cfg80211: add debug print when we drop a bogus country IE
[linux-2.6.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008       Luis R. Rodriguez <lrodriguz@atheros.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11
12 /**
13  * DOC: Wireless regulatory infrastructure
14  *
15  * The usual implementation is for a driver to read a device EEPROM to
16  * determine which regulatory domain it should be operating under, then
17  * looking up the allowable channels in a driver-local table and finally
18  * registering those channels in the wiphy structure.
19  *
20  * Another set of compliance enforcement is for drivers to use their
21  * own compliance limits which can be stored on the EEPROM. The host
22  * driver or firmware may ensure these are used.
23  *
24  * In addition to all this we provide an extra layer of regulatory
25  * conformance. For drivers which do not have any regulatory
26  * information CRDA provides the complete regulatory solution.
27  * For others it provides a community effort on further restrictions
28  * to enhance compliance.
29  *
30  * Note: When number of rules --> infinity we will not be able to
31  * index on alpha2 any more, instead we'll probably have to
32  * rely on some SHA1 checksum of the regdomain for example.
33  *
34  */
35 #include <linux/kernel.h>
36 #include <linux/list.h>
37 #include <linux/random.h>
38 #include <linux/nl80211.h>
39 #include <linux/platform_device.h>
40 #include <net/cfg80211.h>
41 #include "core.h"
42 #include "reg.h"
43 #include "regdb.h"
44 #include "nl80211.h"
45
46 #ifdef CONFIG_CFG80211_REG_DEBUG
47 #define REG_DBG_PRINT(format, args...) \
48         do { \
49                 printk(KERN_DEBUG format , ## args); \
50         } while (0)
51 #else
52 #define REG_DBG_PRINT(args...)
53 #endif
54
55 /* Receipt of information from last regulatory request */
56 static struct regulatory_request *last_request;
57
58 /* To trigger userspace events */
59 static struct platform_device *reg_pdev;
60
61 /*
62  * Central wireless core regulatory domains, we only need two,
63  * the current one and a world regulatory domain in case we have no
64  * information to give us an alpha2
65  */
66 const struct ieee80211_regdomain *cfg80211_regdomain;
67
68 /*
69  * We use this as a place for the rd structure built from the
70  * last parsed country IE to rest until CRDA gets back to us with
71  * what it thinks should apply for the same country
72  */
73 static const struct ieee80211_regdomain *country_ie_regdomain;
74
75 /*
76  * Protects static reg.c components:
77  *     - cfg80211_world_regdom
78  *     - cfg80211_regdom
79  *     - country_ie_regdomain
80  *     - last_request
81  */
82 DEFINE_MUTEX(reg_mutex);
83 #define assert_reg_lock() WARN_ON(!mutex_is_locked(&reg_mutex))
84
85 /* Used to queue up regulatory hints */
86 static LIST_HEAD(reg_requests_list);
87 static spinlock_t reg_requests_lock;
88
89 /* Used to queue up beacon hints for review */
90 static LIST_HEAD(reg_pending_beacons);
91 static spinlock_t reg_pending_beacons_lock;
92
93 /* Used to keep track of processed beacon hints */
94 static LIST_HEAD(reg_beacon_list);
95
96 struct reg_beacon {
97         struct list_head list;
98         struct ieee80211_channel chan;
99 };
100
101 /* We keep a static world regulatory domain in case of the absence of CRDA */
102 static const struct ieee80211_regdomain world_regdom = {
103         .n_reg_rules = 5,
104         .alpha2 =  "00",
105         .reg_rules = {
106                 /* IEEE 802.11b/g, channels 1..11 */
107                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
108                 /* IEEE 802.11b/g, channels 12..13. No HT40
109                  * channel fits here. */
110                 REG_RULE(2467-10, 2472+10, 20, 6, 20,
111                         NL80211_RRF_PASSIVE_SCAN |
112                         NL80211_RRF_NO_IBSS),
113                 /* IEEE 802.11 channel 14 - Only JP enables
114                  * this and for 802.11b only */
115                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
116                         NL80211_RRF_PASSIVE_SCAN |
117                         NL80211_RRF_NO_IBSS |
118                         NL80211_RRF_NO_OFDM),
119                 /* IEEE 802.11a, channel 36..48 */
120                 REG_RULE(5180-10, 5240+10, 40, 6, 20,
121                         NL80211_RRF_PASSIVE_SCAN |
122                         NL80211_RRF_NO_IBSS),
123
124                 /* NB: 5260 MHz - 5700 MHz requies DFS */
125
126                 /* IEEE 802.11a, channel 149..165 */
127                 REG_RULE(5745-10, 5825+10, 40, 6, 20,
128                         NL80211_RRF_PASSIVE_SCAN |
129                         NL80211_RRF_NO_IBSS),
130         }
131 };
132
133 static const struct ieee80211_regdomain *cfg80211_world_regdom =
134         &world_regdom;
135
136 static char *ieee80211_regdom = "00";
137
138 module_param(ieee80211_regdom, charp, 0444);
139 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
140
141 static void reset_regdomains(void)
142 {
143         /* avoid freeing static information or freeing something twice */
144         if (cfg80211_regdomain == cfg80211_world_regdom)
145                 cfg80211_regdomain = NULL;
146         if (cfg80211_world_regdom == &world_regdom)
147                 cfg80211_world_regdom = NULL;
148         if (cfg80211_regdomain == &world_regdom)
149                 cfg80211_regdomain = NULL;
150
151         kfree(cfg80211_regdomain);
152         kfree(cfg80211_world_regdom);
153
154         cfg80211_world_regdom = &world_regdom;
155         cfg80211_regdomain = NULL;
156 }
157
158 /*
159  * Dynamic world regulatory domain requested by the wireless
160  * core upon initialization
161  */
162 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
163 {
164         BUG_ON(!last_request);
165
166         reset_regdomains();
167
168         cfg80211_world_regdom = rd;
169         cfg80211_regdomain = rd;
170 }
171
172 bool is_world_regdom(const char *alpha2)
173 {
174         if (!alpha2)
175                 return false;
176         if (alpha2[0] == '0' && alpha2[1] == '0')
177                 return true;
178         return false;
179 }
180
181 static bool is_alpha2_set(const char *alpha2)
182 {
183         if (!alpha2)
184                 return false;
185         if (alpha2[0] != 0 && alpha2[1] != 0)
186                 return true;
187         return false;
188 }
189
190 static bool is_alpha_upper(char letter)
191 {
192         /* ASCII A - Z */
193         if (letter >= 65 && letter <= 90)
194                 return true;
195         return false;
196 }
197
198 static bool is_unknown_alpha2(const char *alpha2)
199 {
200         if (!alpha2)
201                 return false;
202         /*
203          * Special case where regulatory domain was built by driver
204          * but a specific alpha2 cannot be determined
205          */
206         if (alpha2[0] == '9' && alpha2[1] == '9')
207                 return true;
208         return false;
209 }
210
211 static bool is_intersected_alpha2(const char *alpha2)
212 {
213         if (!alpha2)
214                 return false;
215         /*
216          * Special case where regulatory domain is the
217          * result of an intersection between two regulatory domain
218          * structures
219          */
220         if (alpha2[0] == '9' && alpha2[1] == '8')
221                 return true;
222         return false;
223 }
224
225 static bool is_an_alpha2(const char *alpha2)
226 {
227         if (!alpha2)
228                 return false;
229         if (is_alpha_upper(alpha2[0]) && is_alpha_upper(alpha2[1]))
230                 return true;
231         return false;
232 }
233
234 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
235 {
236         if (!alpha2_x || !alpha2_y)
237                 return false;
238         if (alpha2_x[0] == alpha2_y[0] &&
239                 alpha2_x[1] == alpha2_y[1])
240                 return true;
241         return false;
242 }
243
244 static bool regdom_changes(const char *alpha2)
245 {
246         assert_cfg80211_lock();
247
248         if (!cfg80211_regdomain)
249                 return true;
250         if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
251                 return false;
252         return true;
253 }
254
255 /**
256  * country_ie_integrity_changes - tells us if the country IE has changed
257  * @checksum: checksum of country IE of fields we are interested in
258  *
259  * If the country IE has not changed you can ignore it safely. This is
260  * useful to determine if two devices are seeing two different country IEs
261  * even on the same alpha2. Note that this will return false if no IE has
262  * been set on the wireless core yet.
