cfg80211: pass the regulatory_request to ignore_request
[linux-2.6.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008       Luis R. Rodriguez <lrodriguz@atheros.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11
12 /**
13  * DOC: Wireless regulatory infrastructure
14  *
15  * The usual implementation is for a driver to read a device EEPROM to
16  * determine which regulatory domain it should be operating under, then
17  * looking up the allowable channels in a driver-local table and finally
18  * registering those channels in the wiphy structure.
19  *
20  * Another set of compliance enforcement is for drivers to use their
21  * own compliance limits which can be stored on the EEPROM. The host
22  * driver or firmware may ensure these are used.
23  *
24  * In addition to all this we provide an extra layer of regulatory
25  * conformance. For drivers which do not have any regulatory
26  * information CRDA provides the complete regulatory solution.
27  * For others it provides a community effort on further restrictions
28  * to enhance compliance.
29  *
30  * Note: When number of rules --> infinity we will not be able to
31  * index on alpha2 any more, instead we'll probably have to
32  * rely on some SHA1 checksum of the regdomain for example.
33  *
34  */
35 #include <linux/kernel.h>
36 #include <linux/list.h>
37 #include <linux/random.h>
38 #include <linux/nl80211.h>
39 #include <linux/platform_device.h>
40 #include <net/wireless.h>
41 #include <net/cfg80211.h>
42 #include "core.h"
43 #include "reg.h"
44
45 /* Receipt of information from last regulatory request */
46 static struct regulatory_request *last_request;
47
48 /* To trigger userspace events */
49 static struct platform_device *reg_pdev;
50
51 /* Keep the ordering from large to small */
52 static u32 supported_bandwidths[] = {
53         MHZ_TO_KHZ(40),
54         MHZ_TO_KHZ(20),
55 };
56
57 /*
58  * Central wireless core regulatory domains, we only need two,
59  * the current one and a world regulatory domain in case we have no
60  * information to give us an alpha2
61  */
62 const struct ieee80211_regdomain *cfg80211_regdomain;
63
64 /*
65  * We use this as a place for the rd structure built from the
66  * last parsed country IE to rest until CRDA gets back to us with
67  * what it thinks should apply for the same country
68  */
69 static const struct ieee80211_regdomain *country_ie_regdomain;
70
71 /* Used to queue up regulatory hints */
72 static LIST_HEAD(reg_requests_list);
73 static spinlock_t reg_requests_lock;
74
75 /* Used to queue up beacon hints for review */
76 static LIST_HEAD(reg_pending_beacons);
77 static spinlock_t reg_pending_beacons_lock;
78
79 /* Used to keep track of processed beacon hints */
80 static LIST_HEAD(reg_beacon_list);
81
82 struct reg_beacon {
83         struct list_head list;
84         struct ieee80211_channel chan;
85 };
86
87 /* We keep a static world regulatory domain in case of the absence of CRDA */
88 static const struct ieee80211_regdomain world_regdom = {
89         .n_reg_rules = 3,
90         .alpha2 =  "00",
91         .reg_rules = {
92                 /* IEEE 802.11b/g, channels 1..11 */
93                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
94                 /* IEEE 802.11a, channel 36..48 */
95                 REG_RULE(5180-10, 5240+10, 40, 6, 23,
96                         NL80211_RRF_PASSIVE_SCAN |
97                         NL80211_RRF_NO_IBSS),
98
99                 /* NB: 5260 MHz - 5700 MHz requies DFS */
100
101                 /* IEEE 802.11a, channel 149..165 */
102                 REG_RULE(5745-10, 5825+10, 40, 6, 23,
103                         NL80211_RRF_PASSIVE_SCAN |
104                         NL80211_RRF_NO_IBSS),
105         }
106 };
107
108 static const struct ieee80211_regdomain *cfg80211_world_regdom =
109         &world_regdom;
110
111 #ifdef CONFIG_WIRELESS_OLD_REGULATORY
112 static char *ieee80211_regdom = "US";
113 module_param(ieee80211_regdom, charp, 0444);
114 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
115
116 /*
117  * We assume 40 MHz bandwidth for the old regulatory work.
118  * We make emphasis we are using the exact same frequencies
119  * as before
120  */
121
122 static const struct ieee80211_regdomain us_regdom = {
123         .n_reg_rules = 6,
124         .alpha2 =  "US",
125         .reg_rules = {
126                 /* IEEE 802.11b/g, channels 1..11 */
127                 REG_RULE(2412-10, 2462+10, 40, 6, 27, 0),
128                 /* IEEE 802.11a, channel 36 */
129                 REG_RULE(5180-10, 5180+10, 40, 6, 23, 0),
130                 /* IEEE 802.11a, channel 40 */
131                 REG_RULE(5200-10, 5200+10, 40, 6, 23, 0),
132                 /* IEEE 802.11a, channel 44 */
133                 REG_RULE(5220-10, 5220+10, 40, 6, 23, 0),
134                 /* IEEE 802.11a, channels 48..64 */
135                 REG_RULE(5240-10, 5320+10, 40, 6, 23, 0),
136                 /* IEEE 802.11a, channels 149..165, outdoor */
137                 REG_RULE(5745-10, 5825+10, 40, 6, 30, 0),
138         }
139 };
140
141 static const struct ieee80211_regdomain jp_regdom = {
142         .n_reg_rules = 3,
143         .alpha2 =  "JP",
144         .reg_rules = {
145                 /* IEEE 802.11b/g, channels 1..14 */
146                 REG_RULE(2412-10, 2484+10, 40, 6, 20, 0),
147                 /* IEEE 802.11a, channels 34..48 */
148                 REG_RULE(5170-10, 5240+10, 40, 6, 20,
149                         NL80211_RRF_PASSIVE_SCAN),
150                 /* IEEE 802.11a, channels 52..64 */
151                 REG_RULE(5260-10, 5320+10, 40, 6, 20,
152                         NL80211_RRF_NO_IBSS |
153                         NL80211_RRF_DFS),
154         }
155 };
156
157 static const struct ieee80211_regdomain eu_regdom = {
158         .n_reg_rules = 6,
159         /*
160          * This alpha2 is bogus, we leave it here just for stupid
161          * backward compatibility
162          */
163         .alpha2 =  "EU",
164         .reg_rules = {
165                 /* IEEE 802.11b/g, channels 1..13 */
166                 REG_RULE(2412-10, 2472+10, 40, 6, 20, 0),
167                 /* IEEE 802.11a, channel 36 */
168                 REG_RULE(5180-10, 5180+10, 40, 6, 23,
169                         NL80211_RRF_PASSIVE_SCAN),
170                 /* IEEE 802.11a, channel 40 */
171                 REG_RULE(5200-10, 5200+10, 40, 6, 23,
172                         NL80211_RRF_PASSIVE_SCAN),
173                 /* IEEE 802.11a, channel 44 */
174                 REG_RULE(5220-10, 5220+10, 40, 6, 23,
175                         NL80211_RRF_PASSIVE_SCAN),
176                 /* IEEE 802.11a, channels 48..64 */
177                 REG_RULE(5240-10, 5320+10, 40, 6, 20,
178                         NL80211_RRF_NO_IBSS |
179                         NL80211_RRF_DFS),
180                 /* IEEE 802.11a, channels 100..140 */
181                 REG_RULE(5500-10, 5700+10, 40, 6, 30,
182                         NL80211_RRF_NO_IBSS |
183                         NL80211_RRF_DFS),
184         }
185 };
186
187 static const struct ieee80211_regdomain *static_regdom(char *alpha2)
188 {
189         if (alpha2[0] == 'U' && alpha2[1] == 'S')
190                 return &us_regdom;
191         if (alpha2[0] == 'J' && alpha2[1] == 'P')
192                 return &jp_regdom;
193         if (alpha2[0] == 'E' && alpha2[1] == 'U')
194                 return &eu_regdom;
195         /* Default, as per the old rules */
196         return &us_regdom;
197 }
198
199 static bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
200 {
201         if (rd == &us_regdom || rd == &jp_regdom || rd == &eu_regdom)
202                 return true;
203         return false;
204 }
205 #else
206 static inline bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
207 {
208         return false;
209 }
210 #endif
211
212 static void reset_regdomains(void)
213 {
214         /* avoid freeing static information or freeing something twice */
215         if (cfg80211_regdomain == cfg80211_world_regdom)
216                 cfg80211_regdomain = NULL;
217         if (cfg80211_world_regdom == &world_regdom)
218                 cfg80211_world_regdom = NULL;
219         if (cfg80211_regdomain == &world_regdom)
220                 cfg80211_regdomain = NULL;
221         if (is_old_static_regdom(cfg80211_regdomain))
222                 cfg80211_regdomain = NULL;
223
224         kfree(cfg80211_regdomain);
225         kfree(cfg80211_world_regdom);
226
227         cfg80211_world_regdom = &world_regdom;
228         cfg80211_regdomain = NULL;
229 }
230
231 /*
232  * Dynamic world regulatory domain requested by the wireless
233  * core upon initialization
234  */
235 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
236 {
237         BUG_ON(!last_request);
238
239         reset_regdomains();
240
241         cfg80211_world_regdom = rd;
242         cfg80211_regdomain = rd;
243 }
244
245 bool is_world_regdom(const char *alpha2)
246 {
247         if (!alpha2)
248                 return false;
249         if (alpha2[0] == '0' && alpha2[1] == '0')
250                 return true;
251         return false;
252 }
253
254 static bool is_alpha2_set(const char *alpha2)
255 {
256         if (!alpha2)
257                 return false;
258         if (alpha2[0] != 0 && alpha2[1] != 0)
259                 return true;
260         return false;
261 }
262
263 static bool is_alpha_upper(char letter)
264 {
265         /* ASCII A - Z */
266         if (letter >= 65 && letter <= 90)
267                 return true;
268         return false;
269 }
270
271 static bool is_unknown_alpha2(const char *alpha2)
272 {
273         if (!alpha2)
274                 return false;
275         /*
276          * Special case where regulatory domain was built by driver
277          * but a specific alpha2 cannot be determined
278          */
279         if (alpha2[0] == '9' && alpha2[1] == '9')
280                 return true;
281         return false;
282 }
283
284 static bool is_intersected_alpha2(const char *alpha2)
285 {
286         if (!alpha2)
287                 return false;
288         /*
289          * Special case where regulatory domain is the
290          * result of an intersection between two regulatory domain
291          * structures
292          */
293         if (alpha2[0] == '9' && alpha2[1] == '8')
294                 return true;
295         return false;
296 }
297
298 static bool is_an_alpha2(const char *alpha2)
299 {
300         if (!alpha2)
301                 return false;
302         if (is_alpha_upper(alpha2[0]) && is_alpha_upper(alpha2[1]))
303                 return true;
304         return false;
305 }
306
307 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
308 {
309         if (!alpha2_x || !alpha2_y)
310                 return false;
311         if (alpha2_x[0] == alpha2_y[0] &&
312                 alpha2_x[1] == alpha2_y[1])
313                 return true;
314         return false;
315 }
316
317 static bool regdom_changes(const char *alpha2)
318 {
319         assert_cfg80211_lock();
320
321         if (!cfg80211_regdomain)
322                 return true;
323         if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
324                 return false;
325         return true;
326 }
327
328 /**
329  * country_ie_integrity_changes - tells us if the country IE has changed
330  * @checksum: checksum of country IE of fields we are interested in
331  *
332  * If the country IE has not changed you can ignore it safely. This is
333  * useful to determine if two devices are seeing two different country IEs
334  * even on the same alpha2. Note that this will return false if no IE has
335  * been set on the wireless core yet.
