cfg80211: move reg_work and reg_todo above
[linux-2.6.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008       Luis R. Rodriguez <lrodriguz@atheros.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11
12 /**
13  * DOC: Wireless regulatory infrastructure
14  *
15  * The usual implementation is for a driver to read a device EEPROM to
16  * determine which regulatory domain it should be operating under, then
17  * looking up the allowable channels in a driver-local table and finally
18  * registering those channels in the wiphy structure.
19  *
20  * Another set of compliance enforcement is for drivers to use their
21  * own compliance limits which can be stored on the EEPROM. The host
22  * driver or firmware may ensure these are used.
23  *
24  * In addition to all this we provide an extra layer of regulatory
25  * conformance. For drivers which do not have any regulatory
26  * information CRDA provides the complete regulatory solution.
27  * For others it provides a community effort on further restrictions
28  * to enhance compliance.
29  *
30  * Note: When number of rules --> infinity we will not be able to
31  * index on alpha2 any more, instead we'll probably have to
32  * rely on some SHA1 checksum of the regdomain for example.
33  *
34  */
35 #include <linux/kernel.h>
36 #include <linux/slab.h>
37 #include <linux/list.h>
38 #include <linux/random.h>
39 #include <linux/ctype.h>
40 #include <linux/nl80211.h>
41 #include <linux/platform_device.h>
42 #include <net/cfg80211.h>
43 #include "core.h"
44 #include "reg.h"
45 #include "regdb.h"
46 #include "nl80211.h"
47
48 #ifdef CONFIG_CFG80211_REG_DEBUG
49 #define REG_DBG_PRINT(format, args...) \
50         do { \
51                 printk(KERN_DEBUG "cfg80211: " format , ## args); \
52         } while (0)
53 #else
54 #define REG_DBG_PRINT(args...)
55 #endif
56
57 /* Receipt of information from last regulatory request */
58 static struct regulatory_request *last_request;
59
60 /* To trigger userspace events */
61 static struct platform_device *reg_pdev;
62
63 /*
64  * Central wireless core regulatory domains, we only need two,
65  * the current one and a world regulatory domain in case we have no
66  * information to give us an alpha2
67  */
68 const struct ieee80211_regdomain *cfg80211_regdomain;
69
70 /*
71  * Protects static reg.c components:
72  *     - cfg80211_world_regdom
73  *     - cfg80211_regdom
74  *     - last_request
75  */
76 static DEFINE_MUTEX(reg_mutex);
77
78 static inline void assert_reg_lock(void)
79 {
80         lockdep_assert_held(&reg_mutex);
81 }
82
83 /* Used to queue up regulatory hints */
84 static LIST_HEAD(reg_requests_list);
85 static spinlock_t reg_requests_lock;
86
87 /* Used to queue up beacon hints for review */
88 static LIST_HEAD(reg_pending_beacons);
89 static spinlock_t reg_pending_beacons_lock;
90
91 /* Used to keep track of processed beacon hints */
92 static LIST_HEAD(reg_beacon_list);
93
94 struct reg_beacon {
95         struct list_head list;
96         struct ieee80211_channel chan;
97 };
98
99 static void reg_todo(struct work_struct *work);
100 static DECLARE_WORK(reg_work, reg_todo);
101
102 /* We keep a static world regulatory domain in case of the absence of CRDA */
103 static const struct ieee80211_regdomain world_regdom = {
104         .n_reg_rules = 5,
105         .alpha2 =  "00",
106         .reg_rules = {
107                 /* IEEE 802.11b/g, channels 1..11 */
108                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
109                 /* IEEE 802.11b/g, channels 12..13. No HT40
110                  * channel fits here. */
111                 REG_RULE(2467-10, 2472+10, 20, 6, 20,
112                         NL80211_RRF_PASSIVE_SCAN |
113                         NL80211_RRF_NO_IBSS),
114                 /* IEEE 802.11 channel 14 - Only JP enables
115                  * this and for 802.11b only */
116                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
117                         NL80211_RRF_PASSIVE_SCAN |
118                         NL80211_RRF_NO_IBSS |
119                         NL80211_RRF_NO_OFDM),
120                 /* IEEE 802.11a, channel 36..48 */
121                 REG_RULE(5180-10, 5240+10, 40, 6, 20,
122                         NL80211_RRF_PASSIVE_SCAN |
123                         NL80211_RRF_NO_IBSS),
124
125                 /* NB: 5260 MHz - 5700 MHz requies DFS */
126
127                 /* IEEE 802.11a, channel 149..165 */
128                 REG_RULE(5745-10, 5825+10, 40, 6, 20,
129                         NL80211_RRF_PASSIVE_SCAN |
130                         NL80211_RRF_NO_IBSS),
131         }
132 };
133
134 static const struct ieee80211_regdomain *cfg80211_world_regdom =
135         &world_regdom;
136
137 static char *ieee80211_regdom = "00";
138 static char user_alpha2[2];
139
140 module_param(ieee80211_regdom, charp, 0444);
141 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
142
143 static void reset_regdomains(void)
144 {
145         /* avoid freeing static information or freeing something twice */
146         if (cfg80211_regdomain == cfg80211_world_regdom)
147                 cfg80211_regdomain = NULL;
148         if (cfg80211_world_regdom == &world_regdom)
149                 cfg80211_world_regdom = NULL;
150         if (cfg80211_regdomain == &world_regdom)
151                 cfg80211_regdomain = NULL;
152
153         kfree(cfg80211_regdomain);
154         kfree(cfg80211_world_regdom);
155
156         cfg80211_world_regdom = &world_regdom;
157         cfg80211_regdomain = NULL;
158 }
159
160 /*
161  * Dynamic world regulatory domain requested by the wireless
162  * core upon initialization
163  */
164 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
165 {
166         BUG_ON(!last_request);
167
168         reset_regdomains();
169
170         cfg80211_world_regdom = rd;
171         cfg80211_regdomain = rd;
172 }
173
174 bool is_world_regdom(const char *alpha2)
175 {
176         if (!alpha2)
177                 return false;
178         if (alpha2[0] == '0' && alpha2[1] == '0')
179                 return true;
180         return false;
181 }
182
183 static bool is_alpha2_set(const char *alpha2)
184 {
185         if (!alpha2)
186                 return false;
187         if (alpha2[0] != 0 && alpha2[1] != 0)
188                 return true;
189         return false;
190 }
191
192 static bool is_unknown_alpha2(const char *alpha2)
193 {
194         if (!alpha2)
195                 return false;
196         /*
197          * Special case where regulatory domain was built by driver
198          * but a specific alpha2 cannot be determined
199          */
200         if (alpha2[0] == '9' && alpha2[1] == '9')
201                 return true;
202         return false;
203 }
204
205 static bool is_intersected_alpha2(const char *alpha2)
206 {
207         if (!alpha2)
208                 return false;
209         /*
210          * Special case where regulatory domain is the
211          * result of an intersection between two regulatory domain
212          * structures
213          */
214         if (alpha2[0] == '9' && alpha2[1] == '8')
215                 return true;
216         return false;
217 }
218
219 static bool is_an_alpha2(const char *alpha2)
220 {
221         if (!alpha2)
222                 return false;
223         if (isalpha(alpha2[0]) && isalpha(alpha2[1]))
224                 return true;
225         return false;
226 }
227
228 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
229 {
230         if (!alpha2_x || !alpha2_y)
231                 return false;
232         if (alpha2_x[0] == alpha2_y[0] &&
233                 alpha2_x[1] == alpha2_y[1])
234                 return true;
235         return false;
236 }
237
238 static bool regdom_changes(const char *alpha2)
239 {
240         assert_cfg80211_lock();
241
242         if (!cfg80211_regdomain)
243                 return true;
244         if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
245                 return false;
246         return true;
247 }
248
249 /*
250  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
251  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
252  * has ever been issued.
