mac80211: quiesce vif before suspending
[linux-2.6.git] / net / mac80211 / rx.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2006-2007  Jiri Benc <jbenc@suse.cz>
5  * Copyright 2007-2010  Johannes Berg <johannes@sipsolutions.net>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11
12 #include <linux/jiffies.h>
13 #include <linux/slab.h>
14 #include <linux/kernel.h>
15 #include <linux/skbuff.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/rcupdate.h>
19 #include <net/mac80211.h>
20 #include <net/ieee80211_radiotap.h>
21
22 #include "ieee80211_i.h"
23 #include "driver-ops.h"
24 #include "led.h"
25 #include "mesh.h"
26 #include "wep.h"
27 #include "wpa.h"
28 #include "tkip.h"
29 #include "wme.h"
30
31 /*
32  * monitor mode reception
33  *
34  * This function cleans up the SKB, i.e. it removes all the stuff
35  * only useful for monitoring.
36  */
37 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
38                                            struct sk_buff *skb)
39 {
40         if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) {
41                 if (likely(skb->len > FCS_LEN))
42                         __pskb_trim(skb, skb->len - FCS_LEN);
43                 else {
44                         /* driver bug */
45                         WARN_ON(1);
46                         dev_kfree_skb(skb);
47                         skb = NULL;
48                 }
49         }
50
51         return skb;
52 }
53
54 static inline int should_drop_frame(struct sk_buff *skb,
55                                     int present_fcs_len)
56 {
57         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
58         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
59
60         if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
61                 return 1;
62         if (unlikely(skb->len < 16 + present_fcs_len))
63                 return 1;
64         if (ieee80211_is_ctl(hdr->frame_control) &&
65             !ieee80211_is_pspoll(hdr->frame_control) &&
66             !ieee80211_is_back_req(hdr->frame_control))
67                 return 1;
68         return 0;
69 }
70
71 static int
72 ieee80211_rx_radiotap_len(struct ieee80211_local *local,
73                           struct ieee80211_rx_status *status)
74 {
75         int len;
76
77         /* always present fields */
78         len = sizeof(struct ieee80211_radiotap_header) + 9;
79
80         if (status->flag & RX_FLAG_MACTIME_MPDU)
81                 len += 8;
82         if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
83                 len += 1;
84
85         if (len & 1) /* padding for RX_FLAGS if necessary */
86                 len++;
87
88         if (status->flag & RX_FLAG_HT) /* HT info */
89                 len += 3;
90
91         return len;
92 }
93
94 /*
95  * ieee80211_add_rx_radiotap_header - add radiotap header
96  *
97  * add a radiotap header containing all the fields which the hardware provided.
98  */
99 static void
100 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
101                                  struct sk_buff *skb,
102                                  struct ieee80211_rate *rate,
103                                  int rtap_len)
104 {
105         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
106         struct ieee80211_radiotap_header *rthdr;
107         unsigned char *pos;
108         u16 rx_flags = 0;
109
110         rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
111         memset(rthdr, 0, rtap_len);
112
113         /* radiotap header, set always present flags */
114         rthdr->it_present =
115                 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
116                             (1 << IEEE80211_RADIOTAP_CHANNEL) |
117                             (1 << IEEE80211_RADIOTAP_ANTENNA) |
118                             (1 << IEEE80211_RADIOTAP_RX_FLAGS));
119         rthdr->it_len = cpu_to_le16(rtap_len);
120
121         pos = (unsigned char *)(rthdr+1);
122
123         /* the order of the following fields is important */
124
125         /* IEEE80211_RADIOTAP_TSFT */
126         if (status->flag & RX_FLAG_MACTIME_MPDU) {
127                 put_unaligned_le64(status->mactime, pos);
128                 rthdr->it_present |=
129                         cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
130                 pos += 8;
131         }
132
133         /* IEEE80211_RADIOTAP_FLAGS */
134         if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
135                 *pos |= IEEE80211_RADIOTAP_F_FCS;
136         if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
137                 *pos |= IEEE80211_RADIOTAP_F_BADFCS;
138         if (status->flag & RX_FLAG_SHORTPRE)
139                 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
140         pos++;
141
142         /* IEEE80211_RADIOTAP_RATE */
143         if (status->flag & RX_FLAG_HT) {
144                 /*
145                  * MCS information is a separate field in radiotap,
146                  * added below. The byte here is needed as padding
147                  * for the channel though, so initialise it to 0.
148                  */
149                 *pos = 0;
150         } else {
151                 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
152                 *pos = rate->bitrate / 5;
153         }
154         pos++;
155
156         /* IEEE80211_RADIOTAP_CHANNEL */
157         put_unaligned_le16(status->freq, pos);
158         pos += 2;
159         if (status->band == IEEE80211_BAND_5GHZ)
160                 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ,
161                                    pos);
162         else if (status->flag & RX_FLAG_HT)
163                 put_unaligned_le16(IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ,
164                                    pos);
165         else if (rate->flags & IEEE80211_RATE_ERP_G)
166                 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ,
167                                    pos);
168         else
169                 put_unaligned_le16(IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ,
170                                    pos);
171         pos += 2;
172
173         /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
174         if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM) {
175                 *pos = status->signal;
176                 rthdr->it_present |=
177                         cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
178                 pos++;
179         }
180
181         /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
182
183         /* IEEE80211_RADIOTAP_ANTENNA */
184         *pos = status->antenna;
185         pos++;
186
187         /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
188
189         /* IEEE80211_RADIOTAP_RX_FLAGS */
190         /* ensure 2 byte alignment for the 2 byte field as required */
191         if ((pos - (u8 *)rthdr) & 1)
192                 pos++;
193         if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
194                 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
195         put_unaligned_le16(rx_flags, pos);
196         pos += 2;
197
198         if (status->flag & RX_FLAG_HT) {
199                 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
200                 *pos++ = IEEE80211_RADIOTAP_MCS_HAVE_MCS |
201                          IEEE80211_RADIOTAP_MCS_HAVE_GI |
202                          IEEE80211_RADIOTAP_MCS_HAVE_BW;
203                 *pos = 0;
204                 if (status->flag & RX_FLAG_SHORT_GI)
205                         *pos |= IEEE80211_RADIOTAP_MCS_SGI;
206                 if (status->flag & RX_FLAG_40MHZ)
207                         *pos |= IEEE80211_RADIOTAP_MCS_BW_40;
208                 pos++;
209                 *pos++ = status->rate_idx;
210         }
211 }
212
213 /*
214  * This function copies a received frame to all monitor interfaces and
215  * returns a cleaned-up SKB that no longer includes the FCS nor the
216  * radiotap header the driver might have added.
217  */
218 static struct sk_buff *
219 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
220                      struct ieee80211_rate *rate)
221 {
222         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
223         struct ieee80211_sub_if_data *sdata;
224         int needed_headroom = 0;
225         struct sk_buff *skb, *skb2;
226         struct net_device *prev_dev = NULL;
227         int present_fcs_len = 0;
228
229         /*
230          * First, we may need to make a copy of the skb because
231          *  (1) we need to modify it for radiotap (if not present), and
232          *  (2) the other RX handlers will modify the skb we got.
233          *
234          * We don't need to, of course, if we aren't going to return
235          * the SKB because it has a bad FCS/PLCP checksum.
236          */
237
238         /* room for the radiotap header based on driver features */
239         needed_headroom = ieee80211_rx_radiotap_len(local, status);
240
241         if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
242                 present_fcs_len = FCS_LEN;
243
244         /* make sure hdr->frame_control is on the linear part */
245         if (!pskb_may_pull(origskb, 2)) {
246                 dev_kfree_skb(origskb);
247                 return NULL;
248         }
249
250         if (!local->monitors) {
251                 if (should_drop_frame(origskb, present_fcs_len)) {
252                         dev_kfree_skb(origskb);
253                         return NULL;
254                 }
255
256                 return remove_monitor_info(local, origskb);
257         }
258
259         if (should_drop_frame(origskb, present_fcs_len)) {
260                 /* only need to expand headroom if necessary */
261                 skb = origskb;
262                 origskb = NULL;
263
264                 /*
265                  * This shouldn't trigger often because most devices have an
266                  * RX header they pull before we get here, and that should
267                  * be big enough for our radiotap information. We should
268                  * probably export the length to drivers so that we can have
269                  * them allocate enough headroom to start with.
270                  */
271                 if (skb_headroom(skb) < needed_headroom &&
272                     pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
273                         dev_kfree_skb(skb);
274                         return NULL;
275                 }
276         } else {
277                 /*
278                  * Need to make a copy and possibly remove radiotap header
279                  * and FCS from the original.
280                  */
281                 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
282
283                 origskb = remove_monitor_info(local, origskb);
284
285                 if (!skb)
286                         return origskb;
287         }
288
289         /* prepend radiotap information */
290         ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom);
291
292         skb_reset_mac_header(skb);
293         skb->ip_summed = CHECKSUM_UNNECESSARY;
294         skb->pkt_type = PACKET_OTHERHOST;
295         skb->protocol = htons(ETH_P_802_2);
296
297         list_for_each_entry_rcu(sdata, &local->interfaces, list) {
298                 if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
299                         continue;
300
301                 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
302                         continue;
303
304                 if (!ieee80211_sdata_running(sdata))
305                         continue;
306
307                 if (prev_dev) {
308                         skb2 = skb_clone(skb, GFP_ATOMIC);
309                         if (skb2) {
310                                 skb2->dev = prev_dev;
311                                 netif_receive_skb(skb2);
312                         }
313                 }
314
315                 prev_dev = sdata->dev;
316                 sdata->dev->stats.rx_packets++;
317                 sdata->dev->stats.rx_bytes += skb->len;
318         }
319
320         if (prev_dev) {
321                 skb->dev = prev_dev;
322                 netif_receive_skb(skb);
323         } else
324                 dev_kfree_skb(skb);
325
326         return origskb;
327 }
328
329
330 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
331 {
332         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
333         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
334         int tid;
335
336         /* does the frame have a qos control field? */
337         if (ieee80211_is_data_qos(hdr->frame_control)) {
338                 u8 *qc = ieee80211_get_qos_ctl(hdr);
339                 /* frame has qos control */
340                 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
341                 if (*qc & IEEE80211_QOS_CONTROL_A_MSDU_PRESENT)
342                         status->rx_flags |= IEEE80211_RX_AMSDU;
343         } else {
344                 /*
345                  * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
346                  *
347                  *      Sequence numbers for management frames, QoS data
348                  *      frames with a broadcast/multicast address in the
349                  *      Address 1 field, and all non-QoS data frames sent
350                  *      by QoS STAs are assigned using an additional single
351                  *      modulo-4096 counter, [...]
352                  *
353                  * We also use that counter for non-QoS STAs.
354                  */
355                 tid = NUM_RX_DATA_QUEUES - 1;
356         }
357
358         rx->queue = tid;
359         /* Set skb->priority to 1d tag if highest order bit of TID is not set.
360          * For now, set skb->priority to 0 for other cases. */
361         rx->skb->priority = (tid > 7) ? 0 : tid;
362 }
363
364 /**
365  * DOC: Packet alignment
366  *
367  * Drivers always need to pass packets that are aligned to two-byte boundaries
368  * to the stack.
369  *
370  * Additionally, should, if possible, align the payload data in a way that
371  * guarantees that the contained IP header is aligned to a four-byte
372  * boundary. In the case of regular frames, this simply means aligning the
373  * payload to a four-byte boundary (because either the IP header is directly
374  * contained, or IV/RFC1042 headers that have a length divisible by four are
375  * in front of it).  If the payload data is not properly aligned and the
376  * architecture doesn't support efficient unaligned operations, mac80211
377  * will align the data.
378  *
379  * With A-MSDU frames, however, the payload data address must yield two modulo
380  * four because there are 14-byte 802.3 headers within the A-MSDU frames that
381  * push the IP header further back to a multiple of four again. Thankfully, the
382  * specs were sane enough this time around to require padding each A-MSDU
383  * subframe to a length that is a multiple of four.
