a02f243f09c0f034b4f2b6a9f075c9e7aca941af
[linux-2.6.git] / security / security.c
1 /*
2  * Security plug functions
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7  *
8  *      This program is free software; you can redistribute it and/or modify
9  *      it under the terms of the GNU General Public License as published by
10  *      the Free Software Foundation; either version 2 of the License, or
11  *      (at your option) any later version.
12  */
13
14 #include <linux/capability.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/security.h>
19
20 /* Boot-time LSM user choice */
21 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1];
22
23 /* things that live in capability.c */
24 extern struct security_operations default_security_ops;
25 extern void security_fixup_ops(struct security_operations *ops);
26
27 struct security_operations *security_ops;       /* Initialized to NULL */
28
29 /* amount of vm to protect from userspace access */
30 unsigned long mmap_min_addr = CONFIG_SECURITY_DEFAULT_MMAP_MIN_ADDR;
31
32 static inline int verify(struct security_operations *ops)
33 {
34         /* verify the security_operations structure exists */
35         if (!ops)
36                 return -EINVAL;
37         security_fixup_ops(ops);
38         return 0;
39 }
40
41 static void __init do_security_initcalls(void)
42 {
43         initcall_t *call;
44         call = __security_initcall_start;
45         while (call < __security_initcall_end) {
46                 (*call) ();
47                 call++;
48         }
49 }
50
51 /**
52  * security_init - initializes the security framework
53  *
54  * This should be called early in the kernel initialization sequence.
55  */
56 int __init security_init(void)
57 {
58         printk(KERN_INFO "Security Framework initialized\n");
59
60         security_fixup_ops(&default_security_ops);
61         security_ops = &default_security_ops;
62         do_security_initcalls();
63
64         return 0;
65 }
66
67 /* Save user chosen LSM */
68 static int __init choose_lsm(char *str)
69 {
70         strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
71         return 1;
72 }
73 __setup("security=", choose_lsm);
74
75 /**
76  * security_module_enable - Load given security module on boot ?
77  * @ops: a pointer to the struct security_operations that is to be checked.
78  *
79  * Each LSM must pass this method before registering its own operations
80  * to avoid security registration races. This method may also be used
81  * to check if your LSM is currently loaded during kernel initialization.
82  *
83  * Return true if:
84  *      -The passed LSM is the one chosen by user at boot time,
85  *      -or user didn't specify a specific LSM and we're the first to ask
86  *       for registration permission,
87  *      -or the passed LSM is currently loaded.
88  * Otherwise, return false.
89  */
90 int __init security_module_enable(struct security_operations *ops)
91 {
92         if (!*chosen_lsm)
93                 strncpy(chosen_lsm, ops->name, SECURITY_NAME_MAX);
94         else if (strncmp(ops->name, chosen_lsm, SECURITY_NAME_MAX))
95                 return 0;
96
97         return 1;
98 }
99
100 /**
101  * register_security - registers a security framework with the kernel
102  * @ops: a pointer to the struct security_options that is to be registered
103  *
104  * This function allows a security module to register itself with the
105  * kernel security subsystem.  Some rudimentary checking is done on the @ops
106  * value passed to this function. You'll need to check first if your LSM
107  * is allowed to register its @ops by calling security_module_enable(@ops).
108  *
109  * If there is already a security module registered with the kernel,
110  * an error will be returned.  Otherwise %0 is returned on success.
