cfg80211/mac80211: use lockdep_assert_held
[linux-2.6.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008       Luis R. Rodriguez <lrodriguz@atheros.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11
12 /**
13  * DOC: Wireless regulatory infrastructure
14  *
15  * The usual implementation is for a driver to read a device EEPROM to
16  * determine which regulatory domain it should be operating under, then
17  * looking up the allowable channels in a driver-local table and finally
18  * registering those channels in the wiphy structure.
19  *
20  * Another set of compliance enforcement is for drivers to use their
21  * own compliance limits which can be stored on the EEPROM. The host
22  * driver or firmware may ensure these are used.
23  *
24  * In addition to all this we provide an extra layer of regulatory
25  * conformance. For drivers which do not have any regulatory
26  * information CRDA provides the complete regulatory solution.
27  * For others it provides a community effort on further restrictions
28  * to enhance compliance.
29  *
30  * Note: When number of rules --> infinity we will not be able to
31  * index on alpha2 any more, instead we'll probably have to
32  * rely on some SHA1 checksum of the regdomain for example.
33  *
34  */
35 #include <linux/kernel.h>
36 #include <linux/slab.h>
37 #include <linux/list.h>
38 #include <linux/random.h>
39 #include <linux/ctype.h>
40 #include <linux/nl80211.h>
41 #include <linux/platform_device.h>
42 #include <net/cfg80211.h>
43 #include "core.h"
44 #include "reg.h"
45 #include "regdb.h"
46 #include "nl80211.h"
47
48 #ifdef CONFIG_CFG80211_REG_DEBUG
49 #define REG_DBG_PRINT(format, args...) \
50         do { \
51                 printk(KERN_DEBUG format , ## args); \
52         } while (0)
53 #else
54 #define REG_DBG_PRINT(args...)
55 #endif
56
57 /* Receipt of information from last regulatory request */
58 static struct regulatory_request *last_request;
59
60 /* To trigger userspace events */
61 static struct platform_device *reg_pdev;
62
63 /*
64  * Central wireless core regulatory domains, we only need two,
65  * the current one and a world regulatory domain in case we have no
66  * information to give us an alpha2
67  */
68 const struct ieee80211_regdomain *cfg80211_regdomain;
69
70 /*
71  * Protects static reg.c components:
72  *     - cfg80211_world_regdom
73  *     - cfg80211_regdom
74  *     - last_request
75  */
76 static DEFINE_MUTEX(reg_mutex);
77
78 static inline void assert_reg_lock(void)
79 {
80         lockdep_assert_held(&reg_mutex);
81 }
82
83 /* Used to queue up regulatory hints */
84 static LIST_HEAD(reg_requests_list);
85 static spinlock_t reg_requests_lock;
86
87 /* Used to queue up beacon hints for review */
88 static LIST_HEAD(reg_pending_beacons);
89 static spinlock_t reg_pending_beacons_lock;
90
91 /* Used to keep track of processed beacon hints */
92 static LIST_HEAD(reg_beacon_list);
93
94 struct reg_beacon {
95         struct list_head list;
96         struct ieee80211_channel chan;
97 };
98
99 /* We keep a static world regulatory domain in case of the absence of CRDA */
100 static const struct ieee80211_regdomain world_regdom = {
101         .n_reg_rules = 5,
102         .alpha2 =  "00",
103         .reg_rules = {
104                 /* IEEE 802.11b/g, channels 1..11 */
105                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
106                 /* IEEE 802.11b/g, channels 12..13. No HT40
107                  * channel fits here. */
108                 REG_RULE(2467-10, 2472+10, 20, 6, 20,
109                         NL80211_RRF_PASSIVE_SCAN |
110                         NL80211_RRF_NO_IBSS),
111                 /* IEEE 802.11 channel 14 - Only JP enables
112                  * this and for 802.11b only */
113                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
114                         NL80211_RRF_PASSIVE_SCAN |
115                         NL80211_RRF_NO_IBSS |
116                         NL80211_RRF_NO_OFDM),
117                 /* IEEE 802.11a, channel 36..48 */
118                 REG_RULE(5180-10, 5240+10, 40, 6, 20,
119                         NL80211_RRF_PASSIVE_SCAN |
120                         NL80211_RRF_NO_IBSS),
121
122                 /* NB: 5260 MHz - 5700 MHz requies DFS */
123
124                 /* IEEE 802.11a, channel 149..165 */
125                 REG_RULE(5745-10, 5825+10, 40, 6, 20,
126                         NL80211_RRF_PASSIVE_SCAN |
127                         NL80211_RRF_NO_IBSS),
128         }
129 };
130
131 static const struct ieee80211_regdomain *cfg80211_world_regdom =
132         &world_regdom;
133
134 static char *ieee80211_regdom = "00";
135 static char user_alpha2[2];
136
137 module_param(ieee80211_regdom, charp, 0444);
138 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
139
140 static void reset_regdomains(void)
141 {
142         /* avoid freeing static information or freeing something twice */
143         if (cfg80211_regdomain == cfg80211_world_regdom)
144                 cfg80211_regdomain = NULL;
145         if (cfg80211_world_regdom == &world_regdom)
146                 cfg80211_world_regdom = NULL;
147         if (cfg80211_regdomain == &world_regdom)
148                 cfg80211_regdomain = NULL;
149
150         kfree(cfg80211_regdomain);
151         kfree(cfg80211_world_regdom);
152
153         cfg80211_world_regdom = &world_regdom;
154         cfg80211_regdomain = NULL;
155 }
156
157 /*
158  * Dynamic world regulatory domain requested by the wireless
159  * core upon initialization
160  */
161 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
162 {
163         BUG_ON(!last_request);
164
165         reset_regdomains();
166
167         cfg80211_world_regdom = rd;
168         cfg80211_regdomain = rd;
169 }
170
171 bool is_world_regdom(const char *alpha2)
172 {
173         if (!alpha2)
174                 return false;
175         if (alpha2[0] == '0' && alpha2[1] == '0')
176                 return true;
177         return false;
178 }
179
180 static bool is_alpha2_set(const char *alpha2)
181 {
182         if (!alpha2)
183                 return false;
184         if (alpha2[0] != 0 && alpha2[1] != 0)
185                 return true;
186         return false;
187 }
188
189 static bool is_unknown_alpha2(const char *alpha2)
190 {
191         if (!alpha2)
192                 return false;
193         /*
194          * Special case where regulatory domain was built by driver
195          * but a specific alpha2 cannot be determined
196          */
197         if (alpha2[0] == '9' && alpha2[1] == '9')
198                 return true;
199         return false;
200 }
201
202 static bool is_intersected_alpha2(const char *alpha2)
203 {
204         if (!alpha2)
205                 return false;
206         /*
207          * Special case where regulatory domain is the
208          * result of an intersection between two regulatory domain
209          * structures
210          */
211         if (alpha2[0] == '9' && alpha2[1] == '8')
212                 return true;
213         return false;
214 }
215
216 static bool is_an_alpha2(const char *alpha2)
217 {
218         if (!alpha2)
219                 return false;
220         if (isalpha(alpha2[0]) && isalpha(alpha2[1]))
221                 return true;
222         return false;
223 }
224
225 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
226 {
227         if (!alpha2_x || !alpha2_y)
228                 return false;
229         if (alpha2_x[0] == alpha2_y[0] &&
230                 alpha2_x[1] == alpha2_y[1])
231                 return true;
232         return false;
233 }
234
235 static bool regdom_changes(const char *alpha2)
236 {
237         assert_cfg80211_lock();
238
239         if (!cfg80211_regdomain)
240                 return true;
241         if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
242                 return false;
243         return true;
244 }
245
246 /*
247  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
248  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
249  * has ever been issued.
