[SK_BUFF]: More skb_put related conversions to skb_reset_transport_header
[linux-2.6.git] / net / rose / af_rose.c
1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License as published by
4  * the Free Software Foundation; either version 2 of the License, or
5  * (at your option) any later version.
6  *
7  * Copyright (C) Jonathan Naylor G4KLX (g4klx@g4klx.demon.co.uk)
8  * Copyright (C) Alan Cox GW4PTS (alan@lxorguk.ukuu.org.uk)
9  * Copyright (C) Terry Dawson VK2KTJ (terry@animats.net)
10  * Copyright (C) Tomi Manninen OH2BNS (oh2bns@sral.fi)
11  */
12
13 #include <linux/capability.h>
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16 #include <linux/init.h>
17 #include <linux/errno.h>
18 #include <linux/types.h>
19 #include <linux/socket.h>
20 #include <linux/in.h>
21 #include <linux/kernel.h>
22 #include <linux/sched.h>
23 #include <linux/spinlock.h>
24 #include <linux/timer.h>
25 #include <linux/string.h>
26 #include <linux/sockios.h>
27 #include <linux/net.h>
28 #include <linux/stat.h>
29 #include <net/ax25.h>
30 #include <linux/inet.h>
31 #include <linux/netdevice.h>
32 #include <linux/if_arp.h>
33 #include <linux/skbuff.h>
34 #include <net/sock.h>
35 #include <asm/system.h>
36 #include <asm/uaccess.h>
37 #include <linux/fcntl.h>
38 #include <linux/termios.h>
39 #include <linux/mm.h>
40 #include <linux/interrupt.h>
41 #include <linux/notifier.h>
42 #include <net/rose.h>
43 #include <linux/proc_fs.h>
44 #include <linux/seq_file.h>
45 #include <net/tcp_states.h>
46 #include <net/ip.h>
47 #include <net/arp.h>
48
49 static int rose_ndevs = 10;
50
51 int sysctl_rose_restart_request_timeout = ROSE_DEFAULT_T0;
52 int sysctl_rose_call_request_timeout    = ROSE_DEFAULT_T1;
53 int sysctl_rose_reset_request_timeout   = ROSE_DEFAULT_T2;
54 int sysctl_rose_clear_request_timeout   = ROSE_DEFAULT_T3;
55 int sysctl_rose_no_activity_timeout     = ROSE_DEFAULT_IDLE;
56 int sysctl_rose_ack_hold_back_timeout   = ROSE_DEFAULT_HB;
57 int sysctl_rose_routing_control         = ROSE_DEFAULT_ROUTING;
58 int sysctl_rose_link_fail_timeout       = ROSE_DEFAULT_FAIL_TIMEOUT;
59 int sysctl_rose_maximum_vcs             = ROSE_DEFAULT_MAXVC;
60 int sysctl_rose_window_size             = ROSE_DEFAULT_WINDOW_SIZE;
61
62 static HLIST_HEAD(rose_list);
63 static DEFINE_SPINLOCK(rose_list_lock);
64
65 static struct proto_ops rose_proto_ops;
66
67 ax25_address rose_callsign;
68
69 /*
70  * ROSE network devices are virtual network devices encapsulating ROSE
71  * frames into AX.25 which will be sent through an AX.25 device, so form a
72  * special "super class" of normal net devices; split their locks off into a
73  * separate class since they always nest.
74  */
75 static struct lock_class_key rose_netdev_xmit_lock_key;
76
77 /*
78  *      Convert a ROSE address into text.
79  */
80 const char *rose2asc(const rose_address *addr)
81 {
82         static char buffer[11];
83
84         if (addr->rose_addr[0] == 0x00 && addr->rose_addr[1] == 0x00 &&
85             addr->rose_addr[2] == 0x00 && addr->rose_addr[3] == 0x00 &&
86             addr->rose_addr[4] == 0x00) {
87                 strcpy(buffer, "*");
88         } else {
89                 sprintf(buffer, "%02X%02X%02X%02X%02X", addr->rose_addr[0] & 0xFF,
90                                                 addr->rose_addr[1] & 0xFF,
91                                                 addr->rose_addr[2] & 0xFF,
92                                                 addr->rose_addr[3] & 0xFF,
93                                                 addr->rose_addr[4] & 0xFF);
94         }
95
96         return buffer;
97 }
98
99 /*
100  *      Compare two ROSE addresses, 0 == equal.
101  */
102 int rosecmp(rose_address *addr1, rose_address *addr2)
103 {
104         int i;
105
106         for (i = 0; i < 5; i++)
107                 if (addr1->rose_addr[i] != addr2->rose_addr[i])
108                         return 1;
109
110         return 0;
111 }
112
113 /*
114  *      Compare two ROSE addresses for only mask digits, 0 == equal.
115  */
116 int rosecmpm(rose_address *addr1, rose_address *addr2, unsigned short mask)
117 {
118         int i, j;
119
120         if (mask > 10)
121                 return 1;
122
123         for (i = 0; i < mask; i++) {
124                 j = i / 2;
125
126                 if ((i % 2) != 0) {
127                         if ((addr1->rose_addr[j] & 0x0F) != (addr2->rose_addr[j] & 0x0F))
128                                 return 1;
129                 } else {
130                         if ((addr1->rose_addr[j] & 0xF0) != (addr2->rose_addr[j] & 0xF0))
131                                 return 1;
132                 }
133         }
134
135         return 0;
136 }
137
138 /*
139  *      Socket removal during an interrupt is now safe.
140  */
141 static void rose_remove_socket(struct sock *sk)
142 {
143         spin_lock_bh(&rose_list_lock);
144         sk_del_node_init(sk);
145         spin_unlock_bh(&rose_list_lock);
146 }
147
148 /*
149  *      Kill all bound sockets on a broken link layer connection to a
150  *      particular neighbour.
151  */
152 void rose_kill_by_neigh(struct rose_neigh *neigh)
153 {
154         struct sock *s;
155         struct hlist_node *node;
156
157         spin_lock_bh(&rose_list_lock);
158         sk_for_each(s, node, &rose_list) {
159                 struct rose_sock *rose = rose_sk(s);
160
161                 if (rose->neighbour == neigh) {
162                         rose_disconnect(s, ENETUNREACH, ROSE_OUT_OF_ORDER, 0);
163                         rose->neighbour->use--;
164                         rose->neighbour = NULL;
165                 }
166         }
167         spin_unlock_bh(&rose_list_lock);
168 }
169
170 /*
171  *      Kill all bound sockets on a dropped device.
172  */
173 static void rose_kill_by_device(struct net_device *dev)
174 {
175         struct sock *s;
176         struct hlist_node *node;
177
178         spin_lock_bh(&rose_list_lock);
179         sk_for_each(s, node, &rose_list) {
180                 struct rose_sock *rose = rose_sk(s);
181
182                 if (rose->device == dev) {
183                         rose_disconnect(s, ENETUNREACH, ROSE_OUT_OF_ORDER, 0);
184                         rose->neighbour->use--;
185                         rose->device = NULL;
186                 }
187         }
188         spin_unlock_bh(&rose_list_lock);
189 }
190
191 /*
192  *      Handle device status changes.
193  */
194 static int rose_device_event(struct notifier_block *this, unsigned long event,
195         void *ptr)
196 {
197         struct net_device *dev = (struct net_device *)ptr;
198
199         if (event != NETDEV_DOWN)
200                 return NOTIFY_DONE;
201
202         switch (dev->type) {
203         case ARPHRD_ROSE:
204                 rose_kill_by_device(dev);
205                 break;
206         case ARPHRD_AX25:
207                 rose_link_device_down(dev);
208                 rose_rt_device_down(dev);
209                 break;
210         }
211
212         return NOTIFY_DONE;
213 }
214
215 /*
216  *      Add a socket to the bound sockets list.
