1658effdbee173802f1b643f81b9cb3c4d0346e3
[linux-2.6.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008       Luis R. Rodriguez <lrodriguz@atheros.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11
12 /**
13  * DOC: Wireless regulatory infrastructure
14  *
15  * The usual implementation is for a driver to read a device EEPROM to
16  * determine which regulatory domain it should be operating under, then
17  * looking up the allowable channels in a driver-local table and finally
18  * registering those channels in the wiphy structure.
19  *
20  * Another set of compliance enforcement is for drivers to use their
21  * own compliance limits which can be stored on the EEPROM. The host
22  * driver or firmware may ensure these are used.
23  *
24  * In addition to all this we provide an extra layer of regulatory
25  * conformance. For drivers which do not have any regulatory
26  * information CRDA provides the complete regulatory solution.
27  * For others it provides a community effort on further restrictions
28  * to enhance compliance.
29  *
30  * Note: When number of rules --> infinity we will not be able to
31  * index on alpha2 any more, instead we'll probably have to
32  * rely on some SHA1 checksum of the regdomain for example.
33  *
34  */
35
36 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
37
38 #include <linux/kernel.h>
39 #include <linux/slab.h>
40 #include <linux/list.h>
41 #include <linux/random.h>
42 #include <linux/ctype.h>
43 #include <linux/nl80211.h>
44 #include <linux/platform_device.h>
45 #include <net/cfg80211.h>
46 #include "core.h"
47 #include "reg.h"
48 #include "regdb.h"
49 #include "nl80211.h"
50
51 #ifdef CONFIG_CFG80211_REG_DEBUG
52 #define REG_DBG_PRINT(format, args...) \
53         do { \
54                 printk(KERN_DEBUG pr_fmt(format), ##args);      \
55         } while (0)
56 #else
57 #define REG_DBG_PRINT(args...)
58 #endif
59
60 /* Receipt of information from last regulatory request */
61 static struct regulatory_request *last_request;
62
63 /* To trigger userspace events */
64 static struct platform_device *reg_pdev;
65
66 static struct device_type reg_device_type = {
67         .uevent = reg_device_uevent,
68 };
69
70 /*
71  * Central wireless core regulatory domains, we only need two,
72  * the current one and a world regulatory domain in case we have no
73  * information to give us an alpha2
74  */
75 const struct ieee80211_regdomain *cfg80211_regdomain;
76
77 /*
78  * Protects static reg.c components:
79  *     - cfg80211_world_regdom
80  *     - cfg80211_regdom
81  *     - last_request
82  */
83 static DEFINE_MUTEX(reg_mutex);
84
85 static inline void assert_reg_lock(void)
86 {
87         lockdep_assert_held(&reg_mutex);
88 }
89
90 /* Used to queue up regulatory hints */
91 static LIST_HEAD(reg_requests_list);
92 static spinlock_t reg_requests_lock;
93
94 /* Used to queue up beacon hints for review */
95 static LIST_HEAD(reg_pending_beacons);
96 static spinlock_t reg_pending_beacons_lock;
97
98 /* Used to keep track of processed beacon hints */
99 static LIST_HEAD(reg_beacon_list);
100
101 struct reg_beacon {
102         struct list_head list;
103         struct ieee80211_channel chan;
104 };
105
106 static void reg_todo(struct work_struct *work);
107 static DECLARE_WORK(reg_work, reg_todo);
108
109 static void reg_timeout_work(struct work_struct *work);
110 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
111
112 /* We keep a static world regulatory domain in case of the absence of CRDA */
113 static const struct ieee80211_regdomain world_regdom = {
114         .n_reg_rules = 5,
115         .alpha2 =  "00",
116         .reg_rules = {
117                 /* IEEE 802.11b/g, channels 1..11 */
118                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
119                 /* IEEE 802.11b/g, channels 12..13. No HT40
120                  * channel fits here. */
121                 REG_RULE(2467-10, 2472+10, 20, 6, 20,
122                         NL80211_RRF_PASSIVE_SCAN |
123                         NL80211_RRF_NO_IBSS),
124                 /* IEEE 802.11 channel 14 - Only JP enables
125                  * this and for 802.11b only */
126                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
127                         NL80211_RRF_PASSIVE_SCAN |
128                         NL80211_RRF_NO_IBSS |
129                         NL80211_RRF_NO_OFDM),
130                 /* IEEE 802.11a, channel 36..48 */
131                 REG_RULE(5180-10, 5240+10, 40, 6, 20,
132                         NL80211_RRF_PASSIVE_SCAN |
133                         NL80211_RRF_NO_IBSS),
134
135                 /* NB: 5260 MHz - 5700 MHz requies DFS */
136
137                 /* IEEE 802.11a, channel 149..165 */
138                 REG_RULE(5745-10, 5825+10, 40, 6, 20,
139                         NL80211_RRF_PASSIVE_SCAN |
140                         NL80211_RRF_NO_IBSS),
141         }
142 };
143
144 static const struct ieee80211_regdomain *cfg80211_world_regdom =
145         &world_regdom;
146
147 static char *ieee80211_regdom = "00";
148 static char user_alpha2[2];
149
150 module_param(ieee80211_regdom, charp, 0444);
151 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
152
153 static void reset_regdomains(void)
154 {
155         /* avoid freeing static information or freeing something twice */
156         if (cfg80211_regdomain == cfg80211_world_regdom)
157                 cfg80211_regdomain = NULL;
158         if (cfg80211_world_regdom == &world_regdom)
159                 cfg80211_world_regdom = NULL;
160         if (cfg80211_regdomain == &world_regdom)
161                 cfg80211_regdomain = NULL;
162
163         kfree(cfg80211_regdomain);
164         kfree(cfg80211_world_regdom);
165
166         cfg80211_world_regdom = &world_regdom;
167         cfg80211_regdomain = NULL;
168 }
169
170 /*
171  * Dynamic world regulatory domain requested by the wireless
172  * core upon initialization
173  */
174 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
175 {
176         BUG_ON(!last_request);
177
178         reset_regdomains();
179
180         cfg80211_world_regdom = rd;
181         cfg80211_regdomain = rd;
182 }
183
184 bool is_world_regdom(const char *alpha2)
185 {
186         if (!alpha2)
187                 return false;
188         if (alpha2[0] == '0' && alpha2[1] == '0')
189                 return true;
190         return false;
191 }
192
193 static bool is_alpha2_set(const char *alpha2)
194 {
195         if (!alpha2)
196                 return false;
197         if (alpha2[0] != 0 && alpha2[1] != 0)
198                 return true;
199         return false;
200 }
201
202 static bool is_unknown_alpha2(const char *alpha2)
203 {
204         if (!alpha2)
205                 return false;
206         /*
207          * Special case where regulatory domain was built by driver
208          * but a specific alpha2 cannot be determined
209          */
210         if (alpha2[0] == '9' && alpha2[1] == '9')
211                 return true;
212         return false;
213 }
214
215 static bool is_intersected_alpha2(const char *alpha2)
216 {
217         if (!alpha2)
218                 return false;
219         /*
220          * Special case where regulatory domain is the
221          * result of an intersection between two regulatory domain
222          * structures
223          */
224         if (alpha2[0] == '9' && alpha2[1] == '8')
225                 return true;
226         return false;
227 }
228
229 static bool is_an_alpha2(const char *alpha2)
230 {
231         if (!alpha2)
232                 return false;
233         if (isalpha(alpha2[0]) && isalpha(alpha2[1]))
234                 return true;
235         return false;
236 }
237
238 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
239 {
240         if (!alpha2_x || !alpha2_y)
241                 return false;
242         if (alpha2_x[0] == alpha2_y[0] &&
243                 alpha2_x[1] == alpha2_y[1])
244                 return true;
245         return false;
246 }
247
248 static bool regdom_changes(const char *alpha2)
249 {
250         assert_cfg80211_lock();
251
252         if (!cfg80211_regdomain)
253                 return true;
254         if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
255                 return false;
256         return true;
257 }
258
259 /*
260  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
261  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
262  * has ever been issued.
