security: fix return of void-valued expressions
[linux-2.6.git] / security / security.c
1 /*
2  * Security plug functions
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7  *
8  *      This program is free software; you can redistribute it and/or modify
9  *      it under the terms of the GNU General Public License as published by
10  *      the Free Software Foundation; either version 2 of the License, or
11  *      (at your option) any later version.
12  */
13
14 #include <linux/capability.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/security.h>
19
20 /* Boot-time LSM user choice */
21 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1];
22
23 /* things that live in dummy.c */
24 extern struct security_operations dummy_security_ops;
25 extern void security_fixup_ops(struct security_operations *ops);
26
27 struct security_operations *security_ops;       /* Initialized to NULL */
28
29 /* amount of vm to protect from userspace access */
30 unsigned long mmap_min_addr = CONFIG_SECURITY_DEFAULT_MMAP_MIN_ADDR;
31
32 static inline int verify(struct security_operations *ops)
33 {
34         /* verify the security_operations structure exists */
35         if (!ops)
36                 return -EINVAL;
37         security_fixup_ops(ops);
38         return 0;
39 }
40
41 static void __init do_security_initcalls(void)
42 {
43         initcall_t *call;
44         call = __security_initcall_start;
45         while (call < __security_initcall_end) {
46                 (*call) ();
47                 call++;
48         }
49 }
50
51 /**
52  * security_init - initializes the security framework
53  *
54  * This should be called early in the kernel initialization sequence.
55  */
56 int __init security_init(void)
57 {
58         printk(KERN_INFO "Security Framework initialized\n");
59
60         if (verify(&dummy_security_ops)) {
61                 printk(KERN_ERR "%s could not verify "
62                        "dummy_security_ops structure.\n", __func__);
63                 return -EIO;
64         }
65
66         security_ops = &dummy_security_ops;
67         do_security_initcalls();
68
69         return 0;
70 }
71
72 /* Save user chosen LSM */
73 static int __init choose_lsm(char *str)
74 {
75         strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
76         return 1;
77 }
78 __setup("security=", choose_lsm);
79
80 /**
81  * security_module_enable - Load given security module on boot ?
82  * @ops: a pointer to the struct security_operations that is to be checked.
83  *
84  * Each LSM must pass this method before registering its own operations
85  * to avoid security registration races. This method may also be used
86  * to check if your LSM is currently loaded during kernel initialization.
87  *
88  * Return true if:
89  *      -The passed LSM is the one chosen by user at boot time,
90  *      -or user didsn't specify a specific LSM and we're the first to ask
91  *       for registeration permissoin,
92  *      -or the passed LSM is currently loaded.
93  * Otherwise, return false.
94  */
95 int __init security_module_enable(struct security_operations *ops)
96 {
97         if (!*chosen_lsm)
98                 strncpy(chosen_lsm, ops->name, SECURITY_NAME_MAX);
99         else if (strncmp(ops->name, chosen_lsm, SECURITY_NAME_MAX))
100                 return 0;
101
102         return 1;
103 }
104
105 /**
106  * register_security - registers a security framework with the kernel
107  * @ops: a pointer to the struct security_options that is to be registered
108  *
109  * This function is to allow a security module to register itself with the
110  * kernel security subsystem.  Some rudimentary checking is done on the @ops
111  * value passed to this function. You'll need to check first if your LSM
112  * is allowed to register its @ops by calling security_module_enable(@ops).
113  *
114  * If there is already a security module registered with the kernel,
115  * an error will be returned.  Otherwise 0 is returned on success.
116  */
117 int register_security(struct security_operations *ops)
118 {
119         if (verify(ops)) {
120                 printk(KERN_DEBUG "%s could not verify "
121                        "security_operations structure.\n", __func__);
122                 return -EINVAL;
123         }
124
125         if (security_ops != &dummy_security_ops)
126                 return -EAGAIN;
127
128         security_ops = ops;
129
130         return 0;
131 }
132
133 /**
134  * mod_reg_security - allows security modules to be "stacked"
135  * @name: a pointer to a string with the name of the security_options to be registered
136  * @ops: a pointer to the struct security_options that is to be registered
137  *
138  * This function allows security modules to be stacked if the currently loaded
139  * security module allows this to happen.  It passes the @name and @ops to the
140  * register_security function of the currently loaded security module.