217  */
218 static void rose_insert_socket(struct sock *sk)
219 {
220
221         spin_lock_bh(&rose_list_lock);
222         sk_add_node(sk, &rose_list);
223         spin_unlock_bh(&rose_list_lock);
224 }
225
226 /*
227  *      Find a socket that wants to accept the Call Request we just
228  *      received.
229  */
230 static struct sock *rose_find_listener(rose_address *addr, ax25_address *call)
231 {
232         struct sock *s;
233         struct hlist_node *node;
234
235         spin_lock_bh(&rose_list_lock);
236         sk_for_each(s, node, &rose_list) {
237                 struct rose_sock *rose = rose_sk(s);
238
239                 if (!rosecmp(&rose->source_addr, addr) &&
240                     !ax25cmp(&rose->source_call, call) &&
241                     !rose->source_ndigis && s->sk_state == TCP_LISTEN)
242                         goto found;
243         }
244
245         sk_for_each(s, node, &rose_list) {
246                 struct rose_sock *rose = rose_sk(s);
247
248                 if (!rosecmp(&rose->source_addr, addr) &&
249                     !ax25cmp(&rose->source_call, &null_ax25_address) &&
250                     s->sk_state == TCP_LISTEN)
251                         goto found;
252         }
253         s = NULL;
254 found:
255         spin_unlock_bh(&rose_list_lock);
256         return s;
257 }
258
259 /*
260  *      Find a connected ROSE socket given my LCI and device.
261  */
262 struct sock *rose_find_socket(unsigned int lci, struct rose_neigh *neigh)
263 {
264         struct sock *s;
265         struct hlist_node *node;
266
267         spin_lock_bh(&rose_list_lock);
268         sk_for_each(s, node, &rose_list) {
269                 struct rose_sock *rose = rose_sk(s);
270
271                 if (rose->lci == lci && rose->neighbour == neigh)
272                         goto found;
273         }
274         s = NULL;
275 found:
276         spin_unlock_bh(&rose_list_lock);
277         return s;
278 }
279
280 /*
281  *      Find a unique LCI for a given device.
282  */
283 unsigned int rose_new_lci(struct rose_neigh *neigh)
284 {
285         int lci;
286
287         if (neigh->dce_mode) {
288                 for (lci = 1; lci <= sysctl_rose_maximum_vcs; lci++)
289                         if (rose_find_socket(lci, neigh) == NULL && rose_route_free_lci(lci, neigh) == NULL)
290                                 return lci;
291         } else {
292                 for (lci = sysctl_rose_maximum_vcs; lci > 0; lci--)
293                         if (rose_find_socket(lci, neigh) == NULL && rose_route_free_lci(lci, neigh) == NULL)
294                                 return lci;
295         }
296
297         return 0;
298 }
299
300 /*
301  *      Deferred destroy.
302  */
303 void rose_destroy_socket(struct sock *);
304
305 /*
306  *      Handler for deferred kills.
307  */
308 static void rose_destroy_timer(unsigned long data)
309 {
310         rose_destroy_socket((struct sock *)data);
311 }
312
313 /*
314  *      This is called from user mode and the timers. Thus it protects itself
315  *      against interrupt users but doesn't worry about being called during
316  *      work.  Once it is removed from the queue no interrupt or bottom half
317  *      will touch it and we are (fairly 8-) ) safe.
318  */
319 void rose_destroy_socket(struct sock *sk)
320 {
321         struct sk_buff *skb;
322
323         rose_remove_socket(sk);
324         rose_stop_heartbeat(sk);
325         rose_stop_idletimer(sk);
326         rose_stop_timer(sk);
327
328         rose_clear_queues(sk);          /* Flush the queues */
329
330         while ((skb = skb_dequeue(&sk->sk_receive_queue)) != NULL) {
331                 if (skb->sk != sk) {    /* A pending connection */
332                         /* Queue the unaccepted socket for death */
333                         sock_set_flag(skb->sk, SOCK_DEAD);
334                         rose_start_heartbeat(skb->sk);
335                         rose_sk(skb->sk)->state = ROSE_STATE_0;
336                 }
337
338                 kfree_skb(skb);
339         }
340
341         if (atomic_read(&sk->sk_wmem_alloc) ||
342             atomic_read(&sk->sk_rmem_alloc)) {
343                 /* Defer: outstanding buffers */
344                 init_timer(&sk->sk_timer);
345                 sk->sk_timer.expires  = jiffies + 10 * HZ;
346                 sk->sk_timer.function = rose_destroy_timer;
347                 sk->sk_timer.data     = (unsigned long)sk;
348                 add_timer(&sk->sk_timer);
349         } else
350                 sock_put(sk);
351 }
352
353 /*
354  *      Handling for system calls applied via the various interfaces to a
355  *      ROSE socket object.
356  */
357
358 static int rose_setsockopt(struct socket *sock, int level, int optname,
359         char __user *optval, int optlen)
360 {
361         struct sock *sk = sock->sk;
362         struct rose_sock *rose = rose_sk(sk);
363         int opt;
364
365         if (level != SOL_ROSE)
366                 return -ENOPROTOOPT;
367
368         if (optlen < sizeof(int))
369                 return -EINVAL;
370
371         if (get_user(opt, (int __user *)optval))
372                 return -EFAULT;
373
374         switch (optname) {
375         case ROSE_DEFER:
376                 rose->defer = opt ? 1 : 0;
377                 return 0;
378
379         case ROSE_T1:
380                 if (opt < 1)
381                         return -EINVAL;
382                 rose->t1 = opt * HZ;
383                 return 0;
384
385         case ROSE_T2:
386                 if (opt < 1)
387                         return -EINVAL;
388                 rose->t2 = opt * HZ;
389                 return 0;
390
391         case ROSE_T3:
392                 if (opt < 1)
393                         return -EINVAL;
394                 rose->t3 = opt * HZ;
395                 return 0;
396
397         case ROSE_HOLDBACK:
398                 if (opt < 1)
399                         return -EINVAL;
400                 rose->hb = opt * HZ;
401                 return 0;
402
403         case ROSE_IDLE:
404                 if (opt < 0)
405                         return -EINVAL;
406                 rose->idle = opt * 60 * HZ;
407                 return 0;
408
409         case ROSE_QBITINCL:
410                 rose->qbitincl = opt ? 1 : 0;
411                 return 0;
412
413         default:
414                 return -ENOPROTOOPT;
415         }
416 }
417
418 static int rose_getsockopt(struct socket *sock, int level, int optname,
419         char __user *optval, int __user *optlen)
420 {
421         struct sock *sk = sock->sk;
