fs/vfs/security: pass last path component to LSM on inode creation
[linux-2.6.git] / security / security.c
1 /*
2  * Security plug functions
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7  *
8  *      This program is free software; you can redistribute it and/or modify
9  *      it under the terms of the GNU General Public License as published by
10  *      the Free Software Foundation; either version 2 of the License, or
11  *      (at your option) any later version.
12  */
13
14 #include <linux/capability.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/security.h>
19 #include <linux/ima.h>
20
21 /* Boot-time LSM user choice */
22 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
23         CONFIG_DEFAULT_SECURITY;
24
25 /* things that live in capability.c */
26 extern void __init security_fixup_ops(struct security_operations *ops);
27
28 static struct security_operations *security_ops;
29 static struct security_operations default_security_ops = {
30         .name   = "default",
31 };
32
33 static inline int __init verify(struct security_operations *ops)
34 {
35         /* verify the security_operations structure exists */
36         if (!ops)
37                 return -EINVAL;
38         security_fixup_ops(ops);
39         return 0;
40 }
41
42 static void __init do_security_initcalls(void)
43 {
44         initcall_t *call;
45         call = __security_initcall_start;
46         while (call < __security_initcall_end) {
47                 (*call) ();
48                 call++;
49         }
50 }
51
52 /**
53  * security_init - initializes the security framework
54  *
55  * This should be called early in the kernel initialization sequence.
56  */
57 int __init security_init(void)
58 {
59         printk(KERN_INFO "Security Framework initialized\n");
60
61         security_fixup_ops(&default_security_ops);
62         security_ops = &default_security_ops;
63         do_security_initcalls();
64
65         return 0;
66 }
67
68 void reset_security_ops(void)
69 {
70         security_ops = &default_security_ops;
71 }
72
73 /* Save user chosen LSM */
74 static int __init choose_lsm(char *str)
75 {
76         strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
77         return 1;
78 }
79 __setup("security=", choose_lsm);
80
81 /**
82  * security_module_enable - Load given security module on boot ?
83  * @ops: a pointer to the struct security_operations that is to be checked.
84  *
85  * Each LSM must pass this method before registering its own operations
86  * to avoid security registration races. This method may also be used
87  * to check if your LSM is currently loaded during kernel initialization.
88  *
89  * Return true if:
90  *      -The passed LSM is the one chosen by user at boot time,
91  *      -or the passed LSM is configured as the default and the user did not
92  *       choose an alternate LSM at boot time.
93  * Otherwise, return false.
94  */
95 int __init security_module_enable(struct security_operations *ops)
96 {
97         return !strcmp(ops->name, chosen_lsm);
98 }
99
100 /**
101  * register_security - registers a security framework with the kernel
102  * @ops: a pointer to the struct security_options that is to be registered
103  *
104  * This function allows a security module to register itself with the
105  * kernel security subsystem.  Some rudimentary checking is done on the @ops
106  * value passed to this function. You'll need to check first if your LSM
107  * is allowed to register its @ops by calling security_module_enable(@ops).
108  *
109  * If there is already a security module registered with the kernel,
110  * an error will be returned.  Otherwise %0 is returned on success.
111  */
112 int __init register_security(struct security_operations *ops)
113 {
114         if (verify(ops)) {
115                 printk(KERN_DEBUG "%s could not verify "
116                        "security_operations structure.\n", __func__);
117                 return -EINVAL;
118         }
119
120         if (security_ops != &default_security_ops)
121                 return -EAGAIN;
122
123         security_ops = ops;
124
125         return 0;
126 }
127
128 /* Security operations */
129
130 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
131 {
132         return security_ops->ptrace_access_check(child, mode);
133 }
134
135 int security_ptrace_traceme(struct task_struct *parent)
136 {
137         return security_ops->ptrace_traceme(parent);
138 }
139
140 int security_capget(struct task_struct *target,
141                      kernel_cap_t *effective,
142                      kernel_cap_t *inheritable,
143                      kernel_cap_t *permitted)
144 {
145         return security_ops->capget(target, effective, inheritable, permitted);
146 }
147
148 int security_capset(struct cred *new, const struct cred *old,
149                     const kernel_cap_t *effective,
150                     const kernel_cap_t *inheritable,
151                     const kernel_cap_t *permitted)
152 {
153         return security_ops->capset(new, old,
