Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc-2.6
[linux-2.6.git] / net / wireless / util.c
1 /*
2  * Wireless utility functions
3  *
4  * Copyright 2007-2009  Johannes Berg <johannes@sipsolutions.net>
5  */
6 #include <linux/bitops.h>
7 #include <linux/etherdevice.h>
8 #include <net/cfg80211.h>
9 #include <net/ip.h>
10 #include "core.h"
11
12 struct ieee80211_rate *
13 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
14                             u32 basic_rates, int bitrate)
15 {
16         struct ieee80211_rate *result = &sband->bitrates[0];
17         int i;
18
19         for (i = 0; i < sband->n_bitrates; i++) {
20                 if (!(basic_rates & BIT(i)))
21                         continue;
22                 if (sband->bitrates[i].bitrate > bitrate)
23                         continue;
24                 result = &sband->bitrates[i];
25         }
26
27         return result;
28 }
29 EXPORT_SYMBOL(ieee80211_get_response_rate);
30
31 int ieee80211_channel_to_frequency(int chan)
32 {
33         if (chan < 14)
34                 return 2407 + chan * 5;
35
36         if (chan == 14)
37                 return 2484;
38
39         /* FIXME: 802.11j 17.3.8.3.2 */
40         return (chan + 1000) * 5;
41 }
42 EXPORT_SYMBOL(ieee80211_channel_to_frequency);
43
44 int ieee80211_frequency_to_channel(int freq)
45 {
46         if (freq == 2484)
47                 return 14;
48
49         if (freq < 2484)
50                 return (freq - 2407) / 5;
51
52         /* FIXME: 802.11j 17.3.8.3.2 */
53         return freq/5 - 1000;
54 }
55 EXPORT_SYMBOL(ieee80211_frequency_to_channel);
56
57 struct ieee80211_channel *__ieee80211_get_channel(struct wiphy *wiphy,
58                                                   int freq)
59 {
60         enum ieee80211_band band;
61         struct ieee80211_supported_band *sband;
62         int i;
63
64         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
65                 sband = wiphy->bands[band];
66
67                 if (!sband)
68                         continue;
69
70                 for (i = 0; i < sband->n_channels; i++) {
71                         if (sband->channels[i].center_freq == freq)
72                                 return &sband->channels[i];
73                 }
74         }
75
76         return NULL;
77 }
78 EXPORT_SYMBOL(__ieee80211_get_channel);
79
80 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband,
81                                      enum ieee80211_band band)
82 {
83         int i, want;
84
85         switch (band) {
86         case IEEE80211_BAND_5GHZ:
87                 want = 3;
88                 for (i = 0; i < sband->n_bitrates; i++) {
89                         if (sband->bitrates[i].bitrate == 60 ||
90                             sband->bitrates[i].bitrate == 120 ||
91                             sband->bitrates[i].bitrate == 240) {
92                                 sband->bitrates[i].flags |=
93                                         IEEE80211_RATE_MANDATORY_A;
94                                 want--;
95                         }
96                 }
97                 WARN_ON(want);
98                 break;
99         case IEEE80211_BAND_2GHZ:
100                 want = 7;
101                 for (i = 0; i < sband->n_bitrates; i++) {
102                         if (sband->bitrates[i].bitrate == 10) {
103                                 sband->bitrates[i].flags |=
104                                         IEEE80211_RATE_MANDATORY_B |
105                                         IEEE80211_RATE_MANDATORY_G;
106                                 want--;
107                         }
108
109                         if (sband->bitrates[i].bitrate == 20 ||
110                             sband->bitrates[i].bitrate == 55 ||
111                             sband->bitrates[i].bitrate == 110 ||
112                             sband->bitrates[i].bitrate == 60 ||
113                             sband->bitrates[i].bitrate == 120 ||
114                             sband->bitrates[i].bitrate == 240) {
115                                 sband->bitrates[i].flags |=
116                                         IEEE80211_RATE_MANDATORY_G;
117                                 want--;
118                         }
119
120                         if (sband->bitrates[i].bitrate != 10 &&
121                             sband->bitrates[i].bitrate != 20 &&
122                             sband->bitrates[i].bitrate != 55 &&
123                             sband->bitrates[i].bitrate != 110)
124                                 sband->bitrates[i].flags |=
125                                         IEEE80211_RATE_ERP_G;
126                 }
127                 WARN_ON(want != 0 && want != 3 && want != 6);
128                 break;
129         case IEEE80211_NUM_BANDS:
130                 WARN_ON(1);