263  */
264 static bool country_ie_integrity_changes(u32 checksum)
265 {
266         /* If no IE has been set then the checksum doesn't change */
267         if (unlikely(!last_request->country_ie_checksum))
268                 return false;
269         if (unlikely(last_request->country_ie_checksum != checksum))
270                 return true;
271         return false;
272 }
273
274 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
275                          const struct ieee80211_regdomain *src_regd)
276 {
277         struct ieee80211_regdomain *regd;
278         int size_of_regd = 0;
279         unsigned int i;
280
281         size_of_regd = sizeof(struct ieee80211_regdomain) +
282           ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
283
284         regd = kzalloc(size_of_regd, GFP_KERNEL);
285         if (!regd)
286                 return -ENOMEM;
287
288         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
289
290         for (i = 0; i < src_regd->n_reg_rules; i++)
291                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
292                         sizeof(struct ieee80211_reg_rule));
293
294         *dst_regd = regd;
295         return 0;
296 }
297
298 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
299 struct reg_regdb_search_request {
300         char alpha2[2];
301         struct list_head list;
302 };
303
304 static LIST_HEAD(reg_regdb_search_list);
305 static DEFINE_SPINLOCK(reg_regdb_search_lock);
306
307 static void reg_regdb_search(struct work_struct *work)
308 {
309         struct reg_regdb_search_request *request;
310         const struct ieee80211_regdomain *curdom, *regdom;
311         int i, r;
312
313         spin_lock(&reg_regdb_search_lock);
314         while (!list_empty(&reg_regdb_search_list)) {
315                 request = list_first_entry(&reg_regdb_search_list,
316                                            struct reg_regdb_search_request,
317                                            list);
318                 list_del(&request->list);
319
320                 for (i=0; i<reg_regdb_size; i++) {
321                         curdom = reg_regdb[i];
322
323                         if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
324                                 r = reg_copy_regd(&regdom, curdom);
325                                 if (r)
326                                         break;
327                                 spin_unlock(&reg_regdb_search_lock);
328                                 mutex_lock(&cfg80211_mutex);
329                                 set_regdom(regdom);
330                                 mutex_unlock(&cfg80211_mutex);
331                                 spin_lock(&reg_regdb_search_lock);
332                                 break;
333                         }
334                 }
335
336                 kfree(request);
337         }
338         spin_unlock(&reg_regdb_search_lock);
339 }
340
341 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
342
343 static void reg_regdb_query(const char *alpha2)
344 {
345         struct reg_regdb_search_request *request;
346
347         if (!alpha2)
348                 return;
349
350         request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
351         if (!request)
352                 return;
353
354         memcpy(request->alpha2, alpha2, 2);
355
356         spin_lock(&reg_regdb_search_lock);
357         list_add_tail(&request->list, &reg_regdb_search_list);
358         spin_unlock(&reg_regdb_search_lock);
359
360         schedule_work(&reg_regdb_work);
361 }
362 #else
363 static inline void reg_regdb_query(const char *alpha2) {}
364 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
365
366 /*
367  * This lets us keep regulatory code which is updated on a regulatory
368  * basis in userspace.
369  */
370 static int call_crda(const char *alpha2)
371 {
372         char country_env[9 + 2] = "COUNTRY=";
373         char *envp[] = {
374                 country_env,
375                 NULL
376         };
377
378         if (!is_world_regdom((char *) alpha2))
379                 printk(KERN_INFO "cfg80211: Calling CRDA for country: %c%c\n",
380                         alpha2[0], alpha2[1]);
381         else
382                 printk(KERN_INFO "cfg80211: Calling CRDA to update world "
383                         "regulatory domain\n");
384
385         /* query internal regulatory database (if it exists) */
386         reg_regdb_query(alpha2);
387
388         country_env[8] = alpha2[0];
389         country_env[9] = alpha2[1];
390
391         return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, envp);
392 }
393
394 /* Used by nl80211 before kmalloc'ing our regulatory domain */
395 bool reg_is_valid_request(const char *alpha2)
396 {
397         assert_cfg80211_lock();
398
399         if (!last_request)
400                 return false;
401
402         return alpha2_equal(last_request->alpha2, alpha2);
403 }
404
405 /* Sanity check on a regulatory rule */
406 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
407 {
408         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
409         u32 freq_diff;
410
411         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
412                 return false;
413
414         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
415                 return false;
416
417         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
418
419         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
420                         freq_range->max_bandwidth_khz > freq_diff)
421                 return false;
422
423         return true;
424 }
425
426 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
427 {
428         const struct ieee80211_reg_rule *reg_rule = NULL;
429         unsigned int i;
430
431         if (!rd->n_reg_rules)
432                 return false;
433
434         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
435                 return false;
436
437         for (i = 0; i < rd->n_reg_rules; i++) {
438                 reg_rule = &rd->reg_rules[i];
439                 if (!is_valid_reg_rule(reg_rule))
440                         return false;
441         }
442
443         return true;
444 }
445
446 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
447                             u32 center_freq_khz,
448                             u32 bw_khz)
449 {
450         u32 start_freq_khz, end_freq_khz;
451
452         start_freq_khz = center_freq_khz - (bw_khz/2);
453         end_freq_khz = center_freq_khz + (bw_khz/2);
454
455         if (start_freq_khz >= freq_range->start_freq_khz &&
456             end_freq_khz <= freq_range->end_freq_khz)
457                 return true;
458
459         return false;
460 }
461
462 /**
463  * freq_in_rule_band - tells us if a frequency is in a frequency band
464  * @freq_range: frequency rule we want to query
465  * @freq_khz: frequency we are inquiring about
466  *
467  * This lets us know if a specific frequency rule is or is not relevant to
468  * a specific frequency's band. Bands are device specific and artificial
469  * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
470  * safe for now to assume that a frequency rule should not be part of a
471  * frequency's band if the start freq or end freq are off by more than 2 GHz.
472  * This resolution can be lowered and should be considered as we add
473  * regulatory rule support for other "bands".
474  **/
475 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
476         u32 freq_khz)
477 {
478 #define ONE_GHZ_IN_KHZ  1000000
479         if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
480                 return true;
481         if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
482                 return true;
483         return false;
484 #undef ONE_GHZ_IN_KHZ
485 }
486
487 /*
488  * Converts a country IE to a regulatory domain. A regulatory domain
489  * structure has a lot of information which the IE doesn't yet have,
490  * so for the other values we use upper max values as we will intersect
491  * with our userspace regulatory agent to get lower bounds.
492  */
493 static struct ieee80211_regdomain *country_ie_2_rd(
494                                 u8 *country_ie,
495                                 u8 country_ie_len,
496                                 u32 *checksum)
497 {
498         struct ieee80211_regdomain *rd = NULL;
499         unsigned int i = 0;
500         char alpha2[2];
501         u32 flags = 0;
502         u32 num_rules = 0, size_of_regd = 0;
503         u8 *triplets_start = NULL;
504         u8 len_at_triplet = 0;
505         /* the last channel we have registered in a subband (triplet) */
506         int last_sub_max_channel = 0;
507
508         *checksum = 0xDEADBEEF;
509
510         /* Country IE requirements */
511         BUG_ON(country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN ||
512                 country_ie_len & 0x01);
513
514         alpha2[0] = country_ie[0];
515         alpha2[1] = country_ie[1];
516
517         /*
518          * Third octet can be:
519          *    'I' - Indoor
520          *    'O' - Outdoor
521          *
522          *  anything else we assume is no restrictions
523          */
524         if (country_ie[2] == 'I')
525                 flags = NL80211_RRF_NO_OUTDOOR;
526         else if (country_ie[2] == 'O')
527                 flags = NL80211_RRF_NO_INDOOR;
528
529         country_ie += 3;
530         country_ie_len -= 3;
531
532         triplets_start = country_ie;
533         len_at_triplet = country_ie_len;
534
535         *checksum ^= ((flags ^ alpha2[0] ^ alpha2[1]) << 8);
536
537         /*
538          * We need to build a reg rule for each triplet, but first we must
539          * calculate the number of reg rules we will need. We will need one
540          * for each channel subband
541          */
542         while (country_ie_len >= 3) {
543                 int end_channel = 0;
544                 struct ieee80211_country_ie_triplet *triplet =
545                         (struct ieee80211_country_ie_triplet *) country_ie;
546                 int cur_sub_max_channel = 0, cur_channel = 0;
547
548                 if (triplet->ext.reg_extension_id >=
549                                 IEEE80211_COUNTRY_EXTENSION_ID) {
550                         country_ie += 3;
551                         country_ie_len -= 3;
552                         continue;
553                 }
554
555                 /* 2 GHz */
556                 if (triplet->chans.first_channel <= 14)
557                         end_channel = triplet->chans.first_channel +
558                                 triplet->chans.num_channels;
559                 else
560                         /*
561                          * 5 GHz -- For example in country IEs if the first
562                          * channel given is 36 and the number of channels is 4
563                          * then the individual channel numbers defined for the
564                          * 5 GHz PHY by these parameters are: 36, 40, 44, and 48
565                          * and not 36, 37, 38, 39.