263  */
264 static bool is_user_regdom_saved(void)
265 {
266         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
267                 return false;
268
269         /* This would indicate a mistake on the design */
270         if (WARN((!is_world_regdom(user_alpha2) &&
271                   !is_an_alpha2(user_alpha2)),
272                  "Unexpected user alpha2: %c%c\n",
273                  user_alpha2[0],
274                  user_alpha2[1]))
275                 return false;
276
277         return true;
278 }
279
280 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
281                          const struct ieee80211_regdomain *src_regd)
282 {
283         struct ieee80211_regdomain *regd;
284         int size_of_regd = 0;
285         unsigned int i;
286
287         size_of_regd = sizeof(struct ieee80211_regdomain) +
288           ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
289
290         regd = kzalloc(size_of_regd, GFP_KERNEL);
291         if (!regd)
292                 return -ENOMEM;
293
294         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
295
296         for (i = 0; i < src_regd->n_reg_rules; i++)
297                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
298                         sizeof(struct ieee80211_reg_rule));
299
300         *dst_regd = regd;
301         return 0;
302 }
303
304 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
305 struct reg_regdb_search_request {
306         char alpha2[2];
307         struct list_head list;
308 };
309
310 static LIST_HEAD(reg_regdb_search_list);
311 static DEFINE_MUTEX(reg_regdb_search_mutex);
312
313 static void reg_regdb_search(struct work_struct *work)
314 {
315         struct reg_regdb_search_request *request;
316         const struct ieee80211_regdomain *curdom, *regdom;
317         int i, r;
318
319         mutex_lock(&reg_regdb_search_mutex);
320         while (!list_empty(&reg_regdb_search_list)) {
321                 request = list_first_entry(&reg_regdb_search_list,
322                                            struct reg_regdb_search_request,
323                                            list);
324                 list_del(&request->list);
325
326                 for (i=0; i<reg_regdb_size; i++) {
327                         curdom = reg_regdb[i];
328
329                         if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
330                                 r = reg_copy_regd(&regdom, curdom);
331                                 if (r)
332                                         break;
333                                 mutex_lock(&cfg80211_mutex);
334                                 set_regdom(regdom);
335                                 mutex_unlock(&cfg80211_mutex);
336                                 break;
337                         }
338                 }
339
340                 kfree(request);
341         }
342         mutex_unlock(&reg_regdb_search_mutex);
343 }
344
345 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
346
347 static void reg_regdb_query(const char *alpha2)
348 {
349         struct reg_regdb_search_request *request;
350
351         if (!alpha2)
352                 return;
353
354         request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
355         if (!request)
356                 return;
357
358         memcpy(request->alpha2, alpha2, 2);
359
360         mutex_lock(&reg_regdb_search_mutex);
361         list_add_tail(&request->list, &reg_regdb_search_list);
362         mutex_unlock(&reg_regdb_search_mutex);
363
364         schedule_work(&reg_regdb_work);
365 }
366 #else
367 static inline void reg_regdb_query(const char *alpha2) {}
368 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
369
370 /*
371  * This lets us keep regulatory code which is updated on a regulatory
372  * basis in userspace. Country information is filled in by
373  * reg_device_uevent
374  */
375 static int call_crda(const char *alpha2)
376 {
377         if (!is_world_regdom((char *) alpha2))
378                 pr_info("Calling CRDA for country: %c%c\n",
379                         alpha2[0], alpha2[1]);
380         else
381                 pr_info("Calling CRDA to update world regulatory domain\n");
382
383         /* query internal regulatory database (if it exists) */
384         reg_regdb_query(alpha2);
385
386         return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
387 }
388
389 /* Used by nl80211 before kmalloc'ing our regulatory domain */
390 bool reg_is_valid_request(const char *alpha2)
391 {
392         assert_cfg80211_lock();
393
394         if (!last_request)
395                 return false;
396
397         return alpha2_equal(last_request->alpha2, alpha2);
398 }
399
400 /* Sanity check on a regulatory rule */
401 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
402 {
403         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
404         u32 freq_diff;
405
406         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
407                 return false;
408
409         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
410                 return false;
411
412         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
413
414         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
415                         freq_range->max_bandwidth_khz > freq_diff)
416                 return false;
417
418         return true;
419 }
420
421 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
422 {
423         const struct ieee80211_reg_rule *reg_rule = NULL;
424         unsigned int i;
425
426         if (!rd->n_reg_rules)
427                 return false;
428
429         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
430                 return false;
431
432         for (i = 0; i < rd->n_reg_rules; i++) {
433                 reg_rule = &rd->reg_rules[i];
434                 if (!is_valid_reg_rule(reg_rule))
435                         return false;
436         }
437
438         return true;
439 }
440
441 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
442                             u32 center_freq_khz,
443                             u32 bw_khz)
444 {
445         u32 start_freq_khz, end_freq_khz;
446
447         start_freq_khz = center_freq_khz - (bw_khz/2);
448         end_freq_khz = center_freq_khz + (bw_khz/2);
449
450         if (start_freq_khz >= freq_range->start_freq_khz &&
451             end_freq_khz <= freq_range->end_freq_khz)
452                 return true;
453
454         return false;
455 }
456
457 /**
458  * freq_in_rule_band - tells us if a frequency is in a frequency band
459  * @freq_range: frequency rule we want to query
460  * @freq_khz: frequency we are inquiring about
461  *
462  * This lets us know if a specific frequency rule is or is not relevant to
463  * a specific frequency's band. Bands are device specific and artificial
464  * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
465  * safe for now to assume that a frequency rule should not be part of a
466  * frequency's band if the start freq or end freq are off by more than 2 GHz.
467  * This resolution can be lowered and should be considered as we add
468  * regulatory rule support for other "bands".
469  **/
470 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
471         u32 freq_khz)
472 {
473 #define ONE_GHZ_IN_KHZ  1000000
474         if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
475                 return true;
476         if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
477                 return true;
478         return false;
479 #undef ONE_GHZ_IN_KHZ
480 }
481
482 /*
483  * Helper for regdom_intersect(), this does the real
484  * mathematical intersection fun
485  */
486 static int reg_rules_intersect(
487         const struct ieee80211_reg_rule *rule1,
488         const struct ieee80211_reg_rule *rule2,
489         struct ieee80211_reg_rule *intersected_rule)
490 {
491         const struct ieee80211_freq_range *freq_range1, *freq_range2;
492         struct ieee80211_freq_range *freq_range;
493         const struct ieee80211_power_rule *power_rule1, *power_rule2;
494         struct ieee80211_power_rule *power_rule;
495         u32 freq_diff;
496
497         freq_range1 = &rule1->freq_range;
498         freq_range2 = &rule2->freq_range;
499         freq_range = &intersected_rule->freq_range;
500
501         power_rule1 = &rule1->power_rule;
502         power_rule2 = &rule2->power_rule;
503         power_rule = &intersected_rule->power_rule;
504
505         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
506                 freq_range2->start_freq_khz);
507         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
508                 freq_range2->end_freq_khz);
509         freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
510                 freq_range2->max_bandwidth_khz);
511
512         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
513         if (freq_range->max_bandwidth_khz > freq_diff)
514                 freq_range->max_bandwidth_khz = freq_diff;
515
516         power_rule->max_eirp = min(power_rule1->max_eirp,
517                 power_rule2->max_eirp);
518         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
519                 power_rule2->max_antenna_gain);
520
521         intersected_rule->flags = (rule1->flags | rule2->flags);
522
523         if (!is_valid_reg_rule(intersected_rule))
524                 return -EINVAL;
525
526         return 0;
527 }
528
529 /**
530  * regdom_intersect - do the intersection between two regulatory domains
531  * @rd1: first regulatory domain
532  * @rd2: second regulatory domain
533  *
534  * Use this function to get the intersection between two regulatory domains.
535  * Once completed we will mark the alpha2 for the rd as intersected, "98",
536  * as no one single alpha2 can represent this regulatory domain.
537  *
538  * Returns a pointer to the regulatory domain structure which will hold the
539  * resulting intersection of rules between rd1 and rd2. We will
540  * kzalloc() this structure for you.
541  */
542 static struct ieee80211_regdomain *regdom_intersect(
543         const struct ieee80211_regdomain *rd1,
544         const struct ieee80211_regdomain *rd2)
545 {
546         int r, size_of_regd;
547         unsigned int x, y;
548         unsigned int num_rules = 0, rule_idx = 0;
549         const struct ieee80211_reg_rule *rule1, *rule2;
550         struct ieee80211_reg_rule *intersected_rule;
551         struct ieee80211_regdomain *rd;
552         /* This is just a dummy holder to help us count */
553         struct ieee80211_reg_rule irule;
554
555         /* Uses the stack temporarily for counter arithmetic */
556         intersected_rule = &irule;
557
558         memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
559
560         if (!rd1 || !rd2)
561                 return NULL;
562
563         /*
564          * First we get a count of the rules we'll need, then we actually
565          * build them. This is to so we can malloc() and free() a
566          * regdomain once. The reason we use reg_rules_intersect() here
567          * is it will return -EINVAL if the rule computed makes no sense.
568          * All rules that do check out OK are valid.