422         struct rose_sock *rose = rose_sk(sk);
423         int val = 0;
424         int len;
425
426         if (level != SOL_ROSE)
427                 return -ENOPROTOOPT;
428
429         if (get_user(len, optlen))
430                 return -EFAULT;
431
432         if (len < 0)
433                 return -EINVAL;
434
435         switch (optname) {
436         case ROSE_DEFER:
437                 val = rose->defer;
438                 break;
439
440         case ROSE_T1:
441                 val = rose->t1 / HZ;
442                 break;
443
444         case ROSE_T2:
445                 val = rose->t2 / HZ;
446                 break;
447
448         case ROSE_T3:
449                 val = rose->t3 / HZ;
450                 break;
451
452         case ROSE_HOLDBACK:
453                 val = rose->hb / HZ;
454                 break;
455
456         case ROSE_IDLE:
457                 val = rose->idle / (60 * HZ);
458                 break;
459
460         case ROSE_QBITINCL:
461                 val = rose->qbitincl;
462                 break;
463
464         default:
465                 return -ENOPROTOOPT;
466         }
467
468         len = min_t(unsigned int, len, sizeof(int));
469
470         if (put_user(len, optlen))
471                 return -EFAULT;
472
473         return copy_to_user(optval, &val, len) ? -EFAULT : 0;
474 }
475
476 static int rose_listen(struct socket *sock, int backlog)
477 {
478         struct sock *sk = sock->sk;
479
480         if (sk->sk_state != TCP_LISTEN) {
481                 struct rose_sock *rose = rose_sk(sk);
482
483                 rose->dest_ndigis = 0;
484                 memset(&rose->dest_addr, 0, ROSE_ADDR_LEN);
485                 memset(&rose->dest_call, 0, AX25_ADDR_LEN);
486                 memset(rose->dest_digis, 0, AX25_ADDR_LEN * ROSE_MAX_DIGIS);
487                 sk->sk_max_ack_backlog = backlog;
488                 sk->sk_state           = TCP_LISTEN;
489                 return 0;
490         }
491
492         return -EOPNOTSUPP;
493 }
494
495 static struct proto rose_proto = {
496         .name     = "ROSE",
497         .owner    = THIS_MODULE,
498         .obj_size = sizeof(struct rose_sock),
499 };
500
501 static int rose_create(struct socket *sock, int protocol)
502 {
503         struct sock *sk;
504         struct rose_sock *rose;
505
506         if (sock->type != SOCK_SEQPACKET || protocol != 0)
507                 return -ESOCKTNOSUPPORT;
508
509         if ((sk = sk_alloc(PF_ROSE, GFP_ATOMIC, &rose_proto, 1)) == NULL)
510                 return -ENOMEM;
511
512         rose = rose_sk(sk);
513
514         sock_init_data(sock, sk);
515
516         skb_queue_head_init(&rose->ack_queue);
517 #ifdef M_BIT
518         skb_queue_head_init(&rose->frag_queue);
519         rose->fraglen    = 0;
520 #endif
521
522         sock->ops    = &rose_proto_ops;
523         sk->sk_protocol = protocol;
524
525         init_timer(&rose->timer);
526         init_timer(&rose->idletimer);
527
528         rose->t1   = msecs_to_jiffies(sysctl_rose_call_request_timeout);
529         rose->t2   = msecs_to_jiffies(sysctl_rose_reset_request_timeout);
530         rose->t3   = msecs_to_jiffies(sysctl_rose_clear_request_timeout);
531         rose->hb   = msecs_to_jiffies(sysctl_rose_ack_hold_back_timeout);
532         rose->idle = msecs_to_jiffies(sysctl_rose_no_activity_timeout);
533
534         rose->state = ROSE_STATE_0;
535
536         return 0;
537 }
538
539 static struct sock *rose_make_new(struct sock *osk)
540 {
541         struct sock *sk;
542         struct rose_sock *rose, *orose;
543
544         if (osk->sk_type != SOCK_SEQPACKET)
545                 return NULL;
546
547         if ((sk = sk_alloc(PF_ROSE, GFP_ATOMIC, &rose_proto, 1)) == NULL)
548                 return NULL;
549
550         rose = rose_sk(sk);
551
552         sock_init_data(NULL, sk);
553
554         skb_queue_head_init(&rose->ack_queue);
555 #ifdef M_BIT
556         skb_queue_head_init(&rose->frag_queue);
557         rose->fraglen  = 0;
558 #endif
559
560         sk->sk_type     = osk->sk_type;
561         sk->sk_socket   = osk->sk_socket;
562         sk->sk_priority = osk->sk_priority;
563         sk->sk_protocol = osk->sk_protocol;
564         sk->sk_rcvbuf   = osk->sk_rcvbuf;
565         sk->sk_sndbuf   = osk->sk_sndbuf;
566         sk->sk_state    = TCP_ESTABLISHED;
567         sk->sk_sleep    = osk->sk_sleep;
568         sock_copy_flags(sk, osk);
569
570         init_timer(&rose->timer);
571         init_timer(&rose->idletimer);
572
573         orose           = rose_sk(osk);
574         rose->t1        = orose->t1;
575         rose->t2        = orose->t2;
576         rose->t3        = orose->t3;
577         rose->hb        = orose->hb;
578         rose->idle      = orose->idle;
579         rose->defer     = orose->defer;
580         rose->device    = orose->device;
581         rose->qbitincl  = orose->qbitincl;
582
583         return sk;
584 }
585
586 static int rose_release(struct socket *sock)
587 {
588         struct sock *sk = sock->sk;
589         struct rose_sock *rose;
590
591         if (sk == NULL) return 0;
592
593         rose = rose_sk(sk);
594
595         switch (rose->state) {
596         case ROSE_STATE_0:
597                 rose_disconnect(sk, 0, -1, -1);
598                 rose_destroy_socket(sk);
599                 break;
600
601         case ROSE_STATE_2:
602                 rose->neighbour->use--;
603                 rose_disconnect(sk, 0, -1, -1);
604                 rose_destroy_socket(sk);
605                 break;
606
607         case ROSE_STATE_1:
608         case ROSE_STATE_3:
609         case ROSE_STATE_4:
610         case ROSE_STATE_5:
611                 rose_clear_queues(sk);
612                 rose_stop_idletimer(sk);
613                 rose_write_internal(sk, ROSE_CLEAR_REQUEST);
614                 rose_start_t3timer(sk);
615                 rose->state  = ROSE_STATE_2;
616                 sk->sk_state    = TCP_CLOSE;
617                 sk->sk_shutdown |= SEND_SHUTDOWN;
618                 sk->sk_state_change(sk);
619                 sock_set_flag(sk, SOCK_DEAD);
620                 sock_set_flag(sk, SOCK_DESTROY);
621                 break;
622
623         default:
624                 break;
625         }
626
627         sock->sk = NULL;
628
629         return 0;
630 }
631
632 static int rose_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
633 {
634         struct sock *sk = sock->sk;
635         struct rose_sock *rose = rose_sk(sk);
636         struct sockaddr_rose *addr = (struct sockaddr_rose *)uaddr;
637         struct net_device *dev;