253  */
254 static bool is_user_regdom_saved(void)
255 {
256         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
257                 return false;
258
259         /* This would indicate a mistake on the design */
260         if (WARN((!is_world_regdom(user_alpha2) &&
261                   !is_an_alpha2(user_alpha2)),
262                  "Unexpected user alpha2: %c%c\n",
263                  user_alpha2[0],
264                  user_alpha2[1]))
265                 return false;
266
267         return true;
268 }
269
270 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
271                          const struct ieee80211_regdomain *src_regd)
272 {
273         struct ieee80211_regdomain *regd;
274         int size_of_regd = 0;
275         unsigned int i;
276
277         size_of_regd = sizeof(struct ieee80211_regdomain) +
278           ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
279
280         regd = kzalloc(size_of_regd, GFP_KERNEL);
281         if (!regd)
282                 return -ENOMEM;
283
284         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
285
286         for (i = 0; i < src_regd->n_reg_rules; i++)
287                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
288                         sizeof(struct ieee80211_reg_rule));
289
290         *dst_regd = regd;
291         return 0;
292 }
293
294 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
295 struct reg_regdb_search_request {
296         char alpha2[2];
297         struct list_head list;
298 };
299
300 static LIST_HEAD(reg_regdb_search_list);
301 static DEFINE_MUTEX(reg_regdb_search_mutex);
302
303 static void reg_regdb_search(struct work_struct *work)
304 {
305         struct reg_regdb_search_request *request;
306         const struct ieee80211_regdomain *curdom, *regdom;
307         int i, r;
308
309         mutex_lock(&reg_regdb_search_mutex);
310         while (!list_empty(&reg_regdb_search_list)) {
311                 request = list_first_entry(&reg_regdb_search_list,
312                                            struct reg_regdb_search_request,
313                                            list);
314                 list_del(&request->list);
315
316                 for (i=0; i<reg_regdb_size; i++) {
317                         curdom = reg_regdb[i];
318
319                         if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
320                                 r = reg_copy_regd(&regdom, curdom);
321                                 if (r)
322                                         break;
323                                 mutex_lock(&cfg80211_mutex);
324                                 set_regdom(regdom);
325                                 mutex_unlock(&cfg80211_mutex);
326                                 break;
327                         }
328                 }
329
330                 kfree(request);
331         }
332         mutex_unlock(&reg_regdb_search_mutex);
333 }
334
335 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
336
337 static void reg_regdb_query(const char *alpha2)
338 {
339         struct reg_regdb_search_request *request;
340
341         if (!alpha2)
342                 return;
343
344         request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
345         if (!request)
346                 return;
347
348         memcpy(request->alpha2, alpha2, 2);
349
350         mutex_lock(&reg_regdb_search_mutex);
351         list_add_tail(&request->list, &reg_regdb_search_list);
352         mutex_unlock(&reg_regdb_search_mutex);
353
354         schedule_work(&reg_regdb_work);
355 }
356 #else
357 static inline void reg_regdb_query(const char *alpha2) {}
358 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
359
360 /*
361  * This lets us keep regulatory code which is updated on a regulatory
362  * basis in userspace.
363  */
364 static int call_crda(const char *alpha2)
365 {
366         char country_env[9 + 2] = "COUNTRY=";
367         char *envp[] = {
368                 country_env,
369                 NULL
370         };
371
372         if (!is_world_regdom((char *) alpha2))
373                 printk(KERN_INFO "cfg80211: Calling CRDA for country: %c%c\n",
374                         alpha2[0], alpha2[1]);
375         else
376                 printk(KERN_INFO "cfg80211: Calling CRDA to update world "
377                         "regulatory domain\n");
378
379         /* query internal regulatory database (if it exists) */
380         reg_regdb_query(alpha2);
381
382         country_env[8] = alpha2[0];
383         country_env[9] = alpha2[1];
384
385         return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, envp);
386 }
387
388 /* Used by nl80211 before kmalloc'ing our regulatory domain */
389 bool reg_is_valid_request(const char *alpha2)
390 {
391         assert_cfg80211_lock();
392
393         if (!last_request)
394                 return false;
395
396         return alpha2_equal(last_request->alpha2, alpha2);
397 }
398
399 /* Sanity check on a regulatory rule */
400 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
401 {
402         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
403         u32 freq_diff;
404
405         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
406                 return false;
407
408         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
409                 return false;
410
411         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
412
413         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
414                         freq_range->max_bandwidth_khz > freq_diff)
415                 return false;
416
417         return true;
418 }
419
420 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
421 {
422         const struct ieee80211_reg_rule *reg_rule = NULL;
423         unsigned int i;
424
425         if (!rd->n_reg_rules)
426                 return false;
427
428         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
429                 return false;
430
431         for (i = 0; i < rd->n_reg_rules; i++) {
432                 reg_rule = &rd->reg_rules[i];
433                 if (!is_valid_reg_rule(reg_rule))
434                         return false;
435         }
436
437         return true;
438 }
439
440 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
441                             u32 center_freq_khz,
442                             u32 bw_khz)
443 {
444         u32 start_freq_khz, end_freq_khz;
445
446         start_freq_khz = center_freq_khz - (bw_khz/2);
447         end_freq_khz = center_freq_khz + (bw_khz/2);
448
449         if (start_freq_khz >= freq_range->start_freq_khz &&
450             end_freq_khz <= freq_range->end_freq_khz)
451                 return true;
452
453         return false;
454 }
455
456 /**
457  * freq_in_rule_band - tells us if a frequency is in a frequency band
458  * @freq_range: frequency rule we want to query
459  * @freq_khz: frequency we are inquiring about
460  *
461  * This lets us know if a specific frequency rule is or is not relevant to
462  * a specific frequency's band. Bands are device specific and artificial
463  * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
464  * safe for now to assume that a frequency rule should not be part of a
465  * frequency's band if the start freq or end freq are off by more than 2 GHz.
466  * This resolution can be lowered and should be considered as we add
467  * regulatory rule support for other "bands".
468  **/
469 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
470         u32 freq_khz)
471 {
472 #define ONE_GHZ_IN_KHZ  1000000
473         if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
474                 return true;
475         if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
476                 return true;
477         return false;
478 #undef ONE_GHZ_IN_KHZ
479 }
480
481 /*
482  * Helper for regdom_intersect(), this does the real
483  * mathematical intersection fun
484  */
485 static int reg_rules_intersect(
486         const struct ieee80211_reg_rule *rule1,
487         const struct ieee80211_reg_rule *rule2,
488         struct ieee80211_reg_rule *intersected_rule)
489 {
490         const struct ieee80211_freq_range *freq_range1, *freq_range2;
491         struct ieee80211_freq_range *freq_range;
492         const struct ieee80211_power_rule *power_rule1, *power_rule2;
493         struct ieee80211_power_rule *power_rule;
494         u32 freq_diff;
495
496         freq_range1 = &rule1->freq_range;
497         freq_range2 = &rule2->freq_range;
498         freq_range = &intersected_rule->freq_range;
499
500         power_rule1 = &rule1->power_rule;
501         power_rule2 = &rule2->power_rule;
502         power_rule = &intersected_rule->power_rule;
503
504         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
505                 freq_range2->start_freq_khz);
506         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
507                 freq_range2->end_freq_khz);
508         freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
509                 freq_range2->max_bandwidth_khz);
510
511         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
512         if (freq_range->max_bandwidth_khz > freq_diff)
513                 freq_range->max_bandwidth_khz = freq_diff;
514
515         power_rule->max_eirp = min(power_rule1->max_eirp,
516                 power_rule2->max_eirp);
517         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
518                 power_rule2->max_antenna_gain);
519
520         intersected_rule->flags = (rule1->flags | rule2->flags);
521
522         if (!is_valid_reg_rule(intersected_rule))
523                 return -EINVAL;
524
525         return 0;
526 }
527
528 /**
529  * regdom_intersect - do the intersection between two regulatory domains
530  * @rd1: first regulatory domain
531  * @rd2: second regulatory domain
532  *
533  * Use this function to get the intersection between two regulatory domains.
534  * Once completed we will mark the alpha2 for the rd as intersected, "98",
535  * as no one single alpha2 can represent this regulatory domain.
536  *
537  * Returns a pointer to the regulatory domain structure which will hold the
538  * resulting intersection of rules between rd1 and rd2. We will
539  * kzalloc() this structure for you.
540  */
541 static struct ieee80211_regdomain *regdom_intersect(
542         const struct ieee80211_regdomain *rd1,
543         const struct ieee80211_regdomain *rd2)
544 {
545         int r, size_of_regd;
546         unsigned int x, y;
547         unsigned int num_rules = 0, rule_idx = 0;
548         const struct ieee80211_reg_rule *rule1, *rule2;
549         struct ieee80211_reg_rule *intersected_rule;
550         struct ieee80211_regdomain *rd;
551         /* This is just a dummy holder to help us count */
552         struct ieee80211_reg_rule irule;
553
554         /* Uses the stack temporarily for counter arithmetic */
555         intersected_rule = &irule;
556
557         memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
558
559         if (!rd1 || !rd2)
560                 return NULL;
561
562         /*
563          * First we get a count of the rules we'll need, then we actually
564          * build them. This is to so we can malloc() and free() a
565          * regdomain once. The reason we use reg_rules_intersect() here
566          * is it will return -EINVAL if the rule computed makes no sense.
567          * All rules that do check out OK are valid.