336  */
337 static bool country_ie_integrity_changes(u32 checksum)
338 {
339         /* If no IE has been set then the checksum doesn't change */
340         if (unlikely(!last_request->country_ie_checksum))
341                 return false;
342         if (unlikely(last_request->country_ie_checksum != checksum))
343                 return true;
344         return false;
345 }
346
347 /*
348  * This lets us keep regulatory code which is updated on a regulatory
349  * basis in userspace.
350  */
351 static int call_crda(const char *alpha2)
352 {
353         char country_env[9 + 2] = "COUNTRY=";
354         char *envp[] = {
355                 country_env,
356                 NULL
357         };
358
359         if (!is_world_regdom((char *) alpha2))
360                 printk(KERN_INFO "cfg80211: Calling CRDA for country: %c%c\n",
361                         alpha2[0], alpha2[1]);
362         else
363                 printk(KERN_INFO "cfg80211: Calling CRDA to update world "
364                         "regulatory domain\n");
365
366         country_env[8] = alpha2[0];
367         country_env[9] = alpha2[1];
368
369         return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, envp);
370 }
371
372 /* Used by nl80211 before kmalloc'ing our regulatory domain */
373 bool reg_is_valid_request(const char *alpha2)
374 {
375         if (!last_request)
376                 return false;
377
378         return alpha2_equal(last_request->alpha2, alpha2);
379 }
380
381 /* Sanity check on a regulatory rule */
382 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
383 {
384         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
385         u32 freq_diff;
386
387         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
388                 return false;
389
390         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
391                 return false;
392
393         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
394
395         if (freq_diff <= 0 || freq_range->max_bandwidth_khz > freq_diff)
396                 return false;
397
398         return true;
399 }
400
401 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
402 {
403         const struct ieee80211_reg_rule *reg_rule = NULL;
404         unsigned int i;
405
406         if (!rd->n_reg_rules)
407                 return false;
408
409         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
410                 return false;
411
412         for (i = 0; i < rd->n_reg_rules; i++) {
413                 reg_rule = &rd->reg_rules[i];
414                 if (!is_valid_reg_rule(reg_rule))
415                         return false;
416         }
417
418         return true;
419 }
420
421 /* Returns value in KHz */
422 static u32 freq_max_bandwidth(const struct ieee80211_freq_range *freq_range,
423         u32 freq)
424 {
425         unsigned int i;
426         for (i = 0; i < ARRAY_SIZE(supported_bandwidths); i++) {
427                 u32 start_freq_khz = freq - supported_bandwidths[i]/2;
428                 u32 end_freq_khz = freq + supported_bandwidths[i]/2;
429                 if (start_freq_khz >= freq_range->start_freq_khz &&
430                         end_freq_khz <= freq_range->end_freq_khz)
431                         return supported_bandwidths[i];
432         }
433         return 0;
434 }
435
436 /**
437  * freq_in_rule_band - tells us if a frequency is in a frequency band
438  * @freq_range: frequency rule we want to query
439  * @freq_khz: frequency we are inquiring about
440  *
441  * This lets us know if a specific frequency rule is or is not relevant to
442  * a specific frequency's band. Bands are device specific and artificial
443  * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
444  * safe for now to assume that a frequency rule should not be part of a
445  * frequency's band if the start freq or end freq are off by more than 2 GHz.
446  * This resolution can be lowered and should be considered as we add
447  * regulatory rule support for other "bands".
448  **/
449 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
450         u32 freq_khz)
451 {
452 #define ONE_GHZ_IN_KHZ  1000000
453         if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
454                 return true;
455         if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
456                 return true;
457         return false;
458 #undef ONE_GHZ_IN_KHZ
459 }
460
461 /*
462  * Converts a country IE to a regulatory domain. A regulatory domain
463  * structure has a lot of information which the IE doesn't yet have,
464  * so for the other values we use upper max values as we will intersect
465  * with our userspace regulatory agent to get lower bounds.
466  */
467 static struct ieee80211_regdomain *country_ie_2_rd(
468                                 u8 *country_ie,
469                                 u8 country_ie_len,
470                                 u32 *checksum)
471 {
472         struct ieee80211_regdomain *rd = NULL;
473         unsigned int i = 0;
474         char alpha2[2];
475         u32 flags = 0;
476         u32 num_rules = 0, size_of_regd = 0;
477         u8 *triplets_start = NULL;
478         u8 len_at_triplet = 0;
479         /* the last channel we have registered in a subband (triplet) */
480         int last_sub_max_channel = 0;
481
482         *checksum = 0xDEADBEEF;
483
484         /* Country IE requirements */
485         BUG_ON(country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN ||
486                 country_ie_len & 0x01);
487
488         alpha2[0] = country_ie[0];
489         alpha2[1] = country_ie[1];
490
491         /*
492          * Third octet can be:
493          *    'I' - Indoor
494          *    'O' - Outdoor
495          *
496          *  anything else we assume is no restrictions
497          */
498         if (country_ie[2] == 'I')
499                 flags = NL80211_RRF_NO_OUTDOOR;
500         else if (country_ie[2] == 'O')
501                 flags = NL80211_RRF_NO_INDOOR;
502
503         country_ie += 3;
504         country_ie_len -= 3;
505
506         triplets_start = country_ie;
507         len_at_triplet = country_ie_len;
508
509         *checksum ^= ((flags ^ alpha2[0] ^ alpha2[1]) << 8);
510
511         /*
512          * We need to build a reg rule for each triplet, but first we must
513          * calculate the number of reg rules we will need. We will need one
514          * for each channel subband
515          */
516         while (country_ie_len >= 3) {
517                 int end_channel = 0;
518                 struct ieee80211_country_ie_triplet *triplet =
519                         (struct ieee80211_country_ie_triplet *) country_ie;
520                 int cur_sub_max_channel = 0, cur_channel = 0;
521
522                 if (triplet->ext.reg_extension_id >=
523                                 IEEE80211_COUNTRY_EXTENSION_ID) {
524                         country_ie += 3;
525                         country_ie_len -= 3;
526                         continue;
527                 }
528
529                 /* 2 GHz */
530                 if (triplet->chans.first_channel <= 14)
531                         end_channel = triplet->chans.first_channel +
532                                 triplet->chans.num_channels;
533                 else
534                         /*
535                          * 5 GHz -- For example in country IEs if the first
536                          * channel given is 36 and the number of channels is 4
537                          * then the individual channel numbers defined for the
538                          * 5 GHz PHY by these parameters are: 36, 40, 44, and 48
539                          * and not 36, 37, 38, 39.