154                                     effective, inheritable, permitted);
155 }
156
157 int security_capable(int cap)
158 {
159         return security_ops->capable(current, current_cred(), cap,
160                                      SECURITY_CAP_AUDIT);
161 }
162
163 int security_real_capable(struct task_struct *tsk, int cap)
164 {
165         const struct cred *cred;
166         int ret;
167
168         cred = get_task_cred(tsk);
169         ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_AUDIT);
170         put_cred(cred);
171         return ret;
172 }
173
174 int security_real_capable_noaudit(struct task_struct *tsk, int cap)
175 {
176         const struct cred *cred;
177         int ret;
178
179         cred = get_task_cred(tsk);
180         ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_NOAUDIT);
181         put_cred(cred);
182         return ret;
183 }
184
185 int security_sysctl(struct ctl_table *table, int op)
186 {
187         return security_ops->sysctl(table, op);
188 }
189
190 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
191 {
192         return security_ops->quotactl(cmds, type, id, sb);
193 }
194
195 int security_quota_on(struct dentry *dentry)
196 {
197         return security_ops->quota_on(dentry);
198 }
199
200 int security_syslog(int type)
201 {
202         return security_ops->syslog(type);
203 }
204
205 int security_settime(struct timespec *ts, struct timezone *tz)
206 {
207         return security_ops->settime(ts, tz);
208 }
209
210 int security_vm_enough_memory(long pages)
211 {
212         WARN_ON(current->mm == NULL);
213         return security_ops->vm_enough_memory(current->mm, pages);
214 }
215
216 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
217 {
218         WARN_ON(mm == NULL);
219         return security_ops->vm_enough_memory(mm, pages);
220 }
221
222 int security_vm_enough_memory_kern(long pages)
223 {
224         /* If current->mm is a kernel thread then we will pass NULL,
225            for this specific case that is fine */
226         return security_ops->vm_enough_memory(current->mm, pages);
227 }
228
229 int security_bprm_set_creds(struct linux_binprm *bprm)
230 {
231         return security_ops->bprm_set_creds(bprm);
232 }
233
234 int security_bprm_check(struct linux_binprm *bprm)
235 {
236         int ret;
237
238         ret = security_ops->bprm_check_security(bprm);
239         if (ret)
240                 return ret;
241         return ima_bprm_check(bprm);
242 }
243
244 void security_bprm_committing_creds(struct linux_binprm *bprm)
245 {
246         security_ops->bprm_committing_creds(bprm);
247 }
248
249 void security_bprm_committed_creds(struct linux_binprm *bprm)
250 {
251         security_ops->bprm_committed_creds(bprm);
252 }
253
254 int security_bprm_secureexec(struct linux_binprm *bprm)
255 {
256         return security_ops->bprm_secureexec(bprm);
257 }
258
259 int security_sb_alloc(struct super_block *sb)
260 {
261         return security_ops->sb_alloc_security(sb);
262 }
263
264 void security_sb_free(struct super_block *sb)
265 {
266         security_ops->sb_free_security(sb);
267 }
268
269 int security_sb_copy_data(char *orig, char *copy)
270 {
271         return security_ops->sb_copy_data(orig, copy);
272 }
273 EXPORT_SYMBOL(security_sb_copy_data);
274
275 int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
276 {
277         return security_ops->sb_kern_mount(sb, flags, data);
278 }
279
280 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
281 {
282         return security_ops->sb_show_options(m, sb);
283 }
284
285 int security_sb_statfs(struct dentry *dentry)
286 {
287         return security_ops->sb_statfs(dentry);
288 }
289
290 int security_sb_mount(char *dev_name, struct path *path,
291                        char *type, unsigned long flags, void *data)
292 {
293         return security_ops->sb_mount(dev_name, path, type, flags, data);
294 }
295
296 int security_sb_umount(struct vfsmount *mnt, int flags)
297 {
298         return security_ops->sb_umount(mnt, flags);
299 }
300
301 int security_sb_pivotroot(struct path *old_path, struct path *new_path)
302 {
303         return security_ops->sb_pivotroot(old_path, new_path);
304 }
305
306 int security_sb_set_mnt_opts(struct super_block *sb,
307                                 struct security_mnt_opts *opts)
308 {
309         return security_ops->sb_set_mnt_opts(sb, opts);
310 }
311 EXPORT_SYMBOL(security_sb_set_mnt_opts);
312
313 void security_sb_clone_mnt_opts(const struct super_block *oldsb,
314                                 struct super_block *newsb)
315 {
316         security_ops->sb_clone_mnt_opts(oldsb, newsb);
317 }
318 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
319
320 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
321 {
322         return security_ops->sb_parse_opts_str(options, opts);
323 }
324 EXPORT_SYMBOL(security_sb_parse_opts_str);
325
326 int security_inode_alloc(struct inode *inode)
327 {
328         inode->i_security = NULL;
329         return security_ops->inode_alloc_security(inode);
330 }
331
332 void security_inode_free(struct inode *inode)