131                 break;
132         }
133 }
134
135 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
136 {
137         enum ieee80211_band band;
138
139         for (band = 0; band < IEEE80211_NUM_BANDS; band++)
140                 if (wiphy->bands[band])
141                         set_mandatory_flags_band(wiphy->bands[band], band);
142 }
143
144 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
145                                    struct key_params *params, int key_idx,
146                                    const u8 *mac_addr)
147 {
148         int i;
149
150         if (key_idx > 5)
151                 return -EINVAL;
152
153         /*
154          * Disallow pairwise keys with non-zero index unless it's WEP
155          * (because current deployments use pairwise WEP keys with
156          * non-zero indizes but 802.11i clearly specifies to use zero)
157          */
158         if (mac_addr && key_idx &&
159             params->cipher != WLAN_CIPHER_SUITE_WEP40 &&
160             params->cipher != WLAN_CIPHER_SUITE_WEP104)
161                 return -EINVAL;
162
163         switch (params->cipher) {
164         case WLAN_CIPHER_SUITE_WEP40:
165                 if (params->key_len != WLAN_KEY_LEN_WEP40)
166                         return -EINVAL;
167                 break;
168         case WLAN_CIPHER_SUITE_TKIP:
169                 if (params->key_len != WLAN_KEY_LEN_TKIP)
170                         return -EINVAL;
171                 break;
172         case WLAN_CIPHER_SUITE_CCMP:
173                 if (params->key_len != WLAN_KEY_LEN_CCMP)
174                         return -EINVAL;
175                 break;
176         case WLAN_CIPHER_SUITE_WEP104:
177                 if (params->key_len != WLAN_KEY_LEN_WEP104)
178                         return -EINVAL;
179                 break;
180         case WLAN_CIPHER_SUITE_AES_CMAC:
181                 if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
182                         return -EINVAL;
183                 break;
184         default:
185                 return -EINVAL;
186         }
187
188         if (params->seq) {
189                 switch (params->cipher) {
190                 case WLAN_CIPHER_SUITE_WEP40:
191                 case WLAN_CIPHER_SUITE_WEP104:
192                         /* These ciphers do not use key sequence */
193                         return -EINVAL;
194                 case WLAN_CIPHER_SUITE_TKIP:
195                 case WLAN_CIPHER_SUITE_CCMP:
196                 case WLAN_CIPHER_SUITE_AES_CMAC:
197                         if (params->seq_len != 6)
198                                 return -EINVAL;
199                         break;
200                 }
201         }
202
203         for (i = 0; i < rdev->wiphy.n_cipher_suites; i++)
204                 if (params->cipher == rdev->wiphy.cipher_suites[i])
205                         break;
206         if (i == rdev->wiphy.n_cipher_suites)
207                 return -EINVAL;
208
209         return 0;
210 }
211
212 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
213 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
214 const unsigned char rfc1042_header[] __aligned(2) =
215         { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
216 EXPORT_SYMBOL(rfc1042_header);
217
218 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
219 const unsigned char bridge_tunnel_header[] __aligned(2) =
220         { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
221 EXPORT_SYMBOL(bridge_tunnel_header);
222
223 unsigned int ieee80211_hdrlen(__le16 fc)
224 {
225         unsigned int hdrlen = 24;
226
227         if (ieee80211_is_data(fc)) {
228                 if (ieee80211_has_a4(fc))
229                         hdrlen = 30;
230                 if (ieee80211_is_data_qos(fc)) {
231                         hdrlen += IEEE80211_QOS_CTL_LEN;
232                         if (ieee80211_has_order(fc))
233                                 hdrlen += IEEE80211_HT_CTL_LEN;
234                 }
235                 goto out;
236         }
237
238         if (ieee80211_is_ctl(fc)) {
239                 /*
240                  * ACK and CTS are 10 bytes, all others 16. To see how
241                  * to get this condition consider
242                  *   subtype mask:   0b0000000011110000 (0x00F0)
243                  *   ACK subtype:    0b0000000011010000 (0x00D0)
244                  *   CTS subtype:    0b0000000011000000 (0x00C0)
245                  *   bits that matter:         ^^^      (0x00E0)
246                  *   value of those: 0b0000000011000000 (0x00C0)
247                  */
248                 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
249                         hdrlen = 10;
250                 else
251                         hdrlen = 16;
252         }
253 out:
254         return hdrlen;