250  */
251 static bool is_user_regdom_saved(void)
252 {
253         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
254                 return false;
255
256         /* This would indicate a mistake on the design */
257         if (WARN((!is_world_regdom(user_alpha2) &&
258                   !is_an_alpha2(user_alpha2)),
259                  "Unexpected user alpha2: %c%c\n",
260                  user_alpha2[0],
261                  user_alpha2[1]))
262                 return false;
263
264         return true;
265 }
266
267 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
268                          const struct ieee80211_regdomain *src_regd)
269 {
270         struct ieee80211_regdomain *regd;
271         int size_of_regd = 0;
272         unsigned int i;
273
274         size_of_regd = sizeof(struct ieee80211_regdomain) +
275           ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
276
277         regd = kzalloc(size_of_regd, GFP_KERNEL);
278         if (!regd)
279                 return -ENOMEM;
280
281         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
282
283         for (i = 0; i < src_regd->n_reg_rules; i++)
284                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
285                         sizeof(struct ieee80211_reg_rule));
286
287         *dst_regd = regd;
288         return 0;
289 }
290
291 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
292 struct reg_regdb_search_request {
293         char alpha2[2];
294         struct list_head list;
295 };
296
297 static LIST_HEAD(reg_regdb_search_list);
298 static DEFINE_MUTEX(reg_regdb_search_mutex);
299
300 static void reg_regdb_search(struct work_struct *work)
301 {
302         struct reg_regdb_search_request *request;
303         const struct ieee80211_regdomain *curdom, *regdom;
304         int i, r;
305
306         mutex_lock(&reg_regdb_search_mutex);
307         while (!list_empty(&reg_regdb_search_list)) {
308                 request = list_first_entry(&reg_regdb_search_list,
309                                            struct reg_regdb_search_request,
310                                            list);
311                 list_del(&request->list);
312
313                 for (i=0; i<reg_regdb_size; i++) {
314                         curdom = reg_regdb[i];
315
316                         if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
317                                 r = reg_copy_regd(&regdom, curdom);
318                                 if (r)
319                                         break;
320                                 mutex_lock(&cfg80211_mutex);
321                                 set_regdom(regdom);
322                                 mutex_unlock(&cfg80211_mutex);
323                                 break;
324                         }
325                 }
326
327                 kfree(request);
328         }
329         mutex_unlock(&reg_regdb_search_mutex);
330 }
331
332 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
333
334 static void reg_regdb_query(const char *alpha2)
335 {
336         struct reg_regdb_search_request *request;
337
338         if (!alpha2)
339                 return;
340
341         request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
342         if (!request)
343                 return;
344
345         memcpy(request->alpha2, alpha2, 2);
346
347         mutex_lock(&reg_regdb_search_mutex);
348         list_add_tail(&request->list, &reg_regdb_search_list);
349         mutex_unlock(&reg_regdb_search_mutex);
350
351         schedule_work(&reg_regdb_work);
352 }
353 #else
354 static inline void reg_regdb_query(const char *alpha2) {}
355 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
356
357 /*
358  * This lets us keep regulatory code which is updated on a regulatory
359  * basis in userspace.
360  */
361 static int call_crda(const char *alpha2)
362 {
363         char country_env[9 + 2] = "COUNTRY=";
364         char *envp[] = {
365                 country_env,
366                 NULL
367         };
368
369         if (!is_world_regdom((char *) alpha2))
370                 printk(KERN_INFO "cfg80211: Calling CRDA for country: %c%c\n",
371                         alpha2[0], alpha2[1]);
372         else
373                 printk(KERN_INFO "cfg80211: Calling CRDA to update world "
374                         "regulatory domain\n");
375
376         /* query internal regulatory database (if it exists) */
377         reg_regdb_query(alpha2);
378
379         country_env[8] = alpha2[0];
380         country_env[9] = alpha2[1];
381
382         return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, envp);
383 }
384
385 /* Used by nl80211 before kmalloc'ing our regulatory domain */
386 bool reg_is_valid_request(const char *alpha2)
387 {
388         assert_cfg80211_lock();
389
390         if (!last_request)
391                 return false;
392
393         return alpha2_equal(last_request->alpha2, alpha2);
394 }
395
396 /* Sanity check on a regulatory rule */
397 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
398 {
399         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
400         u32 freq_diff;
401
402         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
403                 return false;
404
405         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
406                 return false;
407
408         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
409
410         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
411                         freq_range->max_bandwidth_khz > freq_diff)
412                 return false;
413
414         return true;
415 }
416
417 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
418 {
419         const struct ieee80211_reg_rule *reg_rule = NULL;
420         unsigned int i;
421
422         if (!rd->n_reg_rules)
423                 return false;
424
425         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
426                 return false;
427
428         for (i = 0; i < rd->n_reg_rules; i++) {
429                 reg_rule = &rd->reg_rules[i];
430                 if (!is_valid_reg_rule(reg_rule))
431                         return false;
432         }
433
434         return true;
435 }
436
437 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
438                             u32 center_freq_khz,
439                             u32 bw_khz)
440 {
441         u32 start_freq_khz, end_freq_khz;
442
443         start_freq_khz = center_freq_khz - (bw_khz/2);
444         end_freq_khz = center_freq_khz + (bw_khz/2);
445
446         if (start_freq_khz >= freq_range->start_freq_khz &&
447             end_freq_khz <= freq_range->end_freq_khz)
448                 return true;
449
450         return false;
451 }
452
453 /**
454  * freq_in_rule_band - tells us if a frequency is in a frequency band
455  * @freq_range: frequency rule we want to query
456  * @freq_khz: frequency we are inquiring about
457  *
458  * This lets us know if a specific frequency rule is or is not relevant to
459  * a specific frequency's band. Bands are device specific and artificial
460  * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
461  * safe for now to assume that a frequency rule should not be part of a
462  * frequency's band if the start freq or end freq are off by more than 2 GHz.
463  * This resolution can be lowered and should be considered as we add
464  * regulatory rule support for other "bands".
465  **/
466 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
467         u32 freq_khz)
468 {
469 #define ONE_GHZ_IN_KHZ  1000000
470         if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
471                 return true;
472         if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
473                 return true;
474         return false;
475 #undef ONE_GHZ_IN_KHZ
476 }
477
478 /*
479  * Helper for regdom_intersect(), this does the real
480  * mathematical intersection fun
481  */
482 static int reg_rules_intersect(
483         const struct ieee80211_reg_rule *rule1,
484         const struct ieee80211_reg_rule *rule2,
485         struct ieee80211_reg_rule *intersected_rule)
486 {
487         const struct ieee80211_freq_range *freq_range1, *freq_range2;
488         struct ieee80211_freq_range *freq_range;
489         const struct ieee80211_power_rule *power_rule1, *power_rule2;
490         struct ieee80211_power_rule *power_rule;
491         u32 freq_diff;
492
493         freq_range1 = &rule1->freq_range;
494         freq_range2 = &rule2->freq_range;
495         freq_range = &intersected_rule->freq_range;
496
497         power_rule1 = &rule1->power_rule;
498         power_rule2 = &rule2->power_rule;
499         power_rule = &intersected_rule->power_rule;
500
501         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
502                 freq_range2->start_freq_khz);
503         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
504                 freq_range2->end_freq_khz);
505         freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
506                 freq_range2->max_bandwidth_khz);
507
508         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
509         if (freq_range->max_bandwidth_khz > freq_diff)
510                 freq_range->max_bandwidth_khz = freq_diff;
511
512         power_rule->max_eirp = min(power_rule1->max_eirp,
513                 power_rule2->max_eirp);
514         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
515                 power_rule2->max_antenna_gain);
516
517         intersected_rule->flags = (rule1->flags | rule2->flags);
518
519         if (!is_valid_reg_rule(intersected_rule))
520                 return -EINVAL;
521
522         return 0;
523 }
524
525 /**
526  * regdom_intersect - do the intersection between two regulatory domains
527  * @rd1: first regulatory domain
528  * @rd2: second regulatory domain
529  *
530  * Use this function to get the intersection between two regulatory domains.
531  * Once completed we will mark the alpha2 for the rd as intersected, "98",
532  * as no one single alpha2 can represent this regulatory domain.
533  *
534  * Returns a pointer to the regulatory domain structure which will hold the
535  * resulting intersection of rules between rd1 and rd2. We will
536  * kzalloc() this structure for you.