540                          *
541                          * See: http://tinyurl.com/11d-clarification
542                          */
543                         end_channel =  triplet->chans.first_channel +
544                                 (4 * (triplet->chans.num_channels - 1));
545
546                 cur_channel = triplet->chans.first_channel;
547                 cur_sub_max_channel = end_channel;
548
549                 /* Basic sanity check */
550                 if (cur_sub_max_channel < cur_channel)
551                         return NULL;
552
553                 /*
554                  * Do not allow overlapping channels. Also channels
555                  * passed in each subband must be monotonically
556                  * increasing
557                  */
558                 if (last_sub_max_channel) {
559                         if (cur_channel <= last_sub_max_channel)
560                                 return NULL;
561                         if (cur_sub_max_channel <= last_sub_max_channel)
562                                 return NULL;
563                 }
564
565                 /*
566                  * When dot11RegulatoryClassesRequired is supported
567                  * we can throw ext triplets as part of this soup,
568                  * for now we don't care when those change as we
569                  * don't support them
570                  */
571                 *checksum ^= ((cur_channel ^ cur_sub_max_channel) << 8) |
572                   ((cur_sub_max_channel ^ cur_sub_max_channel) << 16) |
573                   ((triplet->chans.max_power ^ cur_sub_max_channel) << 24);
574
575                 last_sub_max_channel = cur_sub_max_channel;
576
577                 country_ie += 3;
578                 country_ie_len -= 3;
579                 num_rules++;
580
581                 /*
582                  * Note: this is not a IEEE requirement but
583                  * simply a memory requirement
584                  */
585                 if (num_rules > NL80211_MAX_SUPP_REG_RULES)
586                         return NULL;
587         }
588
589         country_ie = triplets_start;
590         country_ie_len = len_at_triplet;
591
592         size_of_regd = sizeof(struct ieee80211_regdomain) +
593                 (num_rules * sizeof(struct ieee80211_reg_rule));
594
595         rd = kzalloc(size_of_regd, GFP_KERNEL);
596         if (!rd)
597                 return NULL;
598
599         rd->n_reg_rules = num_rules;
600         rd->alpha2[0] = alpha2[0];
601         rd->alpha2[1] = alpha2[1];
602
603         /* This time around we fill in the rd */
604         while (country_ie_len >= 3) {
605                 int end_channel = 0;
606                 struct ieee80211_country_ie_triplet *triplet =
607                         (struct ieee80211_country_ie_triplet *) country_ie;
608                 struct ieee80211_reg_rule *reg_rule = NULL;
609                 struct ieee80211_freq_range *freq_range = NULL;
610                 struct ieee80211_power_rule *power_rule = NULL;
611
612                 /*
613                  * Must parse if dot11RegulatoryClassesRequired is true,
614                  * we don't support this yet
615                  */
616                 if (triplet->ext.reg_extension_id >=
617                                 IEEE80211_COUNTRY_EXTENSION_ID) {
618                         country_ie += 3;
619                         country_ie_len -= 3;
620                         continue;
621                 }
622
623                 reg_rule = &rd->reg_rules[i];
624                 freq_range = &reg_rule->freq_range;
625                 power_rule = &reg_rule->power_rule;
626
627                 reg_rule->flags = flags;
628
629                 /* 2 GHz */
630                 if (triplet->chans.first_channel <= 14)
631                         end_channel = triplet->chans.first_channel +
632                                 triplet->chans.num_channels;
633                 else
634                         end_channel =  triplet->chans.first_channel +
635                                 (4 * (triplet->chans.num_channels - 1));
636
637                 /*
638                  * The +10 is since the regulatory domain expects
639                  * the actual band edge, not the center of freq for
640                  * its start and end freqs, assuming 20 MHz bandwidth on
641                  * the channels passed
642                  */
643                 freq_range->start_freq_khz =
644                         MHZ_TO_KHZ(ieee80211_channel_to_frequency(
645                                 triplet->chans.first_channel) - 10);
646                 freq_range->end_freq_khz =
647                         MHZ_TO_KHZ(ieee80211_channel_to_frequency(
648                                 end_channel) + 10);
649
650                 /*
651                  * These are large arbitrary values we use to intersect later.
652                  * Increment this if we ever support >= 40 MHz channels
653                  * in IEEE 802.11
654                  */
655                 freq_range->max_bandwidth_khz = MHZ_TO_KHZ(40);
656                 power_rule->max_antenna_gain = DBI_TO_MBI(100);
657                 power_rule->max_eirp = DBM_TO_MBM(100);
658
659                 country_ie += 3;
660                 country_ie_len -= 3;
661                 i++;
662
663                 BUG_ON(i > NL80211_MAX_SUPP_REG_RULES);
664         }
665
666         return rd;
667 }
668
669
670 /*
671  * Helper for regdom_intersect(), this does the real
672  * mathematical intersection fun
673  */
674 static int reg_rules_intersect(
675         const struct ieee80211_reg_rule *rule1,
676         const struct ieee80211_reg_rule *rule2,
677         struct ieee80211_reg_rule *intersected_rule)
678 {
679         const struct ieee80211_freq_range *freq_range1, *freq_range2;
680         struct ieee80211_freq_range *freq_range;
681         const struct ieee80211_power_rule *power_rule1, *power_rule2;
682         struct ieee80211_power_rule *power_rule;
683         u32 freq_diff;
684
685         freq_range1 = &rule1->freq_range;
686         freq_range2 = &rule2->freq_range;
687         freq_range = &intersected_rule->freq_range;
688
689         power_rule1 = &rule1->power_rule;
690         power_rule2 = &rule2->power_rule;
691         power_rule = &intersected_rule->power_rule;
692
693         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
694                 freq_range2->start_freq_khz);
695         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
696                 freq_range2->end_freq_khz);
697         freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
698                 freq_range2->max_bandwidth_khz);
699
700         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
701         if (freq_range->max_bandwidth_khz > freq_diff)
702                 freq_range->max_bandwidth_khz = freq_diff;
703
704         power_rule->max_eirp = min(power_rule1->max_eirp,
705                 power_rule2->max_eirp);
706         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
707                 power_rule2->max_antenna_gain);
708
709         intersected_rule->flags = (rule1->flags | rule2->flags);
710
711         if (!is_valid_reg_rule(intersected_rule))
712                 return -EINVAL;
713
714         return 0;
715 }
716
717 /**
718  * regdom_intersect - do the intersection between two regulatory domains
719  * @rd1: first regulatory domain
720  * @rd2: second regulatory domain
721  *
722  * Use this function to get the intersection between two regulatory domains.
723  * Once completed we will mark the alpha2 for the rd as intersected, "98",
724  * as no one single alpha2 can represent this regulatory domain.
725  *
726  * Returns a pointer to the regulatory domain structure which will hold the
727  * resulting intersection of rules between rd1 and rd2. We will
728  * kzalloc() this structure for you.
729  */
730 static struct ieee80211_regdomain *regdom_intersect(
731         const struct ieee80211_regdomain *rd1,
732         const struct ieee80211_regdomain *rd2)
733 {
734         int r, size_of_regd;
735         unsigned int x, y;
736         unsigned int num_rules = 0, rule_idx = 0;
737         const struct ieee80211_reg_rule *rule1, *rule2;
738         struct ieee80211_reg_rule *intersected_rule;
739         struct ieee80211_regdomain *rd;
740         /* This is just a dummy holder to help us count */
741         struct ieee80211_reg_rule irule;
742
743         /* Uses the stack temporarily for counter arithmetic */
744         intersected_rule = &irule;
745
746         memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
747
748         if (!rd1 || !rd2)
749                 return NULL;
750
751         /*
752          * First we get a count of the rules we'll need, then we actually
753          * build them. This is to so we can malloc() and free() a
754          * regdomain once. The reason we use reg_rules_intersect() here
755          * is it will return -EINVAL if the rule computed makes no sense.
756          * All rules that do check out OK are valid.