569          */
570
571         for (x = 0; x < rd1->n_reg_rules; x++) {
572                 rule1 = &rd1->reg_rules[x];
573                 for (y = 0; y < rd2->n_reg_rules; y++) {
574                         rule2 = &rd2->reg_rules[y];
575                         if (!reg_rules_intersect(rule1, rule2,
576                                         intersected_rule))
577                                 num_rules++;
578                         memset(intersected_rule, 0,
579                                         sizeof(struct ieee80211_reg_rule));
580                 }
581         }
582
583         if (!num_rules)
584                 return NULL;
585
586         size_of_regd = sizeof(struct ieee80211_regdomain) +
587                 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
588
589         rd = kzalloc(size_of_regd, GFP_KERNEL);
590         if (!rd)
591                 return NULL;
592
593         for (x = 0; x < rd1->n_reg_rules; x++) {
594                 rule1 = &rd1->reg_rules[x];
595                 for (y = 0; y < rd2->n_reg_rules; y++) {
596                         rule2 = &rd2->reg_rules[y];
597                         /*
598                          * This time around instead of using the stack lets
599                          * write to the target rule directly saving ourselves
600                          * a memcpy()
601                          */
602                         intersected_rule = &rd->reg_rules[rule_idx];
603                         r = reg_rules_intersect(rule1, rule2,
604                                 intersected_rule);
605                         /*
606                          * No need to memset here the intersected rule here as
607                          * we're not using the stack anymore
608                          */
609                         if (r)
610                                 continue;
611                         rule_idx++;
612                 }
613         }
614
615         if (rule_idx != num_rules) {
616                 kfree(rd);
617                 return NULL;
618         }
619
620         rd->n_reg_rules = num_rules;
621         rd->alpha2[0] = '9';
622         rd->alpha2[1] = '8';
623
624         return rd;
625 }
626
627 /*
628  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
629  * want to just have the channel structure use these
630  */
631 static u32 map_regdom_flags(u32 rd_flags)
632 {
633         u32 channel_flags = 0;
634         if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
635                 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
636         if (rd_flags & NL80211_RRF_NO_IBSS)
637                 channel_flags |= IEEE80211_CHAN_NO_IBSS;
638         if (rd_flags & NL80211_RRF_DFS)
639                 channel_flags |= IEEE80211_CHAN_RADAR;
640         return channel_flags;
641 }
642
643 static int freq_reg_info_regd(struct wiphy *wiphy,
644                               u32 center_freq,
645                               u32 desired_bw_khz,
646                               const struct ieee80211_reg_rule **reg_rule,
647                               const struct ieee80211_regdomain *custom_regd)
648 {
649         int i;
650         bool band_rule_found = false;
651         const struct ieee80211_regdomain *regd;
652         bool bw_fits = false;
653
654         if (!desired_bw_khz)
655                 desired_bw_khz = MHZ_TO_KHZ(20);
656
657         regd = custom_regd ? custom_regd : cfg80211_regdomain;
658
659         /*
660          * Follow the driver's regulatory domain, if present, unless a country
661          * IE has been processed or a user wants to help complaince further
662          */
663         if (!custom_regd &&
664             last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
665             last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
666             wiphy->regd)
667                 regd = wiphy->regd;
668
669         if (!regd)
670                 return -EINVAL;
671
672         for (i = 0; i < regd->n_reg_rules; i++) {
673                 const struct ieee80211_reg_rule *rr;
674                 const struct ieee80211_freq_range *fr = NULL;
675
676                 rr = &regd->reg_rules[i];
677                 fr = &rr->freq_range;
678
679                 /*
680                  * We only need to know if one frequency rule was
681                  * was in center_freq's band, that's enough, so lets
682                  * not overwrite it once found
683                  */
684                 if (!band_rule_found)
685                         band_rule_found = freq_in_rule_band(fr, center_freq);
686
687                 bw_fits = reg_does_bw_fit(fr,
688                                           center_freq,
689                                           desired_bw_khz);
690
691                 if (band_rule_found && bw_fits) {
692                         *reg_rule = rr;
693                         return 0;
694                 }
695         }
696
697         if (!band_rule_found)
698                 return -ERANGE;
699
700         return -EINVAL;
701 }
702
703 int freq_reg_info(struct wiphy *wiphy,
704                   u32 center_freq,
705                   u32 desired_bw_khz,
706                   const struct ieee80211_reg_rule **reg_rule)
707 {
708         assert_cfg80211_lock();
709         return freq_reg_info_regd(wiphy,
710                                   center_freq,
711                                   desired_bw_khz,
712                                   reg_rule,
713                                   NULL);
714 }
715 EXPORT_SYMBOL(freq_reg_info);
716
717 #ifdef CONFIG_CFG80211_REG_DEBUG
718 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
719 {
720         switch (initiator) {
721         case NL80211_REGDOM_SET_BY_CORE:
722                 return "Set by core";
723         case NL80211_REGDOM_SET_BY_USER:
724                 return "Set by user";
725         case NL80211_REGDOM_SET_BY_DRIVER:
726                 return "Set by driver";
727         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
728                 return "Set by country IE";
729         default:
730                 WARN_ON(1);
731                 return "Set by bug";
732         }
733 }
734
735 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
736                                     u32 desired_bw_khz,
737                                     const struct ieee80211_reg_rule *reg_rule)
738 {
739         const struct ieee80211_power_rule *power_rule;
740         const struct ieee80211_freq_range *freq_range;
741         char max_antenna_gain[32];
742
743         power_rule = &reg_rule->power_rule;
744         freq_range = &reg_rule->freq_range;
745
746         if (!power_rule->max_antenna_gain)
747                 snprintf(max_antenna_gain, 32, "N/A");
748         else
749                 snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);
750
751         REG_DBG_PRINT("Updating information on frequency %d MHz "
752                       "for a %d MHz width channel with regulatory rule:\n",
753                       chan->center_freq,
754                       KHZ_TO_MHZ(desired_bw_khz));
755
756         REG_DBG_PRINT("%d KHz - %d KHz @  KHz), (%s mBi, %d mBm)\n",
757                       freq_range->start_freq_khz,
758                       freq_range->end_freq_khz,
759                       max_antenna_gain,
760                       power_rule->max_eirp);
761 }
762 #else
763 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
764                                     u32 desired_bw_khz,
765                                     const struct ieee80211_reg_rule *reg_rule)
766 {
767         return;
768 }
769 #endif
770
771 /*
772  * Note that right now we assume the desired channel bandwidth
773  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
774  * per channel, the primary and the extension channel). To support
775  * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
776  * new ieee80211_channel.target_bw and re run the regulatory check
777  * on the wiphy with the target_bw specified. Then we can simply use
778  * that below for the desired_bw_khz below.
779  */
780 static void handle_channel(struct wiphy *wiphy,
781                            enum nl80211_reg_initiator initiator,
782                            enum ieee80211_band band,
783                            unsigned int chan_idx)
784 {
785         int r;
786         u32 flags, bw_flags = 0;
787         u32 desired_bw_khz = MHZ_TO_KHZ(20);
788         const struct ieee80211_reg_rule *reg_rule = NULL;
789         const struct ieee80211_power_rule *power_rule = NULL;
790         const struct ieee80211_freq_range *freq_range = NULL;
791         struct ieee80211_supported_band *sband;
792         struct ieee80211_channel *chan;
793         struct wiphy *request_wiphy = NULL;
794
795         assert_cfg80211_lock();
796
797         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
798
799         sband = wiphy->bands[band];
800         BUG_ON(chan_idx >= sband->n_channels);
801         chan = &sband->channels[chan_idx];
802
803         flags = chan->orig_flags;
804
805         r = freq_reg_info(wiphy,
806                           MHZ_TO_KHZ(chan->center_freq),
807                           desired_bw_khz,
808                           &reg_rule);
809
810         if (r) {
811                 /*
812                  * We will disable all channels that do not match our
813                  * received regulatory rule unless the hint is coming
814                  * from a Country IE and the Country IE had no information
815                  * about a band. The IEEE 802.11 spec allows for an AP
816                  * to send only a subset of the regulatory rules allowed,
817                  * so an AP in the US that only supports 2.4 GHz may only send
818                  * a country IE with information for the 2.4 GHz band
819                  * while 5 GHz is still supported.