537  */
538 static struct ieee80211_regdomain *regdom_intersect(
539         const struct ieee80211_regdomain *rd1,
540         const struct ieee80211_regdomain *rd2)
541 {
542         int r, size_of_regd;
543         unsigned int x, y;
544         unsigned int num_rules = 0, rule_idx = 0;
545         const struct ieee80211_reg_rule *rule1, *rule2;
546         struct ieee80211_reg_rule *intersected_rule;
547         struct ieee80211_regdomain *rd;
548         /* This is just a dummy holder to help us count */
549         struct ieee80211_reg_rule irule;
550
551         /* Uses the stack temporarily for counter arithmetic */
552         intersected_rule = &irule;
553
554         memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
555
556         if (!rd1 || !rd2)
557                 return NULL;
558
559         /*
560          * First we get a count of the rules we'll need, then we actually
561          * build them. This is to so we can malloc() and free() a
562          * regdomain once. The reason we use reg_rules_intersect() here
563          * is it will return -EINVAL if the rule computed makes no sense.
564          * All rules that do check out OK are valid.
565          */
566
567         for (x = 0; x < rd1->n_reg_rules; x++) {
568                 rule1 = &rd1->reg_rules[x];
569                 for (y = 0; y < rd2->n_reg_rules; y++) {
570                         rule2 = &rd2->reg_rules[y];
571                         if (!reg_rules_intersect(rule1, rule2,
572                                         intersected_rule))
573                                 num_rules++;
574                         memset(intersected_rule, 0,
575                                         sizeof(struct ieee80211_reg_rule));
576                 }
577         }
578
579         if (!num_rules)
580                 return NULL;
581
582         size_of_regd = sizeof(struct ieee80211_regdomain) +
583                 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
584
585         rd = kzalloc(size_of_regd, GFP_KERNEL);
586         if (!rd)
587                 return NULL;
588
589         for (x = 0; x < rd1->n_reg_rules; x++) {
590                 rule1 = &rd1->reg_rules[x];
591                 for (y = 0; y < rd2->n_reg_rules; y++) {
592                         rule2 = &rd2->reg_rules[y];
593                         /*
594                          * This time around instead of using the stack lets
595                          * write to the target rule directly saving ourselves
596                          * a memcpy()
597                          */
598                         intersected_rule = &rd->reg_rules[rule_idx];
599                         r = reg_rules_intersect(rule1, rule2,
600                                 intersected_rule);
601                         /*
602                          * No need to memset here the intersected rule here as
603                          * we're not using the stack anymore
604                          */
605                         if (r)
606                                 continue;
607                         rule_idx++;
608                 }
609         }
610
611         if (rule_idx != num_rules) {
612                 kfree(rd);
613                 return NULL;
614         }
615
616         rd->n_reg_rules = num_rules;
617         rd->alpha2[0] = '9';
618         rd->alpha2[1] = '8';
619
620         return rd;
621 }
622
623 /*
624  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
625  * want to just have the channel structure use these
626  */
627 static u32 map_regdom_flags(u32 rd_flags)
628 {
629         u32 channel_flags = 0;
630         if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
631                 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
632         if (rd_flags & NL80211_RRF_NO_IBSS)
633                 channel_flags |= IEEE80211_CHAN_NO_IBSS;
634         if (rd_flags & NL80211_RRF_DFS)
635                 channel_flags |= IEEE80211_CHAN_RADAR;
636         return channel_flags;
637 }
638
639 static int freq_reg_info_regd(struct wiphy *wiphy,
640                               u32 center_freq,
641                               u32 desired_bw_khz,
642                               const struct ieee80211_reg_rule **reg_rule,
643                               const struct ieee80211_regdomain *custom_regd)
644 {
645         int i;
646         bool band_rule_found = false;
647         const struct ieee80211_regdomain *regd;
648         bool bw_fits = false;
649
650         if (!desired_bw_khz)
651                 desired_bw_khz = MHZ_TO_KHZ(20);
652
653         regd = custom_regd ? custom_regd : cfg80211_regdomain;
654
655         /*
656          * Follow the driver's regulatory domain, if present, unless a country
657          * IE has been processed or a user wants to help complaince further
658          */
659         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
660             last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
661             wiphy->regd)
662                 regd = wiphy->regd;
663
664         if (!regd)
665                 return -EINVAL;
666
667         for (i = 0; i < regd->n_reg_rules; i++) {
668                 const struct ieee80211_reg_rule *rr;
669                 const struct ieee80211_freq_range *fr = NULL;
670                 const struct ieee80211_power_rule *pr = NULL;
671
672                 rr = &regd->reg_rules[i];
673                 fr = &rr->freq_range;
674                 pr = &rr->power_rule;
675
676                 /*
677                  * We only need to know if one frequency rule was
678                  * was in center_freq's band, that's enough, so lets
679                  * not overwrite it once found
680                  */
681                 if (!band_rule_found)
682                         band_rule_found = freq_in_rule_band(fr, center_freq);
683
684                 bw_fits = reg_does_bw_fit(fr,
685                                           center_freq,
686                                           desired_bw_khz);
687
688                 if (band_rule_found && bw_fits) {
689                         *reg_rule = rr;
690                         return 0;
691                 }
692         }
693
694         if (!band_rule_found)
695                 return -ERANGE;
696
697         return -EINVAL;
698 }
699
700 int freq_reg_info(struct wiphy *wiphy,
701                   u32 center_freq,
702                   u32 desired_bw_khz,
703                   const struct ieee80211_reg_rule **reg_rule)
704 {
705         assert_cfg80211_lock();
706         return freq_reg_info_regd(wiphy,
707                                   center_freq,
708                                   desired_bw_khz,
709                                   reg_rule,
710                                   NULL);
711 }
712 EXPORT_SYMBOL(freq_reg_info);
713
714 /*
715  * Note that right now we assume the desired channel bandwidth
716  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
717  * per channel, the primary and the extension channel). To support
718  * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
719  * new ieee80211_channel.target_bw and re run the regulatory check
720  * on the wiphy with the target_bw specified. Then we can simply use
721  * that below for the desired_bw_khz below.
722  */
723 static void handle_channel(struct wiphy *wiphy, enum ieee80211_band band,
724                            unsigned int chan_idx)
725 {
726         int r;
727         u32 flags, bw_flags = 0;
728         u32 desired_bw_khz = MHZ_TO_KHZ(20);
729         const struct ieee80211_reg_rule *reg_rule = NULL;
730         const struct ieee80211_power_rule *power_rule = NULL;
731         const struct ieee80211_freq_range *freq_range = NULL;
732         struct ieee80211_supported_band *sband;
733         struct ieee80211_channel *chan;
734         struct wiphy *request_wiphy = NULL;
735
736         assert_cfg80211_lock();
737
738         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
739
740         sband = wiphy->bands[band];
741         BUG_ON(chan_idx >= sband->n_channels);
742         chan = &sband->channels[chan_idx];
743
744         flags = chan->orig_flags;
745
746         r = freq_reg_info(wiphy,
747                           MHZ_TO_KHZ(chan->center_freq),
748                           desired_bw_khz,
749                           &reg_rule);
750
751         if (r)
752                 return;
753
754         power_rule = &reg_rule->power_rule;
755         freq_range = &reg_rule->freq_range;
756
757         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
758                 bw_flags = IEEE80211_CHAN_NO_HT40;
759
760         if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
761             request_wiphy && request_wiphy == wiphy &&
762             request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
763                 /*
764                  * This gaurantees the driver's requested regulatory domain
765                  * will always be used as a base for further regulatory
766                  * settings
767                  */
768                 chan->flags = chan->orig_flags =
769                         map_regdom_flags(reg_rule->flags) | bw_flags;
770                 chan->max_antenna_gain = chan->orig_mag =
771                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
772                 chan->max_power = chan->orig_mpwr =
773                         (int) MBM_TO_DBM(power_rule->max_eirp);
774                 return;
775         }
776
777         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
778         chan->max_antenna_gain = min(chan->orig_mag,
779                 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
780         if (chan->orig_mpwr)
781                 chan->max_power = min(chan->orig_mpwr,
782                         (int) MBM_TO_DBM(power_rule->max_eirp));
783         else
784                 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
785 }
786
787 static void handle_band(struct wiphy *wiphy, enum ieee80211_band band)
788 {
789         unsigned int i;
790         struct ieee80211_supported_band *sband;
791
792         BUG_ON(!wiphy->bands[band]);
793         sband = wiphy->bands[band];
794
795         for (i = 0; i < sband->n_channels; i++)
796                 handle_channel(wiphy, band, i);
797 }
798
799 static bool ignore_reg_update(struct wiphy *wiphy,
800                               enum nl80211_reg_initiator initiator)
801 {
802         if (!last_request)
803                 return true;
804         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
805             wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
806                 return true;
807         /*
808          * wiphy->regd will be set once the device has its own
809          * desired regulatory domain set
810          */
811         if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