757          */
758
759         for (x = 0; x < rd1->n_reg_rules; x++) {
760                 rule1 = &rd1->reg_rules[x];
761                 for (y = 0; y < rd2->n_reg_rules; y++) {
762                         rule2 = &rd2->reg_rules[y];
763                         if (!reg_rules_intersect(rule1, rule2,
764                                         intersected_rule))
765                                 num_rules++;
766                         memset(intersected_rule, 0,
767                                         sizeof(struct ieee80211_reg_rule));
768                 }
769         }
770
771         if (!num_rules)
772                 return NULL;
773
774         size_of_regd = sizeof(struct ieee80211_regdomain) +
775                 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
776
777         rd = kzalloc(size_of_regd, GFP_KERNEL);
778         if (!rd)
779                 return NULL;
780
781         for (x = 0; x < rd1->n_reg_rules; x++) {
782                 rule1 = &rd1->reg_rules[x];
783                 for (y = 0; y < rd2->n_reg_rules; y++) {
784                         rule2 = &rd2->reg_rules[y];
785                         /*
786                          * This time around instead of using the stack lets
787                          * write to the target rule directly saving ourselves
788                          * a memcpy()
789                          */
790                         intersected_rule = &rd->reg_rules[rule_idx];
791                         r = reg_rules_intersect(rule1, rule2,
792                                 intersected_rule);
793                         /*
794                          * No need to memset here the intersected rule here as
795                          * we're not using the stack anymore
796                          */
797                         if (r)
798                                 continue;
799                         rule_idx++;
800                 }
801         }
802
803         if (rule_idx != num_rules) {
804                 kfree(rd);
805                 return NULL;
806         }
807
808         rd->n_reg_rules = num_rules;
809         rd->alpha2[0] = '9';
810         rd->alpha2[1] = '8';
811
812         return rd;
813 }
814
815 /*
816  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
817  * want to just have the channel structure use these
818  */
819 static u32 map_regdom_flags(u32 rd_flags)
820 {
821         u32 channel_flags = 0;
822         if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
823                 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
824         if (rd_flags & NL80211_RRF_NO_IBSS)
825                 channel_flags |= IEEE80211_CHAN_NO_IBSS;
826         if (rd_flags & NL80211_RRF_DFS)
827                 channel_flags |= IEEE80211_CHAN_RADAR;
828         return channel_flags;
829 }
830
831 static int freq_reg_info_regd(struct wiphy *wiphy,
832                               u32 center_freq,
833                               u32 *bandwidth,
834                               const struct ieee80211_reg_rule **reg_rule,
835                               const struct ieee80211_regdomain *custom_regd)
836 {
837         int i;
838         bool band_rule_found = false;
839         const struct ieee80211_regdomain *regd;
840         u32 max_bandwidth = 0;
841
842         regd = custom_regd ? custom_regd : cfg80211_regdomain;
843
844         /*
845          * Follow the driver's regulatory domain, if present, unless a country
846          * IE has been processed or a user wants to help complaince further
847          */
848         if (last_request->initiator != REGDOM_SET_BY_COUNTRY_IE &&
849             last_request->initiator != REGDOM_SET_BY_USER &&
850             wiphy->regd)
851                 regd = wiphy->regd;
852
853         if (!regd)
854                 return -EINVAL;
855
856         for (i = 0; i < regd->n_reg_rules; i++) {
857                 const struct ieee80211_reg_rule *rr;
858                 const struct ieee80211_freq_range *fr = NULL;
859                 const struct ieee80211_power_rule *pr = NULL;
860
861                 rr = &regd->reg_rules[i];
862                 fr = &rr->freq_range;
863                 pr = &rr->power_rule;
864
865                 /*
866                  * We only need to know if one frequency rule was
867                  * was in center_freq's band, that's enough, so lets
868                  * not overwrite it once found
869                  */
870                 if (!band_rule_found)
871                         band_rule_found = freq_in_rule_band(fr, center_freq);
872
873                 max_bandwidth = freq_max_bandwidth(fr, center_freq);
874
875                 if (max_bandwidth && *bandwidth <= max_bandwidth) {
876                         *reg_rule = rr;
877                         *bandwidth = max_bandwidth;
878                         break;
879                 }
880         }
881
882         if (!band_rule_found)
883                 return -ERANGE;
884
885         return !max_bandwidth;
886 }
887 EXPORT_SYMBOL(freq_reg_info);
888
889 int freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 *bandwidth,
890                          const struct ieee80211_reg_rule **reg_rule)
891 {
892         return freq_reg_info_regd(wiphy, center_freq,
893                 bandwidth, reg_rule, NULL);
894 }
895
896 static void handle_channel(struct wiphy *wiphy, enum ieee80211_band band,
897                            unsigned int chan_idx)
898 {
899         int r;
900         u32 flags;
901         u32 max_bandwidth = 0;
902         const struct ieee80211_reg_rule *reg_rule = NULL;
903         const struct ieee80211_power_rule *power_rule = NULL;
904         struct ieee80211_supported_band *sband;
905         struct ieee80211_channel *chan;
906         struct wiphy *request_wiphy = NULL;
907
908         assert_cfg80211_lock();
909
910         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
911
912         sband = wiphy->bands[band];
913         BUG_ON(chan_idx >= sband->n_channels);
914         chan = &sband->channels[chan_idx];
915
916         flags = chan->orig_flags;
917
918         r = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq),
919                 &max_bandwidth, &reg_rule);
920
921         if (r) {
922                 /*
923                  * This means no regulatory rule was found in the country IE
924                  * with a frequency range on the center_freq's band, since
925                  * IEEE-802.11 allows for a country IE to have a subset of the
926                  * regulatory information provided in a country we ignore
927                  * disabling the channel unless at least one reg rule was
928                  * found on the center_freq's band. For details see this
929                  * clarification:
930                  *
931                  * http://tinyurl.com/11d-clarification
932                  */
933                 if (r == -ERANGE &&
934                     last_request->initiator == REGDOM_SET_BY_COUNTRY_IE) {
935 #ifdef CONFIG_CFG80211_REG_DEBUG
936                         printk(KERN_DEBUG "cfg80211: Leaving channel %d MHz "
937                                 "intact on %s - no rule found in band on "
938                                 "Country IE\n",
939                                 chan->center_freq, wiphy_name(wiphy));
940 #endif
941                 } else {
942                 /*
943                  * In this case we know the country IE has at least one reg rule
944                  * for the band so we respect its band definitions
945                  */
946 #ifdef CONFIG_CFG80211_REG_DEBUG
947                         if (last_request->initiator == REGDOM_SET_BY_COUNTRY_IE)
948                                 printk(KERN_DEBUG "cfg80211: Disabling "
949                                         "channel %d MHz on %s due to "
950                                         "Country IE\n",
951                                         chan->center_freq, wiphy_name(wiphy));
952 #endif
953                         flags |= IEEE80211_CHAN_DISABLED;
954                         chan->flags = flags;
955                 }
956                 return;
957         }
958
959         power_rule = &reg_rule->power_rule;
960
961         if (last_request->initiator == REGDOM_SET_BY_DRIVER &&
962             request_wiphy && request_wiphy == wiphy &&
963             request_wiphy->strict_regulatory) {
964                 /*
965                  * This gaurantees the driver's requested regulatory domain
966                  * will always be used as a base for further regulatory
967                  * settings
968                  */
969                 chan->flags = chan->orig_flags =
970                         map_regdom_flags(reg_rule->flags);
971                 chan->max_antenna_gain = chan->orig_mag =
972                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
973                 chan->max_bandwidth = KHZ_TO_MHZ(max_bandwidth);
974                 chan->max_power = chan->orig_mpwr =
975                         (int) MBM_TO_DBM(power_rule->max_eirp);
976                 return;
977         }
978
979         chan->flags = flags | map_regdom_flags(reg_rule->flags);
980         chan->max_antenna_gain = min(chan->orig_mag,
981                 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
982         chan->max_bandwidth = KHZ_TO_MHZ(max_bandwidth);
983         if (chan->orig_mpwr)
984                 chan->max_power = min(chan->orig_mpwr,
985                         (int) MBM_TO_DBM(power_rule->max_eirp));
986         else
987                 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
988 }
989
990 static void handle_band(struct wiphy *wiphy, enum ieee80211_band band)
991 {
992         unsigned int i;
993         struct ieee80211_supported_band *sband;
994
995         BUG_ON(!wiphy->bands[band]);
996         sband = wiphy->bands[band];
997
998         for (i = 0; i < sband->n_channels; i++)
999                 handle_channel(wiphy, band, i);
1000 }
1001
1002 static bool ignore_reg_update(struct wiphy *wiphy, enum reg_set_by setby)
1003 {
1004         if (!last_request)
1005                 return true;
1006         if (setby == REGDOM_SET_BY_CORE &&
1007                   wiphy->custom_regulatory)
1008                 return true;
1009         /*
1010          * wiphy->regd will be set once the device has its own
1011          * desired regulatory domain set
1012          */
1013         if (wiphy->strict_regulatory && !wiphy->regd &&
1014             !is_world_regdom(last_request->alpha2))
1015                 return true;
1016         return false;
1017 }
1018
1019 static void update_all_wiphy_regulatory(enum reg_set_by setby)
1020 {
1021         struct cfg80211_registered_device *drv;
1022
1023         list_for_each_entry(drv, &cfg80211_drv_list, list)
1024                 wiphy_update_regulatory(&drv->wiphy, setby);
1025 }
1026
1027 static void handle_reg_beacon(struct wiphy *wiphy,
1028                               unsigned int chan_idx,
1029                               struct reg_beacon *reg_beacon)
1030 {
1031 #ifdef CONFIG_CFG80211_REG_DEBUG
1032 #define REG_DEBUG_BEACON_FLAG(desc) \
1033         printk(KERN_DEBUG "cfg80211: Enabling " desc " on " \
1034                 "frequency: %d MHz (Ch %d) on %s\n", \
1035                 reg_beacon->chan.center_freq, \
1036                 ieee80211_frequency_to_channel(reg_beacon->chan.center_freq), \
1037                 wiphy_name(wiphy));
1038 #else
1039 #define REG_DEBUG_BEACON_FLAG(desc) do {} while (0)
1040 #endif
1041         struct ieee80211_supported_band *sband;
1042         struct ieee80211_channel *chan;
1043
1044         assert_cfg80211_lock();
1045
1046         sband = wiphy->bands[reg_beacon->chan.band];
1047         chan = &sband->channels[chan_idx];
1048
1049         if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1050                 return;
1051
1052         if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
1053                 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
1054                 REG_DEBUG_BEACON_FLAG("active scanning");
1055         }
1056
1057         if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
1058                 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
1059                 REG_DEBUG_BEACON_FLAG("beaconing");
1060         }
1061
1062         chan->beacon_found = true;
1063 #undef REG_DEBUG_BEACON_FLAG
1064 }
1065
1066 /*
1067  * Called when a scan on a wiphy finds a beacon on
1068  * new channel
1069  */
1070 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1071                                     struct reg_beacon *reg_beacon)
1072 {
1073         unsigned int i;
1074         struct ieee80211_supported_band *sband;
1075
1076         assert_cfg80211_lock();
1077