333 {
334         ima_inode_free(inode);
335         security_ops->inode_free_security(inode);
336 }
337
338 int security_inode_init_security(struct inode *inode, struct inode *dir,
339                                  const struct qstr *qstr, char **name,
340                                  void **value, size_t *len)
341 {
342         if (unlikely(IS_PRIVATE(inode)))
343                 return -EOPNOTSUPP;
344         return security_ops->inode_init_security(inode, dir, qstr, name, value,
345                                                  len);
346 }
347 EXPORT_SYMBOL(security_inode_init_security);
348
349 #ifdef CONFIG_SECURITY_PATH
350 int security_path_mknod(struct path *dir, struct dentry *dentry, int mode,
351                         unsigned int dev)
352 {
353         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
354                 return 0;
355         return security_ops->path_mknod(dir, dentry, mode, dev);
356 }
357 EXPORT_SYMBOL(security_path_mknod);
358
359 int security_path_mkdir(struct path *dir, struct dentry *dentry, int mode)
360 {
361         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
362                 return 0;
363         return security_ops->path_mkdir(dir, dentry, mode);
364 }
365 EXPORT_SYMBOL(security_path_mkdir);
366
367 int security_path_rmdir(struct path *dir, struct dentry *dentry)
368 {
369         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
370                 return 0;
371         return security_ops->path_rmdir(dir, dentry);
372 }
373
374 int security_path_unlink(struct path *dir, struct dentry *dentry)
375 {
376         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
377                 return 0;
378         return security_ops->path_unlink(dir, dentry);
379 }
380 EXPORT_SYMBOL(security_path_unlink);
381
382 int security_path_symlink(struct path *dir, struct dentry *dentry,
383                           const char *old_name)
384 {
385         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
386                 return 0;
387         return security_ops->path_symlink(dir, dentry, old_name);
388 }
389
390 int security_path_link(struct dentry *old_dentry, struct path *new_dir,
391                        struct dentry *new_dentry)
392 {
393         if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
394                 return 0;
395         return security_ops->path_link(old_dentry, new_dir, new_dentry);
396 }
397
398 int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
399                          struct path *new_dir, struct dentry *new_dentry)
400 {
401         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
402                      (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
403                 return 0;
404         return security_ops->path_rename(old_dir, old_dentry, new_dir,
405                                          new_dentry);
406 }
407 EXPORT_SYMBOL(security_path_rename);
408
409 int security_path_truncate(struct path *path)
410 {
411         if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
412                 return 0;
413         return security_ops->path_truncate(path);
414 }
415
416 int security_path_chmod(struct dentry *dentry, struct vfsmount *mnt,
417                         mode_t mode)
418 {
419         if (unlikely(IS_PRIVATE(dentry->d_inode)))
420                 return 0;
421         return security_ops->path_chmod(dentry, mnt, mode);
422 }
423
424 int security_path_chown(struct path *path, uid_t uid, gid_t gid)
425 {
426         if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
427                 return 0;
428         return security_ops->path_chown(path, uid, gid);
429 }
430
431 int security_path_chroot(struct path *path)
432 {
433         return security_ops->path_chroot(path);
434 }
435 #endif
436
437 int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
438 {
439         if (unlikely(IS_PRIVATE(dir)))
440                 return 0;
441         return security_ops->inode_create(dir, dentry, mode);
442 }
443 EXPORT_SYMBOL_GPL(security_inode_create);
444
445 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
446                          struct dentry *new_dentry)
447 {
448         if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
449                 return 0;
450         return security_ops->inode_link(old_dentry, dir, new_dentry);
451 }
452
453 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
454 {
455         if (unlikely(IS_PRIVATE(dentry->d_inode)))
456                 return 0;
457         return security_ops->inode_unlink(dir, dentry);
458 }
459
460 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
461                             const char *old_name)
462 {
463         if (unlikely(IS_PRIVATE(dir)))
464                 return 0;
465         return security_ops->inode_symlink(dir, dentry, old_name);
466 }
467
468 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
469 {
470         if (unlikely(IS_PRIVATE(dir)))
471                 return 0;
472         return security_ops->inode_mkdir(dir, dentry, mode);