812             !is_world_regdom(last_request->alpha2))
813                 return true;
814         return false;
815 }
816
817 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
818 {
819         struct cfg80211_registered_device *rdev;
820
821         list_for_each_entry(rdev, &cfg80211_rdev_list, list)
822                 wiphy_update_regulatory(&rdev->wiphy, initiator);
823 }
824
825 static void handle_reg_beacon(struct wiphy *wiphy,
826                               unsigned int chan_idx,
827                               struct reg_beacon *reg_beacon)
828 {
829         struct ieee80211_supported_band *sband;
830         struct ieee80211_channel *chan;
831         bool channel_changed = false;
832         struct ieee80211_channel chan_before;
833
834         assert_cfg80211_lock();
835
836         sband = wiphy->bands[reg_beacon->chan.band];
837         chan = &sband->channels[chan_idx];
838
839         if (likely(chan->center_freq != reg_beacon->chan.center_freq))
840                 return;
841
842         if (chan->beacon_found)
843                 return;
844
845         chan->beacon_found = true;
846
847         if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
848                 return;
849
850         chan_before.center_freq = chan->center_freq;
851         chan_before.flags = chan->flags;
852
853         if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
854                 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
855                 channel_changed = true;
856         }
857
858         if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
859                 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
860                 channel_changed = true;
861         }
862
863         if (channel_changed)
864                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
865 }
866
867 /*
868  * Called when a scan on a wiphy finds a beacon on
869  * new channel
870  */
871 static void wiphy_update_new_beacon(struct wiphy *wiphy,
872                                     struct reg_beacon *reg_beacon)
873 {
874         unsigned int i;
875         struct ieee80211_supported_band *sband;
876
877         assert_cfg80211_lock();
878
879         if (!wiphy->bands[reg_beacon->chan.band])
880                 return;
881
882         sband = wiphy->bands[reg_beacon->chan.band];
883
884         for (i = 0; i < sband->n_channels; i++)
885                 handle_reg_beacon(wiphy, i, reg_beacon);
886 }
887
888 /*
889  * Called upon reg changes or a new wiphy is added
890  */
891 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
892 {
893         unsigned int i;
894         struct ieee80211_supported_band *sband;
895         struct reg_beacon *reg_beacon;
896
897         assert_cfg80211_lock();
898
899         if (list_empty(&reg_beacon_list))
900                 return;
901
902         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
903                 if (!wiphy->bands[reg_beacon->chan.band])
904                         continue;
905                 sband = wiphy->bands[reg_beacon->chan.band];
906                 for (i = 0; i < sband->n_channels; i++)
907                         handle_reg_beacon(wiphy, i, reg_beacon);
908         }
909 }
910
911 static bool reg_is_world_roaming(struct wiphy *wiphy)
912 {
913         if (is_world_regdom(cfg80211_regdomain->alpha2) ||
914             (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
915                 return true;
916         if (last_request &&
917             last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
918             wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
919                 return true;
920         return false;
921 }
922
923 /* Reap the advantages of previously found beacons */
924 static void reg_process_beacons(struct wiphy *wiphy)
925 {
926         /*
927          * Means we are just firing up cfg80211, so no beacons would
928          * have been processed yet.
929          */
930         if (!last_request)
931                 return;
932         if (!reg_is_world_roaming(wiphy))
933                 return;
934         wiphy_update_beacon_reg(wiphy);
935 }
936
937 static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
938 {
939         if (!chan)
940                 return true;
941         if (chan->flags & IEEE80211_CHAN_DISABLED)
942                 return true;
943         /* This would happen when regulatory rules disallow HT40 completely */
944         if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
945                 return true;
946         return false;
947 }
948
949 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
950                                          enum ieee80211_band band,
951                                          unsigned int chan_idx)
952 {
953         struct ieee80211_supported_band *sband;
954         struct ieee80211_channel *channel;
955         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
956         unsigned int i;
957
958         assert_cfg80211_lock();
959
960         sband = wiphy->bands[band];
961         BUG_ON(chan_idx >= sband->n_channels);
962         channel = &sband->channels[chan_idx];
963
964         if (is_ht40_not_allowed(channel)) {
965                 channel->flags |= IEEE80211_CHAN_NO_HT40;
966                 return;
967         }
968
969         /*
970          * We need to ensure the extension channels exist to
971          * be able to use HT40- or HT40+, this finds them (or not)
972          */
973         for (i = 0; i < sband->n_channels; i++) {
974                 struct ieee80211_channel *c = &sband->channels[i];
975                 if (c->center_freq == (channel->center_freq - 20))
976                         channel_before = c;
977                 if (c->center_freq == (channel->center_freq + 20))
978                         channel_after = c;
979         }
980
981         /*
982          * Please note that this assumes target bandwidth is 20 MHz,
983          * if that ever changes we also need to change the below logic
984          * to include that as well.
985          */
986         if (is_ht40_not_allowed(channel_before))
987                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
988         else
989                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
990
991         if (is_ht40_not_allowed(channel_after))
992                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
993         else
994                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
995 }
996
997 static void reg_process_ht_flags_band(struct wiphy *wiphy,
998                                       enum ieee80211_band band)
999 {
1000         unsigned int i;
1001         struct ieee80211_supported_band *sband;
1002
1003         BUG_ON(!wiphy->bands[band]);
1004         sband = wiphy->bands[band];
1005
1006         for (i = 0; i < sband->n_channels; i++)
1007                 reg_process_ht_flags_channel(wiphy, band, i);
1008 }
1009
1010 static void reg_process_ht_flags(struct wiphy *wiphy)
1011 {
1012         enum ieee80211_band band;
1013
1014         if (!wiphy)
1015                 return;
1016
1017         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1018                 if (wiphy->bands[band])
1019                         reg_process_ht_flags_band(wiphy, band);
1020         }
1021
1022 }
1023
1024 void wiphy_update_regulatory(struct wiphy *wiphy,
1025                              enum nl80211_reg_initiator initiator)
1026 {
1027         enum ieee80211_band band;
1028
1029         if (ignore_reg_update(wiphy, initiator))
1030                 goto out;
1031         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1032                 if (wiphy->bands[band])
1033                         handle_band(wiphy, band);
1034         }
1035 out:
1036         reg_process_beacons(wiphy);
1037         reg_process_ht_flags(wiphy);
1038         if (wiphy->reg_notifier)
1039                 wiphy->reg_notifier(wiphy, last_request);
1040 }
1041
1042 static void handle_channel_custom(struct wiphy *wiphy,
1043                                   enum ieee80211_band band,
1044                                   unsigned int chan_idx,
1045                                   const struct ieee80211_regdomain *regd)
1046 {
1047         int r;
1048         u32 desired_bw_khz = MHZ_TO_KHZ(20);
1049         u32 bw_flags = 0;
1050         const struct ieee80211_reg_rule *reg_rule = NULL;
1051         const struct ieee80211_power_rule *power_rule = NULL;
1052         const struct ieee80211_freq_range *freq_range = NULL;
1053         struct ieee80211_supported_band *sband;
1054         struct ieee80211_channel *chan;
1055
1056         assert_reg_lock();
1057
1058         sband = wiphy->bands[band];
1059         BUG_ON(chan_idx >= sband->n_channels);
1060         chan = &sband->channels[chan_idx];
1061
1062         r = freq_reg_info_regd(wiphy,
1063                                MHZ_TO_KHZ(chan->center_freq),
1064                                desired_bw_khz,
1065                                &reg_rule,
1066                                regd);
1067
1068         if (r) {
1069                 chan->flags = IEEE80211_CHAN_DISABLED;
1070                 return;
1071         }
1072
1073         power_rule = &reg_rule->power_rule;
1074         freq_range = &reg_rule->freq_range;
1075
1076         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1077                 bw_flags = IEEE80211_CHAN_NO_HT40;
1078
1079         chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1080         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1081         chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1082 }
1083
1084 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1085                                const struct ieee80211_regdomain *regd)
1086 {
1087         unsigned int i;
1088         struct ieee80211_supported_band *sband;
1089
1090         BUG_ON(!wiphy->bands[band]);
1091         sband = wiphy->bands[band];
1092
1093         for (i = 0; i < sband->n_channels; i++)
1094                 handle_channel_custom(wiphy, band, i, regd);
1095 }
1096
1097 /* Used by drivers prior to wiphy registration */
1098 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1099                                    const struct ieee80211_regdomain *regd)
1100 {
1101         enum ieee80211_band band;
1102         unsigned int bands_set = 0;
1103
1104         mutex_lock(&reg_mutex);
1105         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1106                 if (!wiphy->bands[band])
1107                         continue;
1108                 handle_band_custom(wiphy, band, regd);
1109                 bands_set++;
1110         }
1111         mutex_unlock(&reg_mutex);
1112
1113         /*
1114          * no point in calling this if it won't have any effect
1115          * on your device's supportd bands.