384  *
385  * Padding like Atheros hardware adds which is between the 802.11 header and
386  * the payload is not supported, the driver is required to move the 802.11
387  * header to be directly in front of the payload in that case.
388  */
389 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
390 {
391 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
392         WARN_ONCE((unsigned long)rx->skb->data & 1,
393                   "unaligned packet at 0x%p\n", rx->skb->data);
394 #endif
395 }
396
397
398 /* rx handlers */
399
400 static ieee80211_rx_result debug_noinline
401 ieee80211_rx_h_passive_scan(struct ieee80211_rx_data *rx)
402 {
403         struct ieee80211_local *local = rx->local;
404         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
405         struct sk_buff *skb = rx->skb;
406
407         if (likely(!(status->rx_flags & IEEE80211_RX_IN_SCAN) &&
408                    !local->sched_scanning))
409                 return RX_CONTINUE;
410
411         if (test_bit(SCAN_HW_SCANNING, &local->scanning) ||
412             test_bit(SCAN_SW_SCANNING, &local->scanning) ||
413             local->sched_scanning)
414                 return ieee80211_scan_rx(rx->sdata, skb);
415
416         /* scanning finished during invoking of handlers */
417         I802_DEBUG_INC(local->rx_handlers_drop_passive_scan);
418         return RX_DROP_UNUSABLE;
419 }
420
421
422 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
423 {
424         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
425
426         if (skb->len < 24 || is_multicast_ether_addr(hdr->addr1))
427                 return 0;
428
429         return ieee80211_is_robust_mgmt_frame(hdr);
430 }
431
432
433 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
434 {
435         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
436
437         if (skb->len < 24 || !is_multicast_ether_addr(hdr->addr1))
438                 return 0;
439
440         return ieee80211_is_robust_mgmt_frame(hdr);
441 }
442
443
444 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
445 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
446 {
447         struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
448         struct ieee80211_mmie *mmie;
449
450         if (skb->len < 24 + sizeof(*mmie) ||
451             !is_multicast_ether_addr(hdr->da))
452                 return -1;
453
454         if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *) hdr))
455                 return -1; /* not a robust management frame */
456
457         mmie = (struct ieee80211_mmie *)
458                 (skb->data + skb->len - sizeof(*mmie));
459         if (mmie->element_id != WLAN_EID_MMIE ||
460             mmie->length != sizeof(*mmie) - 2)
461                 return -1;
462
463         return le16_to_cpu(mmie->key_id);
464 }
465
466
467 static ieee80211_rx_result
468 ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
469 {
470         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
471         unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control);
472         char *dev_addr = rx->sdata->vif.addr;
473
474         if (ieee80211_is_data(hdr->frame_control)) {
475                 if (is_multicast_ether_addr(hdr->addr1)) {
476                         if (ieee80211_has_tods(hdr->frame_control) ||
477                                 !ieee80211_has_fromds(hdr->frame_control))
478                                 return RX_DROP_MONITOR;
479                         if (memcmp(hdr->addr3, dev_addr, ETH_ALEN) == 0)
480                                 return RX_DROP_MONITOR;
481                 } else {
482                         if (!ieee80211_has_a4(hdr->frame_control))
483                                 return RX_DROP_MONITOR;
484                         if (memcmp(hdr->addr4, dev_addr, ETH_ALEN) == 0)
485                                 return RX_DROP_MONITOR;
486                 }
487         }
488
489         /* If there is not an established peer link and this is not a peer link
490          * establisment frame, beacon or probe, drop the frame.
491          */
492
493         if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
494                 struct ieee80211_mgmt *mgmt;
495
496                 if (!ieee80211_is_mgmt(hdr->frame_control))
497                         return RX_DROP_MONITOR;
498
499                 if (ieee80211_is_action(hdr->frame_control)) {
500                         u8 category;
501                         mgmt = (struct ieee80211_mgmt *)hdr;
502                         category = mgmt->u.action.category;
503                         if (category != WLAN_CATEGORY_MESH_ACTION &&
504                                 category != WLAN_CATEGORY_SELF_PROTECTED)
505                                 return RX_DROP_MONITOR;
506                         return RX_CONTINUE;
507                 }
508
509                 if (ieee80211_is_probe_req(hdr->frame_control) ||
510                     ieee80211_is_probe_resp(hdr->frame_control) ||
511                     ieee80211_is_beacon(hdr->frame_control) ||
512                     ieee80211_is_auth(hdr->frame_control))
513                         return RX_CONTINUE;
514
515                 return RX_DROP_MONITOR;
516
517         }
518
519 #define msh_h_get(h, l) ((struct ieee80211s_hdr *) ((u8 *)h + l))
520
521         if (ieee80211_is_data(hdr->frame_control) &&
522             is_multicast_ether_addr(hdr->addr1) &&
523             mesh_rmc_check(hdr->addr3, msh_h_get(hdr, hdrlen), rx->sdata))
524                 return RX_DROP_MONITOR;
525 #undef msh_h_get
526
527         return RX_CONTINUE;
528 }
529
530 #define SEQ_MODULO 0x1000
531 #define SEQ_MASK   0xfff
532
533 static inline int seq_less(u16 sq1, u16 sq2)
534 {
535         return ((sq1 - sq2) & SEQ_MASK) > (SEQ_MODULO >> 1);
536 }
537
538 static inline u16 seq_inc(u16 sq)
539 {
540         return (sq + 1) & SEQ_MASK;
541 }
542
543 static inline u16 seq_sub(u16 sq1, u16 sq2)
544 {
545         return (sq1 - sq2) & SEQ_MASK;
546 }
547
548
549 static void ieee80211_release_reorder_frame(struct ieee80211_hw *hw,
550                                             struct tid_ampdu_rx *tid_agg_rx,
551                                             int index)
552 {
553         struct ieee80211_local *local = hw_to_local(hw);
554         struct sk_buff *skb = tid_agg_rx->reorder_buf[index];
555         struct ieee80211_rx_status *status;
556
557         lockdep_assert_held(&tid_agg_rx->reorder_lock);
558
559         if (!skb)
560                 goto no_frame;
561
562         /* release the frame from the reorder ring buffer */
563         tid_agg_rx->stored_mpdu_num--;
564         tid_agg_rx->reorder_buf[index] = NULL;
565         status = IEEE80211_SKB_RXCB(skb);
566         status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
567         skb_queue_tail(&local->rx_skb_queue, skb);
568
569 no_frame:
570         tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
571 }
572
573 static void ieee80211_release_reorder_frames(struct ieee80211_hw *hw,
574                                              struct tid_ampdu_rx *tid_agg_rx,
575                                              u16 head_seq_num)
576 {
577         int index;
578
579         lockdep_assert_held(&tid_agg_rx->reorder_lock);
580
581         while (seq_less(tid_agg_rx->head_seq_num, head_seq_num)) {
582                 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
583                                                         tid_agg_rx->buf_size;
584                 ieee80211_release_reorder_frame(hw, tid_agg_rx, index);
585         }
586 }
587
588 /*
589  * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
590  * the skb was added to the buffer longer than this time ago, the earlier
591  * frames that have not yet been received are assumed to be lost and the skb
592  * can be released for processing. This may also release other skb's from the
593  * reorder buffer if there are no additional gaps between the frames.
594  *
595  * Callers must hold tid_agg_rx->reorder_lock.
596  */
597 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
598
599 static void ieee80211_sta_reorder_release(struct ieee80211_hw *hw,
600                                           struct tid_ampdu_rx *tid_agg_rx)
601 {
602         int index, j;
603
604         lockdep_assert_held(&tid_agg_rx->reorder_lock);
605
606         /* release the buffer until next missing frame */
607         index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
608                                                 tid_agg_rx->buf_size;
609         if (!tid_agg_rx->reorder_buf[index] &&
610             tid_agg_rx->stored_mpdu_num > 1) {
611                 /*
612                  * No buffers ready to be released, but check whether any
613                  * frames in the reorder buffer have timed out.
614                  */
615                 int skipped = 1;
616                 for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
617                      j = (j + 1) % tid_agg_rx->buf_size) {
618                         if (!tid_agg_rx->reorder_buf[j]) {
619                                 skipped++;
620                                 continue;
621                         }
622                         if (skipped &&
623                             !time_after(jiffies, tid_agg_rx->reorder_time[j] +
624                                         HT_RX_REORDER_BUF_TIMEOUT))
625                                 goto set_release_timer;
626
627 #ifdef CONFIG_MAC80211_HT_DEBUG
628                         if (net_ratelimit())
629                                 wiphy_debug(hw->wiphy,
630                                             "release an RX reorder frame due to timeout on earlier frames\n");
631 #endif
632                         ieee80211_release_reorder_frame(hw, tid_agg_rx, j);
633
634                         /*
635                          * Increment the head seq# also for the skipped slots.
636                          */
637                         tid_agg_rx->head_seq_num =
638                                 (tid_agg_rx->head_seq_num + skipped) & SEQ_MASK;
639                         skipped = 0;
640                 }
641         } else while (tid_agg_rx->reorder_buf[index]) {
642                 ieee80211_release_reorder_frame(hw, tid_agg_rx, index);
643                 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
644                                                         tid_agg_rx->buf_size;
645         }
646
647         if (tid_agg_rx->stored_mpdu_num) {
648                 j = index = seq_sub(tid_agg_rx->head_seq_num,
649                                     tid_agg_rx->ssn) % tid_agg_rx->buf_size;
650
651                 for (; j != (index - 1) % tid_agg_rx->buf_size;
652                      j = (j + 1) % tid_agg_rx->buf_size) {
653                         if (tid_agg_rx->reorder_buf[j])
654                                 break;
655                 }
656
657  set_release_timer:
658
659                 mod_timer(&tid_agg_rx->reorder_timer,
660                           tid_agg_rx->reorder_time[j] + 1 +
661                           HT_RX_REORDER_BUF_TIMEOUT);
662         } else {
663                 del_timer(&tid_agg_rx->reorder_timer);
664         }
665 }
666
667 /*
668  * As this function belongs to the RX path it must be under
669  * rcu_read_lock protection. It returns false if the frame
670  * can be processed immediately, true if it was consumed.
671  */
672 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_hw *hw,
673                                              struct tid_ampdu_rx *tid_agg_rx,
674                                              struct sk_buff *skb)
675 {
676         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
677         u16 sc = le16_to_cpu(hdr->seq_ctrl);
678         u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
679         u16 head_seq_num, buf_size;
680         int index;
681         bool ret = true;
682
683         spin_lock(&tid_agg_rx->reorder_lock);
684
685         buf_size = tid_agg_rx->buf_size;
686         head_seq_num = tid_agg_rx->head_seq_num;
687
688         /* frame with out of date sequence number */
689         if (seq_less(mpdu_seq_num, head_seq_num)) {
690                 dev_kfree_skb(skb);
691                 goto out;
692         }
693
694         /*
695          * If frame the sequence number exceeds our buffering window
696          * size release some previous frames to make room for this one.
697          */
698         if (!seq_less(mpdu_seq_num, head_seq_num + buf_size)) {
699                 head_seq_num = seq_inc(seq_sub(mpdu_seq_num, buf_size));
700                 /* release stored frames up to new head to stack */
701                 ieee80211_release_reorder_frames(hw, tid_agg_rx, head_seq_num);
702         }
703
704         /* Now the new frame is always in the range of the reordering buffer */
705
706         index = seq_sub(mpdu_seq_num, tid_agg_rx->ssn) % tid_agg_rx->buf_size;
707
708         /* check if we already stored this frame */
709         if (tid_agg_rx->reorder_buf[index]) {
710                 dev_kfree_skb(skb);
711                 goto out;
712         }
713
714         /*
715          * If the current MPDU is in the right order and nothing else
716          * is stored we can process it directly, no need to buffer it.
717          * If it is first but there's something stored, we may be able
718          * to release frames after this one.