638         ax25_address *source;
639         ax25_uid_assoc *user;
640         int n;
641
642         if (!sock_flag(sk, SOCK_ZAPPED))
643                 return -EINVAL;
644
645         if (addr_len != sizeof(struct sockaddr_rose) && addr_len != sizeof(struct full_sockaddr_rose))
646                 return -EINVAL;
647
648         if (addr->srose_family != AF_ROSE)
649                 return -EINVAL;
650
651         if (addr_len == sizeof(struct sockaddr_rose) && addr->srose_ndigis > 1)
652                 return -EINVAL;
653
654         if (addr->srose_ndigis > ROSE_MAX_DIGIS)
655                 return -EINVAL;
656
657         if ((dev = rose_dev_get(&addr->srose_addr)) == NULL) {
658                 SOCK_DEBUG(sk, "ROSE: bind failed: invalid address\n");
659                 return -EADDRNOTAVAIL;
660         }
661
662         source = &addr->srose_call;
663
664         user = ax25_findbyuid(current->euid);
665         if (user) {
666                 rose->source_call = user->call;
667                 ax25_uid_put(user);
668         } else {
669                 if (ax25_uid_policy && !capable(CAP_NET_BIND_SERVICE))
670                         return -EACCES;
671                 rose->source_call   = *source;
672         }
673
674         rose->source_addr   = addr->srose_addr;
675         rose->device        = dev;
676         rose->source_ndigis = addr->srose_ndigis;
677
678         if (addr_len == sizeof(struct full_sockaddr_rose)) {
679                 struct full_sockaddr_rose *full_addr = (struct full_sockaddr_rose *)uaddr;
680                 for (n = 0 ; n < addr->srose_ndigis ; n++)
681                         rose->source_digis[n] = full_addr->srose_digis[n];
682         } else {
683                 if (rose->source_ndigis == 1) {
684                         rose->source_digis[0] = addr->srose_digi;
685                 }
686         }
687
688         rose_insert_socket(sk);
689
690         sock_reset_flag(sk, SOCK_ZAPPED);
691         SOCK_DEBUG(sk, "ROSE: socket is bound\n");
692         return 0;
693 }
694
695 static int rose_connect(struct socket *sock, struct sockaddr *uaddr, int addr_len, int flags)
696 {
697         struct sock *sk = sock->sk;
698         struct rose_sock *rose = rose_sk(sk);
699         struct sockaddr_rose *addr = (struct sockaddr_rose *)uaddr;
700         unsigned char cause, diagnostic;
701         struct net_device *dev;
702         ax25_uid_assoc *user;
703         int n, err = 0;
704
705         if (addr_len != sizeof(struct sockaddr_rose) && addr_len != sizeof(struct full_sockaddr_rose))
706                 return -EINVAL;
707
708         if (addr->srose_family != AF_ROSE)
709                 return -EINVAL;
710
711         if (addr_len == sizeof(struct sockaddr_rose) && addr->srose_ndigis > 1)
712                 return -EINVAL;
713
714         if (addr->srose_ndigis > ROSE_MAX_DIGIS)
715                 return -EINVAL;
716
717         /* Source + Destination digis should not exceed ROSE_MAX_DIGIS */
718         if ((rose->source_ndigis + addr->srose_ndigis) > ROSE_MAX_DIGIS)
719                 return -EINVAL;
720
721         lock_sock(sk);
722
723         if (sk->sk_state == TCP_ESTABLISHED && sock->state == SS_CONNECTING) {
724                 /* Connect completed during a ERESTARTSYS event */
725                 sock->state = SS_CONNECTED;
726                 goto out_release;
727         }
728
729         if (sk->sk_state == TCP_CLOSE && sock->state == SS_CONNECTING) {
730                 sock->state = SS_UNCONNECTED;
731                 err = -ECONNREFUSED;
732                 goto out_release;
733         }
734
735         if (sk->sk_state == TCP_ESTABLISHED) {
736                 /* No reconnect on a seqpacket socket */
737                 err = -EISCONN;
738                 goto out_release;
739         }
740
741         sk->sk_state   = TCP_CLOSE;
742         sock->state = SS_UNCONNECTED;
743
744         rose->neighbour = rose_get_neigh(&addr->srose_addr, &cause,
745                                          &diagnostic);
746         if (!rose->neighbour)
747                 return -ENETUNREACH;
748
749         rose->lci = rose_new_lci(rose->neighbour);
750         if (!rose->lci) {
751                 err = -ENETUNREACH;
752                 goto out_release;
753         }
754
755         if (sock_flag(sk, SOCK_ZAPPED)) {       /* Must bind first - autobinding in this may or may not work */
756                 sock_reset_flag(sk, SOCK_ZAPPED);
757
758                 if ((dev = rose_dev_first()) == NULL) {
759                         err = -ENETUNREACH;
760                         goto out_release;
761                 }
762
763                 user = ax25_findbyuid(current->euid);
764                 if (!user) {
765                         err = -EINVAL;
766                         goto out_release;
767                 }
768
769                 memcpy(&rose->source_addr, dev->dev_addr, ROSE_ADDR_LEN);
770                 rose->source_call = user->call;
771                 rose->device      = dev;
772                 ax25_uid_put(user);
773
774                 rose_insert_socket(sk);         /* Finish the bind */
775         }
776 rose_try_next_neigh:
777         rose->dest_addr   = addr->srose_addr;
778         rose->dest_call   = addr->srose_call;
779         rose->rand        = ((long)rose & 0xFFFF) + rose->lci;
780         rose->dest_ndigis = addr->srose_ndigis;
781
782         if (addr_len == sizeof(struct full_sockaddr_rose)) {
783                 struct full_sockaddr_rose *full_addr = (struct full_sockaddr_rose *)uaddr;
784                 for (n = 0 ; n < addr->srose_ndigis ; n++)
785                         rose->dest_digis[n] = full_addr->srose_digis[n];
786         } else {
787                 if (rose->dest_ndigis == 1) {
788                         rose->dest_digis[0] = addr->srose_digi;
789                 }
790         }
791
792         /* Move to connecting socket, start sending Connect Requests */
793         sock->state   = SS_CONNECTING;
794         sk->sk_state     = TCP_SYN_SENT;
795
796         rose->state = ROSE_STATE_1;
797
798         rose->neighbour->use++;
799
800         rose_write_internal(sk, ROSE_CALL_REQUEST);
801         rose_start_heartbeat(sk);
802         rose_start_t1timer(sk);
803
804         /* Now the loop */
805         if (sk->sk_state != TCP_ESTABLISHED && (flags & O_NONBLOCK)) {
806                 err = -EINPROGRESS;
807                 goto out_release;
808         }
809
810         /*
811          * A Connect Ack with Choke or timeout or failed routing will go to
812          * closed.