820                  */
821                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
822                     r == -ERANGE)
823                         return;
824
825                 REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
826                 chan->flags = IEEE80211_CHAN_DISABLED;
827                 return;
828         }
829
830         chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
831
832         power_rule = &reg_rule->power_rule;
833         freq_range = &reg_rule->freq_range;
834
835         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
836                 bw_flags = IEEE80211_CHAN_NO_HT40;
837
838         if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
839             request_wiphy && request_wiphy == wiphy &&
840             request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
841                 /*
842                  * This guarantees the driver's requested regulatory domain
843                  * will always be used as a base for further regulatory
844                  * settings
845                  */
846                 chan->flags = chan->orig_flags =
847                         map_regdom_flags(reg_rule->flags) | bw_flags;
848                 chan->max_antenna_gain = chan->orig_mag =
849                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
850                 chan->max_power = chan->orig_mpwr =
851                         (int) MBM_TO_DBM(power_rule->max_eirp);
852                 return;
853         }
854
855         chan->beacon_found = false;
856         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
857         chan->max_antenna_gain = min(chan->orig_mag,
858                 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
859         if (chan->orig_mpwr)
860                 chan->max_power = min(chan->orig_mpwr,
861                         (int) MBM_TO_DBM(power_rule->max_eirp));
862         else
863                 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
864 }
865
866 static void handle_band(struct wiphy *wiphy,
867                         enum ieee80211_band band,
868                         enum nl80211_reg_initiator initiator)
869 {
870         unsigned int i;
871         struct ieee80211_supported_band *sband;
872
873         BUG_ON(!wiphy->bands[band]);
874         sband = wiphy->bands[band];
875
876         for (i = 0; i < sband->n_channels; i++)
877                 handle_channel(wiphy, initiator, band, i);
878 }
879
880 static bool ignore_reg_update(struct wiphy *wiphy,
881                               enum nl80211_reg_initiator initiator)
882 {
883         if (!last_request) {
884                 REG_DBG_PRINT("Ignoring regulatory request %s since "
885                               "last_request is not set\n",
886                               reg_initiator_name(initiator));
887                 return true;
888         }
889
890         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
891             wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
892                 REG_DBG_PRINT("Ignoring regulatory request %s "
893                               "since the driver uses its own custom "
894                               "regulatory domain ",
895                               reg_initiator_name(initiator));
896                 return true;
897         }
898
899         /*
900          * wiphy->regd will be set once the device has its own
901          * desired regulatory domain set
902          */
903         if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
904             initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
905             !is_world_regdom(last_request->alpha2)) {
906                 REG_DBG_PRINT("Ignoring regulatory request %s "
907                               "since the driver requires its own regulatory "
908                               "domain to be set first",
909                               reg_initiator_name(initiator));
910                 return true;
911         }
912
913         return false;
914 }
915
916 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
917 {
918         struct cfg80211_registered_device *rdev;
919
920         list_for_each_entry(rdev, &cfg80211_rdev_list, list)
921                 wiphy_update_regulatory(&rdev->wiphy, initiator);
922 }
923
924 static void handle_reg_beacon(struct wiphy *wiphy,
925                               unsigned int chan_idx,
926                               struct reg_beacon *reg_beacon)
927 {
928         struct ieee80211_supported_band *sband;
929         struct ieee80211_channel *chan;
930         bool channel_changed = false;
931         struct ieee80211_channel chan_before;
932
933         assert_cfg80211_lock();
934
935         sband = wiphy->bands[reg_beacon->chan.band];
936         chan = &sband->channels[chan_idx];
937
938         if (likely(chan->center_freq != reg_beacon->chan.center_freq))
939                 return;
940
941         if (chan->beacon_found)
942                 return;
943
944         chan->beacon_found = true;
945
946         if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
947                 return;
948
949         chan_before.center_freq = chan->center_freq;
950         chan_before.flags = chan->flags;
951
952         if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
953                 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
954                 channel_changed = true;
955         }
956
957         if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
958                 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
959                 channel_changed = true;
960         }
961
962         if (channel_changed)
963                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
964 }
965
966 /*
967  * Called when a scan on a wiphy finds a beacon on
968  * new channel
969  */
970 static void wiphy_update_new_beacon(struct wiphy *wiphy,
971                                     struct reg_beacon *reg_beacon)
972 {
973         unsigned int i;
974         struct ieee80211_supported_band *sband;
975
976         assert_cfg80211_lock();
977
978         if (!wiphy->bands[reg_beacon->chan.band])
979                 return;
980
981         sband = wiphy->bands[reg_beacon->chan.band];
982
983         for (i = 0; i < sband->n_channels; i++)
984                 handle_reg_beacon(wiphy, i, reg_beacon);
985 }
986
987 /*
988  * Called upon reg changes or a new wiphy is added
989  */
990 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
991 {
992         unsigned int i;
993         struct ieee80211_supported_band *sband;
994         struct reg_beacon *reg_beacon;
995
996         assert_cfg80211_lock();
997
998         if (list_empty(&reg_beacon_list))
999                 return;
1000
1001         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1002                 if (!wiphy->bands[reg_beacon->chan.band])
1003                         continue;
1004                 sband = wiphy->bands[reg_beacon->chan.band];
1005                 for (i = 0; i < sband->n_channels; i++)
1006                         handle_reg_beacon(wiphy, i, reg_beacon);
1007         }
1008 }
1009
1010 static bool reg_is_world_roaming(struct wiphy *wiphy)
1011 {
1012         if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1013             (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1014                 return true;
1015         if (last_request &&
1016             last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1017             wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1018                 return true;
1019         return false;
1020 }
1021
1022 /* Reap the advantages of previously found beacons */
1023 static void reg_process_beacons(struct wiphy *wiphy)
1024 {
1025         /*
1026          * Means we are just firing up cfg80211, so no beacons would
1027          * have been processed yet.
1028          */
1029         if (!last_request)
1030                 return;
1031         if (!reg_is_world_roaming(wiphy))
1032                 return;
1033         wiphy_update_beacon_reg(wiphy);
1034 }
1035
1036 static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
1037 {
1038         if (!chan)
1039                 return true;
1040         if (chan->flags & IEEE80211_CHAN_DISABLED)
1041                 return true;
1042         /* This would happen when regulatory rules disallow HT40 completely */
1043         if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
1044                 return true;
1045         return false;
1046 }
1047
1048 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1049                                          enum ieee80211_band band,
1050                                          unsigned int chan_idx)
1051 {
1052         struct ieee80211_supported_band *sband;
1053         struct ieee80211_channel *channel;
1054         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1055         unsigned int i;
1056
1057         assert_cfg80211_lock();
1058
1059         sband = wiphy->bands[band];
1060         BUG_ON(chan_idx >= sband->n_channels);
1061         channel = &sband->channels[chan_idx];
1062
1063         if (is_ht40_not_allowed(channel)) {
1064                 channel->flags |= IEEE80211_CHAN_NO_HT40;
1065                 return;
1066         }
1067
1068         /*
1069          * We need to ensure the extension channels exist to
1070          * be able to use HT40- or HT40+, this finds them (or not)
1071          */
1072         for (i = 0; i < sband->n_channels; i++) {
1073                 struct ieee80211_channel *c = &sband->channels[i];
1074                 if (c->center_freq == (channel->center_freq - 20))
1075                         channel_before = c;
1076                 if (c->center_freq == (channel->center_freq + 20))
1077                         channel_after = c;
1078         }
1079
1080         /*
1081          * Please note that this assumes target bandwidth is 20 MHz,
1082          * if that ever changes we also need to change the below logic
1083          * to include that as well.
1084          */
1085         if (is_ht40_not_allowed(channel_before))
1086                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1087         else
1088                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1089
1090         if (is_ht40_not_allowed(channel_after))
1091                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1092         else
1093                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1094 }
1095
1096 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1097                                       enum ieee80211_band band)
1098 {
1099         unsigned int i;
1100         struct ieee80211_supported_band *sband;
1101
1102         BUG_ON(!wiphy->bands[band]);
1103         sband = wiphy->bands[band];
1104
1105         for (i = 0; i < sband->n_channels; i++)
1106                 reg_process_ht_flags_channel(wiphy, band, i);
1107 }
1108
1109 static void reg_process_ht_flags(struct wiphy *wiphy)
1110 {
1111         enum ieee80211_band band;
1112
1113         if (!wiphy)
1114                 return;
1115
1116         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1117                 if (wiphy->bands[band])
1118                         reg_process_ht_flags_band(wiphy, band);
1119         }
1120
1121 }
1122
1123 void wiphy_update_regulatory(struct wiphy *wiphy,
1124                              enum nl80211_reg_initiator initiator)
1125 {
1126         enum ieee80211_band band;
1127
1128         if (ignore_reg_update(wiphy, initiator))
1129                 return;
1130
1131         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1132                 if (wiphy->bands[band])
1133                         handle_band(wiphy, band, initiator);
1134         }
1135
1136         reg_process_beacons(wiphy);
1137         reg_process_ht_flags(wiphy);
1138         if (wiphy->reg_notifier)
1139                 wiphy->reg_notifier(wiphy, last_request);
1140 }
1141
1142 static void handle_channel_custom(struct wiphy *wiphy,
1143                                   enum ieee80211_band band,
1144                                   unsigned int chan_idx,
1145                                   const struct ieee80211_regdomain *regd)
1146 {
1147         int r;
1148         u32 desired_bw_khz = MHZ_TO_KHZ(20);
1149         u32 bw_flags = 0;
1150         const struct ieee80211_reg_rule *reg_rule = NULL;
1151         const struct ieee80211_power_rule *power_rule = NULL;
1152         const struct ieee80211_freq_range *freq_range = NULL;
1153         struct ieee80211_supported_band *sband;
1154         struct ieee80211_channel *chan;
1155
1156         assert_reg_lock();
1157
1158         sband = wiphy->bands[band];
1159         BUG_ON(chan_idx >= sband->n_channels);
1160         chan = &sband->channels[chan_idx];
1161
1162         r = freq_reg_info_regd(wiphy,
1163                                MHZ_TO_KHZ(chan->center_freq),
1164                                desired_bw_khz,
1165                                &reg_rule,
1166                                regd);
1167
1168         if (r) {
1169                 REG_DBG_PRINT("Disabling freq %d MHz as custom "
1170                               "regd has no rule that fits a %d MHz "
1171                               "wide channel\n",
1172                               chan->center_freq,
1173                               KHZ_TO_MHZ(desired_bw_khz));
1174                 chan->flags = IEEE80211_CHAN_DISABLED;
1175                 return;
1176         }
1177
1178         chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
1179
1180         power_rule = &reg_rule->power_rule;
1181         freq_range = &reg_rule->freq_range;
1182
1183         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1184                 bw_flags = IEEE80211_CHAN_NO_HT40;
1185
1186         chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1187         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1188         chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1189 }
1190
1191 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1192                                const struct ieee80211_regdomain *regd)
1193 {
1194         unsigned int i;
1195         struct ieee80211_supported_band *sband;
1196
1197         BUG_ON(!wiphy->bands[band]);
1198         sband = wiphy->bands[band];
1199
1200         for (i = 0; i < sband->n_channels; i++)
1201                 handle_channel_custom(wiphy, band, i, regd);
1202 }
1203
1204 /* Used by drivers prior to wiphy registration */
1205 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1206                                    const struct ieee80211_regdomain *regd)
1207 {
1208         enum ieee80211_band band;
1209         unsigned int bands_set = 0;
1210
1211         mutex_lock(&reg_mutex);
1212         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1213                 if (!wiphy->bands[band])
1214                         continue;
1215                 handle_band_custom(wiphy, band, regd);
1216                 bands_set++;
1217         }
1218         mutex_unlock(&reg_mutex);
1219
1220         /*
1221          * no point in calling this if it won't have any effect
1222          * on your device's supportd bands.