568          */
569
570         for (x = 0; x < rd1->n_reg_rules; x++) {
571                 rule1 = &rd1->reg_rules[x];
572                 for (y = 0; y < rd2->n_reg_rules; y++) {
573                         rule2 = &rd2->reg_rules[y];
574                         if (!reg_rules_intersect(rule1, rule2,
575                                         intersected_rule))
576                                 num_rules++;
577                         memset(intersected_rule, 0,
578                                         sizeof(struct ieee80211_reg_rule));
579                 }
580         }
581
582         if (!num_rules)
583                 return NULL;
584
585         size_of_regd = sizeof(struct ieee80211_regdomain) +
586                 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
587
588         rd = kzalloc(size_of_regd, GFP_KERNEL);
589         if (!rd)
590                 return NULL;
591
592         for (x = 0; x < rd1->n_reg_rules; x++) {
593                 rule1 = &rd1->reg_rules[x];
594                 for (y = 0; y < rd2->n_reg_rules; y++) {
595                         rule2 = &rd2->reg_rules[y];
596                         /*
597                          * This time around instead of using the stack lets
598                          * write to the target rule directly saving ourselves
599                          * a memcpy()
600                          */
601                         intersected_rule = &rd->reg_rules[rule_idx];
602                         r = reg_rules_intersect(rule1, rule2,
603                                 intersected_rule);
604                         /*
605                          * No need to memset here the intersected rule here as
606                          * we're not using the stack anymore
607                          */
608                         if (r)
609                                 continue;
610                         rule_idx++;
611                 }
612         }
613
614         if (rule_idx != num_rules) {
615                 kfree(rd);
616                 return NULL;
617         }
618
619         rd->n_reg_rules = num_rules;
620         rd->alpha2[0] = '9';
621         rd->alpha2[1] = '8';
622
623         return rd;
624 }
625
626 /*
627  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
628  * want to just have the channel structure use these
629  */
630 static u32 map_regdom_flags(u32 rd_flags)
631 {
632         u32 channel_flags = 0;
633         if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
634                 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
635         if (rd_flags & NL80211_RRF_NO_IBSS)
636                 channel_flags |= IEEE80211_CHAN_NO_IBSS;
637         if (rd_flags & NL80211_RRF_DFS)
638                 channel_flags |= IEEE80211_CHAN_RADAR;
639         return channel_flags;
640 }
641
642 static int freq_reg_info_regd(struct wiphy *wiphy,
643                               u32 center_freq,
644                               u32 desired_bw_khz,
645                               const struct ieee80211_reg_rule **reg_rule,
646                               const struct ieee80211_regdomain *custom_regd)
647 {
648         int i;
649         bool band_rule_found = false;
650         const struct ieee80211_regdomain *regd;
651         bool bw_fits = false;
652
653         if (!desired_bw_khz)
654                 desired_bw_khz = MHZ_TO_KHZ(20);
655
656         regd = custom_regd ? custom_regd : cfg80211_regdomain;
657
658         /*
659          * Follow the driver's regulatory domain, if present, unless a country
660          * IE has been processed or a user wants to help complaince further
661          */
662         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
663             last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
664             wiphy->regd)
665                 regd = wiphy->regd;
666
667         if (!regd)
668                 return -EINVAL;
669
670         for (i = 0; i < regd->n_reg_rules; i++) {
671                 const struct ieee80211_reg_rule *rr;
672                 const struct ieee80211_freq_range *fr = NULL;
673                 const struct ieee80211_power_rule *pr = NULL;
674
675                 rr = &regd->reg_rules[i];
676                 fr = &rr->freq_range;
677                 pr = &rr->power_rule;
678
679                 /*
680                  * We only need to know if one frequency rule was
681                  * was in center_freq's band, that's enough, so lets
682                  * not overwrite it once found
683                  */
684                 if (!band_rule_found)
685                         band_rule_found = freq_in_rule_band(fr, center_freq);
686
687                 bw_fits = reg_does_bw_fit(fr,
688                                           center_freq,
689                                           desired_bw_khz);
690
691                 if (band_rule_found && bw_fits) {
692                         *reg_rule = rr;
693                         return 0;
694                 }
695         }
696
697         if (!band_rule_found)
698                 return -ERANGE;
699
700         return -EINVAL;
701 }
702
703 int freq_reg_info(struct wiphy *wiphy,
704                   u32 center_freq,
705                   u32 desired_bw_khz,
706                   const struct ieee80211_reg_rule **reg_rule)
707 {
708         assert_cfg80211_lock();
709         return freq_reg_info_regd(wiphy,
710                                   center_freq,
711                                   desired_bw_khz,
712                                   reg_rule,
713                                   NULL);
714 }
715 EXPORT_SYMBOL(freq_reg_info);
716
717 #ifdef CONFIG_CFG80211_REG_DEBUG
718 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
719 {
720         switch (initiator) {
721         case NL80211_REGDOM_SET_BY_CORE:
722                 return "Set by core";
723         case NL80211_REGDOM_SET_BY_USER:
724                 return "Set by user";
725         case NL80211_REGDOM_SET_BY_DRIVER:
726                 return "Set by driver";
727         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
728                 return "Set by country IE";
729         default:
730                 WARN_ON(1);
731                 return "Set by bug";
732         }
733 }
734
735 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
736                                     u32 desired_bw_khz,
737                                     const struct ieee80211_reg_rule *reg_rule)
738 {
739         const struct ieee80211_power_rule *power_rule;
740         const struct ieee80211_freq_range *freq_range;
741         char max_antenna_gain[32];
742
743         power_rule = &reg_rule->power_rule;
744         freq_range = &reg_rule->freq_range;
745
746         if (!power_rule->max_antenna_gain)
747                 snprintf(max_antenna_gain, 32, "N/A");
748         else
749                 snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);
750
751         REG_DBG_PRINT("Updating information on frequency %d MHz "
752                       "for %d a MHz width channel with regulatory rule:\n",
753                       chan->center_freq,
754                       KHZ_TO_MHZ(desired_bw_khz));
755
756         REG_DBG_PRINT("%d KHz - %d KHz @  KHz), (%s mBi, %d mBm)\n",
757                       freq_range->start_freq_khz,
758                       freq_range->end_freq_khz,
759                       max_antenna_gain,
760                       power_rule->max_eirp);
761 }
762 #else
763 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
764                                     u32 desired_bw_khz,
765                                     const struct ieee80211_reg_rule *reg_rule)
766 {
767         return;
768 }
769 #endif
770
771 /*
772  * Note that right now we assume the desired channel bandwidth
773  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
774  * per channel, the primary and the extension channel). To support
775  * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
776  * new ieee80211_channel.target_bw and re run the regulatory check
777  * on the wiphy with the target_bw specified. Then we can simply use
778  * that below for the desired_bw_khz below.
779  */
780 static void handle_channel(struct wiphy *wiphy,
781                            enum nl80211_reg_initiator initiator,
782                            enum ieee80211_band band,
783                            unsigned int chan_idx)
784 {
785         int r;
786         u32 flags, bw_flags = 0;
787         u32 desired_bw_khz = MHZ_TO_KHZ(20);
788         const struct ieee80211_reg_rule *reg_rule = NULL;
789         const struct ieee80211_power_rule *power_rule = NULL;
790         const struct ieee80211_freq_range *freq_range = NULL;
791         struct ieee80211_supported_band *sband;
792         struct ieee80211_channel *chan;
793         struct wiphy *request_wiphy = NULL;
794
795         assert_cfg80211_lock();
796
797         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
798
799         sband = wiphy->bands[band];
800         BUG_ON(chan_idx >= sband->n_channels);
801         chan = &sband->channels[chan_idx];
802
803         flags = chan->orig_flags;
804
805         r = freq_reg_info(wiphy,
806                           MHZ_TO_KHZ(chan->center_freq),
807                           desired_bw_khz,
808                           &reg_rule);
809
810         if (r) {
811                 /*
812                  * We will disable all channels that do not match our
813                  * recieved regulatory rule unless the hint is coming
814                  * from a Country IE and the Country IE had no information
815                  * about a band. The IEEE 802.11 spec allows for an AP
816                  * to send only a subset of the regulatory rules allowed,
817                  * so an AP in the US that only supports 2.4 GHz may only send
818                  * a country IE with information for the 2.4 GHz band
819                  * while 5 GHz is still supported.