141  *
142  * The return value depends on the currently loaded security module, with 0 as
143  * success.
144  */
145 int mod_reg_security(const char *name, struct security_operations *ops)
146 {
147         if (verify(ops)) {
148                 printk(KERN_INFO "%s could not verify "
149                        "security operations.\n", __func__);
150                 return -EINVAL;
151         }
152
153         if (ops == security_ops) {
154                 printk(KERN_INFO "%s security operations "
155                        "already registered.\n", __func__);
156                 return -EINVAL;
157         }
158
159         return security_ops->register_security(name, ops);
160 }
161
162 /* Security operations */
163
164 int security_ptrace(struct task_struct *parent, struct task_struct *child,
165                     unsigned int mode)
166 {
167         return security_ops->ptrace(parent, child, mode);
168 }
169
170 int security_capget(struct task_struct *target,
171                      kernel_cap_t *effective,
172                      kernel_cap_t *inheritable,
173                      kernel_cap_t *permitted)
174 {
175         return security_ops->capget(target, effective, inheritable, permitted);
176 }
177
178 int security_capset_check(struct task_struct *target,
179                            kernel_cap_t *effective,
180                            kernel_cap_t *inheritable,
181                            kernel_cap_t *permitted)
182 {
183         return security_ops->capset_check(target, effective, inheritable, permitted);
184 }
185
186 void security_capset_set(struct task_struct *target,
187                           kernel_cap_t *effective,
188                           kernel_cap_t *inheritable,
189                           kernel_cap_t *permitted)
190 {
191         security_ops->capset_set(target, effective, inheritable, permitted);
192 }
193
194 int security_capable(struct task_struct *tsk, int cap)
195 {
196         return security_ops->capable(tsk, cap);
197 }
198
199 int security_acct(struct file *file)
200 {
201         return security_ops->acct(file);
202 }
203
204 int security_sysctl(struct ctl_table *table, int op)
205 {
206         return security_ops->sysctl(table, op);
207 }
208
209 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
210 {
211         return security_ops->quotactl(cmds, type, id, sb);
212 }
213
214 int security_quota_on(struct dentry *dentry)
215 {
216         return security_ops->quota_on(dentry);
217 }
218
219 int security_syslog(int type)
220 {
221         return security_ops->syslog(type);
222 }
223
224 int security_settime(struct timespec *ts, struct timezone *tz)
225 {
226         return security_ops->settime(ts, tz);
227 }
228
229 int security_vm_enough_memory(long pages)
230 {
231         return security_ops->vm_enough_memory(current->mm, pages);
232 }
233
234 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
235 {
236         return security_ops->vm_enough_memory(mm, pages);
237 }
238
239 int security_bprm_alloc(struct linux_binprm *bprm)
240 {
241         return security_ops->bprm_alloc_security(bprm);
242 }
243
244 void security_bprm_free(struct linux_binprm *bprm)
245 {
246         security_ops->bprm_free_security(bprm);
247 }
248
249 void security_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
250 {
251         security_ops->bprm_apply_creds(bprm, unsafe);
252 }
253
254 void security_bprm_post_apply_creds(struct linux_binprm *bprm)
255 {
256         security_ops->bprm_post_apply_creds(bprm);
257 }
258
259 int security_bprm_set(struct linux_binprm *bprm)
260 {
261         return security_ops->bprm_set_security(bprm);
262 }
263
264 int security_bprm_check(struct linux_binprm *bprm)
265 {
266         return security_ops->bprm_check_security(bprm);
267 }
268
269 int security_bprm_secureexec(struct linux_binprm *bprm)
270 {
271         return security_ops->bprm_secureexec(bprm);
272 }
273
274 int security_sb_alloc(struct super_block *sb)
275 {
276         return security_ops->sb_alloc_security(sb);
277 }
278
279 void security_sb_free(struct super_block *sb)
280 {
281         security_ops->sb_free_security(sb);
282 }
283
284 int security_sb_copy_data(char *orig, char *copy)
285 {
286         return security_ops->sb_copy_data(orig, copy);
287 }
288 EXPORT_SYMBOL(security_sb_copy_data);
289
290 int security_sb_kern_mount(struct super_block *sb, void *data)
291 {
292         return security_ops->sb_kern_mount(sb, data);
293 }
294
295 int security_sb_statfs(struct dentry *dentry)
296 {
297         return security_ops->sb_statfs(dentry);