473 }
474 EXPORT_SYMBOL_GPL(security_inode_mkdir);
475
476 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
477 {
478         if (unlikely(IS_PRIVATE(dentry->d_inode)))
479                 return 0;
480         return security_ops->inode_rmdir(dir, dentry);
481 }
482
483 int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
484 {
485         if (unlikely(IS_PRIVATE(dir)))
486                 return 0;
487         return security_ops->inode_mknod(dir, dentry, mode, dev);
488 }
489
490 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
491                            struct inode *new_dir, struct dentry *new_dentry)
492 {
493         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
494             (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
495                 return 0;
496         return security_ops->inode_rename(old_dir, old_dentry,
497                                            new_dir, new_dentry);
498 }
499
500 int security_inode_readlink(struct dentry *dentry)
501 {
502         if (unlikely(IS_PRIVATE(dentry->d_inode)))
503                 return 0;
504         return security_ops->inode_readlink(dentry);
505 }
506
507 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
508 {
509         if (unlikely(IS_PRIVATE(dentry->d_inode)))
510                 return 0;
511         return security_ops->inode_follow_link(dentry, nd);
512 }
513
514 int security_inode_permission(struct inode *inode, int mask)
515 {
516         if (unlikely(IS_PRIVATE(inode)))
517                 return 0;
518         return security_ops->inode_permission(inode, mask);
519 }
520
521 int security_inode_exec_permission(struct inode *inode, unsigned int flags)
522 {
523         if (unlikely(IS_PRIVATE(inode)))
524                 return 0;
525         if (flags)
526                 return -ECHILD;
527         return security_ops->inode_permission(inode, MAY_EXEC);
528 }
529
530 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
531 {
532         if (unlikely(IS_PRIVATE(dentry->d_inode)))
533                 return 0;
534         return security_ops->inode_setattr(dentry, attr);
535 }
536 EXPORT_SYMBOL_GPL(security_inode_setattr);
537
538 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
539 {
540         if (unlikely(IS_PRIVATE(dentry->d_inode)))
541                 return 0;
542         return security_ops->inode_getattr(mnt, dentry);
543 }
544
545 int security_inode_setxattr(struct dentry *dentry, const char *name,
546                             const void *value, size_t size, int flags)
547 {
548         if (unlikely(IS_PRIVATE(dentry->d_inode)))
549                 return 0;
550         return security_ops->inode_setxattr(dentry, name, value, size, flags);
551 }
552
553 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
554                                   const void *value, size_t size, int flags)
555 {
556         if (unlikely(IS_PRIVATE(dentry->d_inode)))
557                 return;
558         security_ops->inode_post_setxattr(dentry, name, value, size, flags);
559 }
560
561 int security_inode_getxattr(struct dentry *dentry, const char *name)
562 {
563         if (unlikely(IS_PRIVATE(dentry->d_inode)))
564                 return 0;
565         return security_ops->inode_getxattr(dentry, name);
566 }
567
568 int security_inode_listxattr(struct dentry *dentry)
569 {
570         if (unlikely(IS_PRIVATE(dentry->d_inode)))
571                 return 0;
572         return security_ops->inode_listxattr(dentry);
573 }
574
575 int security_inode_removexattr(struct dentry *dentry, const char *name)
576 {
577         if (unlikely(IS_PRIVATE(dentry->d_inode)))
578                 return 0;
579         return security_ops->inode_removexattr(dentry, name);
580 }
581
582 int security_inode_need_killpriv(struct dentry *dentry)
583 {
584         return security_ops->inode_need_killpriv(dentry);
585 }
586
587 int security_inode_killpriv(struct dentry *dentry)
588 {
589         return security_ops->inode_killpriv(dentry);
590 }
591
592 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
593 {
594         if (unlikely(IS_PRIVATE(inode)))
595                 return -EOPNOTSUPP;
596         return security_ops->inode_getsecurity(inode, name, buffer, alloc);
597 }
598
599 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
600 {
601         if (unlikely(IS_PRIVATE(inode)))
602                 return -EOPNOTSUPP;
603         return security_ops->inode_setsecurity(inode, name, value, size, flags);
604 }
605
606 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
607 {
608         if (unlikely(IS_PRIVATE(inode)))
609                 return 0;
610         return security_ops->inode_listsecurity(inode, buffer, buffer_size);
611 }
612
613 void security_inode_getsecid(const struct inode *inode, u32 *secid)
614 {
615         security_ops->inode_getsecid(inode, secid);
616 }
617
618 int security_file_permission(struct file *file, int mask)
619 {
620         int ret;
621
622         ret = security_ops->file_permission(file, mask);
623         if (ret)
624                 return ret;