111  */
112 int register_security(struct security_operations *ops)
113 {
114         if (verify(ops)) {
115                 printk(KERN_DEBUG "%s could not verify "
116                        "security_operations structure.\n", __func__);
117                 return -EINVAL;
118         }
119
120         if (security_ops != &default_security_ops)
121                 return -EAGAIN;
122
123         security_ops = ops;
124
125         return 0;
126 }
127
128 /* Security operations */
129
130 int security_ptrace_may_access(struct task_struct *child, unsigned int mode)
131 {
132         return security_ops->ptrace_may_access(child, mode);
133 }
134
135 int security_ptrace_traceme(struct task_struct *parent)
136 {
137         return security_ops->ptrace_traceme(parent);
138 }
139
140 int security_capget(struct task_struct *target,
141                      kernel_cap_t *effective,
142                      kernel_cap_t *inheritable,
143                      kernel_cap_t *permitted)
144 {
145         return security_ops->capget(target, effective, inheritable, permitted);
146 }
147
148 int security_capset(struct cred *new, const struct cred *old,
149                     const kernel_cap_t *effective,
150                     const kernel_cap_t *inheritable,
151                     const kernel_cap_t *permitted)
152 {
153         return security_ops->capset(new, old,
154                                     effective, inheritable, permitted);
155 }
156
157 int security_capable(int cap)
158 {
159         return security_ops->capable(current, current_cred(), cap,
160                                      SECURITY_CAP_AUDIT);
161 }
162
163 int security_real_capable(struct task_struct *tsk, int cap)
164 {
165         const struct cred *cred;
166         int ret;
167
168         cred = get_task_cred(tsk);
169         ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_AUDIT);
170         put_cred(cred);
171         return ret;
172 }
173
174 int security_real_capable_noaudit(struct task_struct *tsk, int cap)
175 {
176         const struct cred *cred;
177         int ret;
178
179         cred = get_task_cred(tsk);
180         ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_NOAUDIT);
181         put_cred(cred);
182         return ret;
183 }
184
185 int security_acct(struct file *file)
186 {
187         return security_ops->acct(file);
188 }
189
190 int security_sysctl(struct ctl_table *table, int op)
191 {
192         return security_ops->sysctl(table, op);
193 }
194
195 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
196 {
197         return security_ops->quotactl(cmds, type, id, sb);
198 }
199
200 int security_quota_on(struct dentry *dentry)
201 {
202         return security_ops->quota_on(dentry);
203 }
204
205 int security_syslog(int type)
206 {
207         return security_ops->syslog(type);
208 }
209
210 int security_settime(struct timespec *ts, struct timezone *tz)
211 {
212         return security_ops->settime(ts, tz);
213 }
214
215 int security_vm_enough_memory(long pages)
216 {
217         WARN_ON(current->mm == NULL);
218         return security_ops->vm_enough_memory(current->mm, pages);
219 }
220
221 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
222 {
223         WARN_ON(mm == NULL);
224         return security_ops->vm_enough_memory(mm, pages);
225 }
226
227 int security_vm_enough_memory_kern(long pages)
228 {
229         /* If current->mm is a kernel thread then we will pass NULL,
230            for this specific case that is fine */
231         return security_ops->vm_enough_memory(current->mm, pages);
232 }
233
234 int security_bprm_set_creds(struct linux_binprm *bprm)
235 {
236         return security_ops->bprm_set_creds(bprm);
237 }
238
239 int security_bprm_check(struct linux_binprm *bprm)
240 {
241         return security_ops->bprm_check_security(bprm);
242 }
243
244 void security_bprm_committing_creds(struct linux_binprm *bprm)
245 {
246         security_ops->bprm_committing_creds(bprm);
247 }
248
249 void security_bprm_committed_creds(struct linux_binprm *bprm)
250 {
251         security_ops->bprm_committed_creds(bprm);
252 }
253
254 int security_bprm_secureexec(struct linux_binprm *bprm)
255 {
256         return security_ops->bprm_secureexec(bprm);
257 }
258
259 int security_sb_alloc(struct super_block *sb)
260 {
261         return security_ops->sb_alloc_security(sb);
262 }
263
264 void security_sb_free(struct super_block *sb)
265 {
266         security_ops->sb_free_security(sb);
267 }
268
269 int security_sb_copy_data(char *orig, char *copy)
270 {
271         return security_ops->sb_copy_data(orig, copy);
272 }
273 EXPORT_SYMBOL(security_sb_copy_data);