813          */
814         if (sk->sk_state == TCP_SYN_SENT) {
815                 struct task_struct *tsk = current;
816                 DECLARE_WAITQUEUE(wait, tsk);
817
818                 add_wait_queue(sk->sk_sleep, &wait);
819                 for (;;) {
820                         set_current_state(TASK_INTERRUPTIBLE);
821                         if (sk->sk_state != TCP_SYN_SENT)
822                                 break;
823                         release_sock(sk);
824                         if (!signal_pending(tsk)) {
825                                 schedule();
826                                 lock_sock(sk);
827                                 continue;
828                         }
829                         current->state = TASK_RUNNING;
830                         remove_wait_queue(sk->sk_sleep, &wait);
831                         return -ERESTARTSYS;
832                 }
833                 current->state = TASK_RUNNING;
834                 remove_wait_queue(sk->sk_sleep, &wait);
835         }
836
837         if (sk->sk_state != TCP_ESTABLISHED) {
838         /* Try next neighbour */
839                 rose->neighbour = rose_get_neigh(&addr->srose_addr, &cause, &diagnostic);
840                 if (rose->neighbour)
841                         goto rose_try_next_neigh;
842
843                 /* No more neighbours */
844                 sock->state = SS_UNCONNECTED;
845                 err = sock_error(sk);   /* Always set at this point */
846                 goto out_release;
847         }
848
849         sock->state = SS_CONNECTED;
850
851 out_release:
852         release_sock(sk);
853
854         return err;
855 }
856
857 static int rose_accept(struct socket *sock, struct socket *newsock, int flags)
858 {
859         struct task_struct *tsk = current;
860         DECLARE_WAITQUEUE(wait, tsk);
861         struct sk_buff *skb;
862         struct sock *newsk;
863         struct sock *sk;
864         int err = 0;
865
866         if ((sk = sock->sk) == NULL)
867                 return -EINVAL;
868
869         lock_sock(sk);
870         if (sk->sk_type != SOCK_SEQPACKET) {
871                 err = -EOPNOTSUPP;
872                 goto out;
873         }
874
875         if (sk->sk_state != TCP_LISTEN) {
876                 err = -EINVAL;
877                 goto out;
878         }
879
880         /*
881          *      The write queue this time is holding sockets ready to use
882          *      hooked into the SABM we saved
883          */
884         add_wait_queue(sk->sk_sleep, &wait);
885         for (;;) {
886                 skb = skb_dequeue(&sk->sk_receive_queue);
887                 if (skb)
888                         break;
889
890                 current->state = TASK_INTERRUPTIBLE;
891                 release_sock(sk);
892                 if (flags & O_NONBLOCK) {
893                         current->state = TASK_RUNNING;
894                         remove_wait_queue(sk->sk_sleep, &wait);
895                         return -EWOULDBLOCK;
896                 }
897                 if (!signal_pending(tsk)) {
898                         schedule();
899                         lock_sock(sk);
900                         continue;
901                 }
902                 current->state = TASK_RUNNING;
903                 remove_wait_queue(sk->sk_sleep, &wait);
904                 return -ERESTARTSYS;
905         }
906         current->state = TASK_RUNNING;
907         remove_wait_queue(sk->sk_sleep, &wait);
908
909         newsk = skb->sk;
910         newsk->sk_socket = newsock;
911         newsk->sk_sleep = &newsock->wait;
912
913         /* Now attach up the new socket */
914         skb->sk = NULL;
915         kfree_skb(skb);
916         sk->sk_ack_backlog--;
917         newsock->sk = newsk;
918
919 out:
920         release_sock(sk);
921
922         return err;
923 }
924
925 static int rose_getname(struct socket *sock, struct sockaddr *uaddr,
926         int *uaddr_len, int peer)
927 {
928         struct full_sockaddr_rose *srose = (struct full_sockaddr_rose *)uaddr;
929         struct sock *sk = sock->sk;
930         struct rose_sock *rose = rose_sk(sk);
931         int n;
932
933         if (peer != 0) {
934                 if (sk->sk_state != TCP_ESTABLISHED)
935                         return -ENOTCONN;
936                 srose->srose_family = AF_ROSE;
937                 srose->srose_addr   = rose->dest_addr;
938                 srose->srose_call   = rose->dest_call;
939                 srose->srose_ndigis = rose->dest_ndigis;
940                 for (n = 0; n < rose->dest_ndigis; n++)
941                         srose->srose_digis[n] = rose->dest_digis[n];
942         } else {
943                 srose->srose_family = AF_ROSE;
944                 srose->srose_addr   = rose->source_addr;
945                 srose->srose_call   = rose->source_call;
946                 srose->srose_ndigis = rose->source_ndigis;
947                 for (n = 0; n < rose->source_ndigis; n++)
948                         srose->srose_digis[n] = rose->source_digis[n];
949         }
950
951         *uaddr_len = sizeof(struct full_sockaddr_rose);
952         return 0;
953 }
954
955 int rose_rx_call_request(struct sk_buff *skb, struct net_device *dev, struct rose_neigh *neigh, unsigned int lci)
956 {
957         struct sock *sk;
958         struct sock *make;
959         struct rose_sock *make_rose;
960         struct rose_facilities_struct facilities;
961         int n, len;
962
963         skb->sk = NULL;         /* Initially we don't know who it's for */
964
965         /*
966          *      skb->data points to the rose frame start
967          */
968         memset(&facilities, 0x00, sizeof(struct rose_facilities_struct));
969
970         len  = (((skb->data[3] >> 4) & 0x0F) + 1) / 2;
971         len += (((skb->data[3] >> 0) & 0x0F) + 1) / 2;
972         if (!rose_parse_facilities(skb->data + len + 4, &facilities)) {
973                 rose_transmit_clear_request(neigh, lci, ROSE_INVALID_FACILITY, 76);
974                 return 0;
975         }
976
977         sk = rose_find_listener(&facilities.source_addr, &facilities.source_call);
978
979         /*
980          * We can't accept the Call Request.
981          */
982         if (sk == NULL || sk_acceptq_is_full(sk) ||
983             (make = rose_make_new(sk)) == NULL) {
984                 rose_transmit_clear_request(neigh, lci, ROSE_NETWORK_CONGESTION, 120);
985                 return 0;
986         }
987
988         skb->sk     = make;
989         make->sk_state = TCP_ESTABLISHED;
990         make_rose = rose_sk(make);
991
992         make_rose->lci           = lci;
993         make_rose->dest_addr     = facilities.dest_addr;
994         make_rose->dest_call     = facilities.dest_call;
995         make_rose->dest_ndigis   = facilities.dest_ndigis;
996         for (n = 0 ; n < facilities.dest_ndigis ; n++)
997                 make_rose->dest_digis[n] = facilities.dest_digis[n];
998         make_rose->source_addr   = facilities.source_addr;
999         make_rose->source_call   = facilities.source_call;
1000         make_rose->source_ndigis = facilities.source_ndigis;
1001         for (n = 0 ; n < facilities.source_ndigis ; n++)
1002                 make_rose->source_digis[n]= facilities.source_digis[n];
1003         make_rose->neighbour     = neigh;
1004         make_rose->device        = dev;
1005         make_rose->facilities    = facilities;
1006
1007         make_rose->neighbour->use++;
1008
1009         if (rose_sk(sk)->defer) {
1010                 make_rose->state = ROSE_STATE_5;
1011         } else {
1012                 rose_write_internal(make, ROSE_CALL_ACCEPTED);
1013                 make_rose->state = ROSE_STATE_3;
1014                 rose_start_idletimer(make);
1015         }
1016
1017         make_rose->condition = 0x00;
1018         make_rose->vs        = 0;
1019         make_rose->va        = 0;