566                          *
567                          * See: http://tinyurl.com/11d-clarification
568                          */
569                         end_channel =  triplet->chans.first_channel +
570                                 (4 * (triplet->chans.num_channels - 1));
571
572                 cur_channel = triplet->chans.first_channel;
573                 cur_sub_max_channel = end_channel;
574
575                 /* Basic sanity check */
576                 if (cur_sub_max_channel < cur_channel)
577                         return NULL;
578
579                 /*
580                  * Do not allow overlapping channels. Also channels
581                  * passed in each subband must be monotonically
582                  * increasing
583                  */
584                 if (last_sub_max_channel) {
585                         if (cur_channel <= last_sub_max_channel)
586                                 return NULL;
587                         if (cur_sub_max_channel <= last_sub_max_channel)
588                                 return NULL;
589                 }
590
591                 /*
592                  * When dot11RegulatoryClassesRequired is supported
593                  * we can throw ext triplets as part of this soup,
594                  * for now we don't care when those change as we
595                  * don't support them
596                  */
597                 *checksum ^= ((cur_channel ^ cur_sub_max_channel) << 8) |
598                   ((cur_sub_max_channel ^ cur_sub_max_channel) << 16) |
599                   ((triplet->chans.max_power ^ cur_sub_max_channel) << 24);
600
601                 last_sub_max_channel = cur_sub_max_channel;
602
603                 country_ie += 3;
604                 country_ie_len -= 3;
605                 num_rules++;
606
607                 /*
608                  * Note: this is not a IEEE requirement but
609                  * simply a memory requirement
610                  */
611                 if (num_rules > NL80211_MAX_SUPP_REG_RULES)
612                         return NULL;
613         }
614
615         country_ie = triplets_start;
616         country_ie_len = len_at_triplet;
617
618         size_of_regd = sizeof(struct ieee80211_regdomain) +
619                 (num_rules * sizeof(struct ieee80211_reg_rule));
620
621         rd = kzalloc(size_of_regd, GFP_KERNEL);
622         if (!rd)
623                 return NULL;
624
625         rd->n_reg_rules = num_rules;
626         rd->alpha2[0] = alpha2[0];
627         rd->alpha2[1] = alpha2[1];
628
629         /* This time around we fill in the rd */
630         while (country_ie_len >= 3) {
631                 int end_channel = 0;
632                 struct ieee80211_country_ie_triplet *triplet =
633                         (struct ieee80211_country_ie_triplet *) country_ie;
634                 struct ieee80211_reg_rule *reg_rule = NULL;
635                 struct ieee80211_freq_range *freq_range = NULL;
636                 struct ieee80211_power_rule *power_rule = NULL;
637
638                 /*
639                  * Must parse if dot11RegulatoryClassesRequired is true,
640                  * we don't support this yet
641                  */
642                 if (triplet->ext.reg_extension_id >=
643                                 IEEE80211_COUNTRY_EXTENSION_ID) {
644                         country_ie += 3;
645                         country_ie_len -= 3;
646                         continue;
647                 }
648
649                 reg_rule = &rd->reg_rules[i];
650                 freq_range = &reg_rule->freq_range;
651                 power_rule = &reg_rule->power_rule;
652
653                 reg_rule->flags = flags;
654
655                 /* 2 GHz */
656                 if (triplet->chans.first_channel <= 14)
657                         end_channel = triplet->chans.first_channel +
658                                 triplet->chans.num_channels;
659                 else
660                         end_channel =  triplet->chans.first_channel +
661                                 (4 * (triplet->chans.num_channels - 1));
662
663                 /*
664                  * The +10 is since the regulatory domain expects
665                  * the actual band edge, not the center of freq for
666                  * its start and end freqs, assuming 20 MHz bandwidth on
667                  * the channels passed
668                  */
669                 freq_range->start_freq_khz =
670                         MHZ_TO_KHZ(ieee80211_channel_to_frequency(
671                                 triplet->chans.first_channel) - 10);
672                 freq_range->end_freq_khz =
673                         MHZ_TO_KHZ(ieee80211_channel_to_frequency(
674                                 end_channel) + 10);
675
676                 /*
677                  * These are large arbitrary values we use to intersect later.
678                  * Increment this if we ever support >= 40 MHz channels
679                  * in IEEE 802.11
680                  */
681                 freq_range->max_bandwidth_khz = MHZ_TO_KHZ(40);
682                 power_rule->max_antenna_gain = DBI_TO_MBI(100);
683                 power_rule->max_eirp = DBM_TO_MBM(100);
684
685                 country_ie += 3;
686                 country_ie_len -= 3;
687                 i++;
688
689                 BUG_ON(i > NL80211_MAX_SUPP_REG_RULES);
690         }
691
692         return rd;
693 }
694
695
696 /*
697  * Helper for regdom_intersect(), this does the real
698  * mathematical intersection fun
699  */
700 static int reg_rules_intersect(
701         const struct ieee80211_reg_rule *rule1,
702         const struct ieee80211_reg_rule *rule2,
703         struct ieee80211_reg_rule *intersected_rule)
704 {
705         const struct ieee80211_freq_range *freq_range1, *freq_range2;
706         struct ieee80211_freq_range *freq_range;
707         const struct ieee80211_power_rule *power_rule1, *power_rule2;
708         struct ieee80211_power_rule *power_rule;
709         u32 freq_diff;
710
711         freq_range1 = &rule1->freq_range;
712         freq_range2 = &rule2->freq_range;
713         freq_range = &intersected_rule->freq_range;
714
715         power_rule1 = &rule1->power_rule;
716         power_rule2 = &rule2->power_rule;
717         power_rule = &intersected_rule->power_rule;
718
719         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
720                 freq_range2->start_freq_khz);
721         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
722                 freq_range2->end_freq_khz);
723         freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
724                 freq_range2->max_bandwidth_khz);
725
726         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
727         if (freq_range->max_bandwidth_khz > freq_diff)
728                 freq_range->max_bandwidth_khz = freq_diff;
729
730         power_rule->max_eirp = min(power_rule1->max_eirp,
731                 power_rule2->max_eirp);
732         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
733                 power_rule2->max_antenna_gain);
734
735         intersected_rule->flags = (rule1->flags | rule2->flags);
736
737         if (!is_valid_reg_rule(intersected_rule))
738                 return -EINVAL;
739
740         return 0;
741 }
742
743 /**
744  * regdom_intersect - do the intersection between two regulatory domains
745  * @rd1: first regulatory domain
746  * @rd2: second regulatory domain
747  *
748  * Use this function to get the intersection between two regulatory domains.
749  * Once completed we will mark the alpha2 for the rd as intersected, "98",
750  * as no one single alpha2 can represent this regulatory domain.
751  *
752  * Returns a pointer to the regulatory domain structure which will hold the
753  * resulting intersection of rules between rd1 and rd2. We will
754  * kzalloc() this structure for you.
755  */
756 static struct ieee80211_regdomain *regdom_intersect(
757         const struct ieee80211_regdomain *rd1,
758         const struct ieee80211_regdomain *rd2)
759 {
760         int r, size_of_regd;
761         unsigned int x, y;
762         unsigned int num_rules = 0, rule_idx = 0;
763         const struct ieee80211_reg_rule *rule1, *rule2;
764         struct ieee80211_reg_rule *intersected_rule;
765         struct ieee80211_regdomain *rd;
766         /* This is just a dummy holder to help us count */
767         struct ieee80211_reg_rule irule;
768
769         /* Uses the stack temporarily for counter arithmetic */
770         intersected_rule = &irule;
771
772         memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
773
774         if (!rd1 || !rd2)
775                 return NULL;
776
777         /*
778          * First we get a count of the rules we'll need, then we actually
779          * build them. This is to so we can malloc() and free() a
780          * regdomain once. The reason we use reg_rules_intersect() here
781          * is it will return -EINVAL if the rule computed makes no sense.
782          * All rules that do check out OK are valid.
783          */
784
785         for (x = 0; x < rd1->n_reg_rules; x++) {
786                 rule1 = &rd1->reg_rules[x];
787                 for (y = 0; y < rd2->n_reg_rules; y++) {
788                         rule2 = &rd2->reg_rules[y];
789                         if (!reg_rules_intersect(rule1, rule2,
790                                         intersected_rule))
791                                 num_rules++;
792                         memset(intersected_rule, 0,
793                                         sizeof(struct ieee80211_reg_rule));
794                 }
795         }
796
797         if (!num_rules)
798                 return NULL;
799
800         size_of_regd = sizeof(struct ieee80211_regdomain) +
801                 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
802
803         rd = kzalloc(size_of_regd, GFP_KERNEL);
804         if (!rd)
805                 return NULL;
806
807         for (x = 0; x < rd1->n_reg_rules; x++) {
808                 rule1 = &rd1->reg_rules[x];
809                 for (y = 0; y < rd2->n_reg_rules; y++) {
810                         rule2 = &rd2->reg_rules[y];
811                         /*
812                          * This time around instead of using the stack lets
813                          * write to the target rule directly saving ourselves
814                          * a memcpy()
815                          */
816                         intersected_rule = &rd->reg_rules[rule_idx];
817                         r = reg_rules_intersect(rule1, rule2,
818                                 intersected_rule);
819                         /*
820                          * No need to memset here the intersected rule here as
821                          * we're not using the stack anymore
822                          */
823                         if (r)
824                                 continue;
825                         rule_idx++;
826                 }
827         }
828
829         if (rule_idx != num_rules) {
830                 kfree(rd);
831                 return NULL;
832         }
833
834         rd->n_reg_rules = num_rules;
835         rd->alpha2[0] = '9';
836         rd->alpha2[1] = '8';
837
838         return rd;
839 }
840
841 /*
842  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
843  * want to just have the channel structure use these
844  */
845 static u32 map_regdom_flags(u32 rd_flags)
846 {
847         u32 channel_flags = 0;
848         if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
849                 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
850         if (rd_flags & NL80211_RRF_NO_IBSS)
851                 channel_flags |= IEEE80211_CHAN_NO_IBSS;
852         if (rd_flags & NL80211_RRF_DFS)
853                 channel_flags |= IEEE80211_CHAN_RADAR;
854         return channel_flags;
855 }
856
857 static int freq_reg_info_regd(struct wiphy *wiphy,
858                               u32 center_freq,
859                               u32 desired_bw_khz,
860                               const struct ieee80211_reg_rule **reg_rule,
861                               const struct ieee80211_regdomain *custom_regd)
862 {
863         int i;
864         bool band_rule_found = false;
865         const struct ieee80211_regdomain *regd;
866         bool bw_fits = false;
867
868         if (!desired_bw_khz)
869                 desired_bw_khz = MHZ_TO_KHZ(20);
870
871         regd = custom_regd ? custom_regd : cfg80211_regdomain;
872
873         /*
874          * Follow the driver's regulatory domain, if present, unless a country
875          * IE has been processed or a user wants to help complaince further
876          */
877         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
878             last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
879             wiphy->regd)
880                 regd = wiphy->regd;
881
882         if (!regd)
883                 return -EINVAL;
884
885         for (i = 0; i < regd->n_reg_rules; i++) {
886                 const struct ieee80211_reg_rule *rr;
887                 const struct ieee80211_freq_range *fr = NULL;
888                 const struct ieee80211_power_rule *pr = NULL;
889
890                 rr = &regd->reg_rules[i];
891                 fr = &rr->freq_range;
892                 pr = &rr->power_rule;
893
894                 /*
895                  * We only need to know if one frequency rule was
896                  * was in center_freq's band, that's enough, so lets
897                  * not overwrite it once found
898                  */
899                 if (!band_rule_found)
900                         band_rule_found = freq_in_rule_band(fr, center_freq);
901
902                 bw_fits = reg_does_bw_fit(fr,
903                                           center_freq,
904                                           desired_bw_khz);
905
906                 if (band_rule_found && bw_fits) {
907                         *reg_rule = rr;
908                         return 0;
909                 }
910         }
911
912         if (!band_rule_found)
913                 return -ERANGE;
914
915         return -EINVAL;
916 }
917 EXPORT_SYMBOL(freq_reg_info);
918
919 int freq_reg_info(struct wiphy *wiphy,
920                   u32 center_freq,
921                   u32 desired_bw_khz,
922                   const struct ieee80211_reg_rule **reg_rule)
923 {
924         assert_cfg80211_lock();
925         return freq_reg_info_regd(wiphy,
926                                   center_freq,
927                                   desired_bw_khz,
928                                   reg_rule,
929                                   NULL);
930 }
931
932 /*
933  * Note that right now we assume the desired channel bandwidth
934  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
935  * per channel, the primary and the extension channel). To support
936  * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
937  * new ieee80211_channel.target_bw and re run the regulatory check
938  * on the wiphy with the target_bw specified. Then we can simply use
939  * that below for the desired_bw_khz below.