274
275 int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
276 {
277         return security_ops->sb_kern_mount(sb, flags, data);
278 }
279
280 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
281 {
282         return security_ops->sb_show_options(m, sb);
283 }
284
285 int security_sb_statfs(struct dentry *dentry)
286 {
287         return security_ops->sb_statfs(dentry);
288 }
289
290 int security_sb_mount(char *dev_name, struct path *path,
291                        char *type, unsigned long flags, void *data)
292 {
293         return security_ops->sb_mount(dev_name, path, type, flags, data);
294 }
295
296 int security_sb_check_sb(struct vfsmount *mnt, struct path *path)
297 {
298         return security_ops->sb_check_sb(mnt, path);
299 }
300
301 int security_sb_umount(struct vfsmount *mnt, int flags)
302 {
303         return security_ops->sb_umount(mnt, flags);
304 }
305
306 void security_sb_umount_close(struct vfsmount *mnt)
307 {
308         security_ops->sb_umount_close(mnt);
309 }
310
311 void security_sb_umount_busy(struct vfsmount *mnt)
312 {
313         security_ops->sb_umount_busy(mnt);
314 }
315
316 void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data)
317 {
318         security_ops->sb_post_remount(mnt, flags, data);
319 }
320
321 void security_sb_post_addmount(struct vfsmount *mnt, struct path *mountpoint)
322 {
323         security_ops->sb_post_addmount(mnt, mountpoint);
324 }
325
326 int security_sb_pivotroot(struct path *old_path, struct path *new_path)
327 {
328         return security_ops->sb_pivotroot(old_path, new_path);
329 }
330
331 void security_sb_post_pivotroot(struct path *old_path, struct path *new_path)
332 {
333         security_ops->sb_post_pivotroot(old_path, new_path);
334 }
335
336 int security_sb_set_mnt_opts(struct super_block *sb,
337                                 struct security_mnt_opts *opts)
338 {
339         return security_ops->sb_set_mnt_opts(sb, opts);
340 }
341 EXPORT_SYMBOL(security_sb_set_mnt_opts);
342
343 void security_sb_clone_mnt_opts(const struct super_block *oldsb,
344                                 struct super_block *newsb)
345 {
346         security_ops->sb_clone_mnt_opts(oldsb, newsb);
347 }
348 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
349
350 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
351 {
352         return security_ops->sb_parse_opts_str(options, opts);
353 }
354 EXPORT_SYMBOL(security_sb_parse_opts_str);
355
356 int security_inode_alloc(struct inode *inode)
357 {
358         inode->i_security = NULL;
359         return security_ops->inode_alloc_security(inode);
360 }
361
362 void security_inode_free(struct inode *inode)
363 {
364         security_ops->inode_free_security(inode);
365 }
366
367 int security_inode_init_security(struct inode *inode, struct inode *dir,
368                                   char **name, void **value, size_t *len)
369 {
370         if (unlikely(IS_PRIVATE(inode)))
371                 return -EOPNOTSUPP;
372         return security_ops->inode_init_security(inode, dir, name, value, len);
373 }
374 EXPORT_SYMBOL(security_inode_init_security);
375
376 int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
377 {
378         if (unlikely(IS_PRIVATE(dir)))
379                 return 0;
380         return security_ops->inode_create(dir, dentry, mode);
381 }
382
383 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
384                          struct dentry *new_dentry)
385 {
386         if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
387                 return 0;
388         return security_ops->inode_link(old_dentry, dir, new_dentry);
389 }
390
391 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
392 {
393         if (unlikely(IS_PRIVATE(dentry->d_inode)))
394                 return 0;
395         return security_ops->inode_unlink(dir, dentry);
396 }
397
398 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
399                             const char *old_name)
400 {
401         if (unlikely(IS_PRIVATE(dir)))
402                 return 0;
403         return security_ops->inode_symlink(dir, dentry, old_name);
404 }
405
406 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
407 {
408         if (unlikely(IS_PRIVATE(dir)))
409                 return 0;
410         return security_ops->inode_mkdir(dir, dentry, mode);
411 }
412
413 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
414 {
415         if (unlikely(IS_PRIVATE(dentry->d_inode)))
416                 return 0;
417         return security_ops->inode_rmdir(dir, dentry);
418 }
419
420 int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
421 {