625
626         return fsnotify_perm(file, mask);
627 }
628
629 int security_file_alloc(struct file *file)
630 {
631         return security_ops->file_alloc_security(file);
632 }
633
634 void security_file_free(struct file *file)
635 {
636         security_ops->file_free_security(file);
637 }
638
639 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
640 {
641         return security_ops->file_ioctl(file, cmd, arg);
642 }
643
644 int security_file_mmap(struct file *file, unsigned long reqprot,
645                         unsigned long prot, unsigned long flags,
646                         unsigned long addr, unsigned long addr_only)
647 {
648         int ret;
649
650         ret = security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
651         if (ret)
652                 return ret;
653         return ima_file_mmap(file, prot);
654 }
655
656 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
657                             unsigned long prot)
658 {
659         return security_ops->file_mprotect(vma, reqprot, prot);
660 }
661
662 int security_file_lock(struct file *file, unsigned int cmd)
663 {
664         return security_ops->file_lock(file, cmd);
665 }
666
667 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
668 {
669         return security_ops->file_fcntl(file, cmd, arg);
670 }
671
672 int security_file_set_fowner(struct file *file)
673 {
674         return security_ops->file_set_fowner(file);
675 }
676
677 int security_file_send_sigiotask(struct task_struct *tsk,
678                                   struct fown_struct *fown, int sig)
679 {
680         return security_ops->file_send_sigiotask(tsk, fown, sig);
681 }
682
683 int security_file_receive(struct file *file)
684 {
685         return security_ops->file_receive(file);
686 }
687
688 int security_dentry_open(struct file *file, const struct cred *cred)
689 {
690         int ret;
691
692         ret = security_ops->dentry_open(file, cred);
693         if (ret)
694                 return ret;
695
696         return fsnotify_perm(file, MAY_OPEN);
697 }
698
699 int security_task_create(unsigned long clone_flags)
700 {
701         return security_ops->task_create(clone_flags);
702 }
703
704 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
705 {
706         return security_ops->cred_alloc_blank(cred, gfp);
707 }
708
709 void security_cred_free(struct cred *cred)
710 {
711         security_ops->cred_free(cred);
712 }
713
714 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
715 {
716         return security_ops->cred_prepare(new, old, gfp);
717 }
718
719 void security_transfer_creds(struct cred *new, const struct cred *old)
720 {
721         security_ops->cred_transfer(new, old);
722 }
723
724 int security_kernel_act_as(struct cred *new, u32 secid)
725 {
726         return security_ops->kernel_act_as(new, secid);
727 }
728
729 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
730 {
731         return security_ops->kernel_create_files_as(new, inode);
732 }
733
734 int security_kernel_module_request(char *kmod_name)
735 {
736         return security_ops->kernel_module_request(kmod_name);
737 }
738
739 int security_task_fix_setuid(struct cred *new, const struct cred *old,
740                              int flags)
741 {
742         return security_ops->task_fix_setuid(new, old, flags);
743 }
744
745 int security_task_setpgid(struct task_struct *p, pid_t pgid)
746 {
747         return security_ops->task_setpgid(p, pgid);
748 }
749
750 int security_task_getpgid(struct task_struct *p)
751 {
752         return security_ops->task_getpgid(p);
753 }
754
755 int security_task_getsid(struct task_struct *p)
756 {
757         return security_ops->task_getsid(p);
758 }
759
760 void security_task_getsecid(struct task_struct *p, u32 *secid)
761 {
762         security_ops->task_getsecid(p, secid);
763 }
764 EXPORT_SYMBOL(security_task_getsecid);
765
766 int security_task_setnice(struct task_struct *p, int nice)
767 {
768         return security_ops->task_setnice(p, nice);
769 }
770
771 int security_task_setioprio(struct task_struct *p, int ioprio)
772 {
773         return security_ops->task_setioprio(p, ioprio);
774 }
775
776 int security_task_getioprio(struct task_struct *p)
777 {
778         return security_ops->task_getioprio(p);
779 }
780
781 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
782                 struct rlimit *new_rlim)
783 {
784         return security_ops->task_setrlimit(p, resource, new_rlim);
785 }
786
787 int security_task_setscheduler(struct task_struct *p)
788 {
789         return security_ops->task_setscheduler(p);
790 }
791
792 int security_task_getscheduler(struct task_struct *p)
793 {
794         return security_ops->task_getscheduler(p);
795 }
796
797 int security_task_movememory(struct task_struct *p)
798 {
799         return security_ops->task_movememory(p);
800 }
801
802 int security_task_kill(struct task_struct *p, struct siginfo *info,
803                         int sig, u32 secid)
804 {
805         return security_ops->task_kill(p, info, sig, secid);
806 }
807