719          */
720         if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
721             tid_agg_rx->stored_mpdu_num == 0) {
722                 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
723                 ret = false;
724                 goto out;
725         }
726
727         /* put the frame in the reordering buffer */
728         tid_agg_rx->reorder_buf[index] = skb;
729         tid_agg_rx->reorder_time[index] = jiffies;
730         tid_agg_rx->stored_mpdu_num++;
731         ieee80211_sta_reorder_release(hw, tid_agg_rx);
732
733  out:
734         spin_unlock(&tid_agg_rx->reorder_lock);
735         return ret;
736 }
737
738 /*
739  * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
740  * true if the MPDU was buffered, false if it should be processed.
741  */
742 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx)
743 {
744         struct sk_buff *skb = rx->skb;
745         struct ieee80211_local *local = rx->local;
746         struct ieee80211_hw *hw = &local->hw;
747         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
748         struct sta_info *sta = rx->sta;
749         struct tid_ampdu_rx *tid_agg_rx;
750         u16 sc;
751         int tid;
752
753         if (!ieee80211_is_data_qos(hdr->frame_control))
754                 goto dont_reorder;
755
756         /*
757          * filter the QoS data rx stream according to
758          * STA/TID and check if this STA/TID is on aggregation
759          */
760
761         if (!sta)
762                 goto dont_reorder;
763
764         tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
765
766         tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
767         if (!tid_agg_rx)
768                 goto dont_reorder;
769
770         /* qos null data frames are excluded */
771         if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
772                 goto dont_reorder;
773
774         /* new, potentially un-ordered, ampdu frame - process it */
775
776         /* reset session timer */
777         if (tid_agg_rx->timeout)
778                 mod_timer(&tid_agg_rx->session_timer,
779                           TU_TO_EXP_TIME(tid_agg_rx->timeout));
780
781         /* if this mpdu is fragmented - terminate rx aggregation session */
782         sc = le16_to_cpu(hdr->seq_ctrl);
783         if (sc & IEEE80211_SCTL_FRAG) {
784                 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
785                 skb_queue_tail(&rx->sdata->skb_queue, skb);
786                 ieee80211_queue_work(&local->hw, &rx->sdata->work);
787                 return;
788         }
789
790         /*
791          * No locking needed -- we will only ever process one
792          * RX packet at a time, and thus own tid_agg_rx. All
793          * other code manipulating it needs to (and does) make
794          * sure that we cannot get to it any more before doing
795          * anything with it.
796          */
797         if (ieee80211_sta_manage_reorder_buf(hw, tid_agg_rx, skb))
798                 return;
799
800  dont_reorder:
801         skb_queue_tail(&local->rx_skb_queue, skb);
802 }
803
804 static ieee80211_rx_result debug_noinline
805 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
806 {
807         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
808         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
809
810         /* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */
811         if (rx->sta && !is_multicast_ether_addr(hdr->addr1)) {
812                 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
813                              rx->sta->last_seq_ctrl[rx->queue] ==
814                              hdr->seq_ctrl)) {
815                         if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
816                                 rx->local->dot11FrameDuplicateCount++;
817                                 rx->sta->num_duplicates++;
818                         }
819                         return RX_DROP_UNUSABLE;
820                 } else
821                         rx->sta->last_seq_ctrl[rx->queue] = hdr->seq_ctrl;
822         }
823
824         if (unlikely(rx->skb->len < 16)) {
825                 I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
826                 return RX_DROP_MONITOR;
827         }
828
829         /* Drop disallowed frame classes based on STA auth/assoc state;
830          * IEEE 802.11, Chap 5.5.
831          *
832          * mac80211 filters only based on association state, i.e. it drops
833          * Class 3 frames from not associated stations. hostapd sends
834          * deauth/disassoc frames when needed. In addition, hostapd is
835          * responsible for filtering on both auth and assoc states.
836          */
837
838         if (ieee80211_vif_is_mesh(&rx->sdata->vif))
839                 return ieee80211_rx_mesh_check(rx);
840
841         if (unlikely((ieee80211_is_data(hdr->frame_control) ||
842                       ieee80211_is_pspoll(hdr->frame_control)) &&
843                      rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
844                      rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
845                      (!rx->sta || !test_sta_flags(rx->sta, WLAN_STA_ASSOC))))
846                 return RX_DROP_MONITOR;
847
848         return RX_CONTINUE;
849 }
850
851
852 static ieee80211_rx_result debug_noinline
853 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
854 {
855         struct sk_buff *skb = rx->skb;
856         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
857         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
858         int keyidx;
859         int hdrlen;
860         ieee80211_rx_result result = RX_DROP_UNUSABLE;
861         struct ieee80211_key *sta_ptk = NULL;
862         int mmie_keyidx = -1;
863         __le16 fc;
864
865         /*
866          * Key selection 101
867          *
868          * There are four types of keys:
869          *  - GTK (group keys)
870          *  - IGTK (group keys for management frames)
871          *  - PTK (pairwise keys)
872          *  - STK (station-to-station pairwise keys)
873          *
874          * When selecting a key, we have to distinguish between multicast
875          * (including broadcast) and unicast frames, the latter can only
876          * use PTKs and STKs while the former always use GTKs and IGTKs.
877          * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
878          * unicast frames can also use key indices like GTKs. Hence, if we
879          * don't have a PTK/STK we check the key index for a WEP key.
880          *
881          * Note that in a regular BSS, multicast frames are sent by the
882          * AP only, associated stations unicast the frame to the AP first
883          * which then multicasts it on their behalf.
884          *
885          * There is also a slight problem in IBSS mode: GTKs are negotiated
886          * with each station, that is something we don't currently handle.
887          * The spec seems to expect that one negotiates the same key with
888          * every station but there's no such requirement; VLANs could be
889          * possible.
890          */
891
892         /*
893          * No point in finding a key and decrypting if the frame is neither
894          * addressed to us nor a multicast frame.
895          */
896         if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
897                 return RX_CONTINUE;
898
899         /* start without a key */
900         rx->key = NULL;
901
902         if (rx->sta)
903                 sta_ptk = rcu_dereference(rx->sta->ptk);
904
905         fc = hdr->frame_control;
906
907         if (!ieee80211_has_protected(fc))
908                 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
909
910         if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
911                 rx->key = sta_ptk;
912                 if ((status->flag & RX_FLAG_DECRYPTED) &&
913                     (status->flag & RX_FLAG_IV_STRIPPED))
914                         return RX_CONTINUE;
915                 /* Skip decryption if the frame is not protected. */
916                 if (!ieee80211_has_protected(fc))
917                         return RX_CONTINUE;
918         } else if (mmie_keyidx >= 0) {
919                 /* Broadcast/multicast robust management frame / BIP */
920                 if ((status->flag & RX_FLAG_DECRYPTED) &&
921                     (status->flag & RX_FLAG_IV_STRIPPED))
922                         return RX_CONTINUE;
923
924                 if (mmie_keyidx < NUM_DEFAULT_KEYS ||
925                     mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
926                         return RX_DROP_MONITOR; /* unexpected BIP keyidx */
927                 if (rx->sta)
928                         rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
929                 if (!rx->key)
930                         rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
931         } else if (!ieee80211_has_protected(fc)) {
932                 /*
933                  * The frame was not protected, so skip decryption. However, we
934                  * need to set rx->key if there is a key that could have been
935                  * used so that the frame may be dropped if encryption would
936                  * have been expected.
937                  */
938                 struct ieee80211_key *key = NULL;
939                 struct ieee80211_sub_if_data *sdata = rx->sdata;
940                 int i;
941
942                 if (ieee80211_is_mgmt(fc) &&
943                     is_multicast_ether_addr(hdr->addr1) &&
944                     (key = rcu_dereference(rx->sdata->default_mgmt_key)))
945                         rx->key = key;
946                 else {
947                         if (rx->sta) {
948                                 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
949                                         key = rcu_dereference(rx->sta->gtk[i]);
950                                         if (key)
951                                                 break;
952                                 }
953                         }
954                         if (!key) {
955                                 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
956                                         key = rcu_dereference(sdata->keys[i]);
957                                         if (key)
958                                                 break;
959                                 }
960                         }
961                         if (key)
962                                 rx->key = key;
963                 }
964                 return RX_CONTINUE;
965         } else {
966                 u8 keyid;
967                 /*
968                  * The device doesn't give us the IV so we won't be
969                  * able to look up the key. That's ok though, we
970                  * don't need to decrypt the frame, we just won't
971                  * be able to keep statistics accurate.
972                  * Except for key threshold notifications, should
973                  * we somehow allow the driver to tell us which key
974                  * the hardware used if this flag is set?
975                  */
976                 if ((status->flag & RX_FLAG_DECRYPTED) &&
977                     (status->flag & RX_FLAG_IV_STRIPPED))
978                         return RX_CONTINUE;
979
980                 hdrlen = ieee80211_hdrlen(fc);
981
982                 if (rx->skb->len < 8 + hdrlen)
983                         return RX_DROP_UNUSABLE; /* TODO: count this? */
984
985                 /*
986                  * no need to call ieee80211_wep_get_keyidx,
987                  * it verifies a bunch of things we've done already
988                  */
989                 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
990                 keyidx = keyid >> 6;
991
992                 /* check per-station GTK first, if multicast packet */
993                 if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
994                         rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
995
996                 /* if not found, try default key */
997                 if (!rx->key) {
998                         rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
999
1000                         /*
1001                          * RSNA-protected unicast frames should always be
1002                          * sent with pairwise or station-to-station keys,
1003                          * but for WEP we allow using a key index as well.
1004                          */
1005                         if (rx->key &&
1006                             rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1007                             rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1008                             !is_multicast_ether_addr(hdr->addr1))
1009                                 rx->key = NULL;
1010                 }
1011         }
1012
1013         if (rx->key) {
1014                 rx->key->tx_rx_count++;
1015                 /* TODO: add threshold stuff again */
1016         } else {
1017                 return RX_DROP_MONITOR;
1018         }
1019
1020         if (skb_linearize(rx->skb))
1021                 return RX_DROP_UNUSABLE;
1022         /* the hdr variable is invalid now! */
1023
1024         switch (rx->key->conf.cipher) {
1025         case WLAN_CIPHER_SUITE_WEP40:
1026         case WLAN_CIPHER_SUITE_WEP104:
1027                 /* Check for weak IVs if possible */
1028                 if (rx->sta && ieee80211_is_data(fc) &&
1029                     (!(status->flag & RX_FLAG_IV_STRIPPED) ||
1030                      !(status->flag & RX_FLAG_DECRYPTED)) &&
1031                     ieee80211_wep_is_weak_iv(rx->skb, rx->key))
1032                         rx->sta->wep_weak_iv_count++;
1033
1034                 result = ieee80211_crypto_wep_decrypt(rx);
1035                 break;
1036         case WLAN_CIPHER_SUITE_TKIP:
1037                 result = ieee80211_crypto_tkip_decrypt(rx);
1038                 break;
1039         case WLAN_CIPHER_SUITE_CCMP:
1040                 result = ieee80211_crypto_ccmp_decrypt(rx);
1041                 break;
1042         case WLAN_CIPHER_SUITE_AES_CMAC:
1043                 result = ieee80211_crypto_aes_cmac_decrypt(rx);
1044                 break;
1045         default:
1046                 /*
1047                  * We can reach here only with HW-only algorithms
1048                  * but why didn't it decrypt the frame?!