298 }
299
300 int security_sb_mount(char *dev_name, struct path *path,
301                        char *type, unsigned long flags, void *data)
302 {
303         return security_ops->sb_mount(dev_name, path, type, flags, data);
304 }
305
306 int security_sb_check_sb(struct vfsmount *mnt, struct path *path)
307 {
308         return security_ops->sb_check_sb(mnt, path);
309 }
310
311 int security_sb_umount(struct vfsmount *mnt, int flags)
312 {
313         return security_ops->sb_umount(mnt, flags);
314 }
315
316 void security_sb_umount_close(struct vfsmount *mnt)
317 {
318         security_ops->sb_umount_close(mnt);
319 }
320
321 void security_sb_umount_busy(struct vfsmount *mnt)
322 {
323         security_ops->sb_umount_busy(mnt);
324 }
325
326 void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data)
327 {
328         security_ops->sb_post_remount(mnt, flags, data);
329 }
330
331 void security_sb_post_addmount(struct vfsmount *mnt, struct path *mountpoint)
332 {
333         security_ops->sb_post_addmount(mnt, mountpoint);
334 }
335
336 int security_sb_pivotroot(struct path *old_path, struct path *new_path)
337 {
338         return security_ops->sb_pivotroot(old_path, new_path);
339 }
340
341 void security_sb_post_pivotroot(struct path *old_path, struct path *new_path)
342 {
343         security_ops->sb_post_pivotroot(old_path, new_path);
344 }
345
346 int security_sb_get_mnt_opts(const struct super_block *sb,
347                                 struct security_mnt_opts *opts)
348 {
349         return security_ops->sb_get_mnt_opts(sb, opts);
350 }
351
352 int security_sb_set_mnt_opts(struct super_block *sb,
353                                 struct security_mnt_opts *opts)
354 {
355         return security_ops->sb_set_mnt_opts(sb, opts);
356 }
357 EXPORT_SYMBOL(security_sb_set_mnt_opts);
358
359 void security_sb_clone_mnt_opts(const struct super_block *oldsb,
360                                 struct super_block *newsb)
361 {
362         security_ops->sb_clone_mnt_opts(oldsb, newsb);
363 }
364 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
365
366 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
367 {
368         return security_ops->sb_parse_opts_str(options, opts);
369 }
370 EXPORT_SYMBOL(security_sb_parse_opts_str);
371
372 int security_inode_alloc(struct inode *inode)
373 {
374         inode->i_security = NULL;
375         return security_ops->inode_alloc_security(inode);
376 }
377
378 void security_inode_free(struct inode *inode)
379 {
380         security_ops->inode_free_security(inode);
381 }
382
383 int security_inode_init_security(struct inode *inode, struct inode *dir,
384                                   char **name, void **value, size_t *len)
385 {
386         if (unlikely(IS_PRIVATE(inode)))
387                 return -EOPNOTSUPP;
388         return security_ops->inode_init_security(inode, dir, name, value, len);
389 }
390 EXPORT_SYMBOL(security_inode_init_security);
391
392 int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
393 {
394         if (unlikely(IS_PRIVATE(dir)))
395                 return 0;
396         return security_ops->inode_create(dir, dentry, mode);
397 }
398
399 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
400                          struct dentry *new_dentry)
401 {
402         if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
403                 return 0;
404         return security_ops->inode_link(old_dentry, dir, new_dentry);
405 }
406
407 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
408 {
409         if (unlikely(IS_PRIVATE(dentry->d_inode)))
410                 return 0;
411         return security_ops->inode_unlink(dir, dentry);
412 }
413
414 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
415                             const char *old_name)
416 {
417         if (unlikely(IS_PRIVATE(dir)))
418                 return 0;
419         return security_ops->inode_symlink(dir, dentry, old_name);
420 }
421
422 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
423 {
424         if (unlikely(IS_PRIVATE(dir)))
425                 return 0;
426         return security_ops->inode_mkdir(dir, dentry, mode);
427 }
428
429 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
430 {
431         if (unlikely(IS_PRIVATE(dentry->d_inode)))
432                 return 0;
433         return security_ops->inode_rmdir(dir, dentry);
434 }
435
436 int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
437 {
438         if (unlikely(IS_PRIVATE(dir)))
439                 return 0;