1078         if (!wiphy->bands[reg_beacon->chan.band])
1079                 return;
1080
1081         sband = wiphy->bands[reg_beacon->chan.band];
1082
1083         for (i = 0; i < sband->n_channels; i++)
1084                 handle_reg_beacon(wiphy, i, reg_beacon);
1085 }
1086
1087 /*
1088  * Called upon reg changes or a new wiphy is added
1089  */
1090 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1091 {
1092         unsigned int i;
1093         struct ieee80211_supported_band *sband;
1094         struct reg_beacon *reg_beacon;
1095
1096         assert_cfg80211_lock();
1097
1098         if (list_empty(&reg_beacon_list))
1099                 return;
1100
1101         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1102                 if (!wiphy->bands[reg_beacon->chan.band])
1103                         continue;
1104                 sband = wiphy->bands[reg_beacon->chan.band];
1105                 for (i = 0; i < sband->n_channels; i++)
1106                         handle_reg_beacon(wiphy, i, reg_beacon);
1107         }
1108 }
1109
1110 static bool reg_is_world_roaming(struct wiphy *wiphy)
1111 {
1112         if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1113             (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1114                 return true;
1115         if (last_request->initiator != REGDOM_SET_BY_COUNTRY_IE &&
1116             wiphy->custom_regulatory)
1117                 return true;
1118         return false;
1119 }
1120
1121 /* Reap the advantages of previously found beacons */
1122 static void reg_process_beacons(struct wiphy *wiphy)
1123 {
1124         if (!reg_is_world_roaming(wiphy))
1125                 return;
1126         wiphy_update_beacon_reg(wiphy);
1127 }
1128
1129 void wiphy_update_regulatory(struct wiphy *wiphy, enum reg_set_by setby)
1130 {
1131         enum ieee80211_band band;
1132
1133         if (ignore_reg_update(wiphy, setby))
1134                 goto out;
1135         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1136                 if (wiphy->bands[band])
1137                         handle_band(wiphy, band);
1138         }
1139 out:
1140         reg_process_beacons(wiphy);
1141         if (wiphy->reg_notifier)
1142                 wiphy->reg_notifier(wiphy, last_request);
1143 }
1144
1145 static void handle_channel_custom(struct wiphy *wiphy,
1146                                   enum ieee80211_band band,
1147                                   unsigned int chan_idx,
1148                                   const struct ieee80211_regdomain *regd)
1149 {
1150         int r;
1151         u32 max_bandwidth = 0;
1152         const struct ieee80211_reg_rule *reg_rule = NULL;
1153         const struct ieee80211_power_rule *power_rule = NULL;
1154         struct ieee80211_supported_band *sband;
1155         struct ieee80211_channel *chan;
1156
1157         sband = wiphy->bands[band];
1158         BUG_ON(chan_idx >= sband->n_channels);
1159         chan = &sband->channels[chan_idx];
1160
1161         r = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq),
1162                 &max_bandwidth, &reg_rule, regd);
1163
1164         if (r) {
1165                 chan->flags = IEEE80211_CHAN_DISABLED;
1166                 return;
1167         }
1168
1169         power_rule = &reg_rule->power_rule;
1170
1171         chan->flags |= map_regdom_flags(reg_rule->flags);
1172         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1173         chan->max_bandwidth = KHZ_TO_MHZ(max_bandwidth);
1174         chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1175 }
1176
1177 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1178                                const struct ieee80211_regdomain *regd)
1179 {
1180         unsigned int i;
1181         struct ieee80211_supported_band *sband;
1182
1183         BUG_ON(!wiphy->bands[band]);
1184         sband = wiphy->bands[band];
1185
1186         for (i = 0; i < sband->n_channels; i++)
1187                 handle_channel_custom(wiphy, band, i, regd);
1188 }
1189
1190 /* Used by drivers prior to wiphy registration */
1191 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1192                                    const struct ieee80211_regdomain *regd)
1193 {
1194         enum ieee80211_band band;
1195         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1196                 if (wiphy->bands[band])
1197                         handle_band_custom(wiphy, band, regd);
1198         }
1199 }
1200 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1201
1202 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
1203                          const struct ieee80211_regdomain *src_regd)
1204 {
1205         struct ieee80211_regdomain *regd;
1206         int size_of_regd = 0;
1207         unsigned int i;
1208
1209         size_of_regd = sizeof(struct ieee80211_regdomain) +
1210           ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
1211
1212         regd = kzalloc(size_of_regd, GFP_KERNEL);
1213         if (!regd)
1214                 return -ENOMEM;
1215
1216         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
1217
1218         for (i = 0; i < src_regd->n_reg_rules; i++)
1219                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
1220                         sizeof(struct ieee80211_reg_rule));
1221
1222         *dst_regd = regd;
1223         return 0;
1224 }
1225
1226 /*
1227  * Return value which can be used by ignore_request() to indicate
1228  * it has been determined we should intersect two regulatory domains
1229  */
1230 #define REG_INTERSECT   1
1231
1232 /* This has the logic which determines when a new request
1233  * should be ignored. */
1234 static int ignore_request(struct wiphy *wiphy,
1235                           struct regulatory_request *pending_request)
1236 {
1237         struct wiphy *last_wiphy = NULL;
1238
1239         assert_cfg80211_lock();
1240
1241         /* All initial requests are respected */
1242         if (!last_request)
1243                 return 0;
1244
1245         switch (pending_request->initiator) {
1246         case REGDOM_SET_BY_INIT:
1247                 return -EINVAL;
1248         case REGDOM_SET_BY_CORE:
1249                 return -EINVAL;
1250         case REGDOM_SET_BY_COUNTRY_IE:
1251
1252                 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1253
1254                 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1255                         return -EINVAL;
1256                 if (last_request->initiator == REGDOM_SET_BY_COUNTRY_IE) {
1257                         if (last_wiphy != wiphy) {
1258                                 /*
1259                                  * Two cards with two APs claiming different
1260                                  * different Country IE alpha2s. We could
1261                                  * intersect them, but that seems unlikely
1262                                  * to be correct. Reject second one for now.
1263                                  */
1264                                 if (regdom_changes(pending_request->alpha2))
1265                                         return -EOPNOTSUPP;
1266                                 return -EALREADY;
1267                         }
1268                         /*
1269                          * Two consecutive Country IE hints on the same wiphy.
1270                          * This should be picked up early by the driver/stack
1271                          */
1272                         if (WARN_ON(regdom_changes(pending_request->alpha2)))
1273                                 return 0;
1274                         return -EALREADY;
1275                 }
1276                 return REG_INTERSECT;
1277         case REGDOM_SET_BY_DRIVER:
1278                 if (last_request->initiator == REGDOM_SET_BY_CORE) {
1279                         if (is_old_static_regdom(cfg80211_regdomain))
1280                                 return 0;
1281                         if (regdom_changes(pending_request->alpha2))
1282                                 return 0;
1283                         return -EALREADY;
1284                 }
1285
1286                 /*
1287                  * This would happen if you unplug and plug your card
1288                  * back in or if you add a new device for which the previously
1289                  * loaded card also agrees on the regulatory domain.
1290                  */
1291                 if (last_request->initiator == REGDOM_SET_BY_DRIVER &&
1292                     !regdom_changes(pending_request->alpha2))
1293                         return -EALREADY;
1294
1295                 return REG_INTERSECT;
1296         case REGDOM_SET_BY_USER:
1297                 if (last_request->initiator == REGDOM_SET_BY_COUNTRY_IE)
1298                         return REG_INTERSECT;
1299                 /*
1300                  * If the user knows better the user should set the regdom
1301                  * to their country before the IE is picked up
1302                  */
1303                 if (last_request->initiator == REGDOM_SET_BY_USER &&
1304                           last_request->intersect)
1305                         return -EOPNOTSUPP;
1306                 /*
1307                  * Process user requests only after previous user/driver/core
1308                  * requests have been processed
1309                  */
1310                 if (last_request->initiator == REGDOM_SET_BY_CORE ||
1311                     last_request->initiator == REGDOM_SET_BY_DRIVER ||
1312                     last_request->initiator == REGDOM_SET_BY_USER) {
1313                         if (regdom_changes(last_request->alpha2))
1314                                 return -EAGAIN;
1315                 }
1316
1317                 if (!is_old_static_regdom(cfg80211_regdomain) &&
1318                     !regdom_changes(pending_request->alpha2))
1319                         return -EALREADY;
1320
1321                 return 0;
1322         }
1323
1324         return -EINVAL;
1325 }
1326
1327 /**
1328  * __regulatory_hint - hint to the wireless core a regulatory domain
1329  * @wiphy: if the hint comes from country information from an AP, this
1330  *      is required to be set to the wiphy that received the information
1331  * @pending_request: the regulatory request currently being processed
1332  *
1333  * The Wireless subsystem can use this function to hint to the wireless core
1334  * what it believes should be the current regulatory domain.
1335  *
1336  * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1337  * already been set or other standard error codes.
1338  *
1339  * Caller must hold &cfg80211_mutex
1340  */
1341 static int __regulatory_hint(struct wiphy *wiphy,
1342                              struct regulatory_request *pending_request)
1343 {
1344         bool intersect = false;
1345         int r = 0;
1346
1347         assert_cfg80211_lock();
1348
1349         r = ignore_request(wiphy, pending_request);
1350
1351         if (r == REG_INTERSECT) {
1352                 if (pending_request->initiator == REGDOM_SET_BY_DRIVER) {
1353                         r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1354                         if (r) {
1355                                 kfree(pending_request);
1356                                 return r;
1357                         }
1358                 }
1359                 intersect = true;
1360         } else if (r) {
1361                 /*
1362                  * If the regulatory domain being requested by the
1363                  * driver has already been set just copy it to the
1364                  * wiphy
1365                  */
1366                 if (r == -EALREADY &&
1367                     pending_request->initiator == REGDOM_SET_BY_DRIVER) {
1368                         r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1369                         if (r) {
1370                                 kfree(pending_request);
1371                                 return r;
1372                         }
1373                         r = -EALREADY;
1374                         goto new_request;
1375                 }
1376                 kfree(pending_request);
1377                 return r;
1378         }
1379
1380 new_request:
1381         kfree(last_request);
1382
1383         last_request = pending_request;
1384         last_request->intersect = intersect;
1385
1386         pending_request = NULL;
1387
1388         /* When r == REG_INTERSECT we do need to call CRDA */
1389         if (r < 0)
1390                 return r;
1391
1392         /*
1393          * Note: When CONFIG_WIRELESS_OLD_REGULATORY is enabled
1394          * AND if CRDA is NOT present nothing will happen, if someone
1395          * wants to bother with 11d with OLD_REG you can add a timer.