808 int security_task_wait(struct task_struct *p)
809 {
810         return security_ops->task_wait(p);
811 }
812
813 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
814                          unsigned long arg4, unsigned long arg5)
815 {
816         return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
817 }
818
819 void security_task_to_inode(struct task_struct *p, struct inode *inode)
820 {
821         security_ops->task_to_inode(p, inode);
822 }
823
824 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
825 {
826         return security_ops->ipc_permission(ipcp, flag);
827 }
828
829 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
830 {
831         security_ops->ipc_getsecid(ipcp, secid);
832 }
833
834 int security_msg_msg_alloc(struct msg_msg *msg)
835 {
836         return security_ops->msg_msg_alloc_security(msg);
837 }
838
839 void security_msg_msg_free(struct msg_msg *msg)
840 {
841         security_ops->msg_msg_free_security(msg);
842 }
843
844 int security_msg_queue_alloc(struct msg_queue *msq)
845 {
846         return security_ops->msg_queue_alloc_security(msq);
847 }
848
849 void security_msg_queue_free(struct msg_queue *msq)
850 {
851         security_ops->msg_queue_free_security(msq);
852 }
853
854 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
855 {
856         return security_ops->msg_queue_associate(msq, msqflg);
857 }
858
859 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
860 {
861         return security_ops->msg_queue_msgctl(msq, cmd);
862 }
863
864 int security_msg_queue_msgsnd(struct msg_queue *msq,
865                                struct msg_msg *msg, int msqflg)
866 {
867         return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
868 }
869
870 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
871                                struct task_struct *target, long type, int mode)
872 {
873         return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
874 }
875
876 int security_shm_alloc(struct shmid_kernel *shp)
877 {
878         return security_ops->shm_alloc_security(shp);
879 }
880
881 void security_shm_free(struct shmid_kernel *shp)
882 {
883         security_ops->shm_free_security(shp);
884 }
885
886 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
887 {
888         return security_ops->shm_associate(shp, shmflg);
889 }
890
891 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
892 {
893         return security_ops->shm_shmctl(shp, cmd);
894 }
895
896 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
897 {
898         return security_ops->shm_shmat(shp, shmaddr, shmflg);
899 }
900
901 int security_sem_alloc(struct sem_array *sma)
902 {
903         return security_ops->sem_alloc_security(sma);
904 }
905
906 void security_sem_free(struct sem_array *sma)
907 {
908         security_ops->sem_free_security(sma);
909 }
910
911 int security_sem_associate(struct sem_array *sma, int semflg)
912 {
913         return security_ops->sem_associate(sma, semflg);
914 }
915
916 int security_sem_semctl(struct sem_array *sma, int cmd)
917 {
918         return security_ops->sem_semctl(sma, cmd);
919 }
920
921 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
922                         unsigned nsops, int alter)
923 {
924         return security_ops->sem_semop(sma, sops, nsops, alter);
925 }
926
927 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
928 {
929         if (unlikely(inode && IS_PRIVATE(inode)))
930                 return;
931         security_ops->d_instantiate(dentry, inode);
932 }
933 EXPORT_SYMBOL(security_d_instantiate);
934
935 int security_getprocattr(struct task_struct *p, char *name, char **value)
936 {
937         return security_ops->getprocattr(p, name, value);
938 }
939
940 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
941 {
942         return security_ops->setprocattr(p, name, value, size);
943 }
944
945 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
946 {
947         return security_ops->netlink_send(sk, skb);
948 }
949
950 int security_netlink_recv(struct sk_buff *skb, int cap)
951 {
952         return security_ops->netlink_recv(skb, cap);
953 }
954 EXPORT_SYMBOL(security_netlink_recv);
955
956 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
957 {
958         return security_ops->secid_to_secctx(secid, secdata, seclen);
959 }
960 EXPORT_SYMBOL(security_secid_to_secctx);
961
962 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
963 {
964         return security_ops->secctx_to_secid(secdata, seclen, secid);
965 }
966 EXPORT_SYMBOL(security_secctx_to_secid);
967
968 void security_release_secctx(char *secdata, u32 seclen)
969 {
970         security_ops->release_secctx(secdata, seclen);
971 }
972 EXPORT_SYMBOL(security_release_secctx);
973
974 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
975 {
976         return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
977 }
978 EXPORT_SYMBOL(security_inode_notifysecctx);
979
980 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
981 {
982         return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
983 }