1116          */
1117         WARN_ON(!bands_set);
1118 }
1119 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1120
1121 /*
1122  * Return value which can be used by ignore_request() to indicate
1123  * it has been determined we should intersect two regulatory domains
1124  */
1125 #define REG_INTERSECT   1
1126
1127 /* This has the logic which determines when a new request
1128  * should be ignored. */
1129 static int ignore_request(struct wiphy *wiphy,
1130                           struct regulatory_request *pending_request)
1131 {
1132         struct wiphy *last_wiphy = NULL;
1133
1134         assert_cfg80211_lock();
1135
1136         /* All initial requests are respected */
1137         if (!last_request)
1138                 return 0;
1139
1140         switch (pending_request->initiator) {
1141         case NL80211_REGDOM_SET_BY_CORE:
1142                 return 0;
1143         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1144
1145                 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1146
1147                 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1148                         return -EINVAL;
1149                 if (last_request->initiator ==
1150                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1151                         if (last_wiphy != wiphy) {
1152                                 /*
1153                                  * Two cards with two APs claiming different
1154                                  * Country IE alpha2s. We could
1155                                  * intersect them, but that seems unlikely
1156                                  * to be correct. Reject second one for now.
1157                                  */
1158                                 if (regdom_changes(pending_request->alpha2))
1159                                         return -EOPNOTSUPP;
1160                                 return -EALREADY;
1161                         }
1162                         /*
1163                          * Two consecutive Country IE hints on the same wiphy.
1164                          * This should be picked up early by the driver/stack
1165                          */
1166                         if (WARN_ON(regdom_changes(pending_request->alpha2)))
1167                                 return 0;
1168                         return -EALREADY;
1169                 }
1170                 return REG_INTERSECT;
1171         case NL80211_REGDOM_SET_BY_DRIVER:
1172                 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1173                         if (regdom_changes(pending_request->alpha2))
1174                                 return 0;
1175                         return -EALREADY;
1176                 }
1177
1178                 /*
1179                  * This would happen if you unplug and plug your card
1180                  * back in or if you add a new device for which the previously
1181                  * loaded card also agrees on the regulatory domain.
1182                  */
1183                 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1184                     !regdom_changes(pending_request->alpha2))
1185                         return -EALREADY;
1186
1187                 return REG_INTERSECT;
1188         case NL80211_REGDOM_SET_BY_USER:
1189                 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1190                         return REG_INTERSECT;
1191                 /*
1192                  * If the user knows better the user should set the regdom
1193                  * to their country before the IE is picked up
1194                  */
1195                 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1196                           last_request->intersect)
1197                         return -EOPNOTSUPP;
1198                 /*
1199                  * Process user requests only after previous user/driver/core
1200                  * requests have been processed
1201                  */
1202                 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1203                     last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1204                     last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1205                         if (regdom_changes(last_request->alpha2))
1206                                 return -EAGAIN;
1207                 }
1208
1209                 if (!regdom_changes(pending_request->alpha2))
1210                         return -EALREADY;
1211
1212                 return 0;
1213         }
1214
1215         return -EINVAL;
1216 }
1217
1218 /**
1219  * __regulatory_hint - hint to the wireless core a regulatory domain
1220  * @wiphy: if the hint comes from country information from an AP, this
1221  *      is required to be set to the wiphy that received the information
1222  * @pending_request: the regulatory request currently being processed
1223  *
1224  * The Wireless subsystem can use this function to hint to the wireless core
1225  * what it believes should be the current regulatory domain.
1226  *
1227  * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1228  * already been set or other standard error codes.
1229  *
1230  * Caller must hold &cfg80211_mutex and &reg_mutex
1231  */
1232 static int __regulatory_hint(struct wiphy *wiphy,
1233                              struct regulatory_request *pending_request)
1234 {
1235         bool intersect = false;
1236         int r = 0;
1237
1238         assert_cfg80211_lock();
1239
1240         r = ignore_request(wiphy, pending_request);
1241
1242         if (r == REG_INTERSECT) {
1243                 if (pending_request->initiator ==
1244                     NL80211_REGDOM_SET_BY_DRIVER) {
1245                         r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1246                         if (r) {
1247                                 kfree(pending_request);
1248                                 return r;
1249                         }
1250                 }
1251                 intersect = true;
1252         } else if (r) {
1253                 /*
1254                  * If the regulatory domain being requested by the
1255                  * driver has already been set just copy it to the
1256                  * wiphy
1257                  */
1258                 if (r == -EALREADY &&
1259                     pending_request->initiator ==
1260                     NL80211_REGDOM_SET_BY_DRIVER) {
1261                         r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1262                         if (r) {
1263                                 kfree(pending_request);
1264                                 return r;
1265                         }
1266                         r = -EALREADY;
1267                         goto new_request;
1268                 }
1269                 kfree(pending_request);
1270                 return r;
1271         }
1272
1273 new_request:
1274         kfree(last_request);
1275
1276         last_request = pending_request;
1277         last_request->intersect = intersect;
1278
1279         pending_request = NULL;
1280
1281         if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1282                 user_alpha2[0] = last_request->alpha2[0];
1283                 user_alpha2[1] = last_request->alpha2[1];
1284         }
1285
1286         /* When r == REG_INTERSECT we do need to call CRDA */
1287         if (r < 0) {
1288                 /*
1289                  * Since CRDA will not be called in this case as we already
1290                  * have applied the requested regulatory domain before we just
1291                  * inform userspace we have processed the request
1292                  */
1293                 if (r == -EALREADY)
1294                         nl80211_send_reg_change_event(last_request);
1295                 return r;
1296         }
1297
1298         return call_crda(last_request->alpha2);
1299 }
1300
1301 /* This processes *all* regulatory hints */
1302 static void reg_process_hint(struct regulatory_request *reg_request)
1303 {
1304         int r = 0;
1305         struct wiphy *wiphy = NULL;
1306         enum nl80211_reg_initiator initiator = reg_request->initiator;
1307
1308         BUG_ON(!reg_request->alpha2);
1309
1310         mutex_lock(&cfg80211_mutex);
1311         mutex_lock(&reg_mutex);
1312
1313         if (wiphy_idx_valid(reg_request->wiphy_idx))
1314                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1315
1316         if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1317             !wiphy) {
1318                 kfree(reg_request);
1319                 goto out;
1320         }
1321
1322         r = __regulatory_hint(wiphy, reg_request);
1323         /* This is required so that the orig_* parameters are saved */
1324         if (r == -EALREADY && wiphy &&
1325             wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
1326                 wiphy_update_regulatory(wiphy, initiator);
1327 out:
1328         mutex_unlock(&reg_mutex);
1329         mutex_unlock(&cfg80211_mutex);
1330 }
1331
1332 /* Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* */
1333 static void reg_process_pending_hints(void)
1334         {
1335         struct regulatory_request *reg_request;
1336
1337         spin_lock(&reg_requests_lock);
1338         while (!list_empty(&reg_requests_list)) {
1339                 reg_request = list_first_entry(&reg_requests_list,
1340                                                struct regulatory_request,
1341                                                list);
1342                 list_del_init(&reg_request->list);
1343
1344                 spin_unlock(&reg_requests_lock);
1345                 reg_process_hint(reg_request);
1346                 spin_lock(&reg_requests_lock);
1347         }
1348         spin_unlock(&reg_requests_lock);
1349 }
1350
1351 /* Processes beacon hints -- this has nothing to do with country IEs */
1352 static void reg_process_pending_beacon_hints(void)
1353 {
1354         struct cfg80211_registered_device *rdev;
1355         struct reg_beacon *pending_beacon, *tmp;
1356
1357         /*
1358          * No need to hold the reg_mutex here as we just touch wiphys
1359          * and do not read or access regulatory variables.