1396          * If after x amount of time nothing happens you can call:
1397          *
1398          * return set_regdom(country_ie_regdomain);
1399          *
1400          * to intersect with the static rd
1401          */
1402         return call_crda(last_request->alpha2);
1403 }
1404
1405 /* This currently only processes user and driver regulatory hints */
1406 static void reg_process_hint(struct regulatory_request *reg_request)
1407 {
1408         int r = 0;
1409         struct wiphy *wiphy = NULL;
1410
1411         BUG_ON(!reg_request->alpha2);
1412
1413         mutex_lock(&cfg80211_mutex);
1414
1415         if (wiphy_idx_valid(reg_request->wiphy_idx))
1416                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1417
1418         if (reg_request->initiator == REGDOM_SET_BY_DRIVER &&
1419             !wiphy) {
1420                 kfree(reg_request);
1421                 goto out;
1422         }
1423
1424         r = __regulatory_hint(wiphy, reg_request);
1425         /* This is required so that the orig_* parameters are saved */
1426         if (r == -EALREADY && wiphy && wiphy->strict_regulatory)
1427                 wiphy_update_regulatory(wiphy, reg_request->initiator);
1428 out:
1429         mutex_unlock(&cfg80211_mutex);
1430 }
1431
1432 /* Processes regulatory hints, this is all the REGDOM_SET_BY_* */
1433 static void reg_process_pending_hints(void)
1434         {
1435         struct regulatory_request *reg_request;
1436
1437         spin_lock(&reg_requests_lock);
1438         while (!list_empty(&reg_requests_list)) {
1439                 reg_request = list_first_entry(&reg_requests_list,
1440                                                struct regulatory_request,
1441                                                list);
1442                 list_del_init(&reg_request->list);
1443
1444                 spin_unlock(&reg_requests_lock);
1445                 reg_process_hint(reg_request);
1446                 spin_lock(&reg_requests_lock);
1447         }
1448         spin_unlock(&reg_requests_lock);
1449 }
1450
1451 /* Processes beacon hints -- this has nothing to do with country IEs */
1452 static void reg_process_pending_beacon_hints(void)
1453 {
1454         struct cfg80211_registered_device *drv;
1455         struct reg_beacon *pending_beacon, *tmp;
1456
1457         mutex_lock(&cfg80211_mutex);
1458
1459         /* This goes through the _pending_ beacon list */
1460         spin_lock_bh(&reg_pending_beacons_lock);
1461
1462         if (list_empty(&reg_pending_beacons)) {
1463                 spin_unlock_bh(&reg_pending_beacons_lock);
1464                 goto out;
1465         }
1466
1467         list_for_each_entry_safe(pending_beacon, tmp,
1468                                  &reg_pending_beacons, list) {
1469
1470                 list_del_init(&pending_beacon->list);
1471
1472                 /* Applies the beacon hint to current wiphys */
1473                 list_for_each_entry(drv, &cfg80211_drv_list, list)
1474                         wiphy_update_new_beacon(&drv->wiphy, pending_beacon);
1475
1476                 /* Remembers the beacon hint for new wiphys or reg changes */
1477                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1478         }
1479
1480         spin_unlock_bh(&reg_pending_beacons_lock);
1481 out:
1482         mutex_unlock(&cfg80211_mutex);
1483 }
1484
1485 static void reg_todo(struct work_struct *work)
1486 {
1487         reg_process_pending_hints();
1488         reg_process_pending_beacon_hints();
1489 }
1490
1491 static DECLARE_WORK(reg_work, reg_todo);
1492
1493 static void queue_regulatory_request(struct regulatory_request *request)
1494 {
1495         spin_lock(&reg_requests_lock);
1496         list_add_tail(&request->list, &reg_requests_list);
1497         spin_unlock(&reg_requests_lock);
1498
1499         schedule_work(&reg_work);
1500 }
1501
1502 /* Core regulatory hint -- happens once during cfg80211_init() */
1503 static int regulatory_hint_core(const char *alpha2)
1504 {
1505         struct regulatory_request *request;
1506
1507         BUG_ON(last_request);
1508
1509         request = kzalloc(sizeof(struct regulatory_request),
1510                           GFP_KERNEL);
1511         if (!request)
1512                 return -ENOMEM;
1513
1514         request->alpha2[0] = alpha2[0];
1515         request->alpha2[1] = alpha2[1];
1516         request->initiator = REGDOM_SET_BY_CORE;
1517
1518         queue_regulatory_request(request);
1519
1520         return 0;
1521 }
1522
1523 /* User hints */
1524 int regulatory_hint_user(const char *alpha2)
1525 {
1526         struct regulatory_request *request;
1527
1528         BUG_ON(!alpha2);
1529
1530         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1531         if (!request)
1532                 return -ENOMEM;
1533
1534         request->wiphy_idx = WIPHY_IDX_STALE;
1535         request->alpha2[0] = alpha2[0];
1536         request->alpha2[1] = alpha2[1];
1537         request->initiator = REGDOM_SET_BY_USER,
1538
1539         queue_regulatory_request(request);
1540
1541         return 0;
1542 }
1543
1544 /* Driver hints */
1545 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1546 {
1547         struct regulatory_request *request;
1548
1549         BUG_ON(!alpha2);
1550         BUG_ON(!wiphy);
1551
1552         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1553         if (!request)
1554                 return -ENOMEM;
1555
1556         request->wiphy_idx = get_wiphy_idx(wiphy);
1557
1558         /* Must have registered wiphy first */
1559         BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1560
1561         request->alpha2[0] = alpha2[0];
1562         request->alpha2[1] = alpha2[1];
1563         request->initiator = REGDOM_SET_BY_DRIVER;
1564
1565         queue_regulatory_request(request);
1566
1567         return 0;
1568 }
1569 EXPORT_SYMBOL(regulatory_hint);
1570
1571 static bool reg_same_country_ie_hint(struct wiphy *wiphy,
1572                         u32 country_ie_checksum)
1573 {
1574         struct wiphy *request_wiphy;
1575
1576         assert_cfg80211_lock();
1577
1578         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1579
1580         if (!request_wiphy)
1581                 return false;
1582
1583         if (likely(request_wiphy != wiphy))
1584                 return !country_ie_integrity_changes(country_ie_checksum);
1585         /*
1586          * We should not have let these through at this point, they
1587          * should have been picked up earlier by the first alpha2 check
1588          * on the device
1589          */
1590         if (WARN_ON(!country_ie_integrity_changes(country_ie_checksum)))
1591                 return true;
1592         return false;
1593 }
1594
1595 void regulatory_hint_11d(struct wiphy *wiphy,
1596                         u8 *country_ie,
1597                         u8 country_ie_len)
1598 {
1599         struct ieee80211_regdomain *rd = NULL;
1600         char alpha2[2];
1601         u32 checksum = 0;
1602         enum environment_cap env = ENVIRON_ANY;
1603         struct regulatory_request *request;
1604
1605         mutex_lock(&cfg80211_mutex);
1606
1607         if (unlikely(!last_request)) {
1608                 mutex_unlock(&cfg80211_mutex);
1609                 return;
1610         }
1611
1612         /* IE len must be evenly divisible by 2 */
1613         if (country_ie_len & 0x01)
1614                 goto out;
1615
1616         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1617                 goto out;
1618
1619         /*
1620          * Pending country IE processing, this can happen after we
1621          * call CRDA and wait for a response if a beacon was received before
1622          * we were able to process the last regulatory_hint_11d() call
1623          */
1624         if (country_ie_regdomain)
1625                 goto out;
1626
1627         alpha2[0] = country_ie[0];
1628         alpha2[1] = country_ie[1];
1629
1630         if (country_ie[2] == 'I')
1631                 env = ENVIRON_INDOOR;
1632         else if (country_ie[2] == 'O')
1633                 env = ENVIRON_OUTDOOR;
1634
1635         /*
1636          * We will run this for *every* beacon processed for the BSSID, so
1637          * we optimize an early check to exit out early if we don't have to
1638          * do anything
1639          */
1640         if (likely(wiphy_idx_valid(last_request->wiphy_idx))) {
1641                 struct cfg80211_registered_device *drv_last_ie;
1642
1643                 drv_last_ie =
1644                         cfg80211_drv_by_wiphy_idx(last_request->wiphy_idx);
1645
1646                 /*
1647                  * Lets keep this simple -- we trust the first AP
1648                  * after we intersect with CRDA
1649                  */
1650                 if (likely(&drv_last_ie->wiphy == wiphy)) {
1651                         /*
1652                          * Ignore IEs coming in on this wiphy with
1653                          * the same alpha2 and environment cap
1654                          */
1655                         if (likely(alpha2_equal(drv_last_ie->country_ie_alpha2,
1656                                   alpha2) &&
1657                                   env == drv_last_ie->env)) {
1658                                 goto out;
1659                         }
1660                         /*
1661                          * the wiphy moved on to another BSSID or the AP
1662                          * was reconfigured. XXX: We need to deal with the
1663                          * case where the user suspends and goes to goes
1664                          * to another country, and then gets IEs from an
1665                          * AP with different settings
1666                          */
1667                         goto out;
1668                 } else {
1669                         /*
1670                          * Ignore IEs coming in on two separate wiphys with
1671                          * the same alpha2 and environment cap
1672                          */
1673                         if (likely(alpha2_equal(drv_last_ie->country_ie_alpha2,
1674                                   alpha2) &&
1675                                   env == drv_last_ie->env)) {
1676                                 goto out;
1677                         }
1678                         /* We could potentially intersect though */
1679                         goto out;
1680                 }
1681         }
1682
1683         rd = country_ie_2_rd(country_ie, country_ie_len, &checksum);
1684         if (!rd)
1685                 goto out;
1686
1687         /*
1688          * This will not happen right now but we leave it here for the
1689          * the future when we want to add suspend/resume support and having
1690          * the user move to another country after doing so, or having the user
1691          * move to another AP. Right now we just trust the first AP.