1020         make_rose->vr        = 0;
1021         make_rose->vl        = 0;
1022         sk->sk_ack_backlog++;
1023
1024         rose_insert_socket(make);
1025
1026         skb_queue_head(&sk->sk_receive_queue, skb);
1027
1028         rose_start_heartbeat(make);
1029
1030         if (!sock_flag(sk, SOCK_DEAD))
1031                 sk->sk_data_ready(sk, skb->len);
1032
1033         return 1;
1034 }
1035
1036 static int rose_sendmsg(struct kiocb *iocb, struct socket *sock,
1037                         struct msghdr *msg, size_t len)
1038 {
1039         struct sock *sk = sock->sk;
1040         struct rose_sock *rose = rose_sk(sk);
1041         struct sockaddr_rose *usrose = (struct sockaddr_rose *)msg->msg_name;
1042         int err;
1043         struct full_sockaddr_rose srose;
1044         struct sk_buff *skb;
1045         unsigned char *asmptr;
1046         int n, size, qbit = 0;
1047
1048         if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_EOR|MSG_CMSG_COMPAT))
1049                 return -EINVAL;
1050
1051         if (sock_flag(sk, SOCK_ZAPPED))
1052                 return -EADDRNOTAVAIL;
1053
1054         if (sk->sk_shutdown & SEND_SHUTDOWN) {
1055                 send_sig(SIGPIPE, current, 0);
1056                 return -EPIPE;
1057         }
1058
1059         if (rose->neighbour == NULL || rose->device == NULL)
1060                 return -ENETUNREACH;
1061
1062         if (usrose != NULL) {
1063                 if (msg->msg_namelen != sizeof(struct sockaddr_rose) && msg->msg_namelen != sizeof(struct full_sockaddr_rose))
1064                         return -EINVAL;
1065                 memset(&srose, 0, sizeof(struct full_sockaddr_rose));
1066                 memcpy(&srose, usrose, msg->msg_namelen);
1067                 if (rosecmp(&rose->dest_addr, &srose.srose_addr) != 0 ||
1068                     ax25cmp(&rose->dest_call, &srose.srose_call) != 0)
1069                         return -EISCONN;
1070                 if (srose.srose_ndigis != rose->dest_ndigis)
1071                         return -EISCONN;
1072                 if (srose.srose_ndigis == rose->dest_ndigis) {
1073                         for (n = 0 ; n < srose.srose_ndigis ; n++)
1074                                 if (ax25cmp(&rose->dest_digis[n],
1075                                             &srose.srose_digis[n]))
1076                                         return -EISCONN;
1077                 }
1078                 if (srose.srose_family != AF_ROSE)
1079                         return -EINVAL;
1080         } else {
1081                 if (sk->sk_state != TCP_ESTABLISHED)
1082                         return -ENOTCONN;
1083
1084                 srose.srose_family = AF_ROSE;
1085                 srose.srose_addr   = rose->dest_addr;
1086                 srose.srose_call   = rose->dest_call;
1087                 srose.srose_ndigis = rose->dest_ndigis;
1088                 for (n = 0 ; n < rose->dest_ndigis ; n++)
1089                         srose.srose_digis[n] = rose->dest_digis[n];
1090         }
1091
1092         SOCK_DEBUG(sk, "ROSE: sendto: Addresses built.\n");
1093
1094         /* Build a packet */
1095         SOCK_DEBUG(sk, "ROSE: sendto: building packet.\n");
1096         size = len + AX25_BPQ_HEADER_LEN + AX25_MAX_HEADER_LEN + ROSE_MIN_LEN;
1097
1098         if ((skb = sock_alloc_send_skb(sk, size, msg->msg_flags & MSG_DONTWAIT, &err)) == NULL)
1099                 return err;
1100
1101         skb_reserve(skb, AX25_BPQ_HEADER_LEN + AX25_MAX_HEADER_LEN + ROSE_MIN_LEN);
1102
1103         /*
1104          *      Put the data on the end
1105          */
1106         SOCK_DEBUG(sk, "ROSE: Appending user data\n");
1107
1108         skb_reset_transport_header(skb);
1109         skb_put(skb, len);
1110
1111         err = memcpy_fromiovec(skb_transport_header(skb), msg->msg_iov, len);
1112         if (err) {
1113                 kfree_skb(skb);
1114                 return err;
1115         }
1116
1117         /*
1118          *      If the Q BIT Include socket option is in force, the first
1119          *      byte of the user data is the logical value of the Q Bit.
1120          */
1121         if (rose->qbitincl) {
1122                 qbit = skb->data[0];
1123                 skb_pull(skb, 1);
1124         }
1125
1126         /*
1127          *      Push down the ROSE header
1128          */
1129         asmptr = skb_push(skb, ROSE_MIN_LEN);
1130
1131         SOCK_DEBUG(sk, "ROSE: Building Network Header.\n");
1132
1133         /* Build a ROSE Network header */
1134         asmptr[0] = ((rose->lci >> 8) & 0x0F) | ROSE_GFI;
1135         asmptr[1] = (rose->lci >> 0) & 0xFF;
1136         asmptr[2] = ROSE_DATA;
1137
1138         if (qbit)
1139                 asmptr[0] |= ROSE_Q_BIT;
1140
1141         SOCK_DEBUG(sk, "ROSE: Built header.\n");
1142
1143         SOCK_DEBUG(sk, "ROSE: Transmitting buffer\n");
1144
1145         if (sk->sk_state != TCP_ESTABLISHED) {
1146                 kfree_skb(skb);
1147                 return -ENOTCONN;
1148         }
1149
1150 #ifdef M_BIT
1151 #define ROSE_PACLEN (256-ROSE_MIN_LEN)
1152         if (skb->len - ROSE_MIN_LEN > ROSE_PACLEN) {
1153                 unsigned char header[ROSE_MIN_LEN];
1154                 struct sk_buff *skbn;
1155                 int frontlen;
1156                 int lg;
1157
1158                 /* Save a copy of the Header */
1159                 memcpy(header, skb->data, ROSE_MIN_LEN);
1160                 skb_pull(skb, ROSE_MIN_LEN);
1161
1162                 frontlen = skb_headroom(skb);
1163
1164                 while (skb->len > 0) {
1165                         if ((skbn = sock_alloc_send_skb(sk, frontlen + ROSE_PACLEN, 0, &err)) == NULL) {
1166                                 kfree_skb(skb);
1167                                 return err;
1168                         }
1169
1170                         skbn->sk   = sk;
1171                         skbn->free = 1;
1172                         skbn->arp  = 1;
1173
1174                         skb_reserve(skbn, frontlen);
1175
1176                         lg = (ROSE_PACLEN > skb->len) ? skb->len : ROSE_PACLEN;
1177
1178                         /* Copy the user data */
1179                         memcpy(skb_put(skbn, lg), skb->data, lg);
1180                         skb_pull(skb, lg);
1181
1182                         /* Duplicate the Header */
1183                         skb_push(skbn, ROSE_MIN_LEN);
1184                         memcpy(skbn->data, header, ROSE_MIN_LEN);
1185
1186                         if (skb->len > 0)
1187                                 skbn->data[2] |= M_BIT;
1188
1189                         skb_queue_tail(&sk->sk_write_queue, skbn); /* Throw it on the queue */
1190                 }
1191
1192                 skb->free = 1;
1193                 kfree_skb(skb);
1194         } else {
1195                 skb_queue_tail(&sk->sk_write_queue, skb);               /* Throw it on the queue */
1196         }
1197 #else
1198         skb_queue_tail(&sk->sk_write_queue, skb);       /* Shove it onto the queue */
1199 #endif
1200
1201         rose_kick(sk);
1202
1203         return len;
1204 }
1205
1206
1207 static int rose_recvmsg(struct kiocb *iocb, struct socket *sock,
1208                         struct msghdr *msg, size_t size, int flags)
1209 {
1210         struct sock *sk = sock->sk;
1211         struct rose_sock *rose = rose_sk(sk);
1212         struct sockaddr_rose *srose = (struct sockaddr_rose *)msg->msg_name;
1213         size_t copied;
1214         unsigned char *asmptr;
1215         struct sk_buff *skb;
1216         int n, er, qbit;
1217
1218         /*
1219          * This works for seqpacket too. The receiver has ordered the queue for
1220          * us! We do one quick check first though
1221          */
1222         if (sk->sk_state != TCP_ESTABLISHED)
1223                 return -ENOTCONN;
1224