1223          */
1224         WARN_ON(!bands_set);
1225 }
1226 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1227
1228 /*
1229  * Return value which can be used by ignore_request() to indicate
1230  * it has been determined we should intersect two regulatory domains
1231  */
1232 #define REG_INTERSECT   1
1233
1234 /* This has the logic which determines when a new request
1235  * should be ignored. */
1236 static int ignore_request(struct wiphy *wiphy,
1237                           struct regulatory_request *pending_request)
1238 {
1239         struct wiphy *last_wiphy = NULL;
1240
1241         assert_cfg80211_lock();
1242
1243         /* All initial requests are respected */
1244         if (!last_request)
1245                 return 0;
1246
1247         switch (pending_request->initiator) {
1248         case NL80211_REGDOM_SET_BY_CORE:
1249                 return 0;
1250         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1251
1252                 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1253
1254                 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1255                         return -EINVAL;
1256                 if (last_request->initiator ==
1257                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1258                         if (last_wiphy != wiphy) {
1259                                 /*
1260                                  * Two cards with two APs claiming different
1261                                  * Country IE alpha2s. We could
1262                                  * intersect them, but that seems unlikely
1263                                  * to be correct. Reject second one for now.
1264                                  */
1265                                 if (regdom_changes(pending_request->alpha2))
1266                                         return -EOPNOTSUPP;
1267                                 return -EALREADY;
1268                         }
1269                         /*
1270                          * Two consecutive Country IE hints on the same wiphy.
1271                          * This should be picked up early by the driver/stack
1272                          */
1273                         if (WARN_ON(regdom_changes(pending_request->alpha2)))
1274                                 return 0;
1275                         return -EALREADY;
1276                 }
1277                 return 0;
1278         case NL80211_REGDOM_SET_BY_DRIVER:
1279                 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1280                         if (regdom_changes(pending_request->alpha2))
1281                                 return 0;
1282                         return -EALREADY;
1283                 }
1284
1285                 /*
1286                  * This would happen if you unplug and plug your card
1287                  * back in or if you add a new device for which the previously
1288                  * loaded card also agrees on the regulatory domain.
1289                  */
1290                 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1291                     !regdom_changes(pending_request->alpha2))
1292                         return -EALREADY;
1293
1294                 return REG_INTERSECT;
1295         case NL80211_REGDOM_SET_BY_USER:
1296                 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1297                         return REG_INTERSECT;
1298                 /*
1299                  * If the user knows better the user should set the regdom
1300                  * to their country before the IE is picked up
1301                  */
1302                 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1303                           last_request->intersect)
1304                         return -EOPNOTSUPP;
1305                 /*
1306                  * Process user requests only after previous user/driver/core
1307                  * requests have been processed
1308                  */
1309                 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1310                     last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1311                     last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1312                         if (regdom_changes(last_request->alpha2))
1313                                 return -EAGAIN;
1314                 }
1315
1316                 if (!regdom_changes(pending_request->alpha2))
1317                         return -EALREADY;
1318
1319                 return 0;
1320         }
1321
1322         return -EINVAL;
1323 }
1324
1325 static void reg_set_request_processed(void)
1326 {
1327         bool need_more_processing = false;
1328
1329         last_request->processed = true;
1330
1331         spin_lock(&reg_requests_lock);
1332         if (!list_empty(&reg_requests_list))
1333                 need_more_processing = true;
1334         spin_unlock(&reg_requests_lock);
1335
1336         if (last_request->initiator == NL80211_REGDOM_SET_BY_USER)
1337                 cancel_delayed_work_sync(&reg_timeout);
1338
1339         if (need_more_processing)
1340                 schedule_work(&reg_work);
1341 }
1342
1343 /**
1344  * __regulatory_hint - hint to the wireless core a regulatory domain
1345  * @wiphy: if the hint comes from country information from an AP, this
1346  *      is required to be set to the wiphy that received the information
1347  * @pending_request: the regulatory request currently being processed
1348  *
1349  * The Wireless subsystem can use this function to hint to the wireless core
1350  * what it believes should be the current regulatory domain.
1351  *
1352  * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1353  * already been set or other standard error codes.
1354  *
1355  * Caller must hold &cfg80211_mutex and &reg_mutex
1356  */
1357 static int __regulatory_hint(struct wiphy *wiphy,
1358                              struct regulatory_request *pending_request)
1359 {
1360         bool intersect = false;
1361         int r = 0;
1362
1363         assert_cfg80211_lock();
1364
1365         r = ignore_request(wiphy, pending_request);
1366
1367         if (r == REG_INTERSECT) {
1368                 if (pending_request->initiator ==
1369                     NL80211_REGDOM_SET_BY_DRIVER) {
1370                         r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1371                         if (r) {
1372                                 kfree(pending_request);
1373                                 return r;
1374                         }
1375                 }
1376                 intersect = true;
1377         } else if (r) {
1378                 /*
1379                  * If the regulatory domain being requested by the
1380                  * driver has already been set just copy it to the
1381                  * wiphy
1382                  */
1383                 if (r == -EALREADY &&
1384                     pending_request->initiator ==
1385                     NL80211_REGDOM_SET_BY_DRIVER) {
1386                         r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1387                         if (r) {
1388                                 kfree(pending_request);
1389                                 return r;
1390                         }
1391                         r = -EALREADY;
1392                         goto new_request;
1393                 }
1394                 kfree(pending_request);
1395                 return r;
1396         }
1397
1398 new_request:
1399         kfree(last_request);
1400
1401         last_request = pending_request;
1402         last_request->intersect = intersect;
1403
1404         pending_request = NULL;
1405
1406         if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1407                 user_alpha2[0] = last_request->alpha2[0];
1408                 user_alpha2[1] = last_request->alpha2[1];
1409         }
1410
1411         /* When r == REG_INTERSECT we do need to call CRDA */
1412         if (r < 0) {
1413                 /*
1414                  * Since CRDA will not be called in this case as we already
1415                  * have applied the requested regulatory domain before we just
1416                  * inform userspace we have processed the request
1417                  */
1418                 if (r == -EALREADY) {
1419                         nl80211_send_reg_change_event(last_request);
1420                         reg_set_request_processed();
1421                 }
1422                 return r;
1423         }
1424
1425         return call_crda(last_request->alpha2);
1426 }
1427
1428 /* This processes *all* regulatory hints */
1429 static void reg_process_hint(struct regulatory_request *reg_request)
1430 {
1431         int r = 0;
1432         struct wiphy *wiphy = NULL;
1433         enum nl80211_reg_initiator initiator = reg_request->initiator;
1434
1435         BUG_ON(!reg_request->alpha2);
1436
1437         if (wiphy_idx_valid(reg_request->wiphy_idx))
1438                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1439
1440         if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1441             !wiphy) {
1442                 kfree(reg_request);
1443                 return;
1444         }
1445
1446         r = __regulatory_hint(wiphy, reg_request);
1447         /* This is required so that the orig_* parameters are saved */
1448         if (r == -EALREADY && wiphy &&
1449             wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
1450                 wiphy_update_regulatory(wiphy, initiator);
1451                 return;
1452         }
1453
1454         /*
1455          * We only time out user hints, given that they should be the only
1456          * source of bogus requests.
1457          */
1458         if (r != -EALREADY &&
1459             reg_request->initiator == NL80211_REGDOM_SET_BY_USER)
1460                 schedule_delayed_work(&reg_timeout, msecs_to_jiffies(3142));
1461 }
1462
1463 /*
1464  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1465  * Regulatory hints come on a first come first serve basis and we
1466  * must process each one atomically.