422         if (unlikely(IS_PRIVATE(dir)))
423                 return 0;
424         return security_ops->inode_mknod(dir, dentry, mode, dev);
425 }
426
427 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
428                            struct inode *new_dir, struct dentry *new_dentry)
429 {
430         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
431             (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
432                 return 0;
433         return security_ops->inode_rename(old_dir, old_dentry,
434                                            new_dir, new_dentry);
435 }
436
437 int security_inode_readlink(struct dentry *dentry)
438 {
439         if (unlikely(IS_PRIVATE(dentry->d_inode)))
440                 return 0;
441         return security_ops->inode_readlink(dentry);
442 }
443
444 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
445 {
446         if (unlikely(IS_PRIVATE(dentry->d_inode)))
447                 return 0;
448         return security_ops->inode_follow_link(dentry, nd);
449 }
450
451 int security_inode_permission(struct inode *inode, int mask)
452 {
453         if (unlikely(IS_PRIVATE(inode)))
454                 return 0;
455         return security_ops->inode_permission(inode, mask);
456 }
457
458 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
459 {
460         if (unlikely(IS_PRIVATE(dentry->d_inode)))
461                 return 0;
462         return security_ops->inode_setattr(dentry, attr);
463 }
464 EXPORT_SYMBOL_GPL(security_inode_setattr);
465
466 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
467 {
468         if (unlikely(IS_PRIVATE(dentry->d_inode)))
469                 return 0;
470         return security_ops->inode_getattr(mnt, dentry);
471 }
472
473 void security_inode_delete(struct inode *inode)
474 {
475         if (unlikely(IS_PRIVATE(inode)))
476                 return;
477         security_ops->inode_delete(inode);
478 }
479
480 int security_inode_setxattr(struct dentry *dentry, const char *name,
481                             const void *value, size_t size, int flags)
482 {
483         if (unlikely(IS_PRIVATE(dentry->d_inode)))
484                 return 0;
485         return security_ops->inode_setxattr(dentry, name, value, size, flags);
486 }
487
488 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
489                                   const void *value, size_t size, int flags)
490 {
491         if (unlikely(IS_PRIVATE(dentry->d_inode)))
492                 return;
493         security_ops->inode_post_setxattr(dentry, name, value, size, flags);
494 }
495
496 int security_inode_getxattr(struct dentry *dentry, const char *name)
497 {
498         if (unlikely(IS_PRIVATE(dentry->d_inode)))
499                 return 0;
500         return security_ops->inode_getxattr(dentry, name);
501 }
502
503 int security_inode_listxattr(struct dentry *dentry)
504 {
505         if (unlikely(IS_PRIVATE(dentry->d_inode)))
506                 return 0;
507         return security_ops->inode_listxattr(dentry);
508 }
509
510 int security_inode_removexattr(struct dentry *dentry, const char *name)
511 {
512         if (unlikely(IS_PRIVATE(dentry->d_inode)))
513                 return 0;
514         return security_ops->inode_removexattr(dentry, name);
515 }
516
517 int security_inode_need_killpriv(struct dentry *dentry)
518 {
519         return security_ops->inode_need_killpriv(dentry);
520 }
521
522 int security_inode_killpriv(struct dentry *dentry)
523 {
524         return security_ops->inode_killpriv(dentry);
525 }
526
527 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
528 {
529         if (unlikely(IS_PRIVATE(inode)))
530                 return 0;
531         return security_ops->inode_getsecurity(inode, name, buffer, alloc);
532 }
533
534 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
535 {
536         if (unlikely(IS_PRIVATE(inode)))
537                 return 0;
538         return security_ops->inode_setsecurity(inode, name, value, size, flags);
539 }
540
541 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
542 {
543         if (unlikely(IS_PRIVATE(inode)))
544                 return 0;
545         return security_ops->inode_listsecurity(inode, buffer, buffer_size);
546 }
547
548 void security_inode_getsecid(const struct inode *inode, u32 *secid)
549 {
550         security_ops->inode_getsecid(inode, secid);
551 }
552
553 int security_file_permission(struct file *file, int mask)
554 {
555         return security_ops->file_permission(file, mask);
556 }
557
558 int security_file_alloc(struct file *file)
559 {
560         return security_ops->file_alloc_security(file);
561 }
562