255 }
256 EXPORT_SYMBOL(ieee80211_hdrlen);
257
258 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
259 {
260         const struct ieee80211_hdr *hdr =
261                         (const struct ieee80211_hdr *)skb->data;
262         unsigned int hdrlen;
263
264         if (unlikely(skb->len < 10))
265                 return 0;
266         hdrlen = ieee80211_hdrlen(hdr->frame_control);
267         if (unlikely(hdrlen > skb->len))
268                 return 0;
269         return hdrlen;
270 }
271 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
272
273 static int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
274 {
275         int ae = meshhdr->flags & MESH_FLAGS_AE;
276         /* 7.1.3.5a.2 */
277         switch (ae) {
278         case 0:
279                 return 6;
280         case MESH_FLAGS_AE_A4:
281                 return 12;
282         case MESH_FLAGS_AE_A5_A6:
283                 return 18;
284         case (MESH_FLAGS_AE_A4 | MESH_FLAGS_AE_A5_A6):
285                 return 24;
286         default:
287                 return 6;
288         }
289 }
290
291 int ieee80211_data_to_8023(struct sk_buff *skb, const u8 *addr,
292                            enum nl80211_iftype iftype)
293 {
294         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
295         u16 hdrlen, ethertype;
296         u8 *payload;
297         u8 dst[ETH_ALEN];
298         u8 src[ETH_ALEN] __aligned(2);
299
300         if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
301                 return -1;
302
303         hdrlen = ieee80211_hdrlen(hdr->frame_control);
304
305         /* convert IEEE 802.11 header + possible LLC headers into Ethernet
306          * header
307          * IEEE 802.11 address fields:
308          * ToDS FromDS Addr1 Addr2 Addr3 Addr4
309          *   0     0   DA    SA    BSSID n/a
310          *   0     1   DA    BSSID SA    n/a
311          *   1     0   BSSID SA    DA    n/a
312          *   1     1   RA    TA    DA    SA
313          */
314         memcpy(dst, ieee80211_get_DA(hdr), ETH_ALEN);
315         memcpy(src, ieee80211_get_SA(hdr), ETH_ALEN);
316
317         switch (hdr->frame_control &
318                 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
319         case cpu_to_le16(IEEE80211_FCTL_TODS):
320                 if (unlikely(iftype != NL80211_IFTYPE_AP &&
321                              iftype != NL80211_IFTYPE_AP_VLAN))
322                         return -1;
323                 break;
324         case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
325                 if (unlikely(iftype != NL80211_IFTYPE_WDS &&
326                              iftype != NL80211_IFTYPE_MESH_POINT &&
327                              iftype != NL80211_IFTYPE_AP_VLAN &&
328                              iftype != NL80211_IFTYPE_STATION))
329                         return -1;
330                 if (iftype == NL80211_IFTYPE_MESH_POINT) {
331                         struct ieee80211s_hdr *meshdr =
332                                 (struct ieee80211s_hdr *) (skb->data + hdrlen);
333                         hdrlen += ieee80211_get_mesh_hdrlen(meshdr);
334                         if (meshdr->flags & MESH_FLAGS_AE_A5_A6) {
335                                 memcpy(dst, meshdr->eaddr1, ETH_ALEN);
336                                 memcpy(src, meshdr->eaddr2, ETH_ALEN);
337                         }
338                 }
339                 break;
340         case cpu_to_le16(IEEE80211_FCTL_FROMDS):
341                 if ((iftype != NL80211_IFTYPE_STATION &&
342                     iftype != NL80211_IFTYPE_MESH_POINT) ||
343                     (is_multicast_ether_addr(dst) &&
344                      !compare_ether_addr(src, addr)))
345                         return -1;
346                 if (iftype == NL80211_IFTYPE_MESH_POINT) {
347                         struct ieee80211s_hdr *meshdr =
348                                 (struct ieee80211s_hdr *) (skb->data + hdrlen);
349                         hdrlen += ieee80211_get_mesh_hdrlen(meshdr);
350                         if (meshdr->flags & MESH_FLAGS_AE_A4)
351                                 memcpy(src, meshdr->eaddr1, ETH_ALEN);
352                 }
353                 break;
354         case cpu_to_le16(0):
355                 if (iftype != NL80211_IFTYPE_ADHOC)
356                         return -1;
357                 break;
358         }
359
360         if (unlikely(skb->len - hdrlen < 8))
361                 return -1;
362
363         payload = skb->data + hdrlen;
364         ethertype = (payload[6] << 8) | payload[7];
365
366         if (likely((compare_ether_addr(payload, rfc1042_header) == 0 &&
367                     ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
368                    compare_ether_addr(payload, bridge_tunnel_header) == 0)) {