1467  */
1468 static void reg_process_pending_hints(void)
1469 {
1470         struct regulatory_request *reg_request;
1471
1472         mutex_lock(&cfg80211_mutex);
1473         mutex_lock(&reg_mutex);
1474
1475         /* When last_request->processed becomes true this will be rescheduled */
1476         if (last_request && !last_request->processed) {
1477                 REG_DBG_PRINT("Pending regulatory request, waiting "
1478                               "for it to be processed...");
1479                 goto out;
1480         }
1481
1482         spin_lock(&reg_requests_lock);
1483
1484         if (list_empty(&reg_requests_list)) {
1485                 spin_unlock(&reg_requests_lock);
1486                 goto out;
1487         }
1488
1489         reg_request = list_first_entry(&reg_requests_list,
1490                                        struct regulatory_request,
1491                                        list);
1492         list_del_init(&reg_request->list);
1493
1494         spin_unlock(&reg_requests_lock);
1495
1496         reg_process_hint(reg_request);
1497
1498 out:
1499         mutex_unlock(&reg_mutex);
1500         mutex_unlock(&cfg80211_mutex);
1501 }
1502
1503 /* Processes beacon hints -- this has nothing to do with country IEs */
1504 static void reg_process_pending_beacon_hints(void)
1505 {
1506         struct cfg80211_registered_device *rdev;
1507         struct reg_beacon *pending_beacon, *tmp;
1508
1509         /*
1510          * No need to hold the reg_mutex here as we just touch wiphys
1511          * and do not read or access regulatory variables.
1512          */
1513         mutex_lock(&cfg80211_mutex);
1514
1515         /* This goes through the _pending_ beacon list */
1516         spin_lock_bh(&reg_pending_beacons_lock);
1517
1518         if (list_empty(&reg_pending_beacons)) {
1519                 spin_unlock_bh(&reg_pending_beacons_lock);
1520                 goto out;
1521         }
1522
1523         list_for_each_entry_safe(pending_beacon, tmp,
1524                                  &reg_pending_beacons, list) {
1525
1526                 list_del_init(&pending_beacon->list);
1527
1528                 /* Applies the beacon hint to current wiphys */
1529                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1530                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1531
1532                 /* Remembers the beacon hint for new wiphys or reg changes */
1533                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1534         }
1535
1536         spin_unlock_bh(&reg_pending_beacons_lock);
1537 out:
1538         mutex_unlock(&cfg80211_mutex);
1539 }
1540
1541 static void reg_todo(struct work_struct *work)
1542 {
1543         reg_process_pending_hints();
1544         reg_process_pending_beacon_hints();
1545 }
1546
1547 static void queue_regulatory_request(struct regulatory_request *request)
1548 {
1549         if (isalpha(request->alpha2[0]))
1550                 request->alpha2[0] = toupper(request->alpha2[0]);
1551         if (isalpha(request->alpha2[1]))
1552                 request->alpha2[1] = toupper(request->alpha2[1]);
1553
1554         spin_lock(&reg_requests_lock);
1555         list_add_tail(&request->list, &reg_requests_list);
1556         spin_unlock(&reg_requests_lock);
1557
1558         schedule_work(&reg_work);
1559 }
1560
1561 /*
1562  * Core regulatory hint -- happens during cfg80211_init()
1563  * and when we restore regulatory settings.
1564  */
1565 static int regulatory_hint_core(const char *alpha2)
1566 {
1567         struct regulatory_request *request;
1568
1569         kfree(last_request);
1570         last_request = NULL;
1571
1572         request = kzalloc(sizeof(struct regulatory_request),
1573                           GFP_KERNEL);
1574         if (!request)
1575                 return -ENOMEM;
1576
1577         request->alpha2[0] = alpha2[0];
1578         request->alpha2[1] = alpha2[1];
1579         request->initiator = NL80211_REGDOM_SET_BY_CORE;
1580
1581         queue_regulatory_request(request);
1582
1583         return 0;
1584 }
1585
1586 /* User hints */
1587 int regulatory_hint_user(const char *alpha2)
1588 {
1589         struct regulatory_request *request;
1590
1591         BUG_ON(!alpha2);
1592
1593         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1594         if (!request)
1595                 return -ENOMEM;
1596
1597         request->wiphy_idx = WIPHY_IDX_STALE;
1598         request->alpha2[0] = alpha2[0];
1599         request->alpha2[1] = alpha2[1];
1600         request->initiator = NL80211_REGDOM_SET_BY_USER;
1601
1602         queue_regulatory_request(request);
1603
1604         return 0;
1605 }
1606
1607 /* Driver hints */
1608 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1609 {
1610         struct regulatory_request *request;
1611
1612         BUG_ON(!alpha2);
1613         BUG_ON(!wiphy);
1614
1615         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1616         if (!request)
1617                 return -ENOMEM;
1618
1619         request->wiphy_idx = get_wiphy_idx(wiphy);
1620
1621         /* Must have registered wiphy first */
1622         BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1623
1624         request->alpha2[0] = alpha2[0];
1625         request->alpha2[1] = alpha2[1];
1626         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1627
1628         queue_regulatory_request(request);
1629
1630         return 0;
1631 }
1632 EXPORT_SYMBOL(regulatory_hint);
1633
1634 /*
1635  * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1636  * therefore cannot iterate over the rdev list here.
1637  */
1638 void regulatory_hint_11d(struct wiphy *wiphy,
1639                          enum ieee80211_band band,
1640                          u8 *country_ie,
1641                          u8 country_ie_len)
1642 {
1643         char alpha2[2];
1644         enum environment_cap env = ENVIRON_ANY;
1645         struct regulatory_request *request;
1646
1647         mutex_lock(&reg_mutex);
1648
1649         if (unlikely(!last_request))
1650                 goto out;
1651
1652         /* IE len must be evenly divisible by 2 */
1653         if (country_ie_len & 0x01)
1654                 goto out;
1655
1656         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1657                 goto out;
1658
1659         alpha2[0] = country_ie[0];
1660         alpha2[1] = country_ie[1];
1661
1662         if (country_ie[2] == 'I')
1663                 env = ENVIRON_INDOOR;
1664         else if (country_ie[2] == 'O')
1665                 env = ENVIRON_OUTDOOR;
1666
1667         /*
1668          * We will run this only upon a successful connection on cfg80211.
1669          * We leave conflict resolution to the workqueue, where can hold
1670          * cfg80211_mutex.
1671          */
1672         if (likely(last_request->initiator ==
1673             NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1674             wiphy_idx_valid(last_request->wiphy_idx)))
1675                 goto out;
1676
1677         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1678         if (!request)
1679                 goto out;
1680
1681         request->wiphy_idx = get_wiphy_idx(wiphy);
1682         request->alpha2[0] = alpha2[0];
1683         request->alpha2[1] = alpha2[1];
1684         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1685         request->country_ie_env = env;
1686
1687         mutex_unlock(&reg_mutex);
1688
1689         queue_regulatory_request(request);
1690
1691         return;
1692
1693 out:
1694         mutex_unlock(&reg_mutex);
1695 }
1696
1697 static void restore_alpha2(char *alpha2, bool reset_user)
1698 {
1699         /* indicates there is no alpha2 to consider for restoration */
1700         alpha2[0] = '9';
1701         alpha2[1] = '7';
1702
1703         /* The user setting has precedence over the module parameter */
1704         if (is_user_regdom_saved()) {
1705                 /* Unless we're asked to ignore it and reset it */
1706                 if (reset_user) {
1707                         REG_DBG_PRINT("Restoring regulatory settings "
1708                                "including user preference\n");
1709                         user_alpha2[0] = '9';
1710                         user_alpha2[1] = '7';
1711
1712                         /*
1713                          * If we're ignoring user settings, we still need to
1714                          * check the module parameter to ensure we put things
1715                          * back as they were for a full restore.
1716                          */
1717                         if (!is_world_regdom(ieee80211_regdom)) {
1718                                 REG_DBG_PRINT("Keeping preference on "
1719                                        "module parameter ieee80211_regdom: %c%c\n",
1720                                        ieee80211_regdom[0],
1721                                        ieee80211_regdom[1]);
1722                                 alpha2[0] = ieee80211_regdom[0];
1723                                 alpha2[1] = ieee80211_regdom[1];
1724                         }
1725                 } else {
1726                         REG_DBG_PRINT("Restoring regulatory settings "
1727                                "while preserving user preference for: %c%c\n",
1728                                user_alpha2[0],
1729                                user_alpha2[1]);
1730                         alpha2[0] = user_alpha2[0];
1731                         alpha2[1] = user_alpha2[1];
1732                 }
1733         } else if (!is_world_regdom(ieee80211_regdom)) {
1734                 REG_DBG_PRINT("Keeping preference on "
1735                        "module parameter ieee80211_regdom: %c%c\n",
1736                        ieee80211_regdom[0],
1737                        ieee80211_regdom[1]);
1738                 alpha2[0] = ieee80211_regdom[0];
1739                 alpha2[1] = ieee80211_regdom[1];
1740         } else
1741                 REG_DBG_PRINT("Restoring regulatory settings\n");
1742 }
1743
1744 /*
1745  * Restoring regulatory settings involves ingoring any
1746  * possibly stale country IE information and user regulatory
1747  * settings if so desired, this includes any beacon hints
1748  * learned as we could have traveled outside to another country
1749  * after disconnection. To restore regulatory settings we do
1750  * exactly what we did at bootup:
1751  *
1752  *   - send a core regulatory hint
1753  *   - send a user regulatory hint if applicable
1754  *
1755  * Device drivers that send a regulatory hint for a specific country
1756  * keep their own regulatory domain on wiphy->regd so that does does
1757  * not need to be remembered.