563 void security_file_free(struct file *file)
564 {
565         security_ops->file_free_security(file);
566 }
567
568 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
569 {
570         return security_ops->file_ioctl(file, cmd, arg);
571 }
572
573 int security_file_mmap(struct file *file, unsigned long reqprot,
574                         unsigned long prot, unsigned long flags,
575                         unsigned long addr, unsigned long addr_only)
576 {
577         return security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
578 }
579
580 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
581                             unsigned long prot)
582 {
583         return security_ops->file_mprotect(vma, reqprot, prot);
584 }
585
586 int security_file_lock(struct file *file, unsigned int cmd)
587 {
588         return security_ops->file_lock(file, cmd);
589 }
590
591 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
592 {
593         return security_ops->file_fcntl(file, cmd, arg);
594 }
595
596 int security_file_set_fowner(struct file *file)
597 {
598         return security_ops->file_set_fowner(file);
599 }
600
601 int security_file_send_sigiotask(struct task_struct *tsk,
602                                   struct fown_struct *fown, int sig)
603 {
604         return security_ops->file_send_sigiotask(tsk, fown, sig);
605 }
606
607 int security_file_receive(struct file *file)
608 {
609         return security_ops->file_receive(file);
610 }
611
612 int security_dentry_open(struct file *file, const struct cred *cred)
613 {
614         return security_ops->dentry_open(file, cred);
615 }
616
617 int security_task_create(unsigned long clone_flags)
618 {
619         return security_ops->task_create(clone_flags);
620 }
621
622 void security_cred_free(struct cred *cred)
623 {
624         security_ops->cred_free(cred);
625 }
626
627 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
628 {
629         return security_ops->cred_prepare(new, old, gfp);
630 }
631
632 void security_commit_creds(struct cred *new, const struct cred *old)
633 {
634         security_ops->cred_commit(new, old);
635 }
636
637 int security_kernel_act_as(struct cred *new, u32 secid)
638 {
639         return security_ops->kernel_act_as(new, secid);
640 }
641
642 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
643 {
644         return security_ops->kernel_create_files_as(new, inode);
645 }
646
647 int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
648 {
649         return security_ops->task_setuid(id0, id1, id2, flags);
650 }
651
652 int security_task_fix_setuid(struct cred *new, const struct cred *old,
653                              int flags)
654 {
655         return security_ops->task_fix_setuid(new, old, flags);
656 }
657
658 int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
659 {
660         return security_ops->task_setgid(id0, id1, id2, flags);
661 }
662
663 int security_task_setpgid(struct task_struct *p, pid_t pgid)
664 {
665         return security_ops->task_setpgid(p, pgid);
666 }
667
668 int security_task_getpgid(struct task_struct *p)
669 {
670         return security_ops->task_getpgid(p);
671 }
672
673 int security_task_getsid(struct task_struct *p)
674 {
675         return security_ops->task_getsid(p);
676 }
677
678 void security_task_getsecid(struct task_struct *p, u32 *secid)
679 {
680         security_ops->task_getsecid(p, secid);
681 }
682 EXPORT_SYMBOL(security_task_getsecid);
683
684 int security_task_setgroups(struct group_info *group_info)
685 {
686         return security_ops->task_setgroups(group_info);
687 }
688
689 int security_task_setnice(struct task_struct *p, int nice)
690 {
691         return security_ops->task_setnice(p, nice);
692 }
693
694 int security_task_setioprio(struct task_struct *p, int ioprio)
695 {
696         return security_ops->task_setioprio(p, ioprio);
697 }
698
699 int security_task_getioprio(struct task_struct *p)
700 {
701         return security_ops->task_getioprio(p);
702 }
703
704 int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
705 {
706         return security_ops->task_setrlimit(resource, new_rlim);
707 }
708
709 int security_task_setscheduler(struct task_struct *p,
710                                 int policy, struct sched_param *lp)
711 {
712         return security_ops->task_setscheduler(p, policy, lp);
713 }
714
715 int security_task_getscheduler(struct task_struct *p)
716 {
717         return security_ops->task_getscheduler(p);
718 }
719
720 int security_task_movememory(struct task_struct *p)
721 {
722         return security_ops->task_movememory(p);
723 }
724
725 int security_task_kill(struct task_struct *p, struct siginfo *info,