369                 /* remove RFC1042 or Bridge-Tunnel encapsulation and
370                  * replace EtherType */
371                 skb_pull(skb, hdrlen + 6);
372                 memcpy(skb_push(skb, ETH_ALEN), src, ETH_ALEN);
373                 memcpy(skb_push(skb, ETH_ALEN), dst, ETH_ALEN);
374         } else {
375                 struct ethhdr *ehdr;
376                 __be16 len;
377
378                 skb_pull(skb, hdrlen);
379                 len = htons(skb->len);
380                 ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr));
381                 memcpy(ehdr->h_dest, dst, ETH_ALEN);
382                 memcpy(ehdr->h_source, src, ETH_ALEN);
383                 ehdr->h_proto = len;
384         }
385         return 0;
386 }
387 EXPORT_SYMBOL(ieee80211_data_to_8023);
388
389 int ieee80211_data_from_8023(struct sk_buff *skb, const u8 *addr,
390                              enum nl80211_iftype iftype, u8 *bssid, bool qos)
391 {
392         struct ieee80211_hdr hdr;
393         u16 hdrlen, ethertype;
394         __le16 fc;
395         const u8 *encaps_data;
396         int encaps_len, skip_header_bytes;
397         int nh_pos, h_pos;
398         int head_need;
399
400         if (unlikely(skb->len < ETH_HLEN))
401                 return -EINVAL;
402
403         nh_pos = skb_network_header(skb) - skb->data;
404         h_pos = skb_transport_header(skb) - skb->data;
405
406         /* convert Ethernet header to proper 802.11 header (based on
407          * operation mode) */
408         ethertype = (skb->data[12] << 8) | skb->data[13];
409         fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA);
410
411         switch (iftype) {
412         case NL80211_IFTYPE_AP:
413         case NL80211_IFTYPE_AP_VLAN:
414                 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
415                 /* DA BSSID SA */
416                 memcpy(hdr.addr1, skb->data, ETH_ALEN);
417                 memcpy(hdr.addr2, addr, ETH_ALEN);
418                 memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
419                 hdrlen = 24;
420                 break;
421         case NL80211_IFTYPE_STATION:
422                 fc |= cpu_to_le16(IEEE80211_FCTL_TODS);
423                 /* BSSID SA DA */
424                 memcpy(hdr.addr1, bssid, ETH_ALEN);
425                 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
426                 memcpy(hdr.addr3, skb->data, ETH_ALEN);
427                 hdrlen = 24;
428                 break;
429         case NL80211_IFTYPE_ADHOC:
430                 /* DA SA BSSID */
431                 memcpy(hdr.addr1, skb->data, ETH_ALEN);
432                 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
433                 memcpy(hdr.addr3, bssid, ETH_ALEN);
434                 hdrlen = 24;
435                 break;
436         default:
437                 return -EOPNOTSUPP;
438         }
439
440         if (qos) {
441                 fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
442                 hdrlen += 2;
443         }
444
445         hdr.frame_control = fc;
446         hdr.duration_id = 0;
447         hdr.seq_ctrl = 0;
448
449         skip_header_bytes = ETH_HLEN;
450         if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
451                 encaps_data = bridge_tunnel_header;
452                 encaps_len = sizeof(bridge_tunnel_header);
453                 skip_header_bytes -= 2;
454         } else if (ethertype > 0x600) {
455                 encaps_data = rfc1042_header;
456                 encaps_len = sizeof(rfc1042_header);
457                 skip_header_bytes -= 2;
458         } else {
459                 encaps_data = NULL;
460                 encaps_len = 0;
461         }
462
463         skb_pull(skb, skip_header_bytes);
464         nh_pos -= skip_header_bytes;
465         h_pos -= skip_header_bytes;
466
467         head_need = hdrlen + encaps_len - skb_headroom(skb);
468
469         if (head_need > 0 || skb_cloned(skb)) {
470                 head_need = max(head_need, 0);
471                 if (head_need)
472                         skb_orphan(skb);
473
474                 if (pskb_expand_head(skb, head_need, 0, GFP_ATOMIC)) {
475                         printk(KERN_ERR "failed to reallocate Tx buffer\n");
476                         return -ENOMEM;
477                 }
478                 skb->truesize += head_need;
479         }
480
481         if (encaps_data) {
482                 memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
483                 nh_pos += encaps_len;
484                 h_pos += encaps_len;
485         }
486
487         memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
488
489         nh_pos += hdrlen;
490         h_pos += hdrlen;
491
492         /* Update skb pointers to various headers since this modified frame