440         return security_ops->inode_mknod(dir, dentry, mode, dev);
441 }
442
443 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
444                            struct inode *new_dir, struct dentry *new_dentry)
445 {
446         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
447             (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
448                 return 0;
449         return security_ops->inode_rename(old_dir, old_dentry,
450                                            new_dir, new_dentry);
451 }
452
453 int security_inode_readlink(struct dentry *dentry)
454 {
455         if (unlikely(IS_PRIVATE(dentry->d_inode)))
456                 return 0;
457         return security_ops->inode_readlink(dentry);
458 }
459
460 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
461 {
462         if (unlikely(IS_PRIVATE(dentry->d_inode)))
463                 return 0;
464         return security_ops->inode_follow_link(dentry, nd);
465 }
466
467 int security_inode_permission(struct inode *inode, int mask, struct nameidata *nd)
468 {
469         if (unlikely(IS_PRIVATE(inode)))
470                 return 0;
471         return security_ops->inode_permission(inode, mask, nd);
472 }
473
474 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
475 {
476         if (unlikely(IS_PRIVATE(dentry->d_inode)))
477                 return 0;
478         return security_ops->inode_setattr(dentry, attr);
479 }
480
481 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
482 {
483         if (unlikely(IS_PRIVATE(dentry->d_inode)))
484                 return 0;
485         return security_ops->inode_getattr(mnt, dentry);
486 }
487
488 void security_inode_delete(struct inode *inode)
489 {
490         if (unlikely(IS_PRIVATE(inode)))
491                 return;
492         security_ops->inode_delete(inode);
493 }
494
495 int security_inode_setxattr(struct dentry *dentry, const char *name,
496                             const void *value, size_t size, int flags)
497 {
498         if (unlikely(IS_PRIVATE(dentry->d_inode)))
499                 return 0;
500         return security_ops->inode_setxattr(dentry, name, value, size, flags);
501 }
502
503 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
504                                   const void *value, size_t size, int flags)
505 {
506         if (unlikely(IS_PRIVATE(dentry->d_inode)))
507                 return;
508         security_ops->inode_post_setxattr(dentry, name, value, size, flags);
509 }
510
511 int security_inode_getxattr(struct dentry *dentry, const char *name)
512 {
513         if (unlikely(IS_PRIVATE(dentry->d_inode)))
514                 return 0;
515         return security_ops->inode_getxattr(dentry, name);
516 }
517
518 int security_inode_listxattr(struct dentry *dentry)
519 {
520         if (unlikely(IS_PRIVATE(dentry->d_inode)))
521                 return 0;
522         return security_ops->inode_listxattr(dentry);
523 }
524
525 int security_inode_removexattr(struct dentry *dentry, const char *name)
526 {
527         if (unlikely(IS_PRIVATE(dentry->d_inode)))
528                 return 0;
529         return security_ops->inode_removexattr(dentry, name);
530 }
531
532 int security_inode_need_killpriv(struct dentry *dentry)
533 {
534         return security_ops->inode_need_killpriv(dentry);
535 }
536
537 int security_inode_killpriv(struct dentry *dentry)
538 {
539         return security_ops->inode_killpriv(dentry);
540 }
541
542 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
543 {
544         if (unlikely(IS_PRIVATE(inode)))
545                 return 0;
546         return security_ops->inode_getsecurity(inode, name, buffer, alloc);
547 }
548
549 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
550 {
551         if (unlikely(IS_PRIVATE(inode)))
552                 return 0;
553         return security_ops->inode_setsecurity(inode, name, value, size, flags);
554 }
555
556 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
557 {
558         if (unlikely(IS_PRIVATE(inode)))
559                 return 0;
560         return security_ops->inode_listsecurity(inode, buffer, buffer_size);
561 }
562
563 void security_inode_getsecid(const struct inode *inode, u32 *secid)
564 {
565         security_ops->inode_getsecid(inode, secid);
566 }
567
568 int security_file_permission(struct file *file, int mask)
569 {
570         return security_ops->file_permission(file, mask);
571 }
572
573 int security_file_alloc(struct file *file)
574 {
575         return security_ops->file_alloc_security(file);
576 }
577
578 void security_file_free(struct file *file)
