sk);
1205 }
1206 EXPORT_SYMBOL(security_tun_dev_attach);
1207
1208 #endif  /* CONFIG_SECURITY_NETWORK */
1209
1210 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1211
1212 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1213 {
1214         return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1215 }
1216 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1217
1218 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1219                               struct xfrm_sec_ctx **new_ctxp)
1220 {
1221         return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1222 }
1223
1224 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1225 {
1226         security_ops->xfrm_policy_free_security(ctx);
1227 }
1228 EXPORT_SYMBOL(security_xfrm_policy_free);
1229
1230 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1231 {
1232         return security_ops->xfrm_policy_delete_security(ctx);
1233 }
1234
1235 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1236 {
1237         return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1238 }
1239 EXPORT_SYMBOL(security_xfrm_state_alloc);
1240
1241 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1242                                       struct xfrm_sec_ctx *polsec, u32 secid)
1243 {
1244         if (!polsec)
1245                 return 0;
1246         /*
1247          * We want the context to be taken from secid which is usually
1248          * from the sock.
1249          */
1250         return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1251 }
1252
1253 int security_xfrm_state_delete(struct xfrm_state *x)
1254 {
1255         return security_ops->xfrm_state_delete_security(x);
1256 }
1257 EXPORT_SYMBOL(security_xfrm_state_delete);
1258
1259 void security_xfrm_state_free(struct xfrm_state *x)
1260 {
1261         security_ops->xfrm_state_free_security(x);
1262 }
1263
1264 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1265 {
1266         return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1267 }
1268
1269 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1270                                        struct xfrm_policy *xp, struct flowi *fl)
1271 {
1272         return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1273 }
1274
1275 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1276 {
1277         return security_ops->xfrm_decode_session(skb, secid, 1);
1278 }
1279
1280 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1281 {
1282         int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0);
1283
1284         BUG_ON(rc);
1285 }
1286 EXPORT_SYMBOL(security_skb_classify_flow);
1287
1288 #endif  /* CONFIG_SECURITY_NETWORK_XFRM */
1289
1290 #ifdef CONFIG_KEYS
1291
1292 int security_key_alloc(struct key *key, const struct cred *cred,
1293                        unsigned long flags)
1294 {
1295         return security_ops->key_alloc(key, cred, flags);
1296 }
1297
1298 void security_key_free(struct key *key)
1299 {
1300         security_ops->key_free(key);
1301 }
1302
1303 int security_key_permission(key_ref_t key_ref,
1304                             const struct cred *cred, key_perm_t perm)
1305 {
1306         return security_ops->key_permission(key_ref, cred, perm);
1307 }
1308
1309 int security_key_getsecurity(struct key *key, char **_buffer)
1310 {
1311         return security_ops->key_getsecurity(key, _buffer);
1312 }
1313
1314 int security_key_session_to_parent(const struct cred *cred,
1315                                    const struct cred *parent_cred,
1316                                    struct key *key)
1317 {
1318         return security_ops->key_session_to_parent(cred, parent_cred, key);
1319 }
1320
1321 #endif  /* CONFIG_KEYS */
1322
1323 #ifdef CONFIG_AUDIT
1324
1325 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1326 {
1327         return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1328 }
1329
1330 int security_audit_rule_known(struct audit_krule *krule)
1331 {
1332         return security_ops->audit_rule_known(krule);
1333 }
1334
1335 void security_audit_rule_free(void *lsmrule)
1336 {
1337         security_ops->audit_rule_free(lsmrule);
1338 }
1339
1340 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1341                               struct audit_context *actx)
1342 {
1343         return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1344 }
1345
1346 #endif /* CONFIG_AUDIT */