726                         int sig, u32 secid)
727 {
728         return security_ops->task_kill(p, info, sig, secid);
729 }
730
731 int security_task_wait(struct task_struct *p)
732 {
733         return security_ops->task_wait(p);
734 }
735
736 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
737                          unsigned long arg4, unsigned long arg5)
738 {
739         return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
740 }
741
742 void security_task_to_inode(struct task_struct *p, struct inode *inode)
743 {
744         security_ops->task_to_inode(p, inode);
745 }
746
747 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
748 {
749         return security_ops->ipc_permission(ipcp, flag);
750 }
751
752 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
753 {
754         security_ops->ipc_getsecid(ipcp, secid);
755 }
756
757 int security_msg_msg_alloc(struct msg_msg *msg)
758 {
759         return security_ops->msg_msg_alloc_security(msg);
760 }
761
762 void security_msg_msg_free(struct msg_msg *msg)
763 {
764         security_ops->msg_msg_free_security(msg);
765 }
766
767 int security_msg_queue_alloc(struct msg_queue *msq)
768 {
769         return security_ops->msg_queue_alloc_security(msq);
770 }
771
772 void security_msg_queue_free(struct msg_queue *msq)
773 {
774         security_ops->msg_queue_free_security(msq);
775 }
776
777 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
778 {
779         return security_ops->msg_queue_associate(msq, msqflg);
780 }
781
782 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
783 {
784         return security_ops->msg_queue_msgctl(msq, cmd);
785 }
786
787 int security_msg_queue_msgsnd(struct msg_queue *msq,
788                                struct msg_msg *msg, int msqflg)
789 {
790         return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
791 }
792
793 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
794                                struct task_struct *target, long type, int mode)
795 {
796         return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
797 }
798
799 int security_shm_alloc(struct shmid_kernel *shp)
800 {
801         return security_ops->shm_alloc_security(shp);
802 }
803
804 void security_shm_free(struct shmid_kernel *shp)
805 {
806         security_ops->shm_free_security(shp);
807 }
808
809 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
810 {
811         return security_ops->shm_associate(shp, shmflg);
812 }
813
814 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
815 {
816         return security_ops->shm_shmctl(shp, cmd);
817 }
818
819 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
820 {
821         return security_ops->shm_shmat(shp, shmaddr, shmflg);
822 }
823
824 int security_sem_alloc(struct sem_array *sma)
825 {
826         return security_ops->sem_alloc_security(sma);
827 }
828
829 void security_sem_free(struct sem_array *sma)
830 {
831         security_ops->sem_free_security(sma);
832 }
833
834 int security_sem_associate(struct sem_array *sma, int semflg)
835 {
836         return security_ops->sem_associate(sma, semflg);
837 }
838
839 int security_sem_semctl(struct sem_array *sma, int cmd)
840 {
841         return security_ops->sem_semctl(sma, cmd);
842 }
843
844 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
845                         unsigned nsops, int alter)
846 {
847         return security_ops->sem_semop(sma, sops, nsops, alter);
848 }
849
850 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
851 {
852         if (unlikely(inode && IS_PRIVATE(inode)))
853                 return;
854         security_ops->d_instantiate(dentry, inode);
855 }
856 EXPORT_SYMBOL(security_d_instantiate);
857
858 int security_getprocattr(struct task_struct *p, char *name, char **value)
859 {
860         return security_ops->getprocattr(p, name, value);
861 }
862
863 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
864 {
865         return security_ops->setprocattr(p, name, value, size);
866 }
867
868 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
869 {
870         return security_ops->netlink_send(sk, skb);
871 }
872
873 int security_netlink_recv(struct sk_buff *skb, int cap)
874 {
875         return security_ops->netlink_recv(skb, cap);
876 }
877 EXPORT_SYMBOL(security_netlink_recv);
878
879 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
880 {
881         return security_ops->secid_to_secctx(secid, secdata, seclen);
882 }
883 EXPORT_SYMBOL(security_secid_to_secctx);
884
885 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
886 {
887         return security_ops->secctx_to_secid(secdata, seclen, secid);