1049                  */
1050                 return RX_DROP_UNUSABLE;
1051         }
1052
1053         /* either the frame has been decrypted or will be dropped */
1054         status->flag |= RX_FLAG_DECRYPTED;
1055
1056         return result;
1057 }
1058
1059 static ieee80211_rx_result debug_noinline
1060 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1061 {
1062         struct ieee80211_local *local;
1063         struct ieee80211_hdr *hdr;
1064         struct sk_buff *skb;
1065
1066         local = rx->local;
1067         skb = rx->skb;
1068         hdr = (struct ieee80211_hdr *) skb->data;
1069
1070         if (!local->pspolling)
1071                 return RX_CONTINUE;
1072
1073         if (!ieee80211_has_fromds(hdr->frame_control))
1074                 /* this is not from AP */
1075                 return RX_CONTINUE;
1076
1077         if (!ieee80211_is_data(hdr->frame_control))
1078                 return RX_CONTINUE;
1079
1080         if (!ieee80211_has_moredata(hdr->frame_control)) {
1081                 /* AP has no more frames buffered for us */
1082                 local->pspolling = false;
1083                 return RX_CONTINUE;
1084         }
1085
1086         /* more data bit is set, let's request a new frame from the AP */
1087         ieee80211_send_pspoll(local, rx->sdata);
1088
1089         return RX_CONTINUE;
1090 }
1091
1092 static void ap_sta_ps_start(struct sta_info *sta)
1093 {
1094         struct ieee80211_sub_if_data *sdata = sta->sdata;
1095         struct ieee80211_local *local = sdata->local;
1096
1097         atomic_inc(&sdata->bss->num_sta_ps);
1098         set_sta_flags(sta, WLAN_STA_PS_STA);
1099         if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS))
1100                 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1101 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1102         printk(KERN_DEBUG "%s: STA %pM aid %d enters power save mode\n",
1103                sdata->name, sta->sta.addr, sta->sta.aid);
1104 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1105 }
1106
1107 static void ap_sta_ps_end(struct sta_info *sta)
1108 {
1109         struct ieee80211_sub_if_data *sdata = sta->sdata;
1110
1111         atomic_dec(&sdata->bss->num_sta_ps);
1112
1113 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1114         printk(KERN_DEBUG "%s: STA %pM aid %d exits power save mode\n",
1115                sdata->name, sta->sta.addr, sta->sta.aid);
1116 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1117
1118         if (test_sta_flags(sta, WLAN_STA_PS_DRIVER)) {
1119 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1120                 printk(KERN_DEBUG "%s: STA %pM aid %d driver-ps-blocked\n",
1121                        sdata->name, sta->sta.addr, sta->sta.aid);
1122 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1123                 return;
1124         }
1125
1126         ieee80211_sta_ps_deliver_wakeup(sta);
1127 }
1128
1129 int ieee80211_sta_ps_transition(struct ieee80211_sta *sta, bool start)
1130 {
1131         struct sta_info *sta_inf = container_of(sta, struct sta_info, sta);
1132         bool in_ps;
1133
1134         WARN_ON(!(sta_inf->local->hw.flags & IEEE80211_HW_AP_LINK_PS));
1135
1136         /* Don't let the same PS state be set twice */
1137         in_ps = test_sta_flags(sta_inf, WLAN_STA_PS_STA);
1138         if ((start && in_ps) || (!start && !in_ps))
1139                 return -EINVAL;
1140
1141         if (start)
1142                 ap_sta_ps_start(sta_inf);
1143         else
1144                 ap_sta_ps_end(sta_inf);
1145
1146         return 0;
1147 }
1148 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1149
1150 static ieee80211_rx_result debug_noinline
1151 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1152 {
1153         struct sta_info *sta = rx->sta;
1154         struct sk_buff *skb = rx->skb;
1155         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1156         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1157
1158         if (!sta)
1159                 return RX_CONTINUE;
1160
1161         /*
1162          * Update last_rx only for IBSS packets which are for the current
1163          * BSSID to avoid keeping the current IBSS network alive in cases
1164          * where other STAs start using different BSSID.
1165          */
1166         if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1167                 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1168                                                 NL80211_IFTYPE_ADHOC);
1169                 if (compare_ether_addr(bssid, rx->sdata->u.ibss.bssid) == 0) {
1170                         sta->last_rx = jiffies;
1171                         if (ieee80211_is_data(hdr->frame_control)) {
1172                                 sta->last_rx_rate_idx = status->rate_idx;
1173                                 sta->last_rx_rate_flag = status->flag;
1174                         }
1175                 }
1176         } else if (!is_multicast_ether_addr(hdr->addr1)) {
1177                 /*
1178                  * Mesh beacons will update last_rx when if they are found to
1179                  * match the current local configuration when processed.
1180                  */
1181                 sta->last_rx = jiffies;
1182                 if (ieee80211_is_data(hdr->frame_control)) {
1183                         sta->last_rx_rate_idx = status->rate_idx;
1184                         sta->last_rx_rate_flag = status->flag;
1185                 }
1186         }
1187
1188         if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1189                 return RX_CONTINUE;
1190
1191         if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1192                 ieee80211_sta_rx_notify(rx->sdata, hdr);
1193
1194         sta->rx_fragments++;
1195         sta->rx_bytes += rx->skb->len;
1196         sta->last_signal = status->signal;
1197         ewma_add(&sta->avg_signal, -status->signal);
1198
1199         /*
1200          * Change STA power saving mode only at the end of a frame
1201          * exchange sequence.
1202          */
1203         if (!(sta->local->hw.flags & IEEE80211_HW_AP_LINK_PS) &&
1204             !ieee80211_has_morefrags(hdr->frame_control) &&
1205             !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1206             (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1207              rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1208                 if (test_sta_flags(sta, WLAN_STA_PS_STA)) {
1209                         /*
1210                          * Ignore doze->wake transitions that are
1211                          * indicated by non-data frames, the standard
1212                          * is unclear here, but for example going to
1213                          * PS mode and then scanning would cause a
1214                          * doze->wake transition for the probe request,
1215                          * and that is clearly undesirable.
1216                          */
1217                         if (ieee80211_is_data(hdr->frame_control) &&
1218                             !ieee80211_has_pm(hdr->frame_control))
1219                                 ap_sta_ps_end(sta);
1220                 } else {
1221                         if (ieee80211_has_pm(hdr->frame_control))
1222                                 ap_sta_ps_start(sta);
1223                 }
1224         }
1225
1226         /*
1227          * Drop (qos-)data::nullfunc frames silently, since they
1228          * are used only to control station power saving mode.
1229          */
1230         if (ieee80211_is_nullfunc(hdr->frame_control) ||
1231             ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1232                 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1233
1234                 /*
1235                  * If we receive a 4-addr nullfunc frame from a STA
1236                  * that was not moved to a 4-addr STA vlan yet, drop
1237                  * the frame to the monitor interface, to make sure
1238                  * that hostapd sees it
1239                  */
1240                 if (ieee80211_has_a4(hdr->frame_control) &&
1241                     (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1242                      (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1243                       !rx->sdata->u.vlan.sta)))
1244                         return RX_DROP_MONITOR;
1245                 /*
1246                  * Update counter and free packet here to avoid
1247                  * counting this as a dropped packed.
1248                  */
1249                 sta->rx_packets++;
1250                 dev_kfree_skb(rx->skb);
1251                 return RX_QUEUED;
1252         }
1253
1254         return RX_CONTINUE;
1255 } /* ieee80211_rx_h_sta_process */
1256
1257 static inline struct ieee80211_fragment_entry *
1258 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1259                          unsigned int frag, unsigned int seq, int rx_queue,
1260                          struct sk_buff **skb)
1261 {
1262         struct ieee80211_fragment_entry *entry;
1263         int idx;
1264
1265         idx = sdata->fragment_next;
1266         entry = &sdata->fragments[sdata->fragment_next++];
1267         if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1268                 sdata->fragment_next = 0;
1269
1270         if (!skb_queue_empty(&entry->skb_list)) {
1271 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
1272                 struct ieee80211_hdr *hdr =
1273                         (struct ieee80211_hdr *) entry->skb_list.next->data;
1274                 printk(KERN_DEBUG "%s: RX reassembly removed oldest "
1275                        "fragment entry (idx=%d age=%lu seq=%d last_frag=%d "
1276                        "addr1=%pM addr2=%pM\n",
1277                        sdata->name, idx,
1278                        jiffies - entry->first_frag_time, entry->seq,
1279                        entry->last_frag, hdr->addr1, hdr->addr2);
1280 #endif
1281                 __skb_queue_purge(&entry->skb_list);
1282         }
1283
1284         __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1285         *skb = NULL;
1286         entry->first_frag_time = jiffies;
1287         entry->seq = seq;
1288         entry->rx_queue = rx_queue;
1289         entry->last_frag = frag;
1290         entry->ccmp = 0;
1291         entry->extra_len = 0;
1292
1293         return entry;
1294 }
1295
1296 static inline struct ieee80211_fragment_entry *
1297 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1298                           unsigned int frag, unsigned int seq,
1299                           int rx_queue, struct ieee80211_hdr *hdr)
1300 {
1301         struct ieee80211_fragment_entry *entry;
1302         int i, idx;
1303
1304         idx = sdata->fragment_next;
1305         for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1306                 struct ieee80211_hdr *f_hdr;
1307
1308                 idx--;
1309                 if (idx < 0)
1310                         idx = IEEE80211_FRAGMENT_MAX - 1;
1311
1312                 entry = &sdata->fragments[idx];
1313                 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1314                     entry->rx_queue != rx_queue ||
1315                     entry->last_frag + 1 != frag)
1316                         continue;
1317
1318                 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1319
1320                 /*
1321                  * Check ftype and addresses are equal, else check next fragment
1322                  */
1323                 if (((hdr->frame_control ^ f_hdr->frame_control) &
1324                      cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1325                     compare_ether_addr(hdr->addr1, f_hdr->addr1) != 0 ||
1326                     compare_ether_addr(hdr->addr2, f_hdr->addr2) != 0)
1327                         continue;
1328
1329                 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1330                         __skb_queue_purge(&entry->skb_list);
1331                         continue;
1332                 }
1333                 return entry;
1334         }
1335
1336         return NULL;
1337 }
1338
1339 static ieee80211_rx_result debug_noinline
1340 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1341 {
1342         struct ieee80211_hdr *hdr;
1343         u16 sc;
1344         __le16 fc;
1345         unsigned int frag, seq;
1346         struct ieee80211_fragment_entry *entry;
1347         struct sk_buff *skb;
1348         struct ieee80211_rx_status *status;
1349
1350         hdr = (struct ieee80211_hdr *)rx->skb->data;
1351         fc = hdr->frame_control;
1352         sc = le16_to_cpu(hdr->seq_ctrl);
1353         frag = sc & IEEE80211_SCTL_FRAG;
1354
1355         if (likely((!ieee80211_has_morefrags(fc) && frag == 0) ||
1356                    (rx->skb)->len < 24 ||
1357                    is_multicast_ether_addr(hdr->addr1))) {
1358                 /* not fragmented */
1359                 goto out;
1360         }
1361         I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1362
1363         if (skb_linearize(rx->skb))
1364                 return RX_DROP_UNUSABLE;
1365
1366         /*
1367          *  skb_linearize() might change the skb->data and
1368          *  previously cached variables (in this case, hdr) need to
1369          *  be refreshed with the new data.
1370          */
1371         hdr = (struct ieee80211_hdr *)rx->skb->data;
1372         seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1373
1374         if (frag == 0) {
1375                 /* This is the first fragment of a new frame. */
1376                 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1377                                                  rx->queue, &(rx->skb));
1378                 if (rx->key && rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP &&
1379                     ieee80211_has_protected(fc)) {
1380                         int queue = ieee80211_is_mgmt(fc) ?
1381                                 NUM_RX_DATA_QUEUES : rx->queue;
1382                         /* Store CCMP PN so that we can verify that the next
1383                          * fragment has a sequential PN value. */
1384                         entry->ccmp = 1;
1385                         memcpy(entry->last_pn,
1386                                rx->key->u.ccmp.rx_pn[queue],
1387                                CCMP_PN_LEN);
1388                 }
1389                 return RX_QUEUED;
1390         }
1391
1392         /* This is a fragment for a frame that should already be pending in
1393          * fragment cache. Add this fragment to the end of the pending entry.