1692          *
1693          * If we hit this before we add this support we want to be informed of
1694          * it as it would indicate a mistake in the current design
1695          */
1696         if (WARN_ON(reg_same_country_ie_hint(wiphy, checksum)))
1697                 goto free_rd_out;
1698
1699         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1700         if (!request)
1701                 goto free_rd_out;
1702
1703         /*
1704          * We keep this around for when CRDA comes back with a response so
1705          * we can intersect with that
1706          */
1707         country_ie_regdomain = rd;
1708
1709         request->wiphy_idx = get_wiphy_idx(wiphy);
1710         request->alpha2[0] = rd->alpha2[0];
1711         request->alpha2[1] = rd->alpha2[1];
1712         request->initiator = REGDOM_SET_BY_COUNTRY_IE;
1713         request->country_ie_checksum = checksum;
1714         request->country_ie_env = env;
1715
1716         mutex_unlock(&cfg80211_mutex);
1717
1718         queue_regulatory_request(request);
1719
1720         return;
1721
1722 free_rd_out:
1723         kfree(rd);
1724 out:
1725         mutex_unlock(&cfg80211_mutex);
1726 }
1727 EXPORT_SYMBOL(regulatory_hint_11d);
1728
1729 static bool freq_is_chan_12_13_14(u16 freq)
1730 {
1731         if (freq == ieee80211_channel_to_frequency(12) ||
1732             freq == ieee80211_channel_to_frequency(13) ||
1733             freq == ieee80211_channel_to_frequency(14))
1734                 return true;
1735         return false;
1736 }
1737
1738 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1739                                  struct ieee80211_channel *beacon_chan,
1740                                  gfp_t gfp)
1741 {
1742         struct reg_beacon *reg_beacon;
1743
1744         if (likely((beacon_chan->beacon_found ||
1745             (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
1746             (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1747              !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
1748                 return 0;
1749
1750         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1751         if (!reg_beacon)
1752                 return -ENOMEM;
1753
1754 #ifdef CONFIG_CFG80211_REG_DEBUG
1755         printk(KERN_DEBUG "cfg80211: Found new beacon on "
1756                 "frequency: %d MHz (Ch %d) on %s\n",
1757                 beacon_chan->center_freq,
1758                 ieee80211_frequency_to_channel(beacon_chan->center_freq),
1759                 wiphy_name(wiphy));
1760 #endif
1761         memcpy(&reg_beacon->chan, beacon_chan,
1762                 sizeof(struct ieee80211_channel));
1763
1764
1765         /*
1766          * Since we can be called from BH or and non-BH context
1767          * we must use spin_lock_bh()
1768          */
1769         spin_lock_bh(&reg_pending_beacons_lock);
1770         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1771         spin_unlock_bh(&reg_pending_beacons_lock);
1772
1773         schedule_work(&reg_work);
1774
1775         return 0;
1776 }
1777
1778 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1779 {
1780         unsigned int i;
1781         const struct ieee80211_reg_rule *reg_rule = NULL;
1782         const struct ieee80211_freq_range *freq_range = NULL;
1783         const struct ieee80211_power_rule *power_rule = NULL;
1784
1785         printk(KERN_INFO "\t(start_freq - end_freq @ bandwidth), "
1786                 "(max_antenna_gain, max_eirp)\n");
1787
1788         for (i = 0; i < rd->n_reg_rules; i++) {
1789                 reg_rule = &rd->reg_rules[i];
1790                 freq_range = &reg_rule->freq_range;
1791                 power_rule = &reg_rule->power_rule;
1792
1793                 /*
1794                  * There may not be documentation for max antenna gain
1795                  * in certain regions
1796                  */
1797                 if (power_rule->max_antenna_gain)
1798                         printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), "
1799                                 "(%d mBi, %d mBm)\n",
1800                                 freq_range->start_freq_khz,
1801                                 freq_range->end_freq_khz,
1802                                 freq_range->max_bandwidth_khz,
1803                                 power_rule->max_antenna_gain,
1804                                 power_rule->max_eirp);
1805                 else
1806                         printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), "
1807                                 "(N/A, %d mBm)\n",
1808                                 freq_range->start_freq_khz,
1809                                 freq_range->end_freq_khz,
1810                                 freq_range->max_bandwidth_khz,
1811                                 power_rule->max_eirp);
1812         }
1813 }
1814
1815 static void print_regdomain(const struct ieee80211_regdomain *rd)
1816 {
1817
1818         if (is_intersected_alpha2(rd->alpha2)) {
1819
1820                 if (last_request->initiator == REGDOM_SET_BY_COUNTRY_IE) {
1821                         struct cfg80211_registered_device *drv;
1822                         drv = cfg80211_drv_by_wiphy_idx(
1823                                 last_request->wiphy_idx);
1824                         if (drv) {
1825                                 printk(KERN_INFO "cfg80211: Current regulatory "
1826                                         "domain updated by AP to: %c%c\n",
1827                                         drv->country_ie_alpha2[0],
1828                                         drv->country_ie_alpha2[1]);
1829                         } else
1830                                 printk(KERN_INFO "cfg80211: Current regulatory "
1831                                         "domain intersected: \n");
1832                 } else
1833                                 printk(KERN_INFO "cfg80211: Current regulatory "
1834                                         "domain intersected: \n");
1835         } else if (is_world_regdom(rd->alpha2))
1836                 printk(KERN_INFO "cfg80211: World regulatory "
1837                         "domain updated:\n");
1838         else {
1839                 if (is_unknown_alpha2(rd->alpha2))
1840                         printk(KERN_INFO "cfg80211: Regulatory domain "
1841                                 "changed to driver built-in settings "
1842                                 "(unknown country)\n");
1843                 else
1844                         printk(KERN_INFO "cfg80211: Regulatory domain "
1845                                 "changed to country: %c%c\n",
1846                                 rd->alpha2[0], rd->alpha2[1]);
1847         }
1848         print_rd_rules(rd);
1849 }
1850
1851 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
1852 {
1853         printk(KERN_INFO "cfg80211: Regulatory domain: %c%c\n",
1854                 rd->alpha2[0], rd->alpha2[1]);
1855         print_rd_rules(rd);
1856 }
1857
1858 #ifdef CONFIG_CFG80211_REG_DEBUG
1859 static void reg_country_ie_process_debug(
1860         const struct ieee80211_regdomain *rd,
1861         const struct ieee80211_regdomain *country_ie_regdomain,
1862         const struct ieee80211_regdomain *intersected_rd)
1863 {
1864         printk(KERN_DEBUG "cfg80211: Received country IE:\n");
1865         print_regdomain_info(country_ie_regdomain);
1866         printk(KERN_DEBUG "cfg80211: CRDA thinks this should applied:\n");
1867         print_regdomain_info(rd);
1868         if (intersected_rd) {
1869                 printk(KERN_DEBUG "cfg80211: We intersect both of these "
1870                         "and get:\n");
1871                 print_regdomain_info(intersected_rd);
1872                 return;
1873         }
1874         printk(KERN_DEBUG "cfg80211: Intersection between both failed\n");
1875 }
1876 #else
1877 static inline void reg_country_ie_process_debug(
1878         const struct ieee80211_regdomain *rd,
1879         const struct ieee80211_regdomain *country_ie_regdomain,
1880         const struct ieee80211_regdomain *intersected_rd)
1881 {
1882 }
1883 #endif
1884
1885 /* Takes ownership of rd only if it doesn't fail */
1886 static int __set_regdom(const struct ieee80211_regdomain *rd)
1887 {
1888         const struct ieee80211_regdomain *intersected_rd = NULL;
1889         struct cfg80211_registered_device *drv = NULL;
1890         struct wiphy *request_wiphy;
1891         /* Some basic sanity checks first */
1892
1893         if (is_world_regdom(rd->alpha2)) {
1894                 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1895                         return -EINVAL;
1896                 update_world_regdomain(rd);
1897                 return 0;
1898         }
1899
1900         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
1901                         !is_unknown_alpha2(rd->alpha2))
1902                 return -EINVAL;
1903
1904         if (!last_request)
1905                 return -EINVAL;
1906
1907         /*
1908          * Lets only bother proceeding on the same alpha2 if the current
1909          * rd is non static (it means CRDA was present and was used last)
1910          * and the pending request came in from a country IE
1911          */
1912         if (last_request->initiator != REGDOM_SET_BY_COUNTRY_IE) {
1913                 /*
1914                  * If someone else asked us to change the rd lets only bother
1915                  * checking if the alpha2 changes if CRDA was already called
1916                  */
1917                 if (!is_old_static_regdom(cfg80211_regdomain) &&
1918                     !regdom_changes(rd->alpha2))
1919                         return -EINVAL;
1920         }
1921
1922         /*
1923          * Now lets set the regulatory domain, update all driver channels
1924          * and finally inform them of what we have done, in case they want
1925          * to review or adjust their own settings based on their own
1926          * internal EEPROM data
1927          */
1928
1929         if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1930                 return -EINVAL;
1931
1932         if (!is_valid_rd(rd)) {
1933                 printk(KERN_ERR "cfg80211: Invalid "
1934                         "regulatory domain detected:\n");
1935                 print_regdomain_info(rd);
1936                 return -EINVAL;
1937         }
1938
1939         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1940
1941         if (!last_request->intersect) {
1942                 int r;
1943
1944                 if (last_request->initiator != REGDOM_SET_BY_DRIVER) {
1945                         reset_regdomains();
1946                         cfg80211_regdomain = rd;
1947                         return 0;
1948                 }
1949
1950                 /*
1951                  * For a driver hint, lets copy the regulatory domain the
1952                  * driver wanted to the wiphy to deal with conflicts
1953                  */
1954
1955                 BUG_ON(request_wiphy->regd);
1956
1957                 r = reg_copy_regd(&request_wiphy->regd, rd);
1958                 if (r)
1959                         return r;
1960
1961                 reset_regdomains();
1962                 cfg80211_regdomain = rd;
1963                 return 0;
1964         }
1965
1966         /* Intersection requires a bit more work */
1967
1968         if (last_request->initiator != REGDOM_SET_BY_COUNTRY_IE) {
1969
1970                 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
1971                 if (!intersected_rd)
1972                         return -EINVAL;
1973
1974                 /*
1975                  * We can trash what CRDA provided now.