820                  */
821                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
822                     r == -ERANGE)
823                         return;
824
825                 REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
826                 chan->flags = IEEE80211_CHAN_DISABLED;
827                 return;
828         }
829
830         chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
831
832         power_rule = &reg_rule->power_rule;
833         freq_range = &reg_rule->freq_range;
834
835         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
836                 bw_flags = IEEE80211_CHAN_NO_HT40;
837
838         if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
839             request_wiphy && request_wiphy == wiphy &&
840             request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
841                 /*
842                  * This gaurantees the driver's requested regulatory domain
843                  * will always be used as a base for further regulatory
844                  * settings
845                  */
846                 chan->flags = chan->orig_flags =
847                         map_regdom_flags(reg_rule->flags) | bw_flags;
848                 chan->max_antenna_gain = chan->orig_mag =
849                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
850                 chan->max_power = chan->orig_mpwr =
851                         (int) MBM_TO_DBM(power_rule->max_eirp);
852                 return;
853         }
854
855         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
856         chan->max_antenna_gain = min(chan->orig_mag,
857                 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
858         if (chan->orig_mpwr)
859                 chan->max_power = min(chan->orig_mpwr,
860                         (int) MBM_TO_DBM(power_rule->max_eirp));
861         else
862                 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
863 }
864
865 static void handle_band(struct wiphy *wiphy,
866                         enum ieee80211_band band,
867                         enum nl80211_reg_initiator initiator)
868 {
869         unsigned int i;
870         struct ieee80211_supported_band *sband;
871
872         BUG_ON(!wiphy->bands[band]);
873         sband = wiphy->bands[band];
874
875         for (i = 0; i < sband->n_channels; i++)
876                 handle_channel(wiphy, initiator, band, i);
877 }
878
879 static bool ignore_reg_update(struct wiphy *wiphy,
880                               enum nl80211_reg_initiator initiator)
881 {
882         if (!last_request) {
883                 REG_DBG_PRINT("Ignoring regulatory request %s since "
884                               "last_request is not set\n",
885                               reg_initiator_name(initiator));
886                 return true;
887         }
888
889         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
890             wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
891                 REG_DBG_PRINT("Ignoring regulatory request %s "
892                               "since the driver uses its own custom "
893                               "regulatory domain ",
894                               reg_initiator_name(initiator));
895                 return true;
896         }
897
898         /*
899          * wiphy->regd will be set once the device has its own
900          * desired regulatory domain set
901          */
902         if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
903             initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
904             !is_world_regdom(last_request->alpha2)) {
905                 REG_DBG_PRINT("Ignoring regulatory request %s "
906                               "since the driver requires its own regulaotry "
907                               "domain to be set first",
908                               reg_initiator_name(initiator));
909                 return true;
910         }
911
912         return false;
913 }
914
915 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
916 {
917         struct cfg80211_registered_device *rdev;
918
919         list_for_each_entry(rdev, &cfg80211_rdev_list, list)
920                 wiphy_update_regulatory(&rdev->wiphy, initiator);
921 }
922
923 static void handle_reg_beacon(struct wiphy *wiphy,
924                               unsigned int chan_idx,
925                               struct reg_beacon *reg_beacon)
926 {
927         struct ieee80211_supported_band *sband;
928         struct ieee80211_channel *chan;
929         bool channel_changed = false;
930         struct ieee80211_channel chan_before;
931
932         assert_cfg80211_lock();
933
934         sband = wiphy->bands[reg_beacon->chan.band];
935         chan = &sband->channels[chan_idx];
936
937         if (likely(chan->center_freq != reg_beacon->chan.center_freq))
938                 return;
939
940         if (chan->beacon_found)
941                 return;
942
943         chan->beacon_found = true;
944
945         if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
946                 return;
947
948         chan_before.center_freq = chan->center_freq;
949         chan_before.flags = chan->flags;
950
951         if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
952                 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
953                 channel_changed = true;
954         }
955
956         if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
957                 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
958                 channel_changed = true;
959         }
960
961         if (channel_changed)
962                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
963 }
964
965 /*
966  * Called when a scan on a wiphy finds a beacon on
967  * new channel
968  */
969 static void wiphy_update_new_beacon(struct wiphy *wiphy,
970                                     struct reg_beacon *reg_beacon)
971 {
972         unsigned int i;
973         struct ieee80211_supported_band *sband;
974
975         assert_cfg80211_lock();
976
977         if (!wiphy->bands[reg_beacon->chan.band])
978                 return;
979
980         sband = wiphy->bands[reg_beacon->chan.band];
981
982         for (i = 0; i < sband->n_channels; i++)
983                 handle_reg_beacon(wiphy, i, reg_beacon);
984 }
985
986 /*
987  * Called upon reg changes or a new wiphy is added
988  */
989 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
990 {
991         unsigned int i;
992         struct ieee80211_supported_band *sband;
993         struct reg_beacon *reg_beacon;
994
995         assert_cfg80211_lock();
996
997         if (list_empty(&reg_beacon_list))
998                 return;
999
1000         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1001                 if (!wiphy->bands[reg_beacon->chan.band])
1002                         continue;
1003                 sband = wiphy->bands[reg_beacon->chan.band];
1004                 for (i = 0; i < sband->n_channels; i++)
1005                         handle_reg_beacon(wiphy, i, reg_beacon);
1006         }
1007 }
1008
1009 static bool reg_is_world_roaming(struct wiphy *wiphy)
1010 {
1011         if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1012             (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1013                 return true;
1014         if (last_request &&
1015             last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1016             wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1017                 return true;
1018         return false;
1019 }
1020
1021 /* Reap the advantages of previously found beacons */
1022 static void reg_process_beacons(struct wiphy *wiphy)
1023 {
1024         /*
1025          * Means we are just firing up cfg80211, so no beacons would
1026          * have been processed yet.
1027          */
1028         if (!last_request)
1029                 return;
1030         if (!reg_is_world_roaming(wiphy))
1031                 return;
1032         wiphy_update_beacon_reg(wiphy);
1033 }
1034
1035 static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
1036 {
1037         if (!chan)
1038                 return true;
1039         if (chan->flags & IEEE80211_CHAN_DISABLED)
1040                 return true;
1041         /* This would happen when regulatory rules disallow HT40 completely */
1042         if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
1043                 return true;
1044         return false;
1045 }
1046
1047 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1048                                          enum ieee80211_band band,
1049                                          unsigned int chan_idx)
1050 {
1051         struct ieee80211_supported_band *sband;
1052         struct ieee80211_channel *channel;
1053         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1054         unsigned int i;
1055
1056         assert_cfg80211_lock();
1057
1058         sband = wiphy->bands[band];
1059         BUG_ON(chan_idx >= sband->n_channels);
1060         channel = &sband->channels[chan_idx];
1061
1062         if (is_ht40_not_allowed(channel)) {
1063                 channel->flags |= IEEE80211_CHAN_NO_HT40;
1064                 return;
1065         }
1066
1067         /*
1068          * We need to ensure the extension channels exist to
1069          * be able to use HT40- or HT40+, this finds them (or not)
1070          */
1071         for (i = 0; i < sband->n_channels; i++) {
1072                 struct ieee80211_channel *c = &sband->channels[i];
1073                 if (c->center_freq == (channel->center_freq - 20))
1074                         channel_before = c;
1075                 if (c->center_freq == (channel->center_freq + 20))
1076                         channel_after = c;
1077         }
1078
1079         /*
1080          * Please note that this assumes target bandwidth is 20 MHz,
1081          * if that ever changes we also need to change the below logic
1082          * to include that as well.