1394          */
1395         entry = ieee80211_reassemble_find(rx->sdata, frag, seq, rx->queue, hdr);
1396         if (!entry) {
1397                 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1398                 return RX_DROP_MONITOR;
1399         }
1400
1401         /* Verify that MPDUs within one MSDU have sequential PN values.
1402          * (IEEE 802.11i, 8.3.3.4.5) */
1403         if (entry->ccmp) {
1404                 int i;
1405                 u8 pn[CCMP_PN_LEN], *rpn;
1406                 int queue;
1407                 if (!rx->key || rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP)
1408                         return RX_DROP_UNUSABLE;
1409                 memcpy(pn, entry->last_pn, CCMP_PN_LEN);
1410                 for (i = CCMP_PN_LEN - 1; i >= 0; i--) {
1411                         pn[i]++;
1412                         if (pn[i])
1413                                 break;
1414                 }
1415                 queue = ieee80211_is_mgmt(fc) ?
1416                         NUM_RX_DATA_QUEUES : rx->queue;
1417                 rpn = rx->key->u.ccmp.rx_pn[queue];
1418                 if (memcmp(pn, rpn, CCMP_PN_LEN))
1419                         return RX_DROP_UNUSABLE;
1420                 memcpy(entry->last_pn, pn, CCMP_PN_LEN);
1421         }
1422
1423         skb_pull(rx->skb, ieee80211_hdrlen(fc));
1424         __skb_queue_tail(&entry->skb_list, rx->skb);
1425         entry->last_frag = frag;
1426         entry->extra_len += rx->skb->len;
1427         if (ieee80211_has_morefrags(fc)) {
1428                 rx->skb = NULL;
1429                 return RX_QUEUED;
1430         }
1431
1432         rx->skb = __skb_dequeue(&entry->skb_list);
1433         if (skb_tailroom(rx->skb) < entry->extra_len) {
1434                 I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
1435                 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
1436                                               GFP_ATOMIC))) {
1437                         I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1438                         __skb_queue_purge(&entry->skb_list);
1439                         return RX_DROP_UNUSABLE;
1440                 }
1441         }
1442         while ((skb = __skb_dequeue(&entry->skb_list))) {
1443                 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
1444                 dev_kfree_skb(skb);
1445         }
1446
1447         /* Complete frame has been reassembled - process it now */
1448         status = IEEE80211_SKB_RXCB(rx->skb);
1449         status->rx_flags |= IEEE80211_RX_FRAGMENTED;
1450
1451  out:
1452         if (rx->sta)
1453                 rx->sta->rx_packets++;
1454         if (is_multicast_ether_addr(hdr->addr1))
1455                 rx->local->dot11MulticastReceivedFrameCount++;
1456         else
1457                 ieee80211_led_rx(rx->local);
1458         return RX_CONTINUE;
1459 }
1460
1461 static ieee80211_rx_result debug_noinline
1462 ieee80211_rx_h_ps_poll(struct ieee80211_rx_data *rx)
1463 {
1464         struct ieee80211_sub_if_data *sdata = rx->sdata;
1465         __le16 fc = ((struct ieee80211_hdr *)rx->skb->data)->frame_control;
1466         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1467
1468         if (likely(!rx->sta || !ieee80211_is_pspoll(fc) ||
1469                    !(status->rx_flags & IEEE80211_RX_RA_MATCH)))
1470                 return RX_CONTINUE;
1471
1472         if ((sdata->vif.type != NL80211_IFTYPE_AP) &&
1473             (sdata->vif.type != NL80211_IFTYPE_AP_VLAN))
1474                 return RX_DROP_UNUSABLE;
1475
1476         if (!test_sta_flags(rx->sta, WLAN_STA_PS_DRIVER))
1477                 ieee80211_sta_ps_deliver_poll_response(rx->sta);
1478         else
1479                 set_sta_flags(rx->sta, WLAN_STA_PSPOLL);
1480
1481         /* Free PS Poll skb here instead of returning RX_DROP that would
1482          * count as an dropped frame. */
1483         dev_kfree_skb(rx->skb);
1484
1485         return RX_QUEUED;
1486 }
1487
1488 static ieee80211_rx_result debug_noinline
1489 ieee80211_rx_h_remove_qos_control(struct ieee80211_rx_data *rx)
1490 {
1491         u8 *data = rx->skb->data;
1492         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)data;
1493
1494         if (!ieee80211_is_data_qos(hdr->frame_control))
1495                 return RX_CONTINUE;
1496
1497         /* remove the qos control field, update frame type and meta-data */
1498         memmove(data + IEEE80211_QOS_CTL_LEN, data,
1499                 ieee80211_hdrlen(hdr->frame_control) - IEEE80211_QOS_CTL_LEN);
1500         hdr = (struct ieee80211_hdr *)skb_pull(rx->skb, IEEE80211_QOS_CTL_LEN);
1501         /* change frame type to non QOS */
1502         hdr->frame_control &= ~cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
1503
1504         return RX_CONTINUE;
1505 }
1506
1507 static int
1508 ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1509 {
1510         if (unlikely(!rx->sta ||
1511             !test_sta_flags(rx->sta, WLAN_STA_AUTHORIZED)))
1512                 return -EACCES;
1513
1514         return 0;
1515 }
1516
1517 static int
1518 ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
1519 {
1520         struct sk_buff *skb = rx->skb;
1521         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1522
1523         /*
1524          * Pass through unencrypted frames if the hardware has
1525          * decrypted them already.
1526          */
1527         if (status->flag & RX_FLAG_DECRYPTED)
1528                 return 0;
1529
1530         /* Drop unencrypted frames if key is set. */
1531         if (unlikely(!ieee80211_has_protected(fc) &&
1532                      !ieee80211_is_nullfunc(fc) &&
1533                      ieee80211_is_data(fc) &&
1534                      (rx->key || rx->sdata->drop_unencrypted)))
1535                 return -EACCES;
1536
1537         return 0;
1538 }
1539
1540 static int
1541 ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
1542 {
1543         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1544         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1545         __le16 fc = hdr->frame_control;
1546
1547         /*
1548          * Pass through unencrypted frames if the hardware has
1549          * decrypted them already.
1550          */
1551         if (status->flag & RX_FLAG_DECRYPTED)
1552                 return 0;
1553
1554         if (rx->sta && test_sta_flags(rx->sta, WLAN_STA_MFP)) {
1555                 if (unlikely(!ieee80211_has_protected(fc) &&
1556                              ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
1557                              rx->key)) {
1558                         if (ieee80211_is_deauth(fc))
1559                                 cfg80211_send_unprot_deauth(rx->sdata->dev,
1560                                                             rx->skb->data,
1561                                                             rx->skb->len);
1562                         else if (ieee80211_is_disassoc(fc))
1563                                 cfg80211_send_unprot_disassoc(rx->sdata->dev,
1564                                                               rx->skb->data,
1565                                                               rx->skb->len);
1566                         return -EACCES;
1567                 }
1568                 /* BIP does not use Protected field, so need to check MMIE */
1569                 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
1570                              ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
1571                         if (ieee80211_is_deauth(fc))
1572                                 cfg80211_send_unprot_deauth(rx->sdata->dev,
1573                                                             rx->skb->data,
1574                                                             rx->skb->len);
1575                         else if (ieee80211_is_disassoc(fc))
1576                                 cfg80211_send_unprot_disassoc(rx->sdata->dev,
1577                                                               rx->skb->data,
1578                                                               rx->skb->len);
1579                         return -EACCES;
1580                 }
1581                 /*
1582                  * When using MFP, Action frames are not allowed prior to
1583                  * having configured keys.
1584                  */
1585                 if (unlikely(ieee80211_is_action(fc) && !rx->key &&
1586                              ieee80211_is_robust_mgmt_frame(
1587                                      (struct ieee80211_hdr *) rx->skb->data)))
1588                         return -EACCES;
1589         }
1590
1591         return 0;
1592 }
1593
1594 static int
1595 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
1596 {
1597         struct ieee80211_sub_if_data *sdata = rx->sdata;
1598         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1599         bool check_port_control = false;
1600         struct ethhdr *ehdr;
1601         int ret;
1602
1603         *port_control = false;
1604         if (ieee80211_has_a4(hdr->frame_control) &&
1605             sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
1606                 return -1;
1607
1608         if (sdata->vif.type == NL80211_IFTYPE_STATION &&
1609             !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
1610
1611                 if (!sdata->u.mgd.use_4addr)
1612                         return -1;
1613                 else
1614                         check_port_control = true;
1615         }
1616
1617         if (is_multicast_ether_addr(hdr->addr1) &&
1618             sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
1619                 return -1;
1620
1621         ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
1622         if (ret < 0)
1623                 return ret;
1624
1625         ehdr = (struct ethhdr *) rx->skb->data;
1626         if (ehdr->h_proto == rx->sdata->control_port_protocol)
1627                 *port_control = true;
1628         else if (check_port_control)
1629                 return -1;
1630
1631         return 0;
1632 }
1633
1634 /*
1635  * requires that rx->skb is a frame with ethernet header
1636  */
1637 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
1638 {
1639         static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
1640                 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
1641         struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1642
1643         /*
1644          * Allow EAPOL frames to us/the PAE group address regardless
1645          * of whether the frame was encrypted or not.
1646          */
1647         if (ehdr->h_proto == rx->sdata->control_port_protocol &&
1648             (compare_ether_addr(ehdr->h_dest, rx->sdata->vif.addr) == 0 ||
1649              compare_ether_addr(ehdr->h_dest, pae_group_addr) == 0))
1650                 return true;
1651
1652         if (ieee80211_802_1x_port_control(rx) ||
1653             ieee80211_drop_unencrypted(rx, fc))
1654                 return false;
1655
1656         return true;
1657 }
1658
1659 /*
1660  * requires that rx->skb is a frame with ethernet header
1661  */
1662 static void
1663 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
1664 {
1665         struct ieee80211_sub_if_data *sdata = rx->sdata;
1666         struct net_device *dev = sdata->dev;
1667         struct sk_buff *skb, *xmit_skb;
1668         struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1669         struct sta_info *dsta;
1670         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1671
1672         skb = rx->skb;
1673         xmit_skb = NULL;
1674
1675         if ((sdata->vif.type == NL80211_IFTYPE_AP ||
1676              sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1677             !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
1678             (status->rx_flags & IEEE80211_RX_RA_MATCH) &&
1679             (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
1680                 if (is_multicast_ether_addr(ehdr->h_dest)) {
1681                         /*
1682                          * send multicast frames both to higher layers in
1683                          * local net stack and back to the wireless medium
1684                          */
1685                         xmit_skb = skb_copy(skb, GFP_ATOMIC);
1686                         if (!xmit_skb && net_ratelimit())
1687                                 printk(KERN_DEBUG "%s: failed to clone "
1688                                        "multicast frame\n", dev->name);
1689                 } else {
1690                         dsta = sta_info_get(sdata, skb->data);
1691                         if (dsta) {
1692                                 /*
1693                                  * The destination station is associated to
1694                                  * this AP (in this VLAN), so send the frame
1695                                  * directly to it and do not pass it to local
1696                                  * net stack.
1697                                  */
1698                                 xmit_skb = skb;
1699                                 skb = NULL;
1700                         }
1701                 }
1702         }
1703
1704         if (skb) {
1705                 int align __maybe_unused;
1706
1707 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1708                 /*
1709                  * 'align' will only take the values 0 or 2 here
1710                  * since all frames are required to be aligned
1711                  * to 2-byte boundaries when being passed to
1712                  * mac80211. That also explains the __skb_push()
1713                  * below.