493          * is going to go through Linux networking code that may potentially
494          * need things like pointer to IP header. */
495         skb_set_mac_header(skb, 0);
496         skb_set_network_header(skb, nh_pos);
497         skb_set_transport_header(skb, h_pos);
498
499         return 0;
500 }
501 EXPORT_SYMBOL(ieee80211_data_from_8023);
502
503
504 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
505                               const u8 *addr, enum nl80211_iftype iftype,
506                               const unsigned int extra_headroom)
507 {
508         struct sk_buff *frame = NULL;
509         u16 ethertype;
510         u8 *payload;
511         const struct ethhdr *eth;
512         int remaining, err;
513         u8 dst[ETH_ALEN], src[ETH_ALEN];
514
515         err = ieee80211_data_to_8023(skb, addr, iftype);
516         if (err)
517                 goto out;
518
519         /* skip the wrapping header */
520         eth = (struct ethhdr *) skb_pull(skb, sizeof(struct ethhdr));
521         if (!eth)
522                 goto out;
523
524         while (skb != frame) {
525                 u8 padding;
526                 __be16 len = eth->h_proto;
527                 unsigned int subframe_len = sizeof(struct ethhdr) + ntohs(len);
528
529                 remaining = skb->len;
530                 memcpy(dst, eth->h_dest, ETH_ALEN);
531                 memcpy(src, eth->h_source, ETH_ALEN);
532
533                 padding = (4 - subframe_len) & 0x3;
534                 /* the last MSDU has no padding */
535                 if (subframe_len > remaining)
536                         goto purge;
537
538                 skb_pull(skb, sizeof(struct ethhdr));
539                 /* reuse skb for the last subframe */
540                 if (remaining <= subframe_len + padding)
541                         frame = skb;
542                 else {
543                         unsigned int hlen = ALIGN(extra_headroom, 4);
544                         /*
545                          * Allocate and reserve two bytes more for payload
546                          * alignment since sizeof(struct ethhdr) is 14.
547                          */
548                         frame = dev_alloc_skb(hlen + subframe_len + 2);
549                         if (!frame)
550                                 goto purge;
551
552                         skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
553                         memcpy(skb_put(frame, ntohs(len)), skb->data,
554                                 ntohs(len));
555
556                         eth = (struct ethhdr *)skb_pull(skb, ntohs(len) +
557                                                         padding);
558                         if (!eth) {
559                                 dev_kfree_skb(frame);
560                                 goto purge;
561                         }
562                 }
563
564                 skb_reset_network_header(frame);
565                 frame->dev = skb->dev;
566                 frame->priority = skb->priority;
567
568                 payload = frame->data;
569                 ethertype = (payload[6] << 8) | payload[7];
570
571                 if (likely((compare_ether_addr(payload, rfc1042_header) == 0 &&
572                             ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
573                            compare_ether_addr(payload,
574                                               bridge_tunnel_header) == 0)) {
575                         /* remove RFC1042 or Bridge-Tunnel
576                          * encapsulation and replace EtherType */
577                         skb_pull(frame, 6);
578                         memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN);
579                         memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN);
580                 } else {
581                         memcpy(skb_push(frame, sizeof(__be16)), &len,
582                                 sizeof(__be16));
583                         memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN);
584                         memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN);
585                 }
586                 __skb_queue_tail(list, frame);
587         }
588
589         return;
590
591  purge:
592         __skb_queue_purge(list);
593  out:
594         dev_kfree_skb(skb);
595 }
596 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
597
598 /* Given a data frame determine the 802.1p/1d tag to use. */
599 unsigned int cfg80211_classify8021d(struct sk_buff *skb)
600 {
601         unsigned int dscp;
602
603         /* skb->priority values from 256->263 are magic values to
604          * directly indicate a specific 802.1d priority.  This is used
605          * to allow 802.1d priority to be passed directly in from VLAN
606          * tags, etc.