1225         /* Now we can treat all alike */
1226         if ((skb = skb_recv_datagram(sk, flags & ~MSG_DONTWAIT, flags & MSG_DONTWAIT, &er)) == NULL)
1227                 return er;
1228
1229         qbit = (skb->data[0] & ROSE_Q_BIT) == ROSE_Q_BIT;
1230
1231         skb_pull(skb, ROSE_MIN_LEN);
1232
1233         if (rose->qbitincl) {
1234                 asmptr  = skb_push(skb, 1);
1235                 *asmptr = qbit;
1236         }
1237
1238         skb_reset_transport_header(skb);
1239         copied     = skb->len;
1240
1241         if (copied > size) {
1242                 copied = size;
1243                 msg->msg_flags |= MSG_TRUNC;
1244         }
1245
1246         skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
1247
1248         if (srose != NULL) {
1249                 srose->srose_family = AF_ROSE;
1250                 srose->srose_addr   = rose->dest_addr;
1251                 srose->srose_call   = rose->dest_call;
1252                 srose->srose_ndigis = rose->dest_ndigis;
1253                 if (msg->msg_namelen >= sizeof(struct full_sockaddr_rose)) {
1254                         struct full_sockaddr_rose *full_srose = (struct full_sockaddr_rose *)msg->msg_name;
1255                         for (n = 0 ; n < rose->dest_ndigis ; n++)
1256                                 full_srose->srose_digis[n] = rose->dest_digis[n];
1257                         msg->msg_namelen = sizeof(struct full_sockaddr_rose);
1258                 } else {
1259                         if (rose->dest_ndigis >= 1) {
1260                                 srose->srose_ndigis = 1;
1261                                 srose->srose_digi = rose->dest_digis[0];
1262                         }
1263                         msg->msg_namelen = sizeof(struct sockaddr_rose);
1264                 }
1265         }
1266
1267         skb_free_datagram(sk, skb);
1268
1269         return copied;
1270 }
1271
1272
1273 static int rose_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1274 {
1275         struct sock *sk = sock->sk;
1276         struct rose_sock *rose = rose_sk(sk);
1277         void __user *argp = (void __user *)arg;
1278
1279         switch (cmd) {
1280         case TIOCOUTQ: {
1281                 long amount;
1282                 amount = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1283                 if (amount < 0)
1284                         amount = 0;
1285                 return put_user(amount, (unsigned int __user *) argp);
1286         }
1287
1288         case TIOCINQ: {
1289                 struct sk_buff *skb;
1290                 long amount = 0L;
1291                 /* These two are safe on a single CPU system as only user tasks fiddle here */
1292                 if ((skb = skb_peek(&sk->sk_receive_queue)) != NULL)
1293                         amount = skb->len;
1294                 return put_user(amount, (unsigned int __user *) argp);
1295         }
1296
1297         case SIOCGSTAMP:
1298                 return sock_get_timestamp(sk, (struct timeval __user *) argp);
1299
1300         case SIOCGSTAMPNS:
1301                 return sock_get_timestampns(sk, (struct timespec __user *) argp);
1302
1303         case SIOCGIFADDR:
1304         case SIOCSIFADDR:
1305         case SIOCGIFDSTADDR:
1306         case SIOCSIFDSTADDR:
1307         case SIOCGIFBRDADDR:
1308         case SIOCSIFBRDADDR:
1309         case SIOCGIFNETMASK:
1310         case SIOCSIFNETMASK:
1311         case SIOCGIFMETRIC:
1312         case SIOCSIFMETRIC:
1313                 return -EINVAL;
1314
1315         case SIOCADDRT:
1316         case SIOCDELRT:
1317         case SIOCRSCLRRT:
1318                 if (!capable(CAP_NET_ADMIN))
1319                         return -EPERM;
1320                 return rose_rt_ioctl(cmd, argp);
1321
1322         case SIOCRSGCAUSE: {
1323                 struct rose_cause_struct rose_cause;
1324                 rose_cause.cause      = rose->cause;
1325                 rose_cause.diagnostic = rose->diagnostic;
1326                 return copy_to_user(argp, &rose_cause, sizeof(struct rose_cause_struct)) ? -EFAULT : 0;
1327         }
1328
1329         case SIOCRSSCAUSE: {
1330                 struct rose_cause_struct rose_cause;
1331                 if (copy_from_user(&rose_cause, argp, sizeof(struct rose_cause_struct)))
1332                         return -EFAULT;
1333                 rose->cause      = rose_cause.cause;
1334                 rose->diagnostic = rose_cause.diagnostic;
1335                 return 0;
1336         }
1337
1338         case SIOCRSSL2CALL:
1339                 if (!capable(CAP_NET_ADMIN)) return -EPERM;
1340                 if (ax25cmp(&rose_callsign, &null_ax25_address) != 0)
1341                         ax25_listen_release(&rose_callsign, NULL);
1342                 if (copy_from_user(&rose_callsign, argp, sizeof(ax25_address)))
1343                         return -EFAULT;
1344                 if (ax25cmp(&rose_callsign, &null_ax25_address) != 0)
1345                         return ax25_listen_register(&rose_callsign, NULL);
1346
1347                 return 0;
1348
1349         case SIOCRSGL2CALL:
1350                 return copy_to_user(argp, &rose_callsign, sizeof(ax25_address)) ? -EFAULT : 0;
1351
1352         case SIOCRSACCEPT:
1353                 if (rose->state == ROSE_STATE_5) {
1354                         rose_write_internal(sk, ROSE_CALL_ACCEPTED);
1355                         rose_start_idletimer(sk);
1356                         rose->condition = 0x00;
1357                         rose->vs        = 0;
1358                         rose->va        = 0;
1359                         rose->vr        = 0;
1360                         rose->vl        = 0;
1361                         rose->state     = ROSE_STATE_3;
1362                 }
1363                 return 0;
1364
1365         default:
1366                 return -ENOIOCTLCMD;
1367         }
1368
1369         return 0;
1370 }
1371
1372 #ifdef CONFIG_PROC_FS
1373 static void *rose_info_start(struct seq_file *seq, loff_t *pos)
1374 {
1375         int i;
1376         struct sock *s;
1377         struct hlist_node *node;
1378
1379         spin_lock_bh(&rose_list_lock);
1380         if (*pos == 0)
1381                 return SEQ_START_TOKEN;
1382
1383         i = 1;
1384         sk_for_each(s, node, &rose_list) {
1385                 if (i == *pos)
1386                         return s;
1387                 ++i;
1388         }
1389         return NULL;
1390 }
1391
1392 static void *rose_info_next(struct seq_file *seq, void *v, loff_t *pos)
1393 {
1394         ++*pos;
1395
1396         return (v == SEQ_START_TOKEN) ? sk_head(&rose_list)
1397                 : sk_next((struct sock *)v);
1398 }
1399
1400 static void rose_info_stop(struct seq_file *seq, void *v)
1401 {
1402         spin_unlock_bh(&rose_list_lock);
1403 }
1404
1405 static int rose_info_show(struct seq_file *seq, void *v)
1406 {
1407         char buf[11];
1408
1409         if (v == SEQ_START_TOKEN)
1410                 seq_puts(seq,
1411                          "dest_addr  dest_call src_addr   src_call  dev   lci neigh st vs vr va   t  t1  t2  t3  hb    idle Snd-Q Rcv-Q inode\n");
1412
1413         else {
1414                 struct sock *s = v;
1415                 struct rose_sock *rose = rose_sk(s);
1416                 const char *devname, *callsign;
1417                 const struct net_device *dev = rose->device;
1418
1419                 if (!dev)
1420                         devname = "???";
1421                 else
1422                         devname = dev->name;
1423
1424                 seq_printf(seq, "%-10s %-9s ",
1425                         rose2asc(&rose->dest_addr),
1426                         ax2asc(buf, &rose->dest_call));
1427
1428                 if (ax25cmp(&rose->source_call, &null_ax25_address) == 0)
1429                         callsign = "??????-?";
1430                 else