1714                  */
1715                 align = ((unsigned long)(skb->data + sizeof(struct ethhdr))) & 3;
1716                 if (align) {
1717                         if (WARN_ON(skb_headroom(skb) < 3)) {
1718                                 dev_kfree_skb(skb);
1719                                 skb = NULL;
1720                         } else {
1721                                 u8 *data = skb->data;
1722                                 size_t len = skb_headlen(skb);
1723                                 skb->data -= align;
1724                                 memmove(skb->data, data, len);
1725                                 skb_set_tail_pointer(skb, len);
1726                         }
1727                 }
1728 #endif
1729
1730                 if (skb) {
1731                         /* deliver to local stack */
1732                         skb->protocol = eth_type_trans(skb, dev);
1733                         memset(skb->cb, 0, sizeof(skb->cb));
1734                         netif_receive_skb(skb);
1735                 }
1736         }
1737
1738         if (xmit_skb) {
1739                 /* send to wireless media */
1740                 xmit_skb->protocol = htons(ETH_P_802_3);
1741                 skb_reset_network_header(xmit_skb);
1742                 skb_reset_mac_header(xmit_skb);
1743                 dev_queue_xmit(xmit_skb);
1744         }
1745 }
1746
1747 static ieee80211_rx_result debug_noinline
1748 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
1749 {
1750         struct net_device *dev = rx->sdata->dev;
1751         struct sk_buff *skb = rx->skb;
1752         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1753         __le16 fc = hdr->frame_control;
1754         struct sk_buff_head frame_list;
1755         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1756
1757         if (unlikely(!ieee80211_is_data(fc)))
1758                 return RX_CONTINUE;
1759
1760         if (unlikely(!ieee80211_is_data_present(fc)))
1761                 return RX_DROP_MONITOR;
1762
1763         if (!(status->rx_flags & IEEE80211_RX_AMSDU))
1764                 return RX_CONTINUE;
1765
1766         if (ieee80211_has_a4(hdr->frame_control) &&
1767             rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1768             !rx->sdata->u.vlan.sta)
1769                 return RX_DROP_UNUSABLE;
1770
1771         if (is_multicast_ether_addr(hdr->addr1) &&
1772             ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1773               rx->sdata->u.vlan.sta) ||
1774              (rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1775               rx->sdata->u.mgd.use_4addr)))
1776                 return RX_DROP_UNUSABLE;
1777
1778         skb->dev = dev;
1779         __skb_queue_head_init(&frame_list);
1780
1781         if (skb_linearize(skb))
1782                 return RX_DROP_UNUSABLE;
1783
1784         ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
1785                                  rx->sdata->vif.type,
1786                                  rx->local->hw.extra_tx_headroom, true);
1787
1788         while (!skb_queue_empty(&frame_list)) {
1789                 rx->skb = __skb_dequeue(&frame_list);
1790
1791                 if (!ieee80211_frame_allowed(rx, fc)) {
1792                         dev_kfree_skb(rx->skb);
1793                         continue;
1794                 }
1795                 dev->stats.rx_packets++;
1796                 dev->stats.rx_bytes += rx->skb->len;
1797
1798                 ieee80211_deliver_skb(rx);
1799         }
1800
1801         return RX_QUEUED;
1802 }
1803
1804 #ifdef CONFIG_MAC80211_MESH
1805 static ieee80211_rx_result
1806 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
1807 {
1808         struct ieee80211_hdr *hdr;
1809         struct ieee80211s_hdr *mesh_hdr;
1810         unsigned int hdrlen;
1811         struct sk_buff *skb = rx->skb, *fwd_skb;
1812         struct ieee80211_local *local = rx->local;
1813         struct ieee80211_sub_if_data *sdata = rx->sdata;
1814         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1815
1816         hdr = (struct ieee80211_hdr *) skb->data;
1817         hdrlen = ieee80211_hdrlen(hdr->frame_control);
1818         mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
1819
1820         if (!ieee80211_is_data(hdr->frame_control))
1821                 return RX_CONTINUE;
1822
1823         if (!mesh_hdr->ttl)
1824                 /* illegal frame */
1825                 return RX_DROP_MONITOR;
1826
1827         if (mesh_hdr->flags & MESH_FLAGS_AE) {
1828                 struct mesh_path *mppath;
1829                 char *proxied_addr;
1830                 char *mpp_addr;
1831
1832                 if (is_multicast_ether_addr(hdr->addr1)) {
1833                         mpp_addr = hdr->addr3;
1834                         proxied_addr = mesh_hdr->eaddr1;
1835                 } else {
1836                         mpp_addr = hdr->addr4;
1837                         proxied_addr = mesh_hdr->eaddr2;
1838                 }
1839
1840                 rcu_read_lock();
1841                 mppath = mpp_path_lookup(proxied_addr, sdata);
1842                 if (!mppath) {
1843                         mpp_path_add(proxied_addr, mpp_addr, sdata);
1844                 } else {
1845                         spin_lock_bh(&mppath->state_lock);
1846                         if (compare_ether_addr(mppath->mpp, mpp_addr) != 0)
1847                                 memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
1848                         spin_unlock_bh(&mppath->state_lock);
1849                 }
1850                 rcu_read_unlock();
1851         }
1852
1853         /* Frame has reached destination.  Don't forward */
1854         if (!is_multicast_ether_addr(hdr->addr1) &&
1855             compare_ether_addr(sdata->vif.addr, hdr->addr3) == 0)
1856                 return RX_CONTINUE;
1857
1858         mesh_hdr->ttl--;
1859
1860         if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
1861                 if (!mesh_hdr->ttl)
1862                         IEEE80211_IFSTA_MESH_CTR_INC(&rx->sdata->u.mesh,
1863                                                      dropped_frames_ttl);
1864                 else {
1865                         struct ieee80211_hdr *fwd_hdr;
1866                         struct ieee80211_tx_info *info;
1867
1868                         fwd_skb = skb_copy(skb, GFP_ATOMIC);
1869
1870                         if (!fwd_skb && net_ratelimit())
1871                                 printk(KERN_DEBUG "%s: failed to clone mesh frame\n",
1872                                                    sdata->name);
1873                         if (!fwd_skb)
1874                                 goto out;
1875
1876                         fwd_hdr =  (struct ieee80211_hdr *) fwd_skb->data;
1877                         memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
1878                         info = IEEE80211_SKB_CB(fwd_skb);
1879                         memset(info, 0, sizeof(*info));
1880                         info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
1881                         info->control.vif = &rx->sdata->vif;
1882                         skb_set_queue_mapping(skb,
1883                                 ieee80211_select_queue(rx->sdata, fwd_skb));
1884                         ieee80211_set_qos_hdr(local, skb);
1885                         if (is_multicast_ether_addr(fwd_hdr->addr1))
1886                                 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1887                                                                 fwded_mcast);
1888                         else {
1889                                 int err;
1890                                 /*
1891                                  * Save TA to addr1 to send TA a path error if a
1892                                  * suitable next hop is not found
1893                                  */
1894                                 memcpy(fwd_hdr->addr1, fwd_hdr->addr2,
1895                                                 ETH_ALEN);
1896                                 err = mesh_nexthop_lookup(fwd_skb, sdata);
1897                                 /* Failed to immediately resolve next hop:
1898                                  * fwded frame was dropped or will be added
1899                                  * later to the pending skb queue.  */
1900                                 if (err)
1901                                         return RX_DROP_MONITOR;
1902
1903                                 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1904                                                                 fwded_unicast);
1905                         }
1906                         IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1907                                                      fwded_frames);
1908                         ieee80211_add_pending_skb(local, fwd_skb);
1909                 }
1910         }
1911
1912  out:
1913         if (is_multicast_ether_addr(hdr->addr1) ||
1914             sdata->dev->flags & IFF_PROMISC)
1915                 return RX_CONTINUE;
1916         else
1917                 return RX_DROP_MONITOR;
1918 }
1919 #endif
1920
1921 static ieee80211_rx_result debug_noinline
1922 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
1923 {
1924         struct ieee80211_sub_if_data *sdata = rx->sdata;
1925         struct ieee80211_local *local = rx->local;
1926         struct net_device *dev = sdata->dev;
1927         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1928         __le16 fc = hdr->frame_control;
1929         bool port_control;
1930         int err;
1931
1932         if (unlikely(!ieee80211_is_data(hdr->frame_control)))
1933                 return RX_CONTINUE;
1934
1935         if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
1936                 return RX_DROP_MONITOR;
1937
1938         /*
1939          * Allow the cooked monitor interface of an AP to see 4-addr frames so
1940          * that a 4-addr station can be detected and moved into a separate VLAN
1941          */
1942         if (ieee80211_has_a4(hdr->frame_control) &&
1943             sdata->vif.type == NL80211_IFTYPE_AP)
1944                 return RX_DROP_MONITOR;
1945
1946         err = __ieee80211_data_to_8023(rx, &port_control);
1947         if (unlikely(err))
1948                 return RX_DROP_UNUSABLE;
1949
1950         if (!ieee80211_frame_allowed(rx, fc))
1951                 return RX_DROP_MONITOR;
1952
1953         if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1954             unlikely(port_control) && sdata->bss) {
1955                 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
1956                                      u.ap);
1957                 dev = sdata->dev;
1958                 rx->sdata = sdata;
1959         }
1960
1961         rx->skb->dev = dev;
1962
1963         dev->stats.rx_packets++;
1964         dev->stats.rx_bytes += rx->skb->len;
1965
1966         if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
1967             !is_multicast_ether_addr(
1968                     ((struct ethhdr *)rx->skb->data)->h_dest) &&
1969             (!local->scanning &&
1970              !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) {
1971                         mod_timer(&local->dynamic_ps_timer, jiffies +
1972                          msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
1973         }
1974
1975         ieee80211_deliver_skb(rx);
1976
1977         return RX_QUEUED;
1978 }
1979
1980 static ieee80211_rx_result debug_noinline
1981 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx)
1982 {
1983         struct ieee80211_local *local = rx->local;
1984         struct ieee80211_hw *hw = &local->hw;
1985         struct sk_buff *skb = rx->skb;
1986         struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
1987         struct tid_ampdu_rx *tid_agg_rx;
1988         u16 start_seq_num;
1989         u16 tid;
1990
1991         if (likely(!ieee80211_is_ctl(bar->frame_control)))
1992                 return RX_CONTINUE;
1993
1994         if (ieee80211_is_back_req(bar->frame_control)) {
1995                 struct {
1996                         __le16 control, start_seq_num;
1997                 } __packed bar_data;
1998
1999                 if (!rx->sta)
2000                         return RX_DROP_MONITOR;
2001
2002                 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2003                                   &bar_data, sizeof(bar_data)))
2004                         return RX_DROP_MONITOR;
2005
2006                 tid = le16_to_cpu(bar_data.control) >> 12;
2007
2008                 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2009                 if (!tid_agg_rx)
2010                         return RX_DROP_MONITOR;
2011
2012                 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2013
2014                 /* reset session timer */
2015                 if (tid_agg_rx->timeout)
2016                         mod_timer(&tid_agg_rx->session_timer,
2017                                   TU_TO_EXP_TIME(tid_agg_rx->timeout));
2018
2019                 spin_lock(&tid_agg_rx->reorder_lock);
2020                 /* release stored frames up to start of BAR */
2021                 ieee80211_release_reorder_frames(hw, tid_agg_rx, start_seq_num);
2022                 spin_unlock(&tid_agg_rx->reorder_lock);
2023
2024                 kfree_skb(skb);
2025                 return RX_QUEUED;
2026         }
2027
2028         /*
2029          * After this point, we only want management frames,
2030          * so we can drop all remaining control frames to
2031          * cooked monitor interfaces.