579 {
580         security_ops->file_free_security(file);
581 }
582
583 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
584 {
585         return security_ops->file_ioctl(file, cmd, arg);
586 }
587
588 int security_file_mmap(struct file *file, unsigned long reqprot,
589                         unsigned long prot, unsigned long flags,
590                         unsigned long addr, unsigned long addr_only)
591 {
592         return security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
593 }
594
595 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
596                             unsigned long prot)
597 {
598         return security_ops->file_mprotect(vma, reqprot, prot);
599 }
600
601 int security_file_lock(struct file *file, unsigned int cmd)
602 {
603         return security_ops->file_lock(file, cmd);
604 }
605
606 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
607 {
608         return security_ops->file_fcntl(file, cmd, arg);
609 }
610
611 int security_file_set_fowner(struct file *file)
612 {
613         return security_ops->file_set_fowner(file);
614 }
615
616 int security_file_send_sigiotask(struct task_struct *tsk,
617                                   struct fown_struct *fown, int sig)
618 {
619         return security_ops->file_send_sigiotask(tsk, fown, sig);
620 }
621
622 int security_file_receive(struct file *file)
623 {
624         return security_ops->file_receive(file);
625 }
626
627 int security_dentry_open(struct file *file)
628 {
629         return security_ops->dentry_open(file);
630 }
631
632 int security_task_create(unsigned long clone_flags)
633 {
634         return security_ops->task_create(clone_flags);
635 }
636
637 int security_task_alloc(struct task_struct *p)
638 {
639         return security_ops->task_alloc_security(p);
640 }
641
642 void security_task_free(struct task_struct *p)
643 {
644         security_ops->task_free_security(p);
645 }
646
647 int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
648 {
649         return security_ops->task_setuid(id0, id1, id2, flags);
650 }
651
652 int security_task_post_setuid(uid_t old_ruid, uid_t old_euid,
653                                uid_t old_suid, int flags)
654 {
655         return security_ops->task_post_setuid(old_ruid, old_euid, old_suid, flags);
656 }
657
658 int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
659 {
660         return security_ops->task_setgid(id0, id1, id2, flags);
661 }
662
663 int security_task_setpgid(struct task_struct *p, pid_t pgid)
664 {
665         return security_ops->task_setpgid(p, pgid);
666 }
667
668 int security_task_getpgid(struct task_struct *p)
669 {
670         return security_ops->task_getpgid(p);
671 }
672
673 int security_task_getsid(struct task_struct *p)
674 {
675         return security_ops->task_getsid(p);
676 }
677
678 void security_task_getsecid(struct task_struct *p, u32 *secid)
679 {
680         security_ops->task_getsecid(p, secid);
681 }
682 EXPORT_SYMBOL(security_task_getsecid);
683
684 int security_task_setgroups(struct group_info *group_info)
685 {
686         return security_ops->task_setgroups(group_info);
687 }
688
689 int security_task_setnice(struct task_struct *p, int nice)
690 {
691         return security_ops->task_setnice(p, nice);
692 }
693
694 int security_task_setioprio(struct task_struct *p, int ioprio)
695 {
696         return security_ops->task_setioprio(p, ioprio);
697 }
698
699 int security_task_getioprio(struct task_struct *p)
700 {
701         return security_ops->task_getioprio(p);
702 }
703
704 int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
705 {
706         return security_ops->task_setrlimit(resource, new_rlim);
707 }
708
709 int security_task_setscheduler(struct task_struct *p,
710                                 int policy, struct sched_param *lp)
711 {
712         return security_ops->task_setscheduler(p, policy, lp);
713 }
714
715 int security_task_getscheduler(struct task_struct *p)
716 {
717         return security_ops->task_getscheduler(p);
718 }
719
720 int security_task_movememory(struct task_struct *p)
721 {
722         return security_ops->task_movememory(p);
723 }
724
725 int security_task_kill(struct task_struct *p, struct siginfo *info,
726                         int sig, u32 secid)
727 {
728         return security_ops->task_kill(p, info, sig, secid);
729 }
730
731 int security_task_wait(struct task_struct *p)
732 {
733         return security_ops->task_wait(p);
734 }
735
736 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
737                          unsigned long arg4, unsigned long arg5, long *rc_p)