984 EXPORT_SYMBOL(security_inode_setsecctx);
985
986 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
987 {
988         return security_ops->inode_getsecctx(inode, ctx, ctxlen);
989 }
990 EXPORT_SYMBOL(security_inode_getsecctx);
991
992 #ifdef CONFIG_SECURITY_NETWORK
993
994 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
995 {
996         return security_ops->unix_stream_connect(sock, other, newsk);
997 }
998 EXPORT_SYMBOL(security_unix_stream_connect);
999
1000 int security_unix_may_send(struct socket *sock,  struct socket *other)
1001 {
1002         return security_ops->unix_may_send(sock, other);
1003 }
1004 EXPORT_SYMBOL(security_unix_may_send);
1005
1006 int security_socket_create(int family, int type, int protocol, int kern)
1007 {
1008         return security_ops->socket_create(family, type, protocol, kern);
1009 }
1010
1011 int security_socket_post_create(struct socket *sock, int family,
1012                                 int type, int protocol, int kern)
1013 {
1014         return security_ops->socket_post_create(sock, family, type,
1015                                                 protocol, kern);
1016 }
1017
1018 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1019 {
1020         return security_ops->socket_bind(sock, address, addrlen);
1021 }
1022
1023 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1024 {
1025         return security_ops->socket_connect(sock, address, addrlen);
1026 }
1027
1028 int security_socket_listen(struct socket *sock, int backlog)
1029 {
1030         return security_ops->socket_listen(sock, backlog);
1031 }
1032
1033 int security_socket_accept(struct socket *sock, struct socket *newsock)
1034 {
1035         return security_ops->socket_accept(sock, newsock);
1036 }
1037
1038 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1039 {
1040         return security_ops->socket_sendmsg(sock, msg, size);
1041 }
1042
1043 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1044                             int size, int flags)
1045 {
1046         return security_ops->socket_recvmsg(sock, msg, size, flags);
1047 }
1048
1049 int security_socket_getsockname(struct socket *sock)
1050 {
1051         return security_ops->socket_getsockname(sock);
1052 }
1053
1054 int security_socket_getpeername(struct socket *sock)
1055 {
1056         return security_ops->socket_getpeername(sock);
1057 }
1058
1059 int security_socket_getsockopt(struct socket *sock, int level, int optname)
1060 {
1061         return security_ops->socket_getsockopt(sock, level, optname);
1062 }
1063
1064 int security_socket_setsockopt(struct socket *sock, int level, int optname)
1065 {
1066         return security_ops->socket_setsockopt(sock, level, optname);
1067 }
1068
1069 int security_socket_shutdown(struct socket *sock, int how)
1070 {
1071         return security_ops->socket_shutdown(sock, how);
1072 }
1073
1074 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1075 {
1076         return security_ops->socket_sock_rcv_skb(sk, skb);
1077 }
1078 EXPORT_SYMBOL(security_sock_rcv_skb);
1079
1080 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1081                                       int __user *optlen, unsigned len)
1082 {
1083         return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1084 }
1085
1086 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1087 {
1088         return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1089 }
1090 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1091
1092 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1093 {
1094         return security_ops->sk_alloc_security(sk, family, priority);
1095 }
1096
1097 void security_sk_free(struct sock *sk)
1098 {
1099         security_ops->sk_free_security(sk);
1100 }
1101
1102 void security_sk_clone(const struct sock *sk, struct sock *newsk)
1103 {
1104         security_ops->sk_clone_security(sk, newsk);
1105 }
1106
1107 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1108 {
1109         security_ops->sk_getsecid(sk, &fl->secid);
1110 }
1111 EXPORT_SYMBOL(security_sk_classify_flow);
1112
1113 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1114 {
1115         security_ops->req_classify_flow(req, fl);
1116 }
1117 EXPORT_SYMBOL(security_req_classify_flow);
1118
1119 void security_sock_graft(struct sock *sk, struct socket *parent)
1120 {
1121         security_ops->sock_graft(sk, parent);
1122 }
1123 EXPORT_SYMBOL(security_sock_graft);
1124
1125 int security_inet_conn_request(struct sock *sk,
1126                         struct sk_buff *skb, struct request_sock *req)
1127 {
1128         return security_ops->inet_conn_request(sk, skb, req);
1129 }
1130 EXPORT_SYMBOL(security_inet_conn_request);
1131
1132 void security_inet_csk_clone(struct sock *newsk,
1133                         const struct request_sock *req)
1134 {
1135         security_ops->inet_csk_clone(newsk, req);
1136 }
1137
1138 void security_inet_conn_established(struct sock *sk,
1139                         struct sk_buff *skb)
1140 {
1141         security_ops->inet_conn_established(sk, skb);
1142 }