940  */
941 static void handle_channel(struct wiphy *wiphy, enum ieee80211_band band,
942                            unsigned int chan_idx)
943 {
944         int r;
945         u32 flags, bw_flags = 0;
946         u32 desired_bw_khz = MHZ_TO_KHZ(20);
947         const struct ieee80211_reg_rule *reg_rule = NULL;
948         const struct ieee80211_power_rule *power_rule = NULL;
949         const struct ieee80211_freq_range *freq_range = NULL;
950         struct ieee80211_supported_band *sband;
951         struct ieee80211_channel *chan;
952         struct wiphy *request_wiphy = NULL;
953
954         assert_cfg80211_lock();
955
956         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
957
958         sband = wiphy->bands[band];
959         BUG_ON(chan_idx >= sband->n_channels);
960         chan = &sband->channels[chan_idx];
961
962         flags = chan->orig_flags;
963
964         r = freq_reg_info(wiphy,
965                           MHZ_TO_KHZ(chan->center_freq),
966                           desired_bw_khz,
967                           &reg_rule);
968
969         if (r) {
970                 /*
971                  * This means no regulatory rule was found in the country IE
972                  * with a frequency range on the center_freq's band, since
973                  * IEEE-802.11 allows for a country IE to have a subset of the
974                  * regulatory information provided in a country we ignore
975                  * disabling the channel unless at least one reg rule was
976                  * found on the center_freq's band. For details see this
977                  * clarification:
978                  *
979                  * http://tinyurl.com/11d-clarification
980                  */
981                 if (r == -ERANGE &&
982                     last_request->initiator ==
983                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
984                         REG_DBG_PRINT("cfg80211: Leaving channel %d MHz "
985                                 "intact on %s - no rule found in band on "
986                                 "Country IE\n",
987                         chan->center_freq, wiphy_name(wiphy));
988                 } else {
989                 /*
990                  * In this case we know the country IE has at least one reg rule
991                  * for the band so we respect its band definitions
992                  */
993                         if (last_request->initiator ==
994                             NL80211_REGDOM_SET_BY_COUNTRY_IE)
995                                 REG_DBG_PRINT("cfg80211: Disabling "
996                                         "channel %d MHz on %s due to "
997                                         "Country IE\n",
998                                         chan->center_freq, wiphy_name(wiphy));
999                         flags |= IEEE80211_CHAN_DISABLED;
1000                         chan->flags = flags;
1001                 }
1002                 return;
1003         }
1004
1005         power_rule = &reg_rule->power_rule;
1006         freq_range = &reg_rule->freq_range;
1007
1008         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1009                 bw_flags = IEEE80211_CHAN_NO_HT40;
1010
1011         if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1012             request_wiphy && request_wiphy == wiphy &&
1013             request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
1014                 /*
1015                  * This gaurantees the driver's requested regulatory domain
1016                  * will always be used as a base for further regulatory
1017                  * settings
1018                  */
1019                 chan->flags = chan->orig_flags =
1020                         map_regdom_flags(reg_rule->flags) | bw_flags;
1021                 chan->max_antenna_gain = chan->orig_mag =
1022                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1023                 chan->max_power = chan->orig_mpwr =
1024                         (int) MBM_TO_DBM(power_rule->max_eirp);
1025                 return;
1026         }
1027
1028         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1029         chan->max_antenna_gain = min(chan->orig_mag,
1030                 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
1031         if (chan->orig_mpwr)
1032                 chan->max_power = min(chan->orig_mpwr,
1033                         (int) MBM_TO_DBM(power_rule->max_eirp));
1034         else
1035                 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1036 }
1037
1038 static void handle_band(struct wiphy *wiphy, enum ieee80211_band band)
1039 {
1040         unsigned int i;
1041         struct ieee80211_supported_band *sband;
1042
1043         BUG_ON(!wiphy->bands[band]);
1044         sband = wiphy->bands[band];
1045
1046         for (i = 0; i < sband->n_channels; i++)
1047                 handle_channel(wiphy, band, i);
1048 }
1049
1050 static bool ignore_reg_update(struct wiphy *wiphy,
1051                               enum nl80211_reg_initiator initiator)
1052 {
1053         if (!last_request)
1054                 return true;
1055         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1056             wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1057                 return true;
1058         /*
1059          * wiphy->regd will be set once the device has its own
1060          * desired regulatory domain set
1061          */
1062         if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
1063             !is_world_regdom(last_request->alpha2))
1064                 return true;
1065         return false;
1066 }
1067
1068 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1069 {
1070         struct cfg80211_registered_device *rdev;
1071
1072         list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1073                 wiphy_update_regulatory(&rdev->wiphy, initiator);
1074 }
1075
1076 static void handle_reg_beacon(struct wiphy *wiphy,
1077                               unsigned int chan_idx,
1078                               struct reg_beacon *reg_beacon)
1079 {
1080         struct ieee80211_supported_band *sband;
1081         struct ieee80211_channel *chan;
1082         bool channel_changed = false;
1083         struct ieee80211_channel chan_before;
1084
1085         assert_cfg80211_lock();
1086
1087         sband = wiphy->bands[reg_beacon->chan.band];
1088         chan = &sband->channels[chan_idx];
1089
1090         if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1091                 return;
1092
1093         if (chan->beacon_found)
1094                 return;
1095
1096         chan->beacon_found = true;
1097
1098         if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
1099                 return;
1100
1101         chan_before.center_freq = chan->center_freq;
1102         chan_before.flags = chan->flags;
1103
1104         if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
1105                 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
1106                 channel_changed = true;
1107         }
1108
1109         if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
1110                 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
1111                 channel_changed = true;
1112         }
1113
1114         if (channel_changed)
1115                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1116 }
1117
1118 /*
1119  * Called when a scan on a wiphy finds a beacon on
1120  * new channel
1121  */
1122 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1123                                     struct reg_beacon *reg_beacon)
1124 {
1125         unsigned int i;
1126         struct ieee80211_supported_band *sband;
1127
1128         assert_cfg80211_lock();
1129
1130         if (!wiphy->bands[reg_beacon->chan.band])
1131                 return;
1132
1133         sband = wiphy->bands[reg_beacon->chan.band];
1134
1135         for (i = 0; i < sband->n_channels; i++)
1136                 handle_reg_beacon(wiphy, i, reg_beacon);
1137 }
1138
1139 /*
1140  * Called upon reg changes or a new wiphy is added
1141  */
1142 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1143 {
1144         unsigned int i;
1145         struct ieee80211_supported_band *sband;
1146         struct reg_beacon *reg_beacon;
1147
1148         assert_cfg80211_lock();
1149
1150         if (list_empty(&reg_beacon_list))
1151                 return;
1152
1153         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1154                 if (!wiphy->bands[reg_beacon->chan.band])
1155                         continue;
1156                 sband = wiphy->bands[reg_beacon->chan.band];
1157                 for (i = 0; i < sband->n_channels; i++)
1158                         handle_reg_beacon(wiphy, i, reg_beacon);
1159         }
1160 }
1161
1162 static bool reg_is_world_roaming(struct wiphy *wiphy)
1163 {
1164         if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1165             (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1166                 return true;
1167         if (last_request &&
1168             last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1169             wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1170                 return true;
1171         return false;
1172 }
1173
1174 /* Reap the advantages of previously found beacons */
1175 static void reg_process_beacons(struct wiphy *wiphy)
1176 {
1177         /*
1178          * Means we are just firing up cfg80211, so no beacons would
1179          * have been processed yet.