738 {
739         return security_ops->task_prctl(option, arg2, arg3, arg4, arg5, rc_p);
740 }
741
742 void security_task_reparent_to_init(struct task_struct *p)
743 {
744         security_ops->task_reparent_to_init(p);
745 }
746
747 void security_task_to_inode(struct task_struct *p, struct inode *inode)
748 {
749         security_ops->task_to_inode(p, inode);
750 }
751
752 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
753 {
754         return security_ops->ipc_permission(ipcp, flag);
755 }
756
757 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
758 {
759         security_ops->ipc_getsecid(ipcp, secid);
760 }
761
762 int security_msg_msg_alloc(struct msg_msg *msg)
763 {
764         return security_ops->msg_msg_alloc_security(msg);
765 }
766
767 void security_msg_msg_free(struct msg_msg *msg)
768 {
769         security_ops->msg_msg_free_security(msg);
770 }
771
772 int security_msg_queue_alloc(struct msg_queue *msq)
773 {
774         return security_ops->msg_queue_alloc_security(msq);
775 }
776
777 void security_msg_queue_free(struct msg_queue *msq)
778 {
779         security_ops->msg_queue_free_security(msq);
780 }
781
782 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
783 {
784         return security_ops->msg_queue_associate(msq, msqflg);
785 }
786
787 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
788 {
789         return security_ops->msg_queue_msgctl(msq, cmd);
790 }
791
792 int security_msg_queue_msgsnd(struct msg_queue *msq,
793                                struct msg_msg *msg, int msqflg)
794 {
795         return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
796 }
797
798 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
799                                struct task_struct *target, long type, int mode)
800 {
801         return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
802 }
803
804 int security_shm_alloc(struct shmid_kernel *shp)
805 {
806         return security_ops->shm_alloc_security(shp);
807 }
808
809 void security_shm_free(struct shmid_kernel *shp)
810 {
811         security_ops->shm_free_security(shp);
812 }
813
814 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
815 {
816         return security_ops->shm_associate(shp, shmflg);
817 }
818
819 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
820 {
821         return security_ops->shm_shmctl(shp, cmd);
822 }
823
824 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
825 {
826         return security_ops->shm_shmat(shp, shmaddr, shmflg);
827 }
828
829 int security_sem_alloc(struct sem_array *sma)
830 {
831         return security_ops->sem_alloc_security(sma);
832 }
833
834 void security_sem_free(struct sem_array *sma)
835 {
836         security_ops->sem_free_security(sma);
837 }
838
839 int security_sem_associate(struct sem_array *sma, int semflg)
840 {
841         return security_ops->sem_associate(sma, semflg);
842 }
843
844 int security_sem_semctl(struct sem_array *sma, int cmd)
845 {
846         return security_ops->sem_semctl(sma, cmd);
847 }
848
849 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
850                         unsigned nsops, int alter)
851 {
852         return security_ops->sem_semop(sma, sops, nsops, alter);
853 }
854
855 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
856 {
857         if (unlikely(inode && IS_PRIVATE(inode)))
858                 return;
859         security_ops->d_instantiate(dentry, inode);
860 }
861 EXPORT_SYMBOL(security_d_instantiate);
862
863 int security_getprocattr(struct task_struct *p, char *name, char **value)
864 {
865         return security_ops->getprocattr(p, name, value);
866 }
867
868 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
869 {
870         return security_ops->setprocattr(p, name, value, size);
871 }
872
873 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
874 {
875         return security_ops->netlink_send(sk, skb);
876 }
877
878 int security_netlink_recv(struct sk_buff *skb, int cap)
879 {
880         return security_ops->netlink_recv(skb, cap);
881 }
882 EXPORT_SYMBOL(security_netlink_recv);
883
884 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
885 {
886         return security_ops->secid_to_secctx(secid, secdata, seclen);
887 }
888 EXPORT_SYMBOL(security_secid_to_secctx);
889
890 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
891 {
892         return security_ops->secctx_to_secid(secdata, seclen, secid);
893 }
894 EXPORT_SYMBOL(security_secctx_to_secid);
895
896 void security_release_secctx(char *secdata, u32 seclen)
897 {