2032          */
2033         return RX_DROP_MONITOR;
2034 }
2035
2036 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2037                                            struct ieee80211_mgmt *mgmt,
2038                                            size_t len)
2039 {
2040         struct ieee80211_local *local = sdata->local;
2041         struct sk_buff *skb;
2042         struct ieee80211_mgmt *resp;
2043
2044         if (compare_ether_addr(mgmt->da, sdata->vif.addr) != 0) {
2045                 /* Not to own unicast address */
2046                 return;
2047         }
2048
2049         if (compare_ether_addr(mgmt->sa, sdata->u.mgd.bssid) != 0 ||
2050             compare_ether_addr(mgmt->bssid, sdata->u.mgd.bssid) != 0) {
2051                 /* Not from the current AP or not associated yet. */
2052                 return;
2053         }
2054
2055         if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2056                 /* Too short SA Query request frame */
2057                 return;
2058         }
2059
2060         skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2061         if (skb == NULL)
2062                 return;
2063
2064         skb_reserve(skb, local->hw.extra_tx_headroom);
2065         resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
2066         memset(resp, 0, 24);
2067         memcpy(resp->da, mgmt->sa, ETH_ALEN);
2068         memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2069         memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2070         resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2071                                           IEEE80211_STYPE_ACTION);
2072         skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2073         resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2074         resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2075         memcpy(resp->u.action.u.sa_query.trans_id,
2076                mgmt->u.action.u.sa_query.trans_id,
2077                WLAN_SA_QUERY_TR_ID_LEN);
2078
2079         ieee80211_tx_skb(sdata, skb);
2080 }
2081
2082 static ieee80211_rx_result debug_noinline
2083 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2084 {
2085         struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2086         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2087
2088         /*
2089          * From here on, look only at management frames.
2090          * Data and control frames are already handled,
2091          * and unknown (reserved) frames are useless.
2092          */
2093         if (rx->skb->len < 24)
2094                 return RX_DROP_MONITOR;
2095
2096         if (!ieee80211_is_mgmt(mgmt->frame_control))
2097                 return RX_DROP_MONITOR;
2098
2099         if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2100                 return RX_DROP_MONITOR;
2101
2102         if (ieee80211_drop_unencrypted_mgmt(rx))
2103                 return RX_DROP_UNUSABLE;
2104
2105         return RX_CONTINUE;
2106 }
2107
2108 static ieee80211_rx_result debug_noinline
2109 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2110 {
2111         struct ieee80211_local *local = rx->local;
2112         struct ieee80211_sub_if_data *sdata = rx->sdata;
2113         struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2114         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2115         int len = rx->skb->len;
2116
2117         if (!ieee80211_is_action(mgmt->frame_control))
2118                 return RX_CONTINUE;
2119
2120         /* drop too small frames */
2121         if (len < IEEE80211_MIN_ACTION_SIZE)
2122                 return RX_DROP_UNUSABLE;
2123
2124         if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC)
2125                 return RX_DROP_UNUSABLE;
2126
2127         if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2128                 return RX_DROP_UNUSABLE;
2129
2130         switch (mgmt->u.action.category) {
2131         case WLAN_CATEGORY_BACK:
2132                 /*
2133                  * The aggregation code is not prepared to handle
2134                  * anything but STA/AP due to the BSSID handling;
2135                  * IBSS could work in the code but isn't supported
2136                  * by drivers or the standard.
2137                  */
2138                 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2139                     sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2140                     sdata->vif.type != NL80211_IFTYPE_AP)
2141                         break;
2142
2143                 /* verify action_code is present */
2144                 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2145                         break;
2146
2147                 switch (mgmt->u.action.u.addba_req.action_code) {
2148                 case WLAN_ACTION_ADDBA_REQ:
2149                         if (len < (IEEE80211_MIN_ACTION_SIZE +
2150                                    sizeof(mgmt->u.action.u.addba_req)))
2151                                 goto invalid;
2152                         break;
2153                 case WLAN_ACTION_ADDBA_RESP:
2154                         if (len < (IEEE80211_MIN_ACTION_SIZE +
2155                                    sizeof(mgmt->u.action.u.addba_resp)))
2156                                 goto invalid;
2157                         break;
2158                 case WLAN_ACTION_DELBA:
2159                         if (len < (IEEE80211_MIN_ACTION_SIZE +
2160                                    sizeof(mgmt->u.action.u.delba)))
2161                                 goto invalid;
2162                         break;
2163                 default:
2164                         goto invalid;
2165                 }
2166
2167                 goto queue;
2168         case WLAN_CATEGORY_SPECTRUM_MGMT:
2169                 if (local->hw.conf.channel->band != IEEE80211_BAND_5GHZ)
2170                         break;
2171
2172                 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2173                         break;
2174
2175                 /* verify action_code is present */
2176                 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2177                         break;
2178
2179                 switch (mgmt->u.action.u.measurement.action_code) {
2180                 case WLAN_ACTION_SPCT_MSR_REQ:
2181                         if (len < (IEEE80211_MIN_ACTION_SIZE +
2182                                    sizeof(mgmt->u.action.u.measurement)))
2183                                 break;
2184                         ieee80211_process_measurement_req(sdata, mgmt, len);
2185                         goto handled;
2186                 case WLAN_ACTION_SPCT_CHL_SWITCH:
2187                         if (len < (IEEE80211_MIN_ACTION_SIZE +
2188                                    sizeof(mgmt->u.action.u.chan_switch)))
2189                                 break;
2190
2191                         if (sdata->vif.type != NL80211_IFTYPE_STATION)
2192                                 break;
2193
2194                         if (memcmp(mgmt->bssid, sdata->u.mgd.bssid, ETH_ALEN))
2195                                 break;
2196
2197                         goto queue;
2198                 }
2199                 break;
2200         case WLAN_CATEGORY_SA_QUERY:
2201                 if (len < (IEEE80211_MIN_ACTION_SIZE +
2202                            sizeof(mgmt->u.action.u.sa_query)))
2203                         break;
2204
2205                 switch (mgmt->u.action.u.sa_query.action) {
2206                 case WLAN_ACTION_SA_QUERY_REQUEST:
2207                         if (sdata->vif.type != NL80211_IFTYPE_STATION)
2208                                 break;
2209                         ieee80211_process_sa_query_req(sdata, mgmt, len);
2210                         goto handled;
2211                 }
2212                 break;
2213         case WLAN_CATEGORY_MESH_ACTION:
2214                 if (!ieee80211_vif_is_mesh(&sdata->vif))
2215                         break;
2216                 goto queue;
2217         case WLAN_CATEGORY_MESH_PATH_SEL:
2218                 if (!mesh_path_sel_is_hwmp(sdata))
2219                         break;
2220                 goto queue;
2221         }
2222
2223         return RX_CONTINUE;
2224
2225  invalid:
2226         status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
2227         /* will return in the next handlers */
2228         return RX_CONTINUE;
2229
2230  handled:
2231         if (rx->sta)
2232                 rx->sta->rx_packets++;
2233         dev_kfree_skb(rx->skb);
2234         return RX_QUEUED;
2235
2236  queue:
2237         rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2238         skb_queue_tail(&sdata->skb_queue, rx->skb);
2239         ieee80211_queue_work(&local->hw, &sdata->work);
2240         if (rx->sta)
2241                 rx->sta->rx_packets++;
2242         return RX_QUEUED;
2243 }
2244
2245 static ieee80211_rx_result debug_noinline
2246 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
2247 {
2248         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2249
2250         /* skip known-bad action frames and return them in the next handler */
2251         if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
2252                 return RX_CONTINUE;
2253
2254         /*
2255          * Getting here means the kernel doesn't know how to handle
2256          * it, but maybe userspace does ... include returned frames
2257          * so userspace can register for those to know whether ones
2258          * it transmitted were processed or returned.
2259          */
2260
2261         if (cfg80211_rx_mgmt(rx->sdata->dev, status->freq,
2262                              rx->skb->data, rx->skb->len,
2263                              GFP_ATOMIC)) {
2264                 if (rx->sta)
2265                         rx->sta->rx_packets++;
2266                 dev_kfree_skb(rx->skb);
2267                 return RX_QUEUED;
2268         }
2269
2270
2271         return RX_CONTINUE;
2272 }
2273
2274 static ieee80211_rx_result debug_noinline
2275 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
2276 {
2277         struct ieee80211_local *local = rx->local;
2278         struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2279         struct sk_buff *nskb;
2280         struct ieee80211_sub_if_data *sdata = rx->sdata;
2281         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2282
2283         if (!ieee80211_is_action(mgmt->frame_control))
2284                 return RX_CONTINUE;
2285
2286         /*
2287          * For AP mode, hostapd is responsible for handling any action
2288          * frames that we didn't handle, including returning unknown
2289          * ones. For all other modes we will return them to the sender,
2290          * setting the 0x80 bit in the action category, as required by
2291          * 802.11-2007 7.3.1.11.
2292          * Newer versions of hostapd shall also use the management frame
2293          * registration mechanisms, but older ones still use cooked
2294          * monitor interfaces so push all frames there.
2295          */
2296         if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
2297             (sdata->vif.type == NL80211_IFTYPE_AP ||
2298              sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
2299                 return RX_DROP_MONITOR;
2300
2301         /* do not return rejected action frames */
2302         if (mgmt->u.action.category & 0x80)
2303                 return RX_DROP_UNUSABLE;
2304
2305         nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
2306                                GFP_ATOMIC);
2307         if (nskb) {
2308                 struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
2309
2310                 nmgmt->u.action.category |= 0x80;
2311                 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
2312                 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
2313
2314                 memset(nskb->cb, 0, sizeof(nskb->cb));
2315
2316                 ieee80211_tx_skb(rx->sdata, nskb);
2317         }
2318         dev_kfree_skb(rx->skb);
2319         return RX_QUEUED;
2320 }
2321
2322 static ieee80211_rx_result debug_noinline
2323 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
2324 {
2325         struct ieee80211_sub_if_data *sdata = rx->sdata;
2326         ieee80211_rx_result rxs;
2327         struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
2328         __le16 stype;
2329
2330         rxs = ieee80211_work_rx_mgmt(rx->sdata, rx->skb);
2331         if (rxs != RX_CONTINUE)
2332                 return rxs;
2333
2334         stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
2335
2336         if (!ieee80211_vif_is_mesh(&sdata->vif) &&
2337             sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2338             sdata->vif.type != NL80211_IFTYPE_STATION)
2339                 return RX_DROP_MONITOR;
2340
2341         switch (stype) {
2342         case cpu_to_le16(IEEE80211_STYPE_BEACON):
2343         case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
2344                 /* process for all: mesh, mlme, ibss */
2345                 break;
2346         case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
2347         case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
2348                 if (is_multicast_ether_addr(mgmt->da) &&
2349                     !is_broadcast_ether_addr(mgmt->da))
2350                         return RX_DROP_MONITOR;
2351
2352                 /* process only for station */
2353                 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2354                         return RX_DROP_MONITOR;
2355                 break;
2356         case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
2357         case cpu_to_le16(IEEE80211_STYPE_AUTH):
2358                 /* process only for ibss */
2359                 if (sdata->vif.type != NL80211_IFTYPE_ADHOC)
2360                         return RX_DROP_MONITOR;
2361                 break;
2362         default:
2363                 return RX_DROP_MONITOR;
2364         }
2365
2366         /* queue up frame and kick off work to process it */
2367         rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2368         skb_queue_tail(&sdata->skb_queue, rx->skb);
2369         ieee80211_queue_work(&rx->local->hw, &sdata->work);
2370         if (rx->sta)
2371                 rx->sta->rx_packets++;
2372
2373         return RX_QUEUED;
2374 }
2375
2376 /* TODO: use IEEE80211_RX_FRAGMENTED */
2377 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
2378                                         struct ieee80211_rate *rate)
2379 {
2380         struct ieee80211_sub_if_data *sdata;
2381         struct ieee80211_local *local = rx->local;
2382         struct ieee80211_rtap_hdr {
2383                 struct ieee80211_radiotap_header hdr;
2384                 u8 flags;
2385                 u8 rate_or_pad;
2386                 __le16 chan_freq;
2387                 __le16 chan_flags;
2388         } __packed *rthdr;
2389         struct sk_buff *skb = rx->skb, *skb2;
2390         struct net_device *prev_dev = NULL;
2391         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2392
2393         /*
2394          * If cooked monitor has been processed already, then
2395          * don't do it again. If not, set the flag.