1180          */
1181         if (!last_request)
1182                 return;
1183         if (!reg_is_world_roaming(wiphy))
1184                 return;
1185         wiphy_update_beacon_reg(wiphy);
1186 }
1187
1188 static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
1189 {
1190         if (!chan)
1191                 return true;
1192         if (chan->flags & IEEE80211_CHAN_DISABLED)
1193                 return true;
1194         /* This would happen when regulatory rules disallow HT40 completely */
1195         if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
1196                 return true;
1197         return false;
1198 }
1199
1200 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1201                                          enum ieee80211_band band,
1202                                          unsigned int chan_idx)
1203 {
1204         struct ieee80211_supported_band *sband;
1205         struct ieee80211_channel *channel;
1206         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1207         unsigned int i;
1208
1209         assert_cfg80211_lock();
1210
1211         sband = wiphy->bands[band];
1212         BUG_ON(chan_idx >= sband->n_channels);
1213         channel = &sband->channels[chan_idx];
1214
1215         if (is_ht40_not_allowed(channel)) {
1216                 channel->flags |= IEEE80211_CHAN_NO_HT40;
1217                 return;
1218         }
1219
1220         /*
1221          * We need to ensure the extension channels exist to
1222          * be able to use HT40- or HT40+, this finds them (or not)
1223          */
1224         for (i = 0; i < sband->n_channels; i++) {
1225                 struct ieee80211_channel *c = &sband->channels[i];
1226                 if (c->center_freq == (channel->center_freq - 20))
1227                         channel_before = c;
1228                 if (c->center_freq == (channel->center_freq + 20))
1229                         channel_after = c;
1230         }
1231
1232         /*
1233          * Please note that this assumes target bandwidth is 20 MHz,
1234          * if that ever changes we also need to change the below logic
1235          * to include that as well.
1236          */
1237         if (is_ht40_not_allowed(channel_before))
1238                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1239         else
1240                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1241
1242         if (is_ht40_not_allowed(channel_after))
1243                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1244         else
1245                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1246 }
1247
1248 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1249                                       enum ieee80211_band band)
1250 {
1251         unsigned int i;
1252         struct ieee80211_supported_band *sband;
1253
1254         BUG_ON(!wiphy->bands[band]);
1255         sband = wiphy->bands[band];
1256
1257         for (i = 0; i < sband->n_channels; i++)
1258                 reg_process_ht_flags_channel(wiphy, band, i);
1259 }
1260
1261 static void reg_process_ht_flags(struct wiphy *wiphy)
1262 {
1263         enum ieee80211_band band;
1264
1265         if (!wiphy)
1266                 return;
1267
1268         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1269                 if (wiphy->bands[band])
1270                         reg_process_ht_flags_band(wiphy, band);
1271         }
1272
1273 }
1274
1275 void wiphy_update_regulatory(struct wiphy *wiphy,
1276                              enum nl80211_reg_initiator initiator)
1277 {
1278         enum ieee80211_band band;
1279
1280         if (ignore_reg_update(wiphy, initiator))
1281                 goto out;
1282         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1283                 if (wiphy->bands[band])
1284                         handle_band(wiphy, band);
1285         }
1286 out:
1287         reg_process_beacons(wiphy);
1288         reg_process_ht_flags(wiphy);
1289         if (wiphy->reg_notifier)
1290                 wiphy->reg_notifier(wiphy, last_request);
1291 }
1292
1293 static void handle_channel_custom(struct wiphy *wiphy,
1294                                   enum ieee80211_band band,
1295                                   unsigned int chan_idx,
1296                                   const struct ieee80211_regdomain *regd)
1297 {
1298         int r;
1299         u32 desired_bw_khz = MHZ_TO_KHZ(20);
1300         u32 bw_flags = 0;
1301         const struct ieee80211_reg_rule *reg_rule = NULL;
1302         const struct ieee80211_power_rule *power_rule = NULL;
1303         const struct ieee80211_freq_range *freq_range = NULL;
1304         struct ieee80211_supported_band *sband;
1305         struct ieee80211_channel *chan;
1306
1307         assert_reg_lock();
1308
1309         sband = wiphy->bands[band];
1310         BUG_ON(chan_idx >= sband->n_channels);
1311         chan = &sband->channels[chan_idx];
1312
1313         r = freq_reg_info_regd(wiphy,
1314                                MHZ_TO_KHZ(chan->center_freq),
1315                                desired_bw_khz,
1316                                &reg_rule,
1317                                regd);
1318
1319         if (r) {
1320                 chan->flags = IEEE80211_CHAN_DISABLED;
1321                 return;
1322         }
1323
1324         power_rule = &reg_rule->power_rule;
1325         freq_range = &reg_rule->freq_range;
1326
1327         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1328                 bw_flags = IEEE80211_CHAN_NO_HT40;
1329
1330         chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1331         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1332         chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1333 }
1334
1335 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1336                                const struct ieee80211_regdomain *regd)
1337 {
1338         unsigned int i;
1339         struct ieee80211_supported_band *sband;
1340
1341         BUG_ON(!wiphy->bands[band]);
1342         sband = wiphy->bands[band];
1343
1344         for (i = 0; i < sband->n_channels; i++)
1345                 handle_channel_custom(wiphy, band, i, regd);
1346 }
1347
1348 /* Used by drivers prior to wiphy registration */
1349 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1350                                    const struct ieee80211_regdomain *regd)
1351 {
1352         enum ieee80211_band band;
1353         unsigned int bands_set = 0;
1354
1355         mutex_lock(&reg_mutex);
1356         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1357                 if (!wiphy->bands[band])
1358                         continue;
1359                 handle_band_custom(wiphy, band, regd);
1360                 bands_set++;
1361         }
1362         mutex_unlock(&reg_mutex);
1363
1364         /*
1365          * no point in calling this if it won't have any effect
1366          * on your device's supportd bands.
1367          */
1368         WARN_ON(!bands_set);
1369 }
1370 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1371
1372 /*
1373  * Return value which can be used by ignore_request() to indicate
1374  * it has been determined we should intersect two regulatory domains
1375  */
1376 #define REG_INTERSECT   1
1377
1378 /* This has the logic which determines when a new request
1379  * should be ignored. */
1380 static int ignore_request(struct wiphy *wiphy,
1381                           struct regulatory_request *pending_request)
1382 {
1383         struct wiphy *last_wiphy = NULL;
1384
1385         assert_cfg80211_lock();
1386
1387         /* All initial requests are respected */
1388         if (!last_request)
1389                 return 0;
1390
1391         switch (pending_request->initiator) {
1392         case NL80211_REGDOM_SET_BY_CORE:
1393                 return -EINVAL;
1394         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1395
1396                 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1397
1398                 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1399                         return -EINVAL;
1400                 if (last_request->initiator ==
1401                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1402                         if (last_wiphy != wiphy) {
1403                                 /*
1404                                  * Two cards with two APs claiming different
1405                                  * Country IE alpha2s. We could
1406                                  * intersect them, but that seems unlikely
1407                                  * to be correct. Reject second one for now.
1408                                  */
1409                                 if (regdom_changes(pending_request->alpha2))
1410                                         return -EOPNOTSUPP;
1411                                 return -EALREADY;
1412                         }
1413                         /*
1414                          * Two consecutive Country IE hints on the same wiphy.
1415                          * This should be picked up early by the driver/stack
1416                          */
1417                         if (WARN_ON(regdom_changes(pending_request->alpha2)))
1418                                 return 0;
1419                         return -EALREADY;
1420                 }
1421                 return REG_INTERSECT;
1422         case NL80211_REGDOM_SET_BY_DRIVER:
1423                 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1424                         if (regdom_changes(pending_request->alpha2))
1425                                 return 0;
1426                         return -EALREADY;
1427                 }
1428
1429                 /*
1430                  * This would happen if you unplug and plug your card
1431                  * back in or if you add a new device for which the previously
1432                  * loaded card also agrees on the regulatory domain.
1433                  */
1434                 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1435                     !regdom_changes(pending_request->alpha2))
1436                         return -EALREADY;
1437
1438                 return REG_INTERSECT;
1439         case NL80211_REGDOM_SET_BY_USER:
1440                 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1441                         return REG_INTERSECT;
1442                 /*
1443                  * If the user knows better the user should set the regdom
1444                  * to their country before the IE is picked up
1445                  */
1446                 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1447                           last_request->intersect)
1448                         return -EOPNOTSUPP;
1449                 /*
1450                  * Process user requests only after previous user/driver/core
1451                  * requests have been processed
1452                  */
1453                 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1454                     last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1455                     last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1456                         if (regdom_changes(last_request->alpha2))
1457                                 return -EAGAIN;
1458                 }
1459
1460                 if (!regdom_changes(pending_request->alpha2))
1461                         return -EALREADY;
1462
1463                 return 0;
1464         }
1465
1466         return -EINVAL;
1467 }
1468
1469 /**
1470  * __regulatory_hint - hint to the wireless core a regulatory domain
1471  * @wiphy: if the hint comes from country information from an AP, this
1472  *      is required to be set to the wiphy that received the information
1473  * @pending_request: the regulatory request currently being processed
1474  *
1475  * The Wireless subsystem can use this function to hint to the wireless core
1476  * what it believes should be the current regulatory domain.