898         security_ops->release_secctx(secdata, seclen);
899 }
900 EXPORT_SYMBOL(security_release_secctx);
901
902 #ifdef CONFIG_SECURITY_NETWORK
903
904 int security_unix_stream_connect(struct socket *sock, struct socket *other,
905                                  struct sock *newsk)
906 {
907         return security_ops->unix_stream_connect(sock, other, newsk);
908 }
909 EXPORT_SYMBOL(security_unix_stream_connect);
910
911 int security_unix_may_send(struct socket *sock,  struct socket *other)
912 {
913         return security_ops->unix_may_send(sock, other);
914 }
915 EXPORT_SYMBOL(security_unix_may_send);
916
917 int security_socket_create(int family, int type, int protocol, int kern)
918 {
919         return security_ops->socket_create(family, type, protocol, kern);
920 }
921
922 int security_socket_post_create(struct socket *sock, int family,
923                                 int type, int protocol, int kern)
924 {
925         return security_ops->socket_post_create(sock, family, type,
926                                                 protocol, kern);
927 }
928
929 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
930 {
931         return security_ops->socket_bind(sock, address, addrlen);
932 }
933
934 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
935 {
936         return security_ops->socket_connect(sock, address, addrlen);
937 }
938
939 int security_socket_listen(struct socket *sock, int backlog)
940 {
941         return security_ops->socket_listen(sock, backlog);
942 }
943
944 int security_socket_accept(struct socket *sock, struct socket *newsock)
945 {
946         return security_ops->socket_accept(sock, newsock);
947 }
948
949 void security_socket_post_accept(struct socket *sock, struct socket *newsock)
950 {
951         security_ops->socket_post_accept(sock, newsock);
952 }
953
954 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
955 {
956         return security_ops->socket_sendmsg(sock, msg, size);
957 }
958
959 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
960                             int size, int flags)
961 {
962         return security_ops->socket_recvmsg(sock, msg, size, flags);
963 }
964
965 int security_socket_getsockname(struct socket *sock)
966 {
967         return security_ops->socket_getsockname(sock);
968 }
969
970 int security_socket_getpeername(struct socket *sock)
971 {
972         return security_ops->socket_getpeername(sock);
973 }
974
975 int security_socket_getsockopt(struct socket *sock, int level, int optname)
976 {
977         return security_ops->socket_getsockopt(sock, level, optname);
978 }
979
980 int security_socket_setsockopt(struct socket *sock, int level, int optname)
981 {
982         return security_ops->socket_setsockopt(sock, level, optname);
983 }
984
985 int security_socket_shutdown(struct socket *sock, int how)
986 {
987         return security_ops->socket_shutdown(sock, how);
988 }
989
990 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
991 {
992         return security_ops->socket_sock_rcv_skb(sk, skb);
993 }
994 EXPORT_SYMBOL(security_sock_rcv_skb);
995
996 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
997                                       int __user *optlen, unsigned len)
998 {
999         return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1000 }
1001
1002 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1003 {
1004         return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1005 }
1006 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1007
1008 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1009 {
1010         return security_ops->sk_alloc_security(sk, family, priority);
1011 }
1012
1013 void security_sk_free(struct sock *sk)
1014 {
1015         security_ops->sk_free_security(sk);
1016 }
1017
1018 void security_sk_clone(const struct sock *sk, struct sock *newsk)
1019 {
1020         security_ops->sk_clone_security(sk, newsk);
1021 }
1022
1023 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1024 {
1025         security_ops->sk_getsecid(sk, &fl->secid);
1026 }
1027 EXPORT_SYMBOL(security_sk_classify_flow);
1028
1029 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1030 {
1031         security_ops->req_classify_flow(req, fl);
1032 }
1033 EXPORT_SYMBOL(security_req_classify_flow);
1034
1035 void security_sock_graft(struct sock *sk, struct socket *parent)
1036 {
1037         security_ops->sock_graft(sk, parent);
1038 }
1039 EXPORT_SYMBOL(security_sock_graft);
1040
1041 int security_inet_conn_request(struct sock *sk,