888 }
889 EXPORT_SYMBOL(security_secctx_to_secid);
890
891 void security_release_secctx(char *secdata, u32 seclen)
892 {
893         security_ops->release_secctx(secdata, seclen);
894 }
895 EXPORT_SYMBOL(security_release_secctx);
896
897 #ifdef CONFIG_SECURITY_NETWORK
898
899 int security_unix_stream_connect(struct socket *sock, struct socket *other,
900                                  struct sock *newsk)
901 {
902         return security_ops->unix_stream_connect(sock, other, newsk);
903 }
904 EXPORT_SYMBOL(security_unix_stream_connect);
905
906 int security_unix_may_send(struct socket *sock,  struct socket *other)
907 {
908         return security_ops->unix_may_send(sock, other);
909 }
910 EXPORT_SYMBOL(security_unix_may_send);
911
912 int security_socket_create(int family, int type, int protocol, int kern)
913 {
914         return security_ops->socket_create(family, type, protocol, kern);
915 }
916
917 int security_socket_post_create(struct socket *sock, int family,
918                                 int type, int protocol, int kern)
919 {
920         return security_ops->socket_post_create(sock, family, type,
921                                                 protocol, kern);
922 }
923
924 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
925 {
926         return security_ops->socket_bind(sock, address, addrlen);
927 }
928
929 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
930 {
931         return security_ops->socket_connect(sock, address, addrlen);
932 }
933
934 int security_socket_listen(struct socket *sock, int backlog)
935 {
936         return security_ops->socket_listen(sock, backlog);
937 }
938
939 int security_socket_accept(struct socket *sock, struct socket *newsock)
940 {
941         return security_ops->socket_accept(sock, newsock);
942 }
943
944 void security_socket_post_accept(struct socket *sock, struct socket *newsock)
945 {
946         security_ops->socket_post_accept(sock, newsock);
947 }
948
949 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
950 {
951         return security_ops->socket_sendmsg(sock, msg, size);
952 }
953
954 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
955                             int size, int flags)
956 {
957         return security_ops->socket_recvmsg(sock, msg, size, flags);
958 }
959
960 int security_socket_getsockname(struct socket *sock)
961 {
962         return security_ops->socket_getsockname(sock);
963 }
964
965 int security_socket_getpeername(struct socket *sock)
966 {
967         return security_ops->socket_getpeername(sock);
968 }
969
970 int security_socket_getsockopt(struct socket *sock, int level, int optname)
971 {
972         return security_ops->socket_getsockopt(sock, level, optname);
973 }
974
975 int security_socket_setsockopt(struct socket *sock, int level, int optname)
976 {
977         return security_ops->socket_setsockopt(sock, level, optname);
978 }
979
980 int security_socket_shutdown(struct socket *sock, int how)
981 {
982         return security_ops->socket_shutdown(sock, how);
983 }
984
985 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
986 {
987         return security_ops->socket_sock_rcv_skb(sk, skb);
988 }
989 EXPORT_SYMBOL(security_sock_rcv_skb);
990
991 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
992                                       int __user *optlen, unsigned len)
993 {
994         return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
995 }
996
997 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
998 {
999         return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1000 }
1001 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1002
1003 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1004 {
1005         return security_ops->sk_alloc_security(sk, family, priority);
1006 }
1007
1008 void security_sk_free(struct sock *sk)
1009 {
1010         security_ops->sk_free_security(sk);
1011 }
1012
1013 void security_sk_clone(const struct sock *sk, struct sock *newsk)
1014 {
1015         security_ops->sk_clone_security(sk, newsk);
1016 }
1017
1018 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1019 {
1020         security_ops->sk_getsecid(sk, &fl->secid);
1021 }
1022 EXPORT_SYMBOL(security_sk_classify_flow);
1023
1024 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1025 {
1026         security_ops->req_classify_flow(req, fl);
1027 }
1028 EXPORT_SYMBOL(security_req_classify_flow);
1029
1030 void security_sock_graft(struct sock *sk, struct socket *parent)
1031 {
1032         security_ops->sock_graft(sk, parent);
1033 }
1034 EXPORT_SYMBOL(security_sock_graft);
1035
1036 int security_inet_conn_request(struct sock *sk,