1083          */
1084         if (is_ht40_not_allowed(channel_before))
1085                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1086         else
1087                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1088
1089         if (is_ht40_not_allowed(channel_after))
1090                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1091         else
1092                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1093 }
1094
1095 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1096                                       enum ieee80211_band band)
1097 {
1098         unsigned int i;
1099         struct ieee80211_supported_band *sband;
1100
1101         BUG_ON(!wiphy->bands[band]);
1102         sband = wiphy->bands[band];
1103
1104         for (i = 0; i < sband->n_channels; i++)
1105                 reg_process_ht_flags_channel(wiphy, band, i);
1106 }
1107
1108 static void reg_process_ht_flags(struct wiphy *wiphy)
1109 {
1110         enum ieee80211_band band;
1111
1112         if (!wiphy)
1113                 return;
1114
1115         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1116                 if (wiphy->bands[band])
1117                         reg_process_ht_flags_band(wiphy, band);
1118         }
1119
1120 }
1121
1122 void wiphy_update_regulatory(struct wiphy *wiphy,
1123                              enum nl80211_reg_initiator initiator)
1124 {
1125         enum ieee80211_band band;
1126
1127         if (ignore_reg_update(wiphy, initiator))
1128                 goto out;
1129         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1130                 if (wiphy->bands[band])
1131                         handle_band(wiphy, band, initiator);
1132         }
1133 out:
1134         reg_process_beacons(wiphy);
1135         reg_process_ht_flags(wiphy);
1136         if (wiphy->reg_notifier)
1137                 wiphy->reg_notifier(wiphy, last_request);
1138 }
1139
1140 static void handle_channel_custom(struct wiphy *wiphy,
1141                                   enum ieee80211_band band,
1142                                   unsigned int chan_idx,
1143                                   const struct ieee80211_regdomain *regd)
1144 {
1145         int r;
1146         u32 desired_bw_khz = MHZ_TO_KHZ(20);
1147         u32 bw_flags = 0;
1148         const struct ieee80211_reg_rule *reg_rule = NULL;
1149         const struct ieee80211_power_rule *power_rule = NULL;
1150         const struct ieee80211_freq_range *freq_range = NULL;
1151         struct ieee80211_supported_band *sband;
1152         struct ieee80211_channel *chan;
1153
1154         assert_reg_lock();
1155
1156         sband = wiphy->bands[band];
1157         BUG_ON(chan_idx >= sband->n_channels);
1158         chan = &sband->channels[chan_idx];
1159
1160         r = freq_reg_info_regd(wiphy,
1161                                MHZ_TO_KHZ(chan->center_freq),
1162                                desired_bw_khz,
1163                                &reg_rule,
1164                                regd);
1165
1166         if (r) {
1167                 REG_DBG_PRINT("Disabling freq %d MHz as custom "
1168                               "regd has no rule that fits a %d MHz "
1169                               "wide channel\n",
1170                               chan->center_freq,
1171                               KHZ_TO_MHZ(desired_bw_khz));
1172                 chan->flags = IEEE80211_CHAN_DISABLED;
1173                 return;
1174         }
1175
1176         chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
1177
1178         power_rule = &reg_rule->power_rule;
1179         freq_range = &reg_rule->freq_range;
1180
1181         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1182                 bw_flags = IEEE80211_CHAN_NO_HT40;
1183
1184         chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1185         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1186         chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1187 }
1188
1189 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1190                                const struct ieee80211_regdomain *regd)
1191 {
1192         unsigned int i;
1193         struct ieee80211_supported_band *sband;
1194
1195         BUG_ON(!wiphy->bands[band]);
1196         sband = wiphy->bands[band];
1197
1198         for (i = 0; i < sband->n_channels; i++)
1199                 handle_channel_custom(wiphy, band, i, regd);
1200 }
1201
1202 /* Used by drivers prior to wiphy registration */
1203 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1204                                    const struct ieee80211_regdomain *regd)
1205 {
1206         enum ieee80211_band band;
1207         unsigned int bands_set = 0;
1208
1209         mutex_lock(&reg_mutex);
1210         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1211                 if (!wiphy->bands[band])
1212                         continue;
1213                 handle_band_custom(wiphy, band, regd);
1214                 bands_set++;
1215         }
1216         mutex_unlock(&reg_mutex);
1217
1218         /*
1219          * no point in calling this if it won't have any effect
1220          * on your device's supportd bands.
1221          */
1222         WARN_ON(!bands_set);
1223 }
1224 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1225
1226 /*
1227  * Return value which can be used by ignore_request() to indicate
1228  * it has been determined we should intersect two regulatory domains
1229  */
1230 #define REG_INTERSECT   1
1231
1232 /* This has the logic which determines when a new request
1233  * should be ignored. */
1234 static int ignore_request(struct wiphy *wiphy,
1235                           struct regulatory_request *pending_request)
1236 {
1237         struct wiphy *last_wiphy = NULL;
1238
1239         assert_cfg80211_lock();
1240
1241         /* All initial requests are respected */
1242         if (!last_request)
1243                 return 0;
1244
1245         switch (pending_request->initiator) {
1246         case NL80211_REGDOM_SET_BY_CORE:
1247                 return 0;
1248         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1249
1250                 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1251
1252                 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1253                         return -EINVAL;
1254                 if (last_request->initiator ==
1255                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1256                         if (last_wiphy != wiphy) {
1257                                 /*
1258                                  * Two cards with two APs claiming different
1259                                  * Country IE alpha2s. We could
1260                                  * intersect them, but that seems unlikely
1261                                  * to be correct. Reject second one for now.
1262                                  */
1263                                 if (regdom_changes(pending_request->alpha2))
1264                                         return -EOPNOTSUPP;
1265                                 return -EALREADY;
1266                         }
1267                         /*
1268                          * Two consecutive Country IE hints on the same wiphy.
1269                          * This should be picked up early by the driver/stack
1270                          */
1271                         if (WARN_ON(regdom_changes(pending_request->alpha2)))
1272                                 return 0;
1273                         return -EALREADY;
1274                 }
1275                 return 0;
1276         case NL80211_REGDOM_SET_BY_DRIVER:
1277                 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1278                         if (regdom_changes(pending_request->alpha2))
1279                                 return 0;
1280                         return -EALREADY;
1281                 }
1282
1283                 /*
1284                  * This would happen if you unplug and plug your card
1285                  * back in or if you add a new device for which the previously
1286                  * loaded card also agrees on the regulatory domain.
1287                  */
1288                 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1289                     !regdom_changes(pending_request->alpha2))
1290                         return -EALREADY;
1291
1292                 return REG_INTERSECT;
1293         case NL80211_REGDOM_SET_BY_USER:
1294                 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1295                         return REG_INTERSECT;
1296                 /*
1297                  * If the user knows better the user should set the regdom
1298                  * to their country before the IE is picked up
1299                  */
1300                 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1301                           last_request->intersect)
1302                         return -EOPNOTSUPP;
1303                 /*
1304                  * Process user requests only after previous user/driver/core
1305                  * requests have been processed
1306                  */
1307                 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1308                     last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1309                     last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1310                         if (regdom_changes(last_request->alpha2))
1311                                 return -EAGAIN;
1312                 }
1313
1314                 if (!regdom_changes(pending_request->alpha2))
1315                         return -EALREADY;
1316
1317                 return 0;
1318         }
1319
1320         return -EINVAL;
1321 }
1322
1323 /**
1324  * __regulatory_hint - hint to the wireless core a regulatory domain
1325  * @wiphy: if the hint comes from country information from an AP, this
1326  *      is required to be set to the wiphy that received the information
1327  * @pending_request: the regulatory request currently being processed
1328  *
1329  * The Wireless subsystem can use this function to hint to the wireless core
1330  * what it believes should be the current regulatory domain.
1331  *
1332  * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1333  * already been set or other standard error codes.
1334  *
1335  * Caller must hold &cfg80211_mutex and &reg_mutex
1336  */
1337 static int __regulatory_hint(struct wiphy *wiphy,
1338                              struct regulatory_request *pending_request)
1339 {
1340         bool intersect = false;
1341         int r = 0;
1342
1343         assert_cfg80211_lock();
1344
1345         r = ignore_request(wiphy, pending_request);
1346
1347         if (r == REG_INTERSECT) {
1348                 if (pending_request->initiator ==
1349                     NL80211_REGDOM_SET_BY_DRIVER) {
1350                         r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1351                         if (r) {
1352                                 kfree(pending_request);
1353                                 return r;
1354                         }
1355                 }
1356                 intersect = true;
1357         } else if (r) {
1358                 /*
1359                  * If the regulatory domain being requested by the
1360                  * driver has already been set just copy it to the
1361                  * wiphy
1362                  */
1363                 if (r == -EALREADY &&
1364                     pending_request->initiator ==
1365                     NL80211_REGDOM_SET_BY_DRIVER) {
1366                         r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1367                         if (r) {
1368                                 kfree(pending_request);
1369                                 return r;
1370                         }
1371                         r = -EALREADY;
1372                         goto new_request;
1373                 }
1374                 kfree(pending_request);
1375                 return r;
1376         }
1377
1378 new_request:
1379         kfree(last_request);
1380
1381         last_request = pending_request;
1382         last_request->intersect = intersect;
1383
1384         pending_request = NULL;
1385
1386         if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1387                 user_alpha2[0] = last_request->alpha2[0];
1388                 user_alpha2[1] = last_request->alpha2[1];
1389         }
1390
1391         /* When r == REG_INTERSECT we do need to call CRDA */
1392         if (r < 0) {
1393                 /*
1394                  * Since CRDA will not be called in this case as we already
1395                  * have applied the requested regulatory domain before we just
1396                  * inform userspace we have processed the request
1397                  */
1398                 if (r == -EALREADY)
1399                         nl80211_send_reg_change_event(last_request);
1400                 return r;
1401         }
1402
1403         return call_crda(last_request->alpha2);
1404 }
1405
1406 /* This processes *all* regulatory hints */
1407 static void reg_process_hint(struct regulatory_request *reg_request)
1408 {
1409         int r = 0;
1410         struct wiphy *wiphy = NULL;
1411         enum nl80211_reg_initiator initiator = reg_request->initiator;
1412
1413         BUG_ON(!reg_request->alpha2);
1414
1415         mutex_lock(&cfg80211_mutex);
1416         mutex_lock(&reg_mutex);
1417
1418         if (wiphy_idx_valid(reg_request->wiphy_idx))
1419                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1420
1421         if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1422             !wiphy) {
1423                 kfree(reg_request);
1424                 goto out;
1425         }
1426
1427         r = __regulatory_hint(wiphy, reg_request);
1428         /* This is required so that the orig_* parameters are saved */
1429         if (r == -EALREADY && wiphy &&
1430             wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
1431                 wiphy_update_regulatory(wiphy, initiator);
1432 out:
1433         mutex_unlock(&reg_mutex);
1434         mutex_unlock(&cfg80211_mutex);
1435 }
1436
1437 /* Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* */
1438 static void reg_process_pending_hints(void)
1439         {
1440         struct regulatory_request *reg_request;
1441
1442         spin_lock(&reg_requests_lock);
1443         while (!list_empty(&reg_requests_list)) {
1444                 reg_request = list_first_entry(&reg_requests_list,
1445                                                struct regulatory_request,
1446                                                list);
1447                 list_del_init(&reg_request->list);
1448
1449                 spin_unlock(&reg_requests_lock);
1450                 reg_process_hint(reg_request);
1451                 spin_lock(&reg_requests_lock);
1452         }
1453         spin_unlock(&reg_requests_lock);
1454 }
1455
1456 /* Processes beacon hints -- this has nothing to do with country IEs */
1457 static void reg_process_pending_beacon_hints(void)
1458 {
1459         struct cfg80211_registered_device *rdev;
1460         struct reg_beacon *pending_beacon, *tmp;
1461
1462         /*
1463          * No need to hold the reg_mutex here as we just touch wiphys
1464          * and do not read or access regulatory variables.