1758  */
1759 static void restore_regulatory_settings(bool reset_user)
1760 {
1761         char alpha2[2];
1762         struct reg_beacon *reg_beacon, *btmp;
1763         struct regulatory_request *reg_request, *tmp;
1764         LIST_HEAD(tmp_reg_req_list);
1765
1766         mutex_lock(&cfg80211_mutex);
1767         mutex_lock(&reg_mutex);
1768
1769         reset_regdomains();
1770         restore_alpha2(alpha2, reset_user);
1771
1772         /*
1773          * If there's any pending requests we simply
1774          * stash them to a temporary pending queue and
1775          * add then after we've restored regulatory
1776          * settings.
1777          */
1778         spin_lock(&reg_requests_lock);
1779         if (!list_empty(&reg_requests_list)) {
1780                 list_for_each_entry_safe(reg_request, tmp,
1781                                          &reg_requests_list, list) {
1782                         if (reg_request->initiator !=
1783                             NL80211_REGDOM_SET_BY_USER)
1784                                 continue;
1785                         list_del(&reg_request->list);
1786                         list_add_tail(&reg_request->list, &tmp_reg_req_list);
1787                 }
1788         }
1789         spin_unlock(&reg_requests_lock);
1790
1791         /* Clear beacon hints */
1792         spin_lock_bh(&reg_pending_beacons_lock);
1793         if (!list_empty(&reg_pending_beacons)) {
1794                 list_for_each_entry_safe(reg_beacon, btmp,
1795                                          &reg_pending_beacons, list) {
1796                         list_del(&reg_beacon->list);
1797                         kfree(reg_beacon);
1798                 }
1799         }
1800         spin_unlock_bh(&reg_pending_beacons_lock);
1801
1802         if (!list_empty(&reg_beacon_list)) {
1803                 list_for_each_entry_safe(reg_beacon, btmp,
1804                                          &reg_beacon_list, list) {
1805                         list_del(&reg_beacon->list);
1806                         kfree(reg_beacon);
1807                 }
1808         }
1809
1810         /* First restore to the basic regulatory settings */
1811         cfg80211_regdomain = cfg80211_world_regdom;
1812
1813         mutex_unlock(&reg_mutex);
1814         mutex_unlock(&cfg80211_mutex);
1815
1816         regulatory_hint_core(cfg80211_regdomain->alpha2);
1817
1818         /*
1819          * This restores the ieee80211_regdom module parameter
1820          * preference or the last user requested regulatory
1821          * settings, user regulatory settings takes precedence.
1822          */
1823         if (is_an_alpha2(alpha2))
1824                 regulatory_hint_user(user_alpha2);
1825
1826         if (list_empty(&tmp_reg_req_list))
1827                 return;
1828
1829         mutex_lock(&cfg80211_mutex);
1830         mutex_lock(&reg_mutex);
1831
1832         spin_lock(&reg_requests_lock);
1833         list_for_each_entry_safe(reg_request, tmp, &tmp_reg_req_list, list) {
1834                 REG_DBG_PRINT("Adding request for country %c%c back "
1835                               "into the queue\n",
1836                               reg_request->alpha2[0],
1837                               reg_request->alpha2[1]);
1838                 list_del(&reg_request->list);
1839                 list_add_tail(&reg_request->list, &reg_requests_list);
1840         }
1841         spin_unlock(&reg_requests_lock);
1842
1843         mutex_unlock(&reg_mutex);
1844         mutex_unlock(&cfg80211_mutex);
1845
1846         REG_DBG_PRINT("Kicking the queue\n");
1847
1848         schedule_work(&reg_work);
1849 }
1850
1851 void regulatory_hint_disconnect(void)
1852 {
1853         REG_DBG_PRINT("All devices are disconnected, going to "
1854                       "restore regulatory settings\n");
1855         restore_regulatory_settings(false);
1856 }
1857
1858 static bool freq_is_chan_12_13_14(u16 freq)
1859 {
1860         if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
1861             freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
1862             freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
1863                 return true;
1864         return false;
1865 }
1866
1867 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1868                                  struct ieee80211_channel *beacon_chan,
1869                                  gfp_t gfp)
1870 {
1871         struct reg_beacon *reg_beacon;
1872
1873         if (likely((beacon_chan->beacon_found ||
1874             (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
1875             (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1876              !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
1877                 return 0;
1878
1879         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1880         if (!reg_beacon)
1881                 return -ENOMEM;
1882
1883         REG_DBG_PRINT("Found new beacon on "
1884                       "frequency: %d MHz (Ch %d) on %s\n",
1885                       beacon_chan->center_freq,
1886                       ieee80211_frequency_to_channel(beacon_chan->center_freq),
1887                       wiphy_name(wiphy));
1888
1889         memcpy(&reg_beacon->chan, beacon_chan,
1890                 sizeof(struct ieee80211_channel));
1891
1892
1893         /*
1894          * Since we can be called from BH or and non-BH context
1895          * we must use spin_lock_bh()
1896          */
1897         spin_lock_bh(&reg_pending_beacons_lock);
1898         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1899         spin_unlock_bh(&reg_pending_beacons_lock);
1900
1901         schedule_work(&reg_work);
1902
1903         return 0;
1904 }
1905
1906 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1907 {
1908         unsigned int i;
1909         const struct ieee80211_reg_rule *reg_rule = NULL;
1910         const struct ieee80211_freq_range *freq_range = NULL;
1911         const struct ieee80211_power_rule *power_rule = NULL;
1912
1913         pr_info("    (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
1914
1915         for (i = 0; i < rd->n_reg_rules; i++) {
1916                 reg_rule = &rd->reg_rules[i];
1917                 freq_range = &reg_rule->freq_range;
1918                 power_rule = &reg_rule->power_rule;
1919
1920                 /*
1921                  * There may not be documentation for max antenna gain
1922                  * in certain regions
1923                  */
1924                 if (power_rule->max_antenna_gain)
1925                         pr_info("    (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
1926                                 freq_range->start_freq_khz,
1927                                 freq_range->end_freq_khz,
1928                                 freq_range->max_bandwidth_khz,
1929                                 power_rule->max_antenna_gain,
1930                                 power_rule->max_eirp);
1931                 else
1932                         pr_info("    (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
1933                                 freq_range->start_freq_khz,
1934                                 freq_range->end_freq_khz,
1935                                 freq_range->max_bandwidth_khz,
1936                                 power_rule->max_eirp);
1937         }
1938 }
1939
1940 static void print_regdomain(const struct ieee80211_regdomain *rd)
1941 {
1942
1943         if (is_intersected_alpha2(rd->alpha2)) {
1944
1945                 if (last_request->initiator ==
1946                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1947                         struct cfg80211_registered_device *rdev;
1948                         rdev = cfg80211_rdev_by_wiphy_idx(
1949                                 last_request->wiphy_idx);
1950                         if (rdev) {
1951                                 pr_info("Current regulatory domain updated by AP to: %c%c\n",
1952                                         rdev->country_ie_alpha2[0],
1953                                         rdev->country_ie_alpha2[1]);
1954                         } else
1955                                 pr_info("Current regulatory domain intersected:\n");
1956                 } else
1957                         pr_info("Current regulatory domain intersected:\n");
1958         } else if (is_world_regdom(rd->alpha2))
1959                 pr_info("World regulatory domain updated:\n");
1960         else {
1961                 if (is_unknown_alpha2(rd->alpha2))
1962                         pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
1963                 else
1964                         pr_info("Regulatory domain changed to country: %c%c\n",
1965                                 rd->alpha2[0], rd->alpha2[1]);
1966         }
1967         print_rd_rules(rd);
1968 }
1969
1970 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
1971 {
1972         pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
1973         print_rd_rules(rd);
1974 }
1975
1976 /* Takes ownership of rd only if it doesn't fail */
1977 static int __set_regdom(const struct ieee80211_regdomain *rd)
1978 {
1979         const struct ieee80211_regdomain *intersected_rd = NULL;
1980         struct cfg80211_registered_device *rdev = NULL;
1981         struct wiphy *request_wiphy;
1982         /* Some basic sanity checks first */
1983
1984         if (is_world_regdom(rd->alpha2)) {
1985                 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1986                         return -EINVAL;
1987                 update_world_regdomain(rd);
1988                 return 0;
1989         }
1990
1991         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
1992                         !is_unknown_alpha2(rd->alpha2))
1993                 return -EINVAL;
1994
1995         if (!last_request)
1996                 return -EINVAL;
1997
1998         /*
1999          * Lets only bother proceeding on the same alpha2 if the current
2000          * rd is non static (it means CRDA was present and was used last)
2001          * and the pending request came in from a country IE
2002          */
2003         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2004                 /*
2005                  * If someone else asked us to change the rd lets only bother
2006                  * checking if the alpha2 changes if CRDA was already called
2007                  */
2008                 if (!regdom_changes(rd->alpha2))
2009                         return -EINVAL;
2010         }
2011
2012         /*
2013          * Now lets set the regulatory domain, update all driver channels
2014          * and finally inform them of what we have done, in case they want
2015          * to review or adjust their own settings based on their own
2016          * internal EEPROM data
2017          */
2018
2019         if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2020                 return -EINVAL;
2021
2022         if (!is_valid_rd(rd)) {
2023                 pr_err("Invalid regulatory domain detected:\n");
2024                 print_regdomain_info(rd);
2025                 return -EINVAL;
2026         }
2027
2028         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2029
2030         if (!last_request->intersect) {
2031                 int r;
2032
2033                 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2034                         reset_regdomains();
2035                         cfg80211_regdomain = rd;
2036                         return 0;
2037                 }
2038
2039                 /*
2040                  * For a driver hint, lets copy the regulatory domain the
2041                  * driver wanted to the wiphy to deal with conflicts
2042                  */
2043
2044                 /*
2045                  * Userspace could have sent two replies with only
2046                  * one kernel request.