1037                         struct sk_buff *skb, struct request_sock *req)
1038 {
1039         return security_ops->inet_conn_request(sk, skb, req);
1040 }
1041 EXPORT_SYMBOL(security_inet_conn_request);
1042
1043 void security_inet_csk_clone(struct sock *newsk,
1044                         const struct request_sock *req)
1045 {
1046         security_ops->inet_csk_clone(newsk, req);
1047 }
1048
1049 void security_inet_conn_established(struct sock *sk,
1050                         struct sk_buff *skb)
1051 {
1052         security_ops->inet_conn_established(sk, skb);
1053 }
1054
1055 #endif  /* CONFIG_SECURITY_NETWORK */
1056
1057 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1058
1059 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1060 {
1061         return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1062 }
1063 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1064
1065 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1066                               struct xfrm_sec_ctx **new_ctxp)
1067 {
1068         return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1069 }
1070
1071 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1072 {
1073         security_ops->xfrm_policy_free_security(ctx);
1074 }
1075 EXPORT_SYMBOL(security_xfrm_policy_free);
1076
1077 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1078 {
1079         return security_ops->xfrm_policy_delete_security(ctx);
1080 }
1081
1082 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1083 {
1084         return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1085 }
1086 EXPORT_SYMBOL(security_xfrm_state_alloc);
1087
1088 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1089                                       struct xfrm_sec_ctx *polsec, u32 secid)
1090 {
1091         if (!polsec)
1092                 return 0;
1093         /*
1094          * We want the context to be taken from secid which is usually
1095          * from the sock.
1096          */
1097         return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1098 }
1099
1100 int security_xfrm_state_delete(struct xfrm_state *x)
1101 {
1102         return security_ops->xfrm_state_delete_security(x);
1103 }
1104 EXPORT_SYMBOL(security_xfrm_state_delete);
1105
1106 void security_xfrm_state_free(struct xfrm_state *x)
1107 {
1108         security_ops->xfrm_state_free_security(x);
1109 }
1110
1111 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1112 {
1113         return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1114 }
1115
1116 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1117                                        struct xfrm_policy *xp, struct flowi *fl)
1118 {
1119         return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1120 }
1121
1122 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1123 {
1124         return security_ops->xfrm_decode_session(skb, secid, 1);
1125 }
1126
1127 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1128 {
1129         int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0);
1130
1131         BUG_ON(rc);
1132 }
1133 EXPORT_SYMBOL(security_skb_classify_flow);
1134
1135 #endif  /* CONFIG_SECURITY_NETWORK_XFRM */
1136
1137 #ifdef CONFIG_KEYS
1138
1139 int security_key_alloc(struct key *key, const struct cred *cred,
1140                        unsigned long flags)
1141 {
1142         return security_ops->key_alloc(key, cred, flags);
1143 }
1144
1145 void security_key_free(struct key *key)
1146 {
1147         security_ops->key_free(key);
1148 }
1149
1150 int security_key_permission(key_ref_t key_ref,
1151                             const struct cred *cred, key_perm_t perm)
1152 {
1153         return security_ops->key_permission(key_ref, cred, perm);
1154 }
1155
1156 int security_key_getsecurity(struct key *key, char **_buffer)
1157 {
1158         return security_ops->key_getsecurity(key, _buffer);
1159 }
1160
1161 #endif  /* CONFIG_KEYS */
1162
1163 #ifdef CONFIG_AUDIT
1164
1165 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1166 {
1167         return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1168 }
1169
1170 int security_audit_rule_known(struct audit_krule *krule)
1171 {
1172         return security_ops->audit_rule_known(krule);
1173 }
1174
1175 void security_audit_rule_free(void *lsmrule)
1176 {
1177         security_ops->audit_rule_free(lsmrule);
1178 }
1179
1180 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1181                               struct audit_context *actx)
1182 {
1183         return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1184 }
1185
1186 #endif /* CONFIG_AUDIT */