1465          */
1466         mutex_lock(&cfg80211_mutex);
1467
1468         /* This goes through the _pending_ beacon list */
1469         spin_lock_bh(&reg_pending_beacons_lock);
1470
1471         if (list_empty(&reg_pending_beacons)) {
1472                 spin_unlock_bh(&reg_pending_beacons_lock);
1473                 goto out;
1474         }
1475
1476         list_for_each_entry_safe(pending_beacon, tmp,
1477                                  &reg_pending_beacons, list) {
1478
1479                 list_del_init(&pending_beacon->list);
1480
1481                 /* Applies the beacon hint to current wiphys */
1482                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1483                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1484
1485                 /* Remembers the beacon hint for new wiphys or reg changes */
1486                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1487         }
1488
1489         spin_unlock_bh(&reg_pending_beacons_lock);
1490 out:
1491         mutex_unlock(&cfg80211_mutex);
1492 }
1493
1494 static void reg_todo(struct work_struct *work)
1495 {
1496         reg_process_pending_hints();
1497         reg_process_pending_beacon_hints();
1498 }
1499
1500 static void queue_regulatory_request(struct regulatory_request *request)
1501 {
1502         if (isalpha(request->alpha2[0]))
1503                 request->alpha2[0] = toupper(request->alpha2[0]);
1504         if (isalpha(request->alpha2[1]))
1505                 request->alpha2[1] = toupper(request->alpha2[1]);
1506
1507         spin_lock(&reg_requests_lock);
1508         list_add_tail(&request->list, &reg_requests_list);
1509         spin_unlock(&reg_requests_lock);
1510
1511         schedule_work(&reg_work);
1512 }
1513
1514 /*
1515  * Core regulatory hint -- happens during cfg80211_init()
1516  * and when we restore regulatory settings.
1517  */
1518 static int regulatory_hint_core(const char *alpha2)
1519 {
1520         struct regulatory_request *request;
1521
1522         kfree(last_request);
1523         last_request = NULL;
1524
1525         request = kzalloc(sizeof(struct regulatory_request),
1526                           GFP_KERNEL);
1527         if (!request)
1528                 return -ENOMEM;
1529
1530         request->alpha2[0] = alpha2[0];
1531         request->alpha2[1] = alpha2[1];
1532         request->initiator = NL80211_REGDOM_SET_BY_CORE;
1533
1534         queue_regulatory_request(request);
1535
1536         return 0;
1537 }
1538
1539 /* User hints */
1540 int regulatory_hint_user(const char *alpha2)
1541 {
1542         struct regulatory_request *request;
1543
1544         BUG_ON(!alpha2);
1545
1546         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1547         if (!request)
1548                 return -ENOMEM;
1549
1550         request->wiphy_idx = WIPHY_IDX_STALE;
1551         request->alpha2[0] = alpha2[0];
1552         request->alpha2[1] = alpha2[1];
1553         request->initiator = NL80211_REGDOM_SET_BY_USER;
1554
1555         queue_regulatory_request(request);
1556
1557         return 0;
1558 }
1559
1560 /* Driver hints */
1561 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1562 {
1563         struct regulatory_request *request;
1564
1565         BUG_ON(!alpha2);
1566         BUG_ON(!wiphy);
1567
1568         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1569         if (!request)
1570                 return -ENOMEM;
1571
1572         request->wiphy_idx = get_wiphy_idx(wiphy);
1573
1574         /* Must have registered wiphy first */
1575         BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1576
1577         request->alpha2[0] = alpha2[0];
1578         request->alpha2[1] = alpha2[1];
1579         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1580
1581         queue_regulatory_request(request);
1582
1583         return 0;
1584 }
1585 EXPORT_SYMBOL(regulatory_hint);
1586
1587 /*
1588  * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1589  * therefore cannot iterate over the rdev list here.
1590  */
1591 void regulatory_hint_11d(struct wiphy *wiphy,
1592                          enum ieee80211_band band,
1593                          u8 *country_ie,
1594                          u8 country_ie_len)
1595 {
1596         char alpha2[2];
1597         enum environment_cap env = ENVIRON_ANY;
1598         struct regulatory_request *request;
1599
1600         mutex_lock(&reg_mutex);
1601
1602         if (unlikely(!last_request))
1603                 goto out;
1604
1605         /* IE len must be evenly divisible by 2 */
1606         if (country_ie_len & 0x01)
1607                 goto out;
1608
1609         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1610                 goto out;
1611
1612         alpha2[0] = country_ie[0];
1613         alpha2[1] = country_ie[1];
1614
1615         if (country_ie[2] == 'I')
1616                 env = ENVIRON_INDOOR;
1617         else if (country_ie[2] == 'O')
1618                 env = ENVIRON_OUTDOOR;
1619
1620         /*
1621          * We will run this only upon a successful connection on cfg80211.
1622          * We leave conflict resolution to the workqueue, where can hold
1623          * cfg80211_mutex.
1624          */
1625         if (likely(last_request->initiator ==
1626             NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1627             wiphy_idx_valid(last_request->wiphy_idx)))
1628                 goto out;
1629
1630         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1631         if (!request)
1632                 goto out;
1633
1634         request->wiphy_idx = get_wiphy_idx(wiphy);
1635         request->alpha2[0] = alpha2[0];
1636         request->alpha2[1] = alpha2[1];
1637         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1638         request->country_ie_env = env;
1639
1640         mutex_unlock(&reg_mutex);
1641
1642         queue_regulatory_request(request);
1643
1644         return;
1645
1646 out:
1647         mutex_unlock(&reg_mutex);
1648 }
1649
1650 static void restore_alpha2(char *alpha2, bool reset_user)
1651 {
1652         /* indicates there is no alpha2 to consider for restoration */
1653         alpha2[0] = '9';
1654         alpha2[1] = '7';
1655
1656         /* The user setting has precedence over the module parameter */
1657         if (is_user_regdom_saved()) {
1658                 /* Unless we're asked to ignore it and reset it */
1659                 if (reset_user) {
1660                         REG_DBG_PRINT("Restoring regulatory settings "
1661                                "including user preference\n");
1662                         user_alpha2[0] = '9';
1663                         user_alpha2[1] = '7';
1664
1665                         /*
1666                          * If we're ignoring user settings, we still need to
1667                          * check the module parameter to ensure we put things
1668                          * back as they were for a full restore.