1360          */
1361         mutex_lock(&cfg80211_mutex);
1362
1363         /* This goes through the _pending_ beacon list */
1364         spin_lock_bh(&reg_pending_beacons_lock);
1365
1366         if (list_empty(&reg_pending_beacons)) {
1367                 spin_unlock_bh(&reg_pending_beacons_lock);
1368                 goto out;
1369         }
1370
1371         list_for_each_entry_safe(pending_beacon, tmp,
1372                                  &reg_pending_beacons, list) {
1373
1374                 list_del_init(&pending_beacon->list);
1375
1376                 /* Applies the beacon hint to current wiphys */
1377                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1378                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1379
1380                 /* Remembers the beacon hint for new wiphys or reg changes */
1381                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1382         }
1383
1384         spin_unlock_bh(&reg_pending_beacons_lock);
1385 out:
1386         mutex_unlock(&cfg80211_mutex);
1387 }
1388
1389 static void reg_todo(struct work_struct *work)
1390 {
1391         reg_process_pending_hints();
1392         reg_process_pending_beacon_hints();
1393 }
1394
1395 static DECLARE_WORK(reg_work, reg_todo);
1396
1397 static void queue_regulatory_request(struct regulatory_request *request)
1398 {
1399         if (isalpha(request->alpha2[0]))
1400                 request->alpha2[0] = toupper(request->alpha2[0]);
1401         if (isalpha(request->alpha2[1]))
1402                 request->alpha2[1] = toupper(request->alpha2[1]);
1403
1404         spin_lock(&reg_requests_lock);
1405         list_add_tail(&request->list, &reg_requests_list);
1406         spin_unlock(&reg_requests_lock);
1407
1408         schedule_work(&reg_work);
1409 }
1410
1411 /*
1412  * Core regulatory hint -- happens during cfg80211_init()
1413  * and when we restore regulatory settings.
1414  */
1415 static int regulatory_hint_core(const char *alpha2)
1416 {
1417         struct regulatory_request *request;
1418
1419         kfree(last_request);
1420         last_request = NULL;
1421
1422         request = kzalloc(sizeof(struct regulatory_request),
1423                           GFP_KERNEL);
1424         if (!request)
1425                 return -ENOMEM;
1426
1427         request->alpha2[0] = alpha2[0];
1428         request->alpha2[1] = alpha2[1];
1429         request->initiator = NL80211_REGDOM_SET_BY_CORE;
1430
1431         /*
1432          * This ensures last_request is populated once modules
1433          * come swinging in and calling regulatory hints and
1434          * wiphy_apply_custom_regulatory().
1435          */
1436         reg_process_hint(request);
1437
1438         return 0;
1439 }
1440
1441 /* User hints */
1442 int regulatory_hint_user(const char *alpha2)
1443 {
1444         struct regulatory_request *request;
1445
1446         BUG_ON(!alpha2);
1447
1448         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1449         if (!request)
1450                 return -ENOMEM;
1451
1452         request->wiphy_idx = WIPHY_IDX_STALE;
1453         request->alpha2[0] = alpha2[0];
1454         request->alpha2[1] = alpha2[1];
1455         request->initiator = NL80211_REGDOM_SET_BY_USER;
1456
1457         queue_regulatory_request(request);
1458
1459         return 0;
1460 }
1461
1462 /* Driver hints */
1463 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1464 {
1465         struct regulatory_request *request;
1466
1467         BUG_ON(!alpha2);
1468         BUG_ON(!wiphy);
1469
1470         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1471         if (!request)
1472                 return -ENOMEM;
1473
1474         request->wiphy_idx = get_wiphy_idx(wiphy);
1475
1476         /* Must have registered wiphy first */
1477         BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1478
1479         request->alpha2[0] = alpha2[0];
1480         request->alpha2[1] = alpha2[1];
1481         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1482
1483         queue_regulatory_request(request);
1484
1485         return 0;
1486 }
1487 EXPORT_SYMBOL(regulatory_hint);
1488
1489 /*
1490  * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1491  * therefore cannot iterate over the rdev list here.
1492  */
1493 void regulatory_hint_11d(struct wiphy *wiphy,
1494                          enum ieee80211_band band,
1495                          u8 *country_ie,
1496                          u8 country_ie_len)
1497 {
1498         char alpha2[2];
1499         enum environment_cap env = ENVIRON_ANY;
1500         struct regulatory_request *request;
1501
1502         mutex_lock(&reg_mutex);
1503
1504         if (unlikely(!last_request))
1505                 goto out;
1506
1507         /* IE len must be evenly divisible by 2 */
1508         if (country_ie_len & 0x01)
1509                 goto out;
1510
1511         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1512                 goto out;
1513
1514         alpha2[0] = country_ie[0];
1515         alpha2[1] = country_ie[1];
1516
1517         if (country_ie[2] == 'I')
1518                 env = ENVIRON_INDOOR;
1519         else if (country_ie[2] == 'O')
1520                 env = ENVIRON_OUTDOOR;
1521
1522         /*
1523          * We will run this only upon a successful connection on cfg80211.
1524          * We leave conflict resolution to the workqueue, where can hold
1525          * cfg80211_mutex.
1526          */
1527         if (likely(last_request->initiator ==
1528             NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1529             wiphy_idx_valid(last_request->wiphy_idx)))
1530                 goto out;
1531
1532         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1533         if (!request)
1534                 goto out;
1535
1536         request->wiphy_idx = get_wiphy_idx(wiphy);
1537         request->alpha2[0] = alpha2[0];
1538         request->alpha2[1] = alpha2[1];
1539         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1540         request->country_ie_env = env;
1541
1542         mutex_unlock(&reg_mutex);
1543
1544         queue_regulatory_request(request);
1545
1546         return;
1547
1548 out:
1549         mutex_unlock(&reg_mutex);
1550 }
1551
1552 static void restore_alpha2(char *alpha2, bool reset_user)
1553 {
1554         /* indicates there is no alpha2 to consider for restoration */
1555         alpha2[0] = '9';
1556         alpha2[1] = '7';
1557
1558         /* The user setting has precedence over the module parameter */
1559         if (is_user_regdom_saved()) {
1560                 /* Unless we're asked to ignore it and reset it */
1561                 if (reset_user) {
1562                         REG_DBG_PRINT("cfg80211: Restoring regulatory settings "
1563                                "including user preference\n");
1564                         user_alpha2[0] = '9';
1565                         user_alpha2[1] = '7';
1566
1567                         /*
1568                          * If we're ignoring user settings, we still need to
1569                          * check the module parameter to ensure we put things
1570                          * back as they were for a full restore.
1571                          */
1572                         if (!is_world_regdom(ieee80211_regdom)) {
1573                                 REG_DBG_PRINT("cfg80211: Keeping preference on "
1574                                        "module parameter ieee80211_regdom: %c%c\n",
1575                                        ieee80211_regdom[0],
1576                                        ieee80211_regdom[1]);
1577                                 alpha2[0] = ieee80211_regdom[0];
1578                                 alpha2[1] = ieee80211_regdom[1];
1579                         }
1580                 } else {
1581                         REG_DBG_PRINT("cfg80211: Restoring regulatory settings "
1582                                "while preserving user preference for: %c%c\n",
1583                                user_alpha2[0],
1584                                user_alpha2[1]);
1585                         alpha2[0] = user_alpha2[0];
1586                         alpha2[1] = user_alpha2[1];
1587                 }
1588         } else if (!is_world_regdom(ieee80211_regdom)) {
1589                 REG_DBG_PRINT("cfg80211: Keeping preference on "
1590                        "module parameter ieee80211_regdom: %c%c\n",
1591                        ieee80211_regdom[0],
1592                        ieee80211_regdom[1]);
1593                 alpha2[0] = ieee80211_regdom[0];
1594                 alpha2[1] = ieee80211_regdom[1];
1595         } else
1596                 REG_DBG_PRINT("cfg80211: Restoring regulatory settings\n");
1597 }
1598
1599 /*
1600  * Restoring regulatory settings involves ingoring any
1601  * possibly stale country IE information and user regulatory
1602  * settings if so desired, this includes any beacon hints
1603  * learned as we could have traveled outside to another country
1604  * after disconnection. To restore regulatory settings we do
1605  * exactly what we did at bootup:
1606  *
1607  *   - send a core regulatory hint
1608  *   - send a user regulatory hint if applicable
1609  *
1610  * Device drivers that send a regulatory hint for a specific country
1611  * keep their own regulatory domain on wiphy->regd so that does does
1612  * not need to be remembered.