1477  *
1478  * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1479  * already been set or other standard error codes.
1480  *
1481  * Caller must hold &cfg80211_mutex and &reg_mutex
1482  */
1483 static int __regulatory_hint(struct wiphy *wiphy,
1484                              struct regulatory_request *pending_request)
1485 {
1486         bool intersect = false;
1487         int r = 0;
1488
1489         assert_cfg80211_lock();
1490
1491         r = ignore_request(wiphy, pending_request);
1492
1493         if (r == REG_INTERSECT) {
1494                 if (pending_request->initiator ==
1495                     NL80211_REGDOM_SET_BY_DRIVER) {
1496                         r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1497                         if (r) {
1498                                 kfree(pending_request);
1499                                 return r;
1500                         }
1501                 }
1502                 intersect = true;
1503         } else if (r) {
1504                 /*
1505                  * If the regulatory domain being requested by the
1506                  * driver has already been set just copy it to the
1507                  * wiphy
1508                  */
1509                 if (r == -EALREADY &&
1510                     pending_request->initiator ==
1511                     NL80211_REGDOM_SET_BY_DRIVER) {
1512                         r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1513                         if (r) {
1514                                 kfree(pending_request);
1515                                 return r;
1516                         }
1517                         r = -EALREADY;
1518                         goto new_request;
1519                 }
1520                 kfree(pending_request);
1521                 return r;
1522         }
1523
1524 new_request:
1525         kfree(last_request);
1526
1527         last_request = pending_request;
1528         last_request->intersect = intersect;
1529
1530         pending_request = NULL;
1531
1532         /* When r == REG_INTERSECT we do need to call CRDA */
1533         if (r < 0) {
1534                 /*
1535                  * Since CRDA will not be called in this case as we already
1536                  * have applied the requested regulatory domain before we just
1537                  * inform userspace we have processed the request
1538                  */
1539                 if (r == -EALREADY)
1540                         nl80211_send_reg_change_event(last_request);
1541                 return r;
1542         }
1543
1544         return call_crda(last_request->alpha2);
1545 }
1546
1547 /* This processes *all* regulatory hints */
1548 static void reg_process_hint(struct regulatory_request *reg_request)
1549 {
1550         int r = 0;
1551         struct wiphy *wiphy = NULL;
1552
1553         BUG_ON(!reg_request->alpha2);
1554
1555         mutex_lock(&cfg80211_mutex);
1556         mutex_lock(&reg_mutex);
1557
1558         if (wiphy_idx_valid(reg_request->wiphy_idx))
1559                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1560
1561         if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1562             !wiphy) {
1563                 kfree(reg_request);
1564                 goto out;
1565         }
1566
1567         r = __regulatory_hint(wiphy, reg_request);
1568         /* This is required so that the orig_* parameters are saved */
1569         if (r == -EALREADY && wiphy &&
1570             wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
1571                 wiphy_update_regulatory(wiphy, reg_request->initiator);
1572 out:
1573         mutex_unlock(&reg_mutex);
1574         mutex_unlock(&cfg80211_mutex);
1575 }
1576
1577 /* Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* */
1578 static void reg_process_pending_hints(void)
1579         {
1580         struct regulatory_request *reg_request;
1581
1582         spin_lock(&reg_requests_lock);
1583         while (!list_empty(&reg_requests_list)) {
1584                 reg_request = list_first_entry(&reg_requests_list,
1585                                                struct regulatory_request,
1586                                                list);
1587                 list_del_init(&reg_request->list);
1588
1589                 spin_unlock(&reg_requests_lock);
1590                 reg_process_hint(reg_request);
1591                 spin_lock(&reg_requests_lock);
1592         }
1593         spin_unlock(&reg_requests_lock);
1594 }
1595
1596 /* Processes beacon hints -- this has nothing to do with country IEs */
1597 static void reg_process_pending_beacon_hints(void)
1598 {
1599         struct cfg80211_registered_device *rdev;
1600         struct reg_beacon *pending_beacon, *tmp;
1601
1602         /*
1603          * No need to hold the reg_mutex here as we just touch wiphys
1604          * and do not read or access regulatory variables.
1605          */
1606         mutex_lock(&cfg80211_mutex);
1607
1608         /* This goes through the _pending_ beacon list */
1609         spin_lock_bh(&reg_pending_beacons_lock);
1610
1611         if (list_empty(&reg_pending_beacons)) {
1612                 spin_unlock_bh(&reg_pending_beacons_lock);
1613                 goto out;
1614         }
1615
1616         list_for_each_entry_safe(pending_beacon, tmp,
1617                                  &reg_pending_beacons, list) {
1618
1619                 list_del_init(&pending_beacon->list);
1620
1621                 /* Applies the beacon hint to current wiphys */
1622                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1623                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1624
1625                 /* Remembers the beacon hint for new wiphys or reg changes */
1626                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1627         }
1628
1629         spin_unlock_bh(&reg_pending_beacons_lock);
1630 out:
1631         mutex_unlock(&cfg80211_mutex);
1632 }
1633
1634 static void reg_todo(struct work_struct *work)
1635 {
1636         reg_process_pending_hints();
1637         reg_process_pending_beacon_hints();
1638 }
1639
1640 static DECLARE_WORK(reg_work, reg_todo);
1641
1642 static void queue_regulatory_request(struct regulatory_request *request)
1643 {
1644         spin_lock(&reg_requests_lock);
1645         list_add_tail(&request->list, &reg_requests_list);
1646         spin_unlock(&reg_requests_lock);
1647
1648         schedule_work(&reg_work);
1649 }
1650
1651 /* Core regulatory hint -- happens once during cfg80211_init() */
1652 static int regulatory_hint_core(const char *alpha2)
1653 {
1654         struct regulatory_request *request;
1655
1656         BUG_ON(last_request);
1657
1658         request = kzalloc(sizeof(struct regulatory_request),
1659                           GFP_KERNEL);
1660         if (!request)
1661                 return -ENOMEM;
1662
1663         request->alpha2[0] = alpha2[0];
1664         request->alpha2[1] = alpha2[1];
1665         request->initiator = NL80211_REGDOM_SET_BY_CORE;
1666
1667         queue_regulatory_request(request);
1668
1669         /*
1670          * This ensures last_request is populated once modules
1671          * come swinging in and calling regulatory hints and
1672          * wiphy_apply_custom_regulatory().
1673          */
1674         flush_scheduled_work();
1675
1676         return 0;
1677 }
1678
1679 /* User hints */
1680 int regulatory_hint_user(const char *alpha2)
1681 {
1682         struct regulatory_request *request;
1683
1684         BUG_ON(!alpha2);
1685
1686         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1687         if (!request)
1688                 return -ENOMEM;
1689
1690         request->wiphy_idx = WIPHY_IDX_STALE;
1691         request->alpha2[0] = alpha2[0];
1692         request->alpha2[1] = alpha2[1];
1693         request->initiator = NL80211_REGDOM_SET_BY_USER;
1694
1695         queue_regulatory_request(request);
1696
1697         return 0;
1698 }
1699
1700 /* Driver hints */
1701 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1702 {
1703         struct regulatory_request *request;
1704
1705         BUG_ON(!alpha2);
1706         BUG_ON(!wiphy);
1707
1708         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1709         if (!request)
1710                 return -ENOMEM;
1711
1712         request->wiphy_idx = get_wiphy_idx(wiphy);
1713
1714         /* Must have registered wiphy first */
1715         BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1716
1717         request->alpha2[0] = alpha2[0];
1718         request->alpha2[1] = alpha2[1];
1719         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1720
1721         queue_regulatory_request(request);
1722
1723         return 0;
1724 }
1725 EXPORT_SYMBOL(regulatory_hint);
1726
1727 /* Caller must hold reg_mutex */
1728 static bool reg_same_country_ie_hint(struct wiphy *wiphy,
1729                         u32 country_ie_checksum)
1730 {
1731         struct wiphy *request_wiphy;
1732
1733         assert_reg_lock();
1734
1735         if (unlikely(last_request->initiator !=
1736             NL80211_REGDOM_SET_BY_COUNTRY_IE))
1737                 return false;
1738
1739         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1740
1741         if (!request_wiphy)
1742                 return false;
1743
1744         if (likely(request_wiphy != wiphy))
1745                 return !country_ie_integrity_changes(country_ie_checksum);
1746         /*
1747          * We should not have let these through at this point, they
1748          * should have been picked up earlier by the first alpha2 check
1749          * on the device
1750          */
1751         if (WARN_ON(!country_ie_integrity_changes(country_ie_checksum)))
1752                 return true;
1753         return false;
1754 }
1755
1756 /*
1757  * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1758  * therefore cannot iterate over the rdev list here.