1669                          */
1670                         if (!is_world_regdom(ieee80211_regdom)) {
1671                                 REG_DBG_PRINT("Keeping preference on "
1672                                        "module parameter ieee80211_regdom: %c%c\n",
1673                                        ieee80211_regdom[0],
1674                                        ieee80211_regdom[1]);
1675                                 alpha2[0] = ieee80211_regdom[0];
1676                                 alpha2[1] = ieee80211_regdom[1];
1677                         }
1678                 } else {
1679                         REG_DBG_PRINT("Restoring regulatory settings "
1680                                "while preserving user preference for: %c%c\n",
1681                                user_alpha2[0],
1682                                user_alpha2[1]);
1683                         alpha2[0] = user_alpha2[0];
1684                         alpha2[1] = user_alpha2[1];
1685                 }
1686         } else if (!is_world_regdom(ieee80211_regdom)) {
1687                 REG_DBG_PRINT("Keeping preference on "
1688                        "module parameter ieee80211_regdom: %c%c\n",
1689                        ieee80211_regdom[0],
1690                        ieee80211_regdom[1]);
1691                 alpha2[0] = ieee80211_regdom[0];
1692                 alpha2[1] = ieee80211_regdom[1];
1693         } else
1694                 REG_DBG_PRINT("Restoring regulatory settings\n");
1695 }
1696
1697 /*
1698  * Restoring regulatory settings involves ingoring any
1699  * possibly stale country IE information and user regulatory
1700  * settings if so desired, this includes any beacon hints
1701  * learned as we could have traveled outside to another country
1702  * after disconnection. To restore regulatory settings we do
1703  * exactly what we did at bootup:
1704  *
1705  *   - send a core regulatory hint
1706  *   - send a user regulatory hint if applicable
1707  *
1708  * Device drivers that send a regulatory hint for a specific country
1709  * keep their own regulatory domain on wiphy->regd so that does does
1710  * not need to be remembered.
1711  */
1712 static void restore_regulatory_settings(bool reset_user)
1713 {
1714         char alpha2[2];
1715         struct reg_beacon *reg_beacon, *btmp;
1716
1717         mutex_lock(&cfg80211_mutex);
1718         mutex_lock(&reg_mutex);
1719
1720         reset_regdomains();
1721         restore_alpha2(alpha2, reset_user);
1722
1723         /* Clear beacon hints */
1724         spin_lock_bh(&reg_pending_beacons_lock);
1725         if (!list_empty(&reg_pending_beacons)) {
1726                 list_for_each_entry_safe(reg_beacon, btmp,
1727                                          &reg_pending_beacons, list) {
1728                         list_del(&reg_beacon->list);
1729                         kfree(reg_beacon);
1730                 }
1731         }
1732         spin_unlock_bh(&reg_pending_beacons_lock);
1733
1734         if (!list_empty(&reg_beacon_list)) {
1735                 list_for_each_entry_safe(reg_beacon, btmp,
1736                                          &reg_beacon_list, list) {
1737                         list_del(&reg_beacon->list);
1738                         kfree(reg_beacon);
1739                 }
1740         }
1741
1742         /* First restore to the basic regulatory settings */
1743         cfg80211_regdomain = cfg80211_world_regdom;
1744
1745         mutex_unlock(&reg_mutex);
1746         mutex_unlock(&cfg80211_mutex);
1747
1748         regulatory_hint_core(cfg80211_regdomain->alpha2);
1749
1750         /*
1751          * This restores the ieee80211_regdom module parameter
1752          * preference or the last user requested regulatory
1753          * settings, user regulatory settings takes precedence.
1754          */
1755         if (is_an_alpha2(alpha2))
1756                 regulatory_hint_user(user_alpha2);
1757 }
1758
1759
1760 void regulatory_hint_disconnect(void)
1761 {
1762         REG_DBG_PRINT("All devices are disconnected, going to "
1763                       "restore regulatory settings\n");
1764         restore_regulatory_settings(false);
1765 }
1766
1767 static bool freq_is_chan_12_13_14(u16 freq)
1768 {
1769         if (freq == ieee80211_channel_to_frequency(12) ||
1770             freq == ieee80211_channel_to_frequency(13) ||
1771             freq == ieee80211_channel_to_frequency(14))
1772                 return true;
1773         return false;
1774 }
1775
1776 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1777                                  struct ieee80211_channel *beacon_chan,
1778                                  gfp_t gfp)
1779 {
1780         struct reg_beacon *reg_beacon;
1781
1782         if (likely((beacon_chan->beacon_found ||
1783             (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
1784             (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1785              !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
1786                 return 0;
1787
1788         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1789         if (!reg_beacon)
1790                 return -ENOMEM;
1791
1792         REG_DBG_PRINT("Found new beacon on "
1793                       "frequency: %d MHz (Ch %d) on %s\n",
1794                       beacon_chan->center_freq,
1795                       ieee80211_frequency_to_channel(beacon_chan->center_freq),
1796                       wiphy_name(wiphy));
1797
1798         memcpy(&reg_beacon->chan, beacon_chan,
1799                 sizeof(struct ieee80211_channel));
1800
1801
1802         /*
1803          * Since we can be called from BH or and non-BH context
1804          * we must use spin_lock_bh()
1805          */
1806         spin_lock_bh(&reg_pending_beacons_lock);
1807         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1808         spin_unlock_bh(&reg_pending_beacons_lock);
1809
1810         schedule_work(&reg_work);
1811
1812         return 0;
1813 }
1814
1815 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1816 {
1817         unsigned int i;
1818         const struct ieee80211_reg_rule *reg_rule = NULL;
1819         const struct ieee80211_freq_range *freq_range = NULL;
1820         const struct ieee80211_power_rule *power_rule = NULL;
1821
1822         printk(KERN_INFO "    (start_freq - end_freq @ bandwidth), "
1823                 "(max_antenna_gain, max_eirp)\n");
1824
1825         for (i = 0; i < rd->n_reg_rules; i++) {
1826                 reg_rule = &rd->reg_rules[i];
1827                 freq_range = &reg_rule->freq_range;
1828                 power_rule = &reg_rule->power_rule;
1829
1830                 /*
1831                  * There may not be documentation for max antenna gain
1832                  * in certain regions
1833                  */
1834                 if (power_rule->max_antenna_gain)
1835                         printk(KERN_INFO "    (%d KHz - %d KHz @ %d KHz), "
1836                                 "(%d mBi, %d mBm)\n",
1837                                 freq_range->start_freq_khz,
1838                                 freq_range->end_freq_khz,
1839                                 freq_range->max_bandwidth_khz,
1840                                 power_rule->max_antenna_gain,
1841                                 power_rule->max_eirp);
1842                 else
1843                         printk(KERN_INFO "    (%d KHz - %d KHz @ %d KHz), "
1844                                 "(N/A, %d mBm)\n",
1845                                 freq_range->start_freq_khz,
1846                                 freq_range->end_freq_khz,
1847                                 freq_range->max_bandwidth_khz,
1848                                 power_rule->max_eirp);
1849         }
1850 }
1851
1852 static void print_regdomain(const struct ieee80211_regdomain *rd)
1853 {
1854
1855         if (is_intersected_alpha2(rd->alpha2)) {
1856
1857                 if (last_request->initiator ==
1858                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1859                         struct cfg80211_registered_device *rdev;
1860                         rdev = cfg80211_rdev_by_wiphy_idx(
1861                                 last_request->wiphy_idx);
1862                         if (rdev) {
1863                                 printk(KERN_INFO "cfg80211: Current regulatory "
1864                                         "domain updated by AP to: %c%c\n",
1865                                         rdev->country_ie_alpha2[0],
1866                                         rdev->country_ie_alpha2[1]);
1867                         } else
1868                                 printk(KERN_INFO "cfg80211: Current regulatory "
1869                                         "domain intersected:\n");
1870                 } else
1871                         printk(KERN_INFO "cfg80211: Current regulatory "
1872                                 "domain intersected:\n");
1873         } else if (is_world_regdom(rd->alpha2))
1874                 printk(KERN_INFO "cfg80211: World regulatory "
1875                         "domain updated:\n");
1876         else {
1877                 if (is_unknown_alpha2(rd->alpha2))
1878                         printk(KERN_INFO "cfg80211: Regulatory domain "
1879                                 "changed to driver built-in settings "
1880                                 "(unknown country)\n");
1881                 else
1882                         printk(KERN_INFO "cfg80211: Regulatory domain "
1883                                 "changed to country: %c%c\n",
1884                                 rd->alpha2[0], rd->alpha2[1]);
1885         }
1886         print_rd_rules(rd);
1887 }
1888
1889 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
1890 {
1891         printk(KERN_INFO "cfg80211: Regulatory domain: %c%c\n",
1892                 rd->alpha2[0], rd->alpha2[1]);
1893         print_rd_rules(rd);
1894 }
1895
1896 /* Takes ownership of rd only if it doesn't fail */
1897 static int __set_regdom(const struct ieee80211_regdomain *rd)
1898 {
1899         const struct ieee80211_regdomain *intersected_rd = NULL;
1900         struct cfg80211_registered_device *rdev = NULL;
1901         struct wiphy *request_wiphy;
1902         /* Some basic sanity checks first */
1903
1904         if (is_world_regdom(rd->alpha2)) {
1905                 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1906                         return -EINVAL;
1907                 update_world_regdomain(rd);
1908                 return 0;
1909         }
1910
1911         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
1912                         !is_unknown_alpha2(rd->alpha2))
1913                 return -EINVAL;
1914
1915         if (!last_request)
1916                 return -EINVAL;
1917
1918         /*
1919          * Lets only bother proceeding on the same alpha2 if the current
1920          * rd is non static (it means CRDA was present and was used last)
1921          * and the pending request came in from a country IE
1922          */
1923         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1924                 /*
1925                  * If someone else asked us to change the rd lets only bother
1926                  * checking if the alpha2 changes if CRDA was already called
1927                  */
1928                 if (!regdom_changes(rd->alpha2))
1929                         return -EINVAL;
1930         }
1931
1932         /*
1933          * Now lets set the regulatory domain, update all driver channels
1934          * and finally inform them of what we have done, in case they want
1935          * to review or adjust their own settings based on their own
1936          * internal EEPROM data
1937          */
1938
1939         if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1940                 return -EINVAL;
1941
1942         if (!is_valid_rd(rd)) {
1943                 printk(KERN_ERR "cfg80211: Invalid "
1944                         "regulatory domain detected:\n");
1945                 print_regdomain_info(rd);
1946                 return -EINVAL;
1947         }
1948
1949         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1950
1951         if (!last_request->intersect) {
1952                 int r;
1953
1954                 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
1955                         reset_regdomains();
1956                         cfg80211_regdomain = rd;
1957                         return 0;
1958                 }
1959
1960                 /*
1961                  * For a driver hint, lets copy the regulatory domain the
1962                  * driver wanted to the wiphy to deal with conflicts
1963                  */
1964
1965                 /*
1966                  * Userspace could have sent two replies with only
1967                  * one kernel request.