1613  */
1614 static void restore_regulatory_settings(bool reset_user)
1615 {
1616         char alpha2[2];
1617         struct reg_beacon *reg_beacon, *btmp;
1618
1619         mutex_lock(&cfg80211_mutex);
1620         mutex_lock(&reg_mutex);
1621
1622         reset_regdomains();
1623         restore_alpha2(alpha2, reset_user);
1624
1625         /* Clear beacon hints */
1626         spin_lock_bh(&reg_pending_beacons_lock);
1627         if (!list_empty(&reg_pending_beacons)) {
1628                 list_for_each_entry_safe(reg_beacon, btmp,
1629                                          &reg_pending_beacons, list) {
1630                         list_del(&reg_beacon->list);
1631                         kfree(reg_beacon);
1632                 }
1633         }
1634         spin_unlock_bh(&reg_pending_beacons_lock);
1635
1636         if (!list_empty(&reg_beacon_list)) {
1637                 list_for_each_entry_safe(reg_beacon, btmp,
1638                                          &reg_beacon_list, list) {
1639                         list_del(&reg_beacon->list);
1640                         kfree(reg_beacon);
1641                 }
1642         }
1643
1644         /* First restore to the basic regulatory settings */
1645         cfg80211_regdomain = cfg80211_world_regdom;
1646
1647         mutex_unlock(&reg_mutex);
1648         mutex_unlock(&cfg80211_mutex);
1649
1650         regulatory_hint_core(cfg80211_regdomain->alpha2);
1651
1652         /*
1653          * This restores the ieee80211_regdom module parameter
1654          * preference or the last user requested regulatory
1655          * settings, user regulatory settings takes precedence.
1656          */
1657         if (is_an_alpha2(alpha2))
1658                 regulatory_hint_user(user_alpha2);
1659 }
1660
1661
1662 void regulatory_hint_disconnect(void)
1663 {
1664         REG_DBG_PRINT("cfg80211: All devices are disconnected, going to "
1665                       "restore regulatory settings\n");
1666         restore_regulatory_settings(false);
1667 }
1668
1669 static bool freq_is_chan_12_13_14(u16 freq)
1670 {
1671         if (freq == ieee80211_channel_to_frequency(12) ||
1672             freq == ieee80211_channel_to_frequency(13) ||
1673             freq == ieee80211_channel_to_frequency(14))
1674                 return true;
1675         return false;
1676 }
1677
1678 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1679                                  struct ieee80211_channel *beacon_chan,
1680                                  gfp_t gfp)
1681 {
1682         struct reg_beacon *reg_beacon;
1683
1684         if (likely((beacon_chan->beacon_found ||
1685             (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
1686             (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1687              !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
1688                 return 0;
1689
1690         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1691         if (!reg_beacon)
1692                 return -ENOMEM;
1693
1694         REG_DBG_PRINT("cfg80211: Found new beacon on "
1695                       "frequency: %d MHz (Ch %d) on %s\n",
1696                       beacon_chan->center_freq,
1697                       ieee80211_frequency_to_channel(beacon_chan->center_freq),
1698                       wiphy_name(wiphy));
1699
1700         memcpy(&reg_beacon->chan, beacon_chan,
1701                 sizeof(struct ieee80211_channel));
1702
1703
1704         /*
1705          * Since we can be called from BH or and non-BH context
1706          * we must use spin_lock_bh()
1707          */
1708         spin_lock_bh(&reg_pending_beacons_lock);
1709         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1710         spin_unlock_bh(&reg_pending_beacons_lock);
1711
1712         schedule_work(&reg_work);
1713
1714         return 0;
1715 }
1716
1717 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1718 {
1719         unsigned int i;
1720         const struct ieee80211_reg_rule *reg_rule = NULL;
1721         const struct ieee80211_freq_range *freq_range = NULL;
1722         const struct ieee80211_power_rule *power_rule = NULL;
1723
1724         printk(KERN_INFO "    (start_freq - end_freq @ bandwidth), "
1725                 "(max_antenna_gain, max_eirp)\n");
1726
1727         for (i = 0; i < rd->n_reg_rules; i++) {
1728                 reg_rule = &rd->reg_rules[i];
1729                 freq_range = &reg_rule->freq_range;
1730                 power_rule = &reg_rule->power_rule;
1731
1732                 /*
1733                  * There may not be documentation for max antenna gain
1734                  * in certain regions
1735                  */
1736                 if (power_rule->max_antenna_gain)
1737                         printk(KERN_INFO "    (%d KHz - %d KHz @ %d KHz), "
1738                                 "(%d mBi, %d mBm)\n",
1739                                 freq_range->start_freq_khz,
1740                                 freq_range->end_freq_khz,
1741                                 freq_range->max_bandwidth_khz,
1742                                 power_rule->max_antenna_gain,
1743                                 power_rule->max_eirp);
1744                 else
1745                         printk(KERN_INFO "    (%d KHz - %d KHz @ %d KHz), "
1746                                 "(N/A, %d mBm)\n",
1747                                 freq_range->start_freq_khz,
1748                                 freq_range->end_freq_khz,
1749                                 freq_range->max_bandwidth_khz,
1750                                 power_rule->max_eirp);
1751         }
1752 }
1753
1754 static void print_regdomain(const struct ieee80211_regdomain *rd)
1755 {
1756
1757         if (is_intersected_alpha2(rd->alpha2)) {
1758
1759                 if (last_request->initiator ==
1760                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1761                         struct cfg80211_registered_device *rdev;
1762                         rdev = cfg80211_rdev_by_wiphy_idx(
1763                                 last_request->wiphy_idx);
1764                         if (rdev) {
1765                                 printk(KERN_INFO "cfg80211: Current regulatory "
1766                                         "domain updated by AP to: %c%c\n",
1767                                         rdev->country_ie_alpha2[0],
1768                                         rdev->country_ie_alpha2[1]);
1769                         } else
1770                                 printk(KERN_INFO "cfg80211: Current regulatory "
1771                                         "domain intersected:\n");
1772                 } else
1773                         printk(KERN_INFO "cfg80211: Current regulatory "
1774                                 "domain intersected:\n");
1775         } else if (is_world_regdom(rd->alpha2))
1776                 printk(KERN_INFO "cfg80211: World regulatory "
1777                         "domain updated:\n");
1778         else {
1779                 if (is_unknown_alpha2(rd->alpha2))
1780                         printk(KERN_INFO "cfg80211: Regulatory domain "
1781                                 "changed to driver built-in settings "
1782                                 "(unknown country)\n");
1783                 else
1784                         printk(KERN_INFO "cfg80211: Regulatory domain "
1785                                 "changed to country: %c%c\n",
1786                                 rd->alpha2[0], rd->alpha2[1]);
1787         }
1788         print_rd_rules(rd);
1789 }
1790
1791 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
1792 {
1793         printk(KERN_INFO "cfg80211: Regulatory domain: %c%c\n",
1794                 rd->alpha2[0], rd->alpha2[1]);
1795         print_rd_rules(rd);
1796 }
1797
1798 /* Takes ownership of rd only if it doesn't fail */
1799 static int __set_regdom(const struct ieee80211_regdomain *rd)
1800 {
1801         const struct ieee80211_regdomain *intersected_rd = NULL;
1802         struct cfg80211_registered_device *rdev = NULL;
1803         struct wiphy *request_wiphy;
1804         /* Some basic sanity checks first */
1805
1806         if (is_world_regdom(rd->alpha2)) {
1807                 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1808                         return -EINVAL;
1809                 update_world_regdomain(rd);
1810                 return 0;
1811         }
1812
1813         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
1814                         !is_unknown_alpha2(rd->alpha2))
1815                 return -EINVAL;
1816
1817         if (!last_request)
1818                 return -EINVAL;
1819
1820         /*
1821          * Lets only bother proceeding on the same alpha2 if the current
1822          * rd is non static (it means CRDA was present and was used last)
1823          * and the pending request came in from a country IE
1824          */
1825         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1826                 /*
1827                  * If someone else asked us to change the rd lets only bother
1828                  * checking if the alpha2 changes if CRDA was already called
1829                  */
1830                 if (!regdom_changes(rd->alpha2))
1831                         return -EINVAL;
1832         }
1833
1834         /*
1835          * Now lets set the regulatory domain, update all driver channels
1836          * and finally inform them of what we have done, in case they want
1837          * to review or adjust their own settings based on their own
1838          * internal EEPROM data
1839          */
1840
1841         if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1842                 return -EINVAL;
1843
1844         if (!is_valid_rd(rd)) {
1845                 printk(KERN_ERR "cfg80211: Invalid "
1846                         "regulatory domain detected:\n");
1847                 print_regdomain_info(rd);
1848                 return -EINVAL;
1849         }
1850
1851         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1852
1853         if (!last_request->intersect) {
1854                 int r;
1855
1856                 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
1857                         reset_regdomains();
1858                         cfg80211_regdomain = rd;
1859                         return 0;
1860                 }
1861
1862                 /*
1863                  * For a driver hint, lets copy the regulatory domain the
1864                  * driver wanted to the wiphy to deal with conflicts
1865                  */
1866
1867                 /*
1868                  * Userspace could have sent two replies with only
1869                  * one kernel request.