1759  */
1760 void regulatory_hint_11d(struct wiphy *wiphy,
1761                         u8 *country_ie,
1762                         u8 country_ie_len)
1763 {
1764         struct ieee80211_regdomain *rd = NULL;
1765         char alpha2[2];
1766         u32 checksum = 0;
1767         enum environment_cap env = ENVIRON_ANY;
1768         struct regulatory_request *request;
1769
1770         mutex_lock(&reg_mutex);
1771
1772         if (unlikely(!last_request))
1773                 goto out;
1774
1775         /* IE len must be evenly divisible by 2 */
1776         if (country_ie_len & 0x01)
1777                 goto out;
1778
1779         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1780                 goto out;
1781
1782         /*
1783          * Pending country IE processing, this can happen after we
1784          * call CRDA and wait for a response if a beacon was received before
1785          * we were able to process the last regulatory_hint_11d() call
1786          */
1787         if (country_ie_regdomain)
1788                 goto out;
1789
1790         alpha2[0] = country_ie[0];
1791         alpha2[1] = country_ie[1];
1792
1793         if (country_ie[2] == 'I')
1794                 env = ENVIRON_INDOOR;
1795         else if (country_ie[2] == 'O')
1796                 env = ENVIRON_OUTDOOR;
1797
1798         /*
1799          * We will run this only upon a successful connection on cfg80211.
1800          * We leave conflict resolution to the workqueue, where can hold
1801          * cfg80211_mutex.
1802          */
1803         if (likely(last_request->initiator ==
1804             NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1805             wiphy_idx_valid(last_request->wiphy_idx)))
1806                 goto out;
1807
1808         rd = country_ie_2_rd(country_ie, country_ie_len, &checksum);
1809         if (!rd) {
1810                 REG_DBG_PRINT("cfg80211: Ignoring bogus country IE\n");
1811                 goto out;
1812         }
1813
1814         /*
1815          * This will not happen right now but we leave it here for the
1816          * the future when we want to add suspend/resume support and having
1817          * the user move to another country after doing so, or having the user
1818          * move to another AP. Right now we just trust the first AP.
1819          *
1820          * If we hit this before we add this support we want to be informed of
1821          * it as it would indicate a mistake in the current design
1822          */
1823         if (WARN_ON(reg_same_country_ie_hint(wiphy, checksum)))
1824                 goto free_rd_out;
1825
1826         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1827         if (!request)
1828                 goto free_rd_out;
1829
1830         /*
1831          * We keep this around for when CRDA comes back with a response so
1832          * we can intersect with that
1833          */
1834         country_ie_regdomain = rd;
1835
1836         request->wiphy_idx = get_wiphy_idx(wiphy);
1837         request->alpha2[0] = rd->alpha2[0];
1838         request->alpha2[1] = rd->alpha2[1];
1839         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1840         request->country_ie_checksum = checksum;
1841         request->country_ie_env = env;
1842
1843         mutex_unlock(&reg_mutex);
1844
1845         queue_regulatory_request(request);
1846
1847         return;
1848
1849 free_rd_out:
1850         kfree(rd);
1851 out:
1852         mutex_unlock(&reg_mutex);
1853 }
1854
1855 static bool freq_is_chan_12_13_14(u16 freq)
1856 {
1857         if (freq == ieee80211_channel_to_frequency(12) ||
1858             freq == ieee80211_channel_to_frequency(13) ||
1859             freq == ieee80211_channel_to_frequency(14))
1860                 return true;
1861         return false;
1862 }
1863
1864 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1865                                  struct ieee80211_channel *beacon_chan,
1866                                  gfp_t gfp)
1867 {
1868         struct reg_beacon *reg_beacon;
1869
1870         if (likely((beacon_chan->beacon_found ||
1871             (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
1872             (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1873              !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
1874                 return 0;
1875
1876         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1877         if (!reg_beacon)
1878                 return -ENOMEM;
1879
1880         REG_DBG_PRINT("cfg80211: Found new beacon on "
1881                       "frequency: %d MHz (Ch %d) on %s\n",
1882                       beacon_chan->center_freq,
1883                       ieee80211_frequency_to_channel(beacon_chan->center_freq),
1884                       wiphy_name(wiphy));
1885
1886         memcpy(&reg_beacon->chan, beacon_chan,
1887                 sizeof(struct ieee80211_channel));
1888
1889
1890         /*
1891          * Since we can be called from BH or and non-BH context
1892          * we must use spin_lock_bh()
1893          */
1894         spin_lock_bh(&reg_pending_beacons_lock);
1895         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1896         spin_unlock_bh(&reg_pending_beacons_lock);
1897
1898         schedule_work(&reg_work);
1899
1900         return 0;
1901 }
1902
1903 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1904 {
1905         unsigned int i;
1906         const struct ieee80211_reg_rule *reg_rule = NULL;
1907         const struct ieee80211_freq_range *freq_range = NULL;
1908         const struct ieee80211_power_rule *power_rule = NULL;
1909
1910         printk(KERN_INFO "    (start_freq - end_freq @ bandwidth), "
1911                 "(max_antenna_gain, max_eirp)\n");
1912
1913         for (i = 0; i < rd->n_reg_rules; i++) {
1914                 reg_rule = &rd->reg_rules[i];
1915                 freq_range = &reg_rule->freq_range;
1916                 power_rule = &reg_rule->power_rule;
1917
1918                 /*
1919                  * There may not be documentation for max antenna gain
1920                  * in certain regions
1921                  */
1922                 if (power_rule->max_antenna_gain)
1923                         printk(KERN_INFO "    (%d KHz - %d KHz @ %d KHz), "
1924                                 "(%d mBi, %d mBm)\n",
1925                                 freq_range->start_freq_khz,
1926                                 freq_range->end_freq_khz,
1927                                 freq_range->max_bandwidth_khz,
1928                                 power_rule->max_antenna_gain,
1929                                 power_rule->max_eirp);
1930                 else
1931                         printk(KERN_INFO "    (%d KHz - %d KHz @ %d KHz), "
1932                                 "(N/A, %d mBm)\n",
1933                                 freq_range->start_freq_khz,
1934                                 freq_range->end_freq_khz,
1935                                 freq_range->max_bandwidth_khz,
1936                                 power_rule->max_eirp);
1937         }
1938 }
1939
1940 static void print_regdomain(const struct ieee80211_regdomain *rd)
1941 {
1942
1943         if (is_intersected_alpha2(rd->alpha2)) {
1944
1945                 if (last_request->initiator ==
1946                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1947                         struct cfg80211_registered_device *rdev;
1948                         rdev = cfg80211_rdev_by_wiphy_idx(
1949                                 last_request->wiphy_idx);
1950                         if (rdev) {
1951                                 printk(KERN_INFO "cfg80211: Current regulatory "
1952                                         "domain updated by AP to: %c%c\n",
1953                                         rdev->country_ie_alpha2[0],
1954                                         rdev->country_ie_alpha2[1]);
1955                         } else
1956                                 printk(KERN_INFO "cfg80211: Current regulatory "
1957                                         "domain intersected: \n");
1958                 } else
1959                                 printk(KERN_INFO "cfg80211: Current regulatory "
1960                                         "domain intersected: \n");
1961         } else if (is_world_regdom(rd->alpha2))
1962                 printk(KERN_INFO "cfg80211: World regulatory "
1963                         "domain updated:\n");
1964         else {
1965                 if (is_unknown_alpha2(rd->alpha2))
1966                         printk(KERN_INFO "cfg80211: Regulatory domain "
1967                                 "changed to driver built-in settings "
1968                                 "(unknown country)\n");
1969                 else
1970                         printk(KERN_INFO "cfg80211: Regulatory domain "
1971                                 "changed to country: %c%c\n",
1972                                 rd->alpha2[0], rd->alpha2[1]);
1973         }
1974         print_rd_rules(rd);
1975 }
1976
1977 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
1978 {
1979         printk(KERN_INFO "cfg80211: Regulatory domain: %c%c\n",
1980                 rd->alpha2[0], rd->alpha2[1]);
1981         print_rd_rules(rd);
1982 }
1983
1984 #ifdef CONFIG_CFG80211_REG_DEBUG
1985 static void reg_country_ie_process_debug(
1986         const struct ieee80211_regdomain *rd,
1987         const struct ieee80211_regdomain *country_ie_regdomain,
1988         const struct ieee80211_regdomain *intersected_rd)
1989 {
1990         printk(KERN_DEBUG "cfg80211: Received country IE:\n");
1991         print_regdomain_info(country_ie_regdomain);
1992         printk(KERN_DEBUG "cfg80211: CRDA thinks this should applied:\n");
1993         print_regdomain_info(rd);
1994         if (intersected_rd) {
1995                 printk(KERN_DEBUG "cfg80211: We intersect both of these "
1996                         "and get:\n");
1997                 print_regdomain_info(intersected_rd);
1998                 return;
1999         }
2000         printk(KERN_DEBUG "cfg80211: Intersection between both failed\n");
2001 }
2002 #else
2003 static inline void reg_country_ie_process_debug(
2004         const struct ieee80211_regdomain *rd,
2005         const struct ieee80211_regdomain *country_ie_regdomain,
2006         const struct ieee80211_regdomain *intersected_rd)
2007 {
2008 }
2009 #endif
2010
2011 /* Takes ownership of rd only if it doesn't fail */
2012 static int __set_regdom(const struct ieee80211_regdomain *rd)
2013 {
2014         const struct ieee80211_regdomain *intersected_rd = NULL;
2015         struct cfg80211_registered_device *rdev = NULL;
2016         struct wiphy *request_wiphy;
2017         /* Some basic sanity checks first */
2018
2019         if (is_world_regdom(rd->alpha2)) {
2020                 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2021                         return -EINVAL;
2022                 update_world_regdomain(rd);
2023                 return 0;
2024         }
2025
2026         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2027                         !is_unknown_alpha2(rd->alpha2))
2028                 return -EINVAL;
2029
2030         if (!last_request)
2031                 return -EINVAL;
2032
2033         /*
2034          * Lets only bother proceeding on the same alpha2 if the current
2035          * rd is non static (it means CRDA was present and was used last)
2036          * and the pending request came in from a country IE
2037          */
2038         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2039                 /*
2040                  * If someone else asked us to change the rd lets only bother
2041                  * checking if the alpha2 changes if CRDA was already called
2042                  */
2043                 if (!regdom_changes(rd->alpha2))
2044                         return -EINVAL;
2045         }
2046
2047         /*
2048          * Now lets set the regulatory domain, update all driver channels
2049          * and finally inform them of what we have done, in case they want
2050          * to review or adjust their own settings based on their own
2051          * internal EEPROM data
2052          */
2053
2054         if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2055                 return -EINVAL;
2056
2057         if (!is_valid_rd(rd)) {
2058                 printk(KERN_ERR "cfg80211: Invalid "
2059                         "regulatory domain detected:\n");
2060                 print_regdomain_info(rd);
2061                 return -EINVAL;
2062         }
2063
2064         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2065
2066         if (!last_request->intersect) {
2067                 int r;
2068
2069                 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2070                         reset_regdomains();
2071                         cfg80211_regdomain = rd;
2072                         return 0;
2073                 }
2074
2075                 /*
2076                  * For a driver hint, lets copy the regulatory domain the
2077                  * driver wanted to the wiphy to deal with conflicts
2078                  */
2079
2080                 /*
2081                  * Userspace could have sent two replies with only
2082                  * one kernel request.