1143
1144 int security_secmark_relabel_packet(u32 secid)
1145 {
1146         return security_ops->secmark_relabel_packet(secid);
1147 }
1148 EXPORT_SYMBOL(security_secmark_relabel_packet);
1149
1150 void security_secmark_refcount_inc(void)
1151 {
1152         security_ops->secmark_refcount_inc();
1153 }
1154 EXPORT_SYMBOL(security_secmark_refcount_inc);
1155
1156 void security_secmark_refcount_dec(void)
1157 {
1158         security_ops->secmark_refcount_dec();
1159 }
1160 EXPORT_SYMBOL(security_secmark_refcount_dec);
1161
1162 int security_tun_dev_create(void)
1163 {
1164         return security_ops->tun_dev_create();
1165 }
1166 EXPORT_SYMBOL(security_tun_dev_create);
1167
1168 void security_tun_dev_post_create(struct sock *sk)
1169 {
1170         return security_ops->tun_dev_post_create(sk);
1171 }
1172 EXPORT_SYMBOL(security_tun_dev_post_create);
1173
1174 int security_tun_dev_attach(struct sock *sk)
1175 {
1176         return security_ops->tun_dev_attach(sk);
1177 }
1178 EXPORT_SYMBOL(security_tun_dev_attach);
1179
1180 #endif  /* CONFIG_SECURITY_NETWORK */
1181
1182 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1183
1184 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1185 {
1186         return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1187 }
1188 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1189
1190 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1191                               struct xfrm_sec_ctx **new_ctxp)
1192 {
1193         return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1194 }
1195
1196 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1197 {
1198         security_ops->xfrm_policy_free_security(ctx);
1199 }
1200 EXPORT_SYMBOL(security_xfrm_policy_free);
1201
1202 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1203 {
1204         return security_ops->xfrm_policy_delete_security(ctx);
1205 }
1206
1207 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1208 {
1209         return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1210 }
1211 EXPORT_SYMBOL(security_xfrm_state_alloc);
1212
1213 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1214                                       struct xfrm_sec_ctx *polsec, u32 secid)
1215 {
1216         if (!polsec)
1217                 return 0;
1218         /*
1219          * We want the context to be taken from secid which is usually
1220          * from the sock.
1221          */
1222         return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1223 }
1224
1225 int security_xfrm_state_delete(struct xfrm_state *x)
1226 {
1227         return security_ops->xfrm_state_delete_security(x);
1228 }
1229 EXPORT_SYMBOL(security_xfrm_state_delete);
1230
1231 void security_xfrm_state_free(struct xfrm_state *x)
1232 {
1233         security_ops->xfrm_state_free_security(x);
1234 }
1235
1236 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1237 {
1238         return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1239 }
1240
1241 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1242                                        struct xfrm_policy *xp, struct flowi *fl)
1243 {
1244         return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1245 }
1246
1247 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1248 {
1249         return security_ops->xfrm_decode_session(skb, secid, 1);
1250 }
1251
1252 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1253 {
1254         int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0);
1255
1256         BUG_ON(rc);
1257 }
1258 EXPORT_SYMBOL(security_skb_classify_flow);
1259
1260 #endif  /* CONFIG_SECURITY_NETWORK_XFRM */
1261
1262 #ifdef CONFIG_KEYS
1263
1264 int security_key_alloc(struct key *key, const struct cred *cred,
1265                        unsigned long flags)
1266 {
1267         return security_ops->key_alloc(key, cred, flags);
1268 }
1269
1270 void security_key_free(struct key *key)
1271 {
1272         security_ops->key_free(key);
1273 }
1274
1275 int security_key_permission(key_ref_t key_ref,
1276                             const struct cred *cred, key_perm_t perm)
1277 {
1278         return security_ops->key_permission(key_ref, cred, perm);
1279 }
1280
1281 int security_key_getsecurity(struct key *key, char **_buffer)
1282 {
1283         return security_ops->key_getsecurity(key, _buffer);
1284 }
1285
1286 #endif  /* CONFIG_KEYS */
1287
1288 #ifdef CONFIG_AUDIT
1289
1290 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1291 {
1292         return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1293 }
1294
1295 int security_audit_rule_known(struct audit_krule *krule)
1296 {
1297         return security_ops->audit_rule_known(krule);
1298 }
1299
1300 void security_audit_rule_free(void *lsmrule)
1301 {
1302         security_ops->audit_rule_free(lsmrule);
1303 }
1304
1305 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1306                               struct audit_context *actx)
1307 {
1308         return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1309 }
1310
1311 #endif /* CONFIG_AUDIT */