607          */
608         if (skb->priority >= 256 && skb->priority <= 263)
609                 return skb->priority - 256;
610
611         switch (skb->protocol) {
612         case htons(ETH_P_IP):
613                 dscp = ip_hdr(skb)->tos & 0xfc;
614                 break;
615         default:
616                 return 0;
617         }
618
619         return dscp >> 5;
620 }
621 EXPORT_SYMBOL(cfg80211_classify8021d);
622
623 const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie)
624 {
625         u8 *end, *pos;
626
627         pos = bss->information_elements;
628         if (pos == NULL)
629                 return NULL;
630         end = pos + bss->len_information_elements;
631
632         while (pos + 1 < end) {
633                 if (pos + 2 + pos[1] > end)
634                         break;
635                 if (pos[0] == ie)
636                         return pos;
637                 pos += 2 + pos[1];
638         }
639
640         return NULL;
641 }
642 EXPORT_SYMBOL(ieee80211_bss_get_ie);
643
644 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
645 {
646         struct cfg80211_registered_device *rdev = wiphy_to_dev(wdev->wiphy);
647         struct net_device *dev = wdev->netdev;
648         int i;
649
650         if (!wdev->connect_keys)
651                 return;
652
653         for (i = 0; i < 6; i++) {
654                 if (!wdev->connect_keys->params[i].cipher)
655                         continue;
656                 if (rdev->ops->add_key(wdev->wiphy, dev, i, NULL,
657                                         &wdev->connect_keys->params[i])) {
658                         printk(KERN_ERR "%s: failed to set key %d\n",
659                                 dev->name, i);
660                         continue;
661                 }
662                 if (wdev->connect_keys->def == i)
663                         if (rdev->ops->set_default_key(wdev->wiphy, dev, i)) {
664                                 printk(KERN_ERR "%s: failed to set defkey %d\n",
665                                         dev->name, i);
666                                 continue;
667                         }
668                 if (wdev->connect_keys->defmgmt == i)
669                         if (rdev->ops->set_default_mgmt_key(wdev->wiphy, dev, i))
670                                 printk(KERN_ERR "%s: failed to set mgtdef %d\n",
671                                         dev->name, i);
672         }
673
674         kfree(wdev->connect_keys);
675         wdev->connect_keys = NULL;
676 }
677
678 static void cfg80211_process_wdev_events(struct wireless_dev *wdev)
679 {
680         struct cfg80211_event *ev;
681         unsigned long flags;
682         const u8 *bssid = NULL;
683
684         spin_lock_irqsave(&wdev->event_lock, flags);
685         while (!list_empty(&wdev->event_list)) {
686                 ev = list_first_entry(&wdev->event_list,
687                                       struct cfg80211_event, list);
688                 list_del(&ev->list);
689                 spin_unlock_irqrestore(&wdev->event_lock, flags);
690
691                 wdev_lock(wdev);
692                 switch (ev->type) {
693                 case EVENT_CONNECT_RESULT:
694                         if (!is_zero_ether_addr(ev->cr.bssid))
695                                 bssid = ev->cr.bssid;
696                         __cfg80211_connect_result(
697                                 wdev->netdev, bssid,
698                                 ev->cr.req_ie, ev->cr.req_ie_len,
699                                 ev->cr.resp_ie, ev->cr.resp_ie_len,
700                                 ev->cr.status,
701                                 ev->cr.status == WLAN_STATUS_SUCCESS,
702                                 NULL);
703                         break;
704                 case EVENT_ROAMED:
705                         __cfg80211_roamed(wdev, ev->rm.bssid,
706                                           ev->rm.req_ie, ev->rm.req_ie_len,
707                                           ev->rm.resp_ie, ev->rm.resp_ie_len);
708                         break;
709                 case EVENT_DISCONNECTED:
710                         __cfg80211_disconnected(wdev->netdev,
711                                                 ev->dc.ie, ev->dc.ie_len,
712                                                 ev->dc.reason, true);
713                         break;
714                 case EVENT_IBSS_JOINED:
715                         __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid);
716                         break;
717                 }
718                 wdev_unlock(wdev);
719
720                 kfree(ev);
721
722                 spin_lock_irqsave(&wdev->event_lock, flags);
723         }