1968                  */
1969                 if (request_wiphy->regd)
1970                         return -EALREADY;
1971
1972                 r = reg_copy_regd(&request_wiphy->regd, rd);
1973                 if (r)
1974                         return r;
1975
1976                 reset_regdomains();
1977                 cfg80211_regdomain = rd;
1978                 return 0;
1979         }
1980
1981         /* Intersection requires a bit more work */
1982
1983         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1984
1985                 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
1986                 if (!intersected_rd)
1987                         return -EINVAL;
1988
1989                 /*
1990                  * We can trash what CRDA provided now.
1991                  * However if a driver requested this specific regulatory
1992                  * domain we keep it for its private use
1993                  */
1994                 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
1995                         request_wiphy->regd = rd;
1996                 else
1997                         kfree(rd);
1998
1999                 rd = NULL;
2000
2001                 reset_regdomains();
2002                 cfg80211_regdomain = intersected_rd;
2003
2004                 return 0;
2005         }
2006
2007         if (!intersected_rd)
2008                 return -EINVAL;
2009
2010         rdev = wiphy_to_dev(request_wiphy);
2011
2012         rdev->country_ie_alpha2[0] = rd->alpha2[0];
2013         rdev->country_ie_alpha2[1] = rd->alpha2[1];
2014         rdev->env = last_request->country_ie_env;
2015
2016         BUG_ON(intersected_rd == rd);
2017
2018         kfree(rd);
2019         rd = NULL;
2020
2021         reset_regdomains();
2022         cfg80211_regdomain = intersected_rd;
2023
2024         return 0;
2025 }
2026
2027
2028 /*
2029  * Use this call to set the current regulatory domain. Conflicts with
2030  * multiple drivers can be ironed out later. Caller must've already
2031  * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2032  */
2033 int set_regdom(const struct ieee80211_regdomain *rd)
2034 {
2035         int r;
2036
2037         assert_cfg80211_lock();
2038
2039         mutex_lock(&reg_mutex);
2040
2041         /* Note that this doesn't update the wiphys, this is done below */
2042         r = __set_regdom(rd);
2043         if (r) {
2044                 kfree(rd);
2045                 mutex_unlock(&reg_mutex);
2046                 return r;
2047         }
2048
2049         /* This would make this whole thing pointless */
2050         if (!last_request->intersect)
2051                 BUG_ON(rd != cfg80211_regdomain);
2052
2053         /* update all wiphys now with the new established regulatory domain */
2054         update_all_wiphy_regulatory(last_request->initiator);
2055
2056         print_regdomain(cfg80211_regdomain);
2057
2058         nl80211_send_reg_change_event(last_request);
2059
2060         mutex_unlock(&reg_mutex);
2061
2062         return r;
2063 }
2064
2065 /* Caller must hold cfg80211_mutex */
2066 void reg_device_remove(struct wiphy *wiphy)
2067 {
2068         struct wiphy *request_wiphy = NULL;
2069
2070         assert_cfg80211_lock();
2071
2072         mutex_lock(&reg_mutex);
2073
2074         kfree(wiphy->regd);
2075
2076         if (last_request)
2077                 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2078
2079         if (!request_wiphy || request_wiphy != wiphy)
2080                 goto out;
2081
2082         last_request->wiphy_idx = WIPHY_IDX_STALE;
2083         last_request->country_ie_env = ENVIRON_ANY;
2084 out:
2085         mutex_unlock(&reg_mutex);
2086 }
2087
2088 int __init regulatory_init(void)
2089 {
2090         int err = 0;
2091
2092         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2093         if (IS_ERR(reg_pdev))
2094                 return PTR_ERR(reg_pdev);
2095
2096         spin_lock_init(&reg_requests_lock);
2097         spin_lock_init(&reg_pending_beacons_lock);
2098
2099         cfg80211_regdomain = cfg80211_world_regdom;
2100
2101         user_alpha2[0] = '9';
2102         user_alpha2[1] = '7';
2103
2104         /* We always try to get an update for the static regdomain */
2105         err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2106         if (err) {
2107                 if (err == -ENOMEM)
2108                         return err;
2109                 /*
2110                  * N.B. kobject_uevent_env() can fail mainly for when we're out
2111                  * memory which is handled and propagated appropriately above
2112                  * but it can also fail during a netlink_broadcast() or during
2113                  * early boot for call_usermodehelper(). For now treat these
2114                  * errors as non-fatal.
2115                  */
2116                 printk(KERN_ERR "cfg80211: kobject_uevent_env() was unable "
2117                         "to call CRDA during init");
2118 #ifdef CONFIG_CFG80211_REG_DEBUG
2119                 /* We want to find out exactly why when debugging */
2120                 WARN_ON(err);
2121 #endif
2122         }
2123
2124         /*
2125          * Finally, if the user set the module parameter treat it
2126          * as a user hint.
2127          */
2128         if (!is_world_regdom(ieee80211_regdom))
2129                 regulatory_hint_user(ieee80211_regdom);
2130
2131         return 0;
2132 }
2133
2134 void /* __init_or_exit */ regulatory_exit(void)
2135 {
2136         struct regulatory_request *reg_request, *tmp;
2137         struct reg_beacon *reg_beacon, *btmp;
2138
2139         cancel_work_sync(&reg_work);
2140
2141         mutex_lock(&cfg80211_mutex);
2142         mutex_lock(&reg_mutex);
2143
2144         reset_regdomains();
2145
2146         kfree(last_request);
2147
2148         platform_device_unregister(reg_pdev);
2149
2150         spin_lock_bh(&reg_pending_beacons_lock);
2151         if (!list_empty(&reg_pending_beacons)) {
2152                 list_for_each_entry_safe(reg_beacon, btmp,
2153                                          &reg_pending_beacons, list) {
2154                         list_del(&reg_beacon->list);
2155                         kfree(reg_beacon);
2156                 }
2157         }
2158         spin_unlock_bh(&reg_pending_beacons_lock);
2159
2160         if (!list_empty(&reg_beacon_list)) {
2161                 list_for_each_entry_safe(reg_beacon, btmp,
2162                                          &reg_beacon_list, list) {
2163                         list_del(&reg_beacon->list);
2164                         kfree(reg_beacon);
2165                 }
2166         }
2167
2168         spin_lock(&reg_requests_lock);
2169         if (!list_empty(&reg_requests_list)) {
2170                 list_for_each_entry_safe(reg_request, tmp,
2171                                          &reg_requests_list, list) {
2172                         list_del(&reg_request->list);
2173                         kfree(reg_request);
2174                 }
2175         }
2176         spin_unlock(&reg_requests_lock);
2177
2178         mutex_unlock(&reg_mutex);
2179         mutex_unlock(&cfg80211_mutex);
2180 }