1431                         callsign = ax2asc(buf, &rose->source_call);
1432
1433                 seq_printf(seq,
1434                            "%-10s %-9s %-5s %3.3X %05d  %d  %d  %d  %d %3lu %3lu %3lu %3lu %3lu %3lu/%03lu %5d %5d %ld\n",
1435                         rose2asc(&rose->source_addr),
1436                         callsign,
1437                         devname,
1438                         rose->lci & 0x0FFF,
1439                         (rose->neighbour) ? rose->neighbour->number : 0,
1440                         rose->state,
1441                         rose->vs,
1442                         rose->vr,
1443                         rose->va,
1444                         ax25_display_timer(&rose->timer) / HZ,
1445                         rose->t1 / HZ,
1446                         rose->t2 / HZ,
1447                         rose->t3 / HZ,
1448                         rose->hb / HZ,
1449                         ax25_display_timer(&rose->idletimer) / (60 * HZ),
1450                         rose->idle / (60 * HZ),
1451                         atomic_read(&s->sk_wmem_alloc),
1452                         atomic_read(&s->sk_rmem_alloc),
1453                         s->sk_socket ? SOCK_INODE(s->sk_socket)->i_ino : 0L);
1454         }
1455
1456         return 0;
1457 }
1458
1459 static struct seq_operations rose_info_seqops = {
1460         .start = rose_info_start,
1461         .next = rose_info_next,
1462         .stop = rose_info_stop,
1463         .show = rose_info_show,
1464 };
1465
1466 static int rose_info_open(struct inode *inode, struct file *file)
1467 {
1468         return seq_open(file, &rose_info_seqops);
1469 }
1470
1471 static const struct file_operations rose_info_fops = {
1472         .owner = THIS_MODULE,
1473         .open = rose_info_open,
1474         .read = seq_read,
1475         .llseek = seq_lseek,
1476         .release = seq_release,
1477 };
1478 #endif  /* CONFIG_PROC_FS */
1479
1480 static struct net_proto_family rose_family_ops = {
1481         .family         =       PF_ROSE,
1482         .create         =       rose_create,
1483         .owner          =       THIS_MODULE,
1484 };
1485
1486 static struct proto_ops rose_proto_ops = {
1487         .family         =       PF_ROSE,
1488         .owner          =       THIS_MODULE,
1489         .release        =       rose_release,
1490         .bind           =       rose_bind,
1491         .connect        =       rose_connect,
1492         .socketpair     =       sock_no_socketpair,
1493         .accept         =       rose_accept,
1494         .getname        =       rose_getname,
1495         .poll           =       datagram_poll,
1496         .ioctl          =       rose_ioctl,
1497         .listen         =       rose_listen,
1498         .shutdown       =       sock_no_shutdown,
1499         .setsockopt     =       rose_setsockopt,
1500         .getsockopt     =       rose_getsockopt,
1501         .sendmsg        =       rose_sendmsg,
1502         .recvmsg        =       rose_recvmsg,
1503         .mmap           =       sock_no_mmap,
1504         .sendpage       =       sock_no_sendpage,
1505 };
1506
1507 static struct notifier_block rose_dev_notifier = {
1508         .notifier_call  =       rose_device_event,
1509 };
1510
1511 static struct net_device **dev_rose;
1512
1513 static struct ax25_protocol rose_pid = {
1514         .pid    = AX25_P_ROSE,
1515         .func   = rose_route_frame
1516 };
1517
1518 static struct ax25_linkfail rose_linkfail_notifier = {
1519         .func   = rose_link_failed
1520 };
1521
1522 static int __init rose_proto_init(void)
1523 {
1524         int i;
1525         int rc;
1526
1527         if (rose_ndevs > 0x7FFFFFFF/sizeof(struct net_device *)) {
1528                 printk(KERN_ERR "ROSE: rose_proto_init - rose_ndevs parameter to large\n");
1529                 rc = -EINVAL;
1530                 goto out;
1531         }
1532
1533         rc = proto_register(&rose_proto, 0);
1534         if (rc != 0)
1535                 goto out;
1536
1537         rose_callsign = null_ax25_address;
1538
1539         dev_rose = kzalloc(rose_ndevs * sizeof(struct net_device *), GFP_KERNEL);
1540         if (dev_rose == NULL) {
1541                 printk(KERN_ERR "ROSE: rose_proto_init - unable to allocate device structure\n");
1542                 rc = -ENOMEM;
1543                 goto out_proto_unregister;
1544         }
1545
1546         for (i = 0; i < rose_ndevs; i++) {
1547                 struct net_device *dev;
1548                 char name[IFNAMSIZ];
1549
1550                 sprintf(name, "rose%d", i);
1551                 dev = alloc_netdev(sizeof(struct net_device_stats),
1552                                    name, rose_setup);
1553                 if (!dev) {
1554                         printk(KERN_ERR "ROSE: rose_proto_init - unable to allocate memory\n");
1555                         rc = -ENOMEM;
1556                         goto fail;
1557                 }
1558                 rc = register_netdev(dev);
1559                 if (rc) {
1560                         printk(KERN_ERR "ROSE: netdevice registration failed\n");
1561                         free_netdev(dev);
1562                         goto fail;
1563                 }
1564                 lockdep_set_class(&dev->_xmit_lock, &rose_netdev_xmit_lock_key);
1565                 dev_rose[i] = dev;
1566         }
1567
1568         sock_register(&rose_family_ops);
1569         register_netdevice_notifier(&rose_dev_notifier);
1570
1571         ax25_register_pid(&rose_pid);
1572         ax25_linkfail_register(&rose_linkfail_notifier);
1573
1574 #ifdef CONFIG_SYSCTL
1575         rose_register_sysctl();
1576 #endif
1577         rose_loopback_init();
1578
1579         rose_add_loopback_neigh();
1580
1581         proc_net_fops_create("rose", S_IRUGO, &rose_info_fops);
1582         proc_net_fops_create("rose_neigh", S_IRUGO, &rose_neigh_fops);
1583         proc_net_fops_create("rose_nodes", S_IRUGO, &rose_nodes_fops);
1584         proc_net_fops_create("rose_routes", S_IRUGO, &rose_routes_fops);
1585 out:
1586         return rc;
1587 fail:
1588         while (--i >= 0) {
1589                 unregister_netdev(dev_rose[i]);
1590                 free_netdev(dev_rose[i]);
1591         }
1592         kfree(dev_rose);
1593 out_proto_unregister:
1594         proto_unregister(&rose_proto);
1595         goto out;
1596 }
1597 module_init(rose_proto_init);
1598
1599 module_param(rose_ndevs, int, 0);
1600 MODULE_PARM_DESC(rose_ndevs, "number of ROSE devices");
1601
1602 MODULE_AUTHOR("Jonathan Naylor G4KLX <g4klx@g4klx.demon.co.uk>");
1603 MODULE_DESCRIPTION("The amateur radio ROSE network layer protocol");
1604 MODULE_LICENSE("GPL");
1605 MODULE_ALIAS_NETPROTO(PF_ROSE);
1606
1607 static void __exit rose_exit(void)
1608 {
1609         int i;
1610
1611         proc_net_remove("rose");
1612         proc_net_remove("rose_neigh");
1613         proc_net_remove("rose_nodes");
1614         proc_net_remove("rose_routes");
1615         rose_loopback_clear();
1616
1617         rose_rt_free();
1618
1619         ax25_protocol_release(AX25_P_ROSE);
1620         ax25_linkfail_release(&rose_linkfail_notifier);
1621
1622         if (ax25cmp(&rose_callsign, &null_ax25_address) != 0)
1623                 ax25_listen_release(&rose_callsign, NULL);
1624
1625 #ifdef CONFIG_SYSCTL
1626         rose_unregister_sysctl();
1627 #endif
1628         unregister_netdevice_notifier(&rose_dev_notifier);
1629
1630         sock_unregister(PF_ROSE);
1631
1632         for (i = 0; i < rose_ndevs; i++) {
1633                 struct net_device *dev = dev_rose[i];
1634
1635                 if (dev) {
1636                         unregister_netdev(dev);
1637                         free_netdev(dev);
1638                 }
1639         }
1640
1641         kfree(dev_rose);
1642         proto_unregister(&rose_proto);
1643 }
1644
1645 module_exit(rose_exit);