1042                         struct sk_buff *skb, struct request_sock *req)
1043 {
1044         return security_ops->inet_conn_request(sk, skb, req);
1045 }
1046 EXPORT_SYMBOL(security_inet_conn_request);
1047
1048 void security_inet_csk_clone(struct sock *newsk,
1049                         const struct request_sock *req)
1050 {
1051         security_ops->inet_csk_clone(newsk, req);
1052 }
1053
1054 void security_inet_conn_established(struct sock *sk,
1055                         struct sk_buff *skb)
1056 {
1057         security_ops->inet_conn_established(sk, skb);
1058 }
1059
1060 #endif  /* CONFIG_SECURITY_NETWORK */
1061
1062 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1063
1064 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1065 {
1066         return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1067 }
1068 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1069
1070 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1071                               struct xfrm_sec_ctx **new_ctxp)
1072 {
1073         return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1074 }
1075
1076 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1077 {
1078         security_ops->xfrm_policy_free_security(ctx);
1079 }
1080 EXPORT_SYMBOL(security_xfrm_policy_free);
1081
1082 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1083 {
1084         return security_ops->xfrm_policy_delete_security(ctx);
1085 }
1086
1087 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1088 {
1089         return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1090 }
1091 EXPORT_SYMBOL(security_xfrm_state_alloc);
1092
1093 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1094                                       struct xfrm_sec_ctx *polsec, u32 secid)
1095 {
1096         if (!polsec)
1097                 return 0;
1098         /*
1099          * We want the context to be taken from secid which is usually
1100          * from the sock.
1101          */
1102         return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1103 }
1104
1105 int security_xfrm_state_delete(struct xfrm_state *x)
1106 {
1107         return security_ops->xfrm_state_delete_security(x);
1108 }
1109 EXPORT_SYMBOL(security_xfrm_state_delete);
1110
1111 void security_xfrm_state_free(struct xfrm_state *x)
1112 {
1113         security_ops->xfrm_state_free_security(x);
1114 }
1115
1116 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1117 {
1118         return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1119 }
1120
1121 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1122                                        struct xfrm_policy *xp, struct flowi *fl)
1123 {
1124         return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1125 }
1126
1127 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1128 {
1129         return security_ops->xfrm_decode_session(skb, secid, 1);
1130 }
1131
1132 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1133 {
1134         int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0);
1135
1136         BUG_ON(rc);
1137 }
1138 EXPORT_SYMBOL(security_skb_classify_flow);
1139
1140 #endif  /* CONFIG_SECURITY_NETWORK_XFRM */
1141
1142 #ifdef CONFIG_KEYS
1143
1144 int security_key_alloc(struct key *key, struct task_struct *tsk, unsigned long flags)
1145 {
1146         return security_ops->key_alloc(key, tsk, flags);
1147 }
1148
1149 void security_key_free(struct key *key)
1150 {
1151         security_ops->key_free(key);
1152 }
1153
1154 int security_key_permission(key_ref_t key_ref,
1155                             struct task_struct *context, key_perm_t perm)
1156 {
1157         return security_ops->key_permission(key_ref, context, perm);
1158 }
1159
1160 int security_key_getsecurity(struct key *key, char **_buffer)
1161 {
1162         return security_ops->key_getsecurity(key, _buffer);
1163 }
1164
1165 #endif  /* CONFIG_KEYS */
1166
1167 #ifdef CONFIG_AUDIT
1168
1169 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1170 {
1171         return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1172 }
1173
1174 int security_audit_rule_known(struct audit_krule *krule)
1175 {
1176         return security_ops->audit_rule_known(krule);
1177 }
1178
1179 void security_audit_rule_free(void *lsmrule)
1180 {
1181         security_ops->audit_rule_free(lsmrule);
1182 }
1183
1184 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1185                               struct audit_context *actx)
1186 {
1187         return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1188 }
1189
1190 #endif /* CONFIG_AUDIT */