724         spin_unlock_irqrestore(&wdev->event_lock, flags);
725 }
726
727 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
728 {
729         struct wireless_dev *wdev;
730
731         ASSERT_RTNL();
732         ASSERT_RDEV_LOCK(rdev);
733
734         mutex_lock(&rdev->devlist_mtx);
735
736         list_for_each_entry(wdev, &rdev->netdev_list, list)
737                 cfg80211_process_wdev_events(wdev);
738
739         mutex_unlock(&rdev->devlist_mtx);
740 }
741
742 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
743                           struct net_device *dev, enum nl80211_iftype ntype,
744                           u32 *flags, struct vif_params *params)
745 {
746         int err;
747         enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
748
749         ASSERT_RDEV_LOCK(rdev);
750
751         /* don't support changing VLANs, you just re-create them */
752         if (otype == NL80211_IFTYPE_AP_VLAN)
753                 return -EOPNOTSUPP;
754
755         if (!rdev->ops->change_virtual_intf ||
756             !(rdev->wiphy.interface_modes & (1 << ntype)))
757                 return -EOPNOTSUPP;
758
759         /* if it's part of a bridge, reject changing type to station/ibss */
760         if (dev->br_port && (ntype == NL80211_IFTYPE_ADHOC ||
761                              ntype == NL80211_IFTYPE_STATION))
762                 return -EBUSY;
763
764         if (ntype != otype) {
765                 dev->ieee80211_ptr->use_4addr = false;
766
767                 switch (otype) {
768                 case NL80211_IFTYPE_ADHOC:
769                         cfg80211_leave_ibss(rdev, dev, false);
770                         break;
771                 case NL80211_IFTYPE_STATION:
772                         cfg80211_disconnect(rdev, dev,
773                                             WLAN_REASON_DEAUTH_LEAVING, true);
774                         break;
775                 case NL80211_IFTYPE_MESH_POINT:
776                         /* mesh should be handled? */
777                         break;
778                 default:
779                         break;
780                 }
781
782                 cfg80211_process_rdev_events(rdev);
783         }
784
785         err = rdev->ops->change_virtual_intf(&rdev->wiphy, dev,
786                                              ntype, flags, params);
787
788         WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
789
790         if (!err && params && params->use_4addr != -1)
791                 dev->ieee80211_ptr->use_4addr = params->use_4addr;
792
793         if (!err) {
794                 dev->priv_flags &= ~IFF_DONT_BRIDGE;
795                 switch (ntype) {
796                 case NL80211_IFTYPE_STATION:
797                         if (dev->ieee80211_ptr->use_4addr)
798                                 break;
799                         /* fall through */
800                 case NL80211_IFTYPE_ADHOC:
801                         dev->priv_flags |= IFF_DONT_BRIDGE;
802                         break;
803                 case NL80211_IFTYPE_AP:
804                 case NL80211_IFTYPE_AP_VLAN:
805                 case NL80211_IFTYPE_WDS:
806                 case NL80211_IFTYPE_MESH_POINT:
807                         /* bridging OK */
808                         break;
809                 case NL80211_IFTYPE_MONITOR:
810                         /* monitor can't bridge anyway */
811                         break;
812                 case NL80211_IFTYPE_UNSPECIFIED:
813                 case __NL80211_IFTYPE_AFTER_LAST:
814                         /* not happening */
815                         break;
816                 }
817         }
818
819         return err;
820 }
821
822 u16 cfg80211_calculate_bitrate(struct rate_info *rate)
823 {
824         int modulation, streams, bitrate;
825
826         if (!(rate->flags & RATE_INFO_FLAGS_MCS))
827                 return rate->legacy;
828
829         /* the formula below does only work for MCS values smaller than 32 */
830         if (rate->mcs >= 32)
831                 return 0;
832
833         modulation = rate->mcs & 7;
834         streams = (rate->mcs >> 3) + 1;
835
836         bitrate = (rate->flags & RATE_INFO_FLAGS_40_MHZ_WIDTH) ?
837                         13500000 : 6500000;
838
839         if (modulation < 4)
840                 bitrate *= (modulation + 1);
841         else if (modulation == 4)
842                 bitrate *= (modulation + 2);
843         else
844                 bitrate *= (modulation + 3);
845
846         bitrate *= streams;
847
848         if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
849                 bitrate = (bitrate / 9) * 10;
850
851         /* do NOT round down here */
852         return (bitrate + 50000) / 100000;
853 }