1870                  */
1871                 if (request_wiphy->regd)
1872                         return -EALREADY;
1873
1874                 r = reg_copy_regd(&request_wiphy->regd, rd);
1875                 if (r)
1876                         return r;
1877
1878                 reset_regdomains();
1879                 cfg80211_regdomain = rd;
1880                 return 0;
1881         }
1882
1883         /* Intersection requires a bit more work */
1884
1885         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1886
1887                 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
1888                 if (!intersected_rd)
1889                         return -EINVAL;
1890
1891                 /*
1892                  * We can trash what CRDA provided now.
1893                  * However if a driver requested this specific regulatory
1894                  * domain we keep it for its private use
1895                  */
1896                 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
1897                         request_wiphy->regd = rd;
1898                 else
1899                         kfree(rd);
1900
1901                 rd = NULL;
1902
1903                 reset_regdomains();
1904                 cfg80211_regdomain = intersected_rd;
1905
1906                 return 0;
1907         }
1908
1909         if (!intersected_rd)
1910                 return -EINVAL;
1911
1912         rdev = wiphy_to_dev(request_wiphy);
1913
1914         rdev->country_ie_alpha2[0] = rd->alpha2[0];
1915         rdev->country_ie_alpha2[1] = rd->alpha2[1];
1916         rdev->env = last_request->country_ie_env;
1917
1918         BUG_ON(intersected_rd == rd);
1919
1920         kfree(rd);
1921         rd = NULL;
1922
1923         reset_regdomains();
1924         cfg80211_regdomain = intersected_rd;
1925
1926         return 0;
1927 }
1928
1929
1930 /*
1931  * Use this call to set the current regulatory domain. Conflicts with
1932  * multiple drivers can be ironed out later. Caller must've already
1933  * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
1934  */
1935 int set_regdom(const struct ieee80211_regdomain *rd)
1936 {
1937         int r;
1938
1939         assert_cfg80211_lock();
1940
1941         mutex_lock(&reg_mutex);
1942
1943         /* Note that this doesn't update the wiphys, this is done below */
1944         r = __set_regdom(rd);
1945         if (r) {
1946                 kfree(rd);
1947                 mutex_unlock(&reg_mutex);
1948                 return r;
1949         }
1950
1951         /* This would make this whole thing pointless */
1952         if (!last_request->intersect)
1953                 BUG_ON(rd != cfg80211_regdomain);
1954
1955         /* update all wiphys now with the new established regulatory domain */
1956         update_all_wiphy_regulatory(last_request->initiator);
1957
1958         print_regdomain(cfg80211_regdomain);
1959
1960         nl80211_send_reg_change_event(last_request);
1961
1962         mutex_unlock(&reg_mutex);
1963
1964         return r;
1965 }
1966
1967 /* Caller must hold cfg80211_mutex */
1968 void reg_device_remove(struct wiphy *wiphy)
1969 {
1970         struct wiphy *request_wiphy = NULL;
1971
1972         assert_cfg80211_lock();
1973
1974         mutex_lock(&reg_mutex);
1975
1976         kfree(wiphy->regd);
1977
1978         if (last_request)
1979                 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1980
1981         if (!request_wiphy || request_wiphy != wiphy)
1982                 goto out;
1983
1984         last_request->wiphy_idx = WIPHY_IDX_STALE;
1985         last_request->country_ie_env = ENVIRON_ANY;
1986 out:
1987         mutex_unlock(&reg_mutex);
1988 }
1989
1990 int __init regulatory_init(void)
1991 {
1992         int err = 0;
1993
1994         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
1995         if (IS_ERR(reg_pdev))
1996                 return PTR_ERR(reg_pdev);
1997
1998         spin_lock_init(&reg_requests_lock);
1999         spin_lock_init(&reg_pending_beacons_lock);
2000
2001         cfg80211_regdomain = cfg80211_world_regdom;
2002
2003         user_alpha2[0] = '9';
2004         user_alpha2[1] = '7';
2005
2006         /* We always try to get an update for the static regdomain */
2007         err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2008         if (err) {
2009                 if (err == -ENOMEM)
2010                         return err;
2011                 /*
2012                  * N.B. kobject_uevent_env() can fail mainly for when we're out
2013                  * memory which is handled and propagated appropriately above
2014                  * but it can also fail during a netlink_broadcast() or during
2015                  * early boot for call_usermodehelper(). For now treat these
2016                  * errors as non-fatal.
2017                  */
2018                 printk(KERN_ERR "cfg80211: kobject_uevent_env() was unable "
2019                         "to call CRDA during init");
2020 #ifdef CONFIG_CFG80211_REG_DEBUG
2021                 /* We want to find out exactly why when debugging */
2022                 WARN_ON(err);
2023 #endif
2024         }
2025
2026         /*
2027          * Finally, if the user set the module parameter treat it
2028          * as a user hint.
2029          */
2030         if (!is_world_regdom(ieee80211_regdom))
2031                 regulatory_hint_user(ieee80211_regdom);
2032
2033         return 0;
2034 }
2035
2036 void /* __init_or_exit */ regulatory_exit(void)
2037 {
2038         struct regulatory_request *reg_request, *tmp;
2039         struct reg_beacon *reg_beacon, *btmp;
2040
2041         cancel_work_sync(&reg_work);
2042
2043         mutex_lock(&cfg80211_mutex);
2044         mutex_lock(&reg_mutex);
2045
2046         reset_regdomains();
2047
2048         kfree(last_request);
2049
2050         platform_device_unregister(reg_pdev);
2051
2052         spin_lock_bh(&reg_pending_beacons_lock);
2053         if (!list_empty(&reg_pending_beacons)) {
2054                 list_for_each_entry_safe(reg_beacon, btmp,
2055                                          &reg_pending_beacons, list) {
2056                         list_del(&reg_beacon->list);
2057                         kfree(reg_beacon);
2058                 }
2059         }
2060         spin_unlock_bh(&reg_pending_beacons_lock);
2061
2062         if (!list_empty(&reg_beacon_list)) {
2063                 list_for_each_entry_safe(reg_beacon, btmp,
2064                                          &reg_beacon_list, list) {
2065                         list_del(&reg_beacon->list);
2066                         kfree(reg_beacon);
2067                 }
2068         }
2069
2070         spin_lock(&reg_requests_lock);
2071         if (!list_empty(&reg_requests_list)) {
2072                 list_for_each_entry_safe(reg_request, tmp,
2073                                          &reg_requests_list, list) {
2074                         list_del(&reg_request->list);
2075                         kfree(reg_request);
2076                 }
2077         }
2078         spin_unlock(&reg_requests_lock);
2079
2080         mutex_unlock(&reg_mutex);
2081         mutex_unlock(&cfg80211_mutex);
2082 }