1976                  * However if a driver requested this specific regulatory
1977                  * domain we keep it for its private use
1978                  */
1979                 if (last_request->initiator == REGDOM_SET_BY_DRIVER)
1980                         request_wiphy->regd = rd;
1981                 else
1982                         kfree(rd);
1983
1984                 rd = NULL;
1985
1986                 reset_regdomains();
1987                 cfg80211_regdomain = intersected_rd;
1988
1989                 return 0;
1990         }
1991
1992         /*
1993          * Country IE requests are handled a bit differently, we intersect
1994          * the country IE rd with what CRDA believes that country should have
1995          */
1996
1997         BUG_ON(!country_ie_regdomain);
1998
1999         if (rd != country_ie_regdomain) {
2000                 /*
2001                  * Intersect what CRDA returned and our what we
2002                  * had built from the Country IE received
2003                  */
2004
2005                 intersected_rd = regdom_intersect(rd, country_ie_regdomain);
2006
2007                 reg_country_ie_process_debug(rd, country_ie_regdomain,
2008                         intersected_rd);
2009
2010                 kfree(country_ie_regdomain);
2011                 country_ie_regdomain = NULL;
2012         } else {
2013                 /*
2014                  * This would happen when CRDA was not present and
2015                  * OLD_REGULATORY was enabled. We intersect our Country
2016                  * IE rd and what was set on cfg80211 originally
2017                  */
2018                 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2019         }
2020
2021         if (!intersected_rd)
2022                 return -EINVAL;
2023
2024         drv = wiphy_to_dev(request_wiphy);
2025
2026         drv->country_ie_alpha2[0] = rd->alpha2[0];
2027         drv->country_ie_alpha2[1] = rd->alpha2[1];
2028         drv->env = last_request->country_ie_env;
2029
2030         BUG_ON(intersected_rd == rd);
2031
2032         kfree(rd);
2033         rd = NULL;
2034
2035         reset_regdomains();
2036         cfg80211_regdomain = intersected_rd;
2037
2038         return 0;
2039 }
2040
2041
2042 /*
2043  * Use this call to set the current regulatory domain. Conflicts with
2044  * multiple drivers can be ironed out later. Caller must've already
2045  * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2046  */
2047 int set_regdom(const struct ieee80211_regdomain *rd)
2048 {
2049         int r;
2050
2051         assert_cfg80211_lock();
2052
2053         /* Note that this doesn't update the wiphys, this is done below */
2054         r = __set_regdom(rd);
2055         if (r) {
2056                 kfree(rd);
2057                 return r;
2058         }
2059
2060         /* This would make this whole thing pointless */
2061         if (!last_request->intersect)
2062                 BUG_ON(rd != cfg80211_regdomain);
2063
2064         /* update all wiphys now with the new established regulatory domain */
2065         update_all_wiphy_regulatory(last_request->initiator);
2066
2067         print_regdomain(cfg80211_regdomain);
2068
2069         return r;
2070 }
2071
2072 /* Caller must hold cfg80211_mutex */
2073 void reg_device_remove(struct wiphy *wiphy)
2074 {
2075         struct wiphy *request_wiphy;
2076
2077         assert_cfg80211_lock();
2078
2079         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2080
2081         kfree(wiphy->regd);
2082         if (!last_request || !request_wiphy)
2083                 return;
2084         if (request_wiphy != wiphy)
2085                 return;
2086         last_request->wiphy_idx = WIPHY_IDX_STALE;
2087         last_request->country_ie_env = ENVIRON_ANY;
2088 }
2089
2090 int regulatory_init(void)
2091 {
2092         int err = 0;
2093
2094         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2095         if (IS_ERR(reg_pdev))
2096                 return PTR_ERR(reg_pdev);
2097
2098         spin_lock_init(&reg_requests_lock);
2099         spin_lock_init(&reg_pending_beacons_lock);
2100
2101 #ifdef CONFIG_WIRELESS_OLD_REGULATORY
2102         cfg80211_regdomain = static_regdom(ieee80211_regdom);
2103
2104         printk(KERN_INFO "cfg80211: Using static regulatory domain info\n");
2105         print_regdomain_info(cfg80211_regdomain);
2106         /*
2107          * The old code still requests for a new regdomain and if
2108          * you have CRDA you get it updated, otherwise you get
2109          * stuck with the static values. We ignore "EU" code as
2110          * that is not a valid ISO / IEC 3166 alpha2
2111          */
2112         if (ieee80211_regdom[0] != 'E' || ieee80211_regdom[1] != 'U')
2113                 err = regulatory_hint_core(ieee80211_regdom);
2114 #else
2115         cfg80211_regdomain = cfg80211_world_regdom;
2116
2117         err = regulatory_hint_core("00");
2118 #endif
2119         if (err) {
2120                 if (err == -ENOMEM)
2121                         return err;
2122                 /*
2123                  * N.B. kobject_uevent_env() can fail mainly for when we're out
2124                  * memory which is handled and propagated appropriately above
2125                  * but it can also fail during a netlink_broadcast() or during
2126                  * early boot for call_usermodehelper(). For now treat these
2127                  * errors as non-fatal.
2128                  */
2129                 printk(KERN_ERR "cfg80211: kobject_uevent_env() was unable "
2130                         "to call CRDA during init");
2131 #ifdef CONFIG_CFG80211_REG_DEBUG
2132                 /* We want to find out exactly why when debugging */
2133                 WARN_ON(err);
2134 #endif
2135         }
2136
2137         return 0;
2138 }
2139
2140 void regulatory_exit(void)
2141 {
2142         struct regulatory_request *reg_request, *tmp;
2143         struct reg_beacon *reg_beacon, *btmp;
2144
2145         cancel_work_sync(&reg_work);
2146
2147         mutex_lock(&cfg80211_mutex);
2148
2149         reset_regdomains();
2150
2151         kfree(country_ie_regdomain);
2152         country_ie_regdomain = NULL;
2153
2154         kfree(last_request);
2155
2156         platform_device_unregister(reg_pdev);
2157
2158         spin_lock_bh(&reg_pending_beacons_lock);
2159         if (!list_empty(&reg_pending_beacons)) {
2160                 list_for_each_entry_safe(reg_beacon, btmp,
2161                                          &reg_pending_beacons, list) {
2162                         list_del(&reg_beacon->list);
2163                         kfree(reg_beacon);
2164                 }
2165         }
2166         spin_unlock_bh(&reg_pending_beacons_lock);
2167
2168         if (!list_empty(&reg_beacon_list)) {
2169                 list_for_each_entry_safe(reg_beacon, btmp,
2170                                          &reg_beacon_list, list) {
2171                         list_del(&reg_beacon->list);
2172                         kfree(reg_beacon);
2173                 }
2174         }
2175
2176         spin_lock(&reg_requests_lock);
2177         if (!list_empty(&reg_requests_list)) {
2178                 list_for_each_entry_safe(reg_request, tmp,
2179                                          &reg_requests_list, list) {
2180                         list_del(&reg_request->list);
2181                         kfree(reg_request);
2182                 }
2183         }
2184         spin_unlock(&reg_requests_lock);
2185
2186         mutex_unlock(&cfg80211_mutex);
2187 }