2083                  */
2084                 if (request_wiphy->regd)
2085                         return -EALREADY;
2086
2087                 r = reg_copy_regd(&request_wiphy->regd, rd);
2088                 if (r)
2089                         return r;
2090
2091                 reset_regdomains();
2092                 cfg80211_regdomain = rd;
2093                 return 0;
2094         }
2095
2096         /* Intersection requires a bit more work */
2097
2098         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2099
2100                 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2101                 if (!intersected_rd)
2102                         return -EINVAL;
2103
2104                 /*
2105                  * We can trash what CRDA provided now.
2106                  * However if a driver requested this specific regulatory
2107                  * domain we keep it for its private use
2108                  */
2109                 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2110                         request_wiphy->regd = rd;
2111                 else
2112                         kfree(rd);
2113
2114                 rd = NULL;
2115
2116                 reset_regdomains();
2117                 cfg80211_regdomain = intersected_rd;
2118
2119                 return 0;
2120         }
2121
2122         /*
2123          * Country IE requests are handled a bit differently, we intersect
2124          * the country IE rd with what CRDA believes that country should have
2125          */
2126
2127         /*
2128          * Userspace could have sent two replies with only
2129          * one kernel request. By the second reply we would have
2130          * already processed and consumed the country_ie_regdomain.
2131          */
2132         if (!country_ie_regdomain)
2133                 return -EALREADY;
2134         BUG_ON(rd == country_ie_regdomain);
2135
2136         /*
2137          * Intersect what CRDA returned and our what we
2138          * had built from the Country IE received
2139          */
2140
2141         intersected_rd = regdom_intersect(rd, country_ie_regdomain);
2142
2143         reg_country_ie_process_debug(rd,
2144                                      country_ie_regdomain,
2145                                      intersected_rd);
2146
2147         kfree(country_ie_regdomain);
2148         country_ie_regdomain = NULL;
2149
2150         if (!intersected_rd)
2151                 return -EINVAL;
2152
2153         rdev = wiphy_to_dev(request_wiphy);
2154
2155         rdev->country_ie_alpha2[0] = rd->alpha2[0];
2156         rdev->country_ie_alpha2[1] = rd->alpha2[1];
2157         rdev->env = last_request->country_ie_env;
2158
2159         BUG_ON(intersected_rd == rd);
2160
2161         kfree(rd);
2162         rd = NULL;
2163
2164         reset_regdomains();
2165         cfg80211_regdomain = intersected_rd;
2166
2167         return 0;
2168 }
2169
2170
2171 /*
2172  * Use this call to set the current regulatory domain. Conflicts with
2173  * multiple drivers can be ironed out later. Caller must've already
2174  * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2175  */
2176 int set_regdom(const struct ieee80211_regdomain *rd)
2177 {
2178         int r;
2179
2180         assert_cfg80211_lock();
2181
2182         mutex_lock(&reg_mutex);
2183
2184         /* Note that this doesn't update the wiphys, this is done below */
2185         r = __set_regdom(rd);
2186         if (r) {
2187                 kfree(rd);
2188                 mutex_unlock(&reg_mutex);
2189                 return r;
2190         }
2191
2192         /* This would make this whole thing pointless */
2193         if (!last_request->intersect)
2194                 BUG_ON(rd != cfg80211_regdomain);
2195
2196         /* update all wiphys now with the new established regulatory domain */
2197         update_all_wiphy_regulatory(last_request->initiator);
2198
2199         print_regdomain(cfg80211_regdomain);
2200
2201         nl80211_send_reg_change_event(last_request);
2202
2203         mutex_unlock(&reg_mutex);
2204
2205         return r;
2206 }
2207
2208 /* Caller must hold cfg80211_mutex */
2209 void reg_device_remove(struct wiphy *wiphy)
2210 {
2211         struct wiphy *request_wiphy = NULL;
2212
2213         assert_cfg80211_lock();
2214
2215         mutex_lock(&reg_mutex);
2216
2217         kfree(wiphy->regd);
2218
2219         if (last_request)
2220                 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2221
2222         if (!request_wiphy || request_wiphy != wiphy)
2223                 goto out;
2224
2225         last_request->wiphy_idx = WIPHY_IDX_STALE;
2226         last_request->country_ie_env = ENVIRON_ANY;
2227 out:
2228         mutex_unlock(&reg_mutex);
2229 }
2230
2231 int regulatory_init(void)
2232 {
2233         int err = 0;
2234
2235         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2236         if (IS_ERR(reg_pdev))
2237                 return PTR_ERR(reg_pdev);
2238
2239         spin_lock_init(&reg_requests_lock);
2240         spin_lock_init(&reg_pending_beacons_lock);
2241
2242         cfg80211_regdomain = cfg80211_world_regdom;
2243
2244         /* We always try to get an update for the static regdomain */
2245         err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2246         if (err) {
2247                 if (err == -ENOMEM)
2248                         return err;
2249                 /*
2250                  * N.B. kobject_uevent_env() can fail mainly for when we're out
2251                  * memory which is handled and propagated appropriately above
2252                  * but it can also fail during a netlink_broadcast() or during
2253                  * early boot for call_usermodehelper(). For now treat these
2254                  * errors as non-fatal.
2255                  */
2256                 printk(KERN_ERR "cfg80211: kobject_uevent_env() was unable "
2257                         "to call CRDA during init");
2258 #ifdef CONFIG_CFG80211_REG_DEBUG
2259                 /* We want to find out exactly why when debugging */
2260                 WARN_ON(err);
2261 #endif
2262         }
2263
2264         /*
2265          * Finally, if the user set the module parameter treat it
2266          * as a user hint.
2267          */
2268         if (!is_world_regdom(ieee80211_regdom))
2269                 regulatory_hint_user(ieee80211_regdom);
2270
2271         return 0;
2272 }
2273
2274 void regulatory_exit(void)
2275 {
2276         struct regulatory_request *reg_request, *tmp;
2277         struct reg_beacon *reg_beacon, *btmp;
2278
2279         cancel_work_sync(&reg_work);
2280
2281         mutex_lock(&cfg80211_mutex);
2282         mutex_lock(&reg_mutex);
2283
2284         reset_regdomains();
2285
2286         kfree(country_ie_regdomain);
2287         country_ie_regdomain = NULL;
2288
2289         kfree(last_request);
2290
2291         platform_device_unregister(reg_pdev);
2292
2293         spin_lock_bh(&reg_pending_beacons_lock);
2294         if (!list_empty(&reg_pending_beacons)) {
2295                 list_for_each_entry_safe(reg_beacon, btmp,
2296                                          &reg_pending_beacons, list) {
2297                         list_del(&reg_beacon->list);
2298                         kfree(reg_beacon);
2299                 }
2300         }
2301         spin_unlock_bh(&reg_pending_beacons_lock);
2302
2303         if (!list_empty(&reg_beacon_list)) {
2304                 list_for_each_entry_safe(reg_beacon, btmp,
2305                                          &reg_beacon_list, list) {
2306                         list_del(&reg_beacon->list);
2307                         kfree(reg_beacon);
2308                 }
2309         }
2310
2311         spin_lock(&reg_requests_lock);
2312         if (!list_empty(&reg_requests_list)) {
2313                 list_for_each_entry_safe(reg_request, tmp,
2314                                          &reg_requests_list, list) {
2315                         list_del(&reg_request->list);
2316                         kfree(reg_request);
2317                 }
2318         }
2319         spin_unlock(&reg_requests_lock);
2320
2321         mutex_unlock(&reg_mutex);
2322         mutex_unlock(&cfg80211_mutex);
2323 }