2047                  */
2048                 if (request_wiphy->regd)
2049                         return -EALREADY;
2050
2051                 r = reg_copy_regd(&request_wiphy->regd, rd);
2052                 if (r)
2053                         return r;
2054
2055                 reset_regdomains();
2056                 cfg80211_regdomain = rd;
2057                 return 0;
2058         }
2059
2060         /* Intersection requires a bit more work */
2061
2062         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2063
2064                 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2065                 if (!intersected_rd)
2066                         return -EINVAL;
2067
2068                 /*
2069                  * We can trash what CRDA provided now.
2070                  * However if a driver requested this specific regulatory
2071                  * domain we keep it for its private use
2072                  */
2073                 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2074                         request_wiphy->regd = rd;
2075                 else
2076                         kfree(rd);
2077
2078                 rd = NULL;
2079
2080                 reset_regdomains();
2081                 cfg80211_regdomain = intersected_rd;
2082
2083                 return 0;
2084         }
2085
2086         if (!intersected_rd)
2087                 return -EINVAL;
2088
2089         rdev = wiphy_to_dev(request_wiphy);
2090
2091         rdev->country_ie_alpha2[0] = rd->alpha2[0];
2092         rdev->country_ie_alpha2[1] = rd->alpha2[1];
2093         rdev->env = last_request->country_ie_env;
2094
2095         BUG_ON(intersected_rd == rd);
2096
2097         kfree(rd);
2098         rd = NULL;
2099
2100         reset_regdomains();
2101         cfg80211_regdomain = intersected_rd;
2102
2103         return 0;
2104 }
2105
2106
2107 /*
2108  * Use this call to set the current regulatory domain. Conflicts with
2109  * multiple drivers can be ironed out later. Caller must've already
2110  * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2111  */
2112 int set_regdom(const struct ieee80211_regdomain *rd)
2113 {
2114         int r;
2115
2116         assert_cfg80211_lock();
2117
2118         mutex_lock(&reg_mutex);
2119
2120         /* Note that this doesn't update the wiphys, this is done below */
2121         r = __set_regdom(rd);
2122         if (r) {
2123                 kfree(rd);
2124                 mutex_unlock(&reg_mutex);
2125                 return r;
2126         }
2127
2128         /* This would make this whole thing pointless */
2129         if (!last_request->intersect)
2130                 BUG_ON(rd != cfg80211_regdomain);
2131
2132         /* update all wiphys now with the new established regulatory domain */
2133         update_all_wiphy_regulatory(last_request->initiator);
2134
2135         print_regdomain(cfg80211_regdomain);
2136
2137         nl80211_send_reg_change_event(last_request);
2138
2139         reg_set_request_processed();
2140
2141         mutex_unlock(&reg_mutex);
2142
2143         return r;
2144 }
2145
2146 #ifdef CONFIG_HOTPLUG
2147 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2148 {
2149         if (last_request && !last_request->processed) {
2150                 if (add_uevent_var(env, "COUNTRY=%c%c",
2151                                    last_request->alpha2[0],
2152                                    last_request->alpha2[1]))
2153                         return -ENOMEM;
2154         }
2155
2156         return 0;
2157 }
2158 #else
2159 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2160 {
2161         return -ENODEV;
2162 }
2163 #endif /* CONFIG_HOTPLUG */
2164
2165 /* Caller must hold cfg80211_mutex */
2166 void reg_device_remove(struct wiphy *wiphy)
2167 {
2168         struct wiphy *request_wiphy = NULL;
2169
2170         assert_cfg80211_lock();
2171
2172         mutex_lock(&reg_mutex);
2173
2174         kfree(wiphy->regd);
2175
2176         if (last_request)
2177                 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2178
2179         if (!request_wiphy || request_wiphy != wiphy)
2180                 goto out;
2181
2182         last_request->wiphy_idx = WIPHY_IDX_STALE;
2183         last_request->country_ie_env = ENVIRON_ANY;
2184 out:
2185         mutex_unlock(&reg_mutex);
2186 }
2187
2188 static void reg_timeout_work(struct work_struct *work)
2189 {
2190         REG_DBG_PRINT("Timeout while waiting for CRDA to reply, "
2191                       "restoring regulatory settings");
2192         restore_regulatory_settings(true);
2193 }
2194
2195 int __init regulatory_init(void)
2196 {
2197         int err = 0;
2198
2199         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2200         if (IS_ERR(reg_pdev))
2201                 return PTR_ERR(reg_pdev);
2202
2203         reg_pdev->dev.type = &reg_device_type;
2204
2205         spin_lock_init(&reg_requests_lock);
2206         spin_lock_init(&reg_pending_beacons_lock);
2207
2208         cfg80211_regdomain = cfg80211_world_regdom;
2209
2210         user_alpha2[0] = '9';
2211         user_alpha2[1] = '7';
2212
2213         /* We always try to get an update for the static regdomain */
2214         err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2215         if (err) {
2216                 if (err == -ENOMEM)
2217                         return err;
2218                 /*
2219                  * N.B. kobject_uevent_env() can fail mainly for when we're out
2220                  * memory which is handled and propagated appropriately above
2221                  * but it can also fail during a netlink_broadcast() or during
2222                  * early boot for call_usermodehelper(). For now treat these
2223                  * errors as non-fatal.
2224                  */
2225                 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2226 #ifdef CONFIG_CFG80211_REG_DEBUG
2227                 /* We want to find out exactly why when debugging */
2228                 WARN_ON(err);
2229 #endif
2230         }
2231
2232         /*
2233          * Finally, if the user set the module parameter treat it
2234          * as a user hint.
2235          */
2236         if (!is_world_regdom(ieee80211_regdom))
2237                 regulatory_hint_user(ieee80211_regdom);
2238
2239         return 0;
2240 }
2241
2242 void /* __init_or_exit */ regulatory_exit(void)
2243 {
2244         struct regulatory_request *reg_request, *tmp;
2245         struct reg_beacon *reg_beacon, *btmp;
2246
2247         cancel_work_sync(&reg_work);
2248         cancel_delayed_work_sync(&reg_timeout);
2249
2250         mutex_lock(&cfg80211_mutex);
2251         mutex_lock(&reg_mutex);
2252
2253         reset_regdomains();
2254
2255         kfree(last_request);
2256
2257         last_request = NULL;
2258         dev_set_uevent_suppress(&reg_pdev->dev, true);
2259
2260         platform_device_unregister(reg_pdev);
2261
2262         spin_lock_bh(&reg_pending_beacons_lock);
2263         if (!list_empty(&reg_pending_beacons)) {
2264                 list_for_each_entry_safe(reg_beacon, btmp,
2265                                          &reg_pending_beacons, list) {
2266                         list_del(&reg_beacon->list);
2267                         kfree(reg_beacon);
2268                 }
2269         }
2270         spin_unlock_bh(&reg_pending_beacons_lock);
2271
2272         if (!list_empty(&reg_beacon_list)) {
2273                 list_for_each_entry_safe(reg_beacon, btmp,
2274                                          &reg_beacon_list, list) {
2275                         list_del(&reg_beacon->list);
2276                         kfree(reg_beacon);
2277                 }
2278         }
2279
2280         spin_lock(&reg_requests_lock);
2281         if (!list_empty(&reg_requests_list)) {
2282                 list_for_each_entry_safe(reg_request, tmp,
2283                                          &reg_requests_list, list) {
2284                         list_del(&reg_request->list);
2285                         kfree(reg_request);
2286                 }
2287         }
2288         spin_unlock(&reg_requests_lock);
2289
2290         mutex_unlock(&reg_mutex);
2291         mutex_unlock(&cfg80211_mutex);
2292 }