2396          */
2397         if (rx->flags & IEEE80211_RX_CMNTR)
2398                 goto out_free_skb;
2399         rx->flags |= IEEE80211_RX_CMNTR;
2400
2401         if (skb_headroom(skb) < sizeof(*rthdr) &&
2402             pskb_expand_head(skb, sizeof(*rthdr), 0, GFP_ATOMIC))
2403                 goto out_free_skb;
2404
2405         rthdr = (void *)skb_push(skb, sizeof(*rthdr));
2406         memset(rthdr, 0, sizeof(*rthdr));
2407         rthdr->hdr.it_len = cpu_to_le16(sizeof(*rthdr));
2408         rthdr->hdr.it_present =
2409                 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
2410                             (1 << IEEE80211_RADIOTAP_CHANNEL));
2411
2412         if (rate) {
2413                 rthdr->rate_or_pad = rate->bitrate / 5;
2414                 rthdr->hdr.it_present |=
2415                         cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
2416         }
2417         rthdr->chan_freq = cpu_to_le16(status->freq);
2418
2419         if (status->band == IEEE80211_BAND_5GHZ)
2420                 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_OFDM |
2421                                                 IEEE80211_CHAN_5GHZ);
2422         else
2423                 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_DYN |
2424                                                 IEEE80211_CHAN_2GHZ);
2425
2426         skb_set_mac_header(skb, 0);
2427         skb->ip_summed = CHECKSUM_UNNECESSARY;
2428         skb->pkt_type = PACKET_OTHERHOST;
2429         skb->protocol = htons(ETH_P_802_2);
2430
2431         list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2432                 if (!ieee80211_sdata_running(sdata))
2433                         continue;
2434
2435                 if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
2436                     !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
2437                         continue;
2438
2439                 if (prev_dev) {
2440                         skb2 = skb_clone(skb, GFP_ATOMIC);
2441                         if (skb2) {
2442                                 skb2->dev = prev_dev;
2443                                 netif_receive_skb(skb2);
2444                         }
2445                 }
2446
2447                 prev_dev = sdata->dev;
2448                 sdata->dev->stats.rx_packets++;
2449                 sdata->dev->stats.rx_bytes += skb->len;
2450         }
2451
2452         if (prev_dev) {
2453                 skb->dev = prev_dev;
2454                 netif_receive_skb(skb);
2455                 return;
2456         }
2457
2458  out_free_skb:
2459         dev_kfree_skb(skb);
2460 }
2461
2462 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
2463                                          ieee80211_rx_result res)
2464 {
2465         switch (res) {
2466         case RX_DROP_MONITOR:
2467                 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2468                 if (rx->sta)
2469                         rx->sta->rx_dropped++;
2470                 /* fall through */
2471         case RX_CONTINUE: {
2472                 struct ieee80211_rate *rate = NULL;
2473                 struct ieee80211_supported_band *sband;
2474                 struct ieee80211_rx_status *status;
2475
2476                 status = IEEE80211_SKB_RXCB((rx->skb));
2477
2478                 sband = rx->local->hw.wiphy->bands[status->band];
2479                 if (!(status->flag & RX_FLAG_HT))
2480                         rate = &sband->bitrates[status->rate_idx];
2481
2482                 ieee80211_rx_cooked_monitor(rx, rate);
2483                 break;
2484                 }
2485         case RX_DROP_UNUSABLE:
2486                 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2487                 if (rx->sta)
2488                         rx->sta->rx_dropped++;
2489                 dev_kfree_skb(rx->skb);
2490                 break;
2491         case RX_QUEUED:
2492                 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
2493                 break;
2494         }
2495 }
2496
2497 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx)
2498 {
2499         ieee80211_rx_result res = RX_DROP_MONITOR;
2500         struct sk_buff *skb;
2501
2502 #define CALL_RXH(rxh)                   \
2503         do {                            \
2504                 res = rxh(rx);          \
2505                 if (res != RX_CONTINUE) \
2506                         goto rxh_next;  \
2507         } while (0);
2508
2509         spin_lock(&rx->local->rx_skb_queue.lock);
2510         if (rx->local->running_rx_handler)
2511                 goto unlock;
2512
2513         rx->local->running_rx_handler = true;
2514
2515         while ((skb = __skb_dequeue(&rx->local->rx_skb_queue))) {
2516                 spin_unlock(&rx->local->rx_skb_queue.lock);
2517
2518                 /*
2519                  * all the other fields are valid across frames
2520                  * that belong to an aMPDU since they are on the
2521                  * same TID from the same station
2522                  */
2523                 rx->skb = skb;
2524
2525                 CALL_RXH(ieee80211_rx_h_decrypt)
2526                 CALL_RXH(ieee80211_rx_h_check_more_data)
2527                 CALL_RXH(ieee80211_rx_h_sta_process)
2528                 CALL_RXH(ieee80211_rx_h_defragment)
2529                 CALL_RXH(ieee80211_rx_h_ps_poll)
2530                 CALL_RXH(ieee80211_rx_h_michael_mic_verify)
2531                 /* must be after MMIC verify so header is counted in MPDU mic */
2532                 CALL_RXH(ieee80211_rx_h_remove_qos_control)
2533                 CALL_RXH(ieee80211_rx_h_amsdu)
2534 #ifdef CONFIG_MAC80211_MESH
2535                 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
2536                         CALL_RXH(ieee80211_rx_h_mesh_fwding);
2537 #endif
2538                 CALL_RXH(ieee80211_rx_h_data)
2539                 CALL_RXH(ieee80211_rx_h_ctrl);
2540                 CALL_RXH(ieee80211_rx_h_mgmt_check)
2541                 CALL_RXH(ieee80211_rx_h_action)
2542                 CALL_RXH(ieee80211_rx_h_userspace_mgmt)
2543                 CALL_RXH(ieee80211_rx_h_action_return)
2544                 CALL_RXH(ieee80211_rx_h_mgmt)
2545
2546  rxh_next:
2547                 ieee80211_rx_handlers_result(rx, res);
2548                 spin_lock(&rx->local->rx_skb_queue.lock);
2549 #undef CALL_RXH
2550         }
2551
2552         rx->local->running_rx_handler = false;
2553
2554  unlock:
2555         spin_unlock(&rx->local->rx_skb_queue.lock);
2556 }
2557
2558 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
2559 {
2560         ieee80211_rx_result res = RX_DROP_MONITOR;
2561
2562 #define CALL_RXH(rxh)                   \
2563         do {                            \
2564                 res = rxh(rx);          \
2565                 if (res != RX_CONTINUE) \
2566                         goto rxh_next;  \
2567         } while (0);
2568
2569         CALL_RXH(ieee80211_rx_h_passive_scan)
2570         CALL_RXH(ieee80211_rx_h_check)
2571
2572         ieee80211_rx_reorder_ampdu(rx);
2573
2574         ieee80211_rx_handlers(rx);
2575         return;
2576
2577  rxh_next:
2578         ieee80211_rx_handlers_result(rx, res);
2579
2580 #undef CALL_RXH
2581 }
2582
2583 /*
2584  * This function makes calls into the RX path, therefore
2585  * it has to be invoked under RCU read lock.
2586  */
2587 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
2588 {
2589         struct ieee80211_rx_data rx = {
2590                 .sta = sta,
2591                 .sdata = sta->sdata,
2592                 .local = sta->local,
2593                 .queue = tid,
2594                 .flags = 0,
2595         };
2596         struct tid_ampdu_rx *tid_agg_rx;
2597
2598         tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
2599         if (!tid_agg_rx)
2600                 return;
2601
2602         spin_lock(&tid_agg_rx->reorder_lock);
2603         ieee80211_sta_reorder_release(&sta->local->hw, tid_agg_rx);
2604         spin_unlock(&tid_agg_rx->reorder_lock);
2605
2606         ieee80211_rx_handlers(&rx);
2607 }
2608
2609 /* main receive path */
2610
2611 static int prepare_for_handlers(struct ieee80211_rx_data *rx,
2612                                 struct ieee80211_hdr *hdr)
2613 {
2614         struct ieee80211_sub_if_data *sdata = rx->sdata;
2615         struct sk_buff *skb = rx->skb;
2616         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2617         u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
2618         int multicast = is_multicast_ether_addr(hdr->addr1);
2619
2620         switch (sdata->vif.type) {
2621         case NL80211_IFTYPE_STATION:
2622                 if (!bssid && !sdata->u.mgd.use_4addr)
2623                         return 0;
2624                 if (!multicast &&
2625                     compare_ether_addr(sdata->vif.addr, hdr->addr1) != 0) {
2626                         if (!(sdata->dev->flags & IFF_PROMISC) ||
2627                             sdata->u.mgd.use_4addr)
2628                                 return 0;
2629                         status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2630                 }
2631                 break;
2632         case NL80211_IFTYPE_ADHOC:
2633                 if (!bssid)
2634                         return 0;
2635                 if (ieee80211_is_beacon(hdr->frame_control)) {
2636                         return 1;
2637                 }
2638                 else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) {
2639                         if (!(status->rx_flags & IEEE80211_RX_IN_SCAN))
2640                                 return 0;
2641                         status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2642                 } else if (!multicast &&
2643                            compare_ether_addr(sdata->vif.addr,
2644                                               hdr->addr1) != 0) {
2645                         if (!(sdata->dev->flags & IFF_PROMISC))
2646                                 return 0;
2647                         status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2648                 } else if (!rx->sta) {
2649                         int rate_idx;
2650                         if (status->flag & RX_FLAG_HT)
2651                                 rate_idx = 0; /* TODO: HT rates */
2652                         else
2653                                 rate_idx = status->rate_idx;
2654                         rx->sta = ieee80211_ibss_add_sta(sdata, bssid,
2655                                         hdr->addr2, BIT(rate_idx), GFP_ATOMIC);
2656                 }
2657                 break;
2658         case NL80211_IFTYPE_MESH_POINT:
2659                 if (!multicast &&
2660                     compare_ether_addr(sdata->vif.addr,
2661                                        hdr->addr1) != 0) {
2662                         if (!(sdata->dev->flags & IFF_PROMISC))
2663                                 return 0;
2664
2665                         status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2666                 }
2667                 break;
2668         case NL80211_IFTYPE_AP_VLAN:
2669         case NL80211_IFTYPE_AP:
2670                 if (!bssid) {
2671                         if (compare_ether_addr(sdata->vif.addr,
2672                                                hdr->addr1))
2673                                 return 0;
2674                 } else if (!ieee80211_bssid_match(bssid,
2675                                         sdata->vif.addr)) {
2676                         if (!(status->rx_flags & IEEE80211_RX_IN_SCAN) &&
2677                             !ieee80211_is_beacon(hdr->frame_control))
2678                                 return 0;
2679                         status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2680                 }
2681                 break;
2682         case NL80211_IFTYPE_WDS:
2683                 if (bssid || !ieee80211_is_data(hdr->frame_control))
2684                         return 0;
2685                 if (compare_ether_addr(sdata->u.wds.remote_addr, hdr->addr2))
2686                         return 0;
2687                 break;
2688         default:
2689                 /* should never get here */
2690                 WARN_ON(1);
2691                 break;
2692         }
2693
2694         return 1;
2695 }
2696
2697 /*
2698  * This function returns whether or not the SKB
2699  * was destined for RX processing or not, which,
2700  * if consume is true, is equivalent to whether
2701  * or not the skb was consumed.
2702  */
2703 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
2704                                             struct sk_buff *skb, bool consume)
2705 {
2706         struct ieee80211_local *local = rx->local;
2707         struct ieee80211_sub_if_data *sdata = rx->sdata;
2708         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2709         struct ieee80211_hdr *hdr = (void *)skb->data;
2710         int prepares;
2711
2712         rx->skb = skb;
2713         status->rx_flags |= IEEE80211_RX_RA_MATCH;
2714         prepares = prepare_for_handlers(rx, hdr);
2715
2716         if (!prepares)
2717                 return false;
2718
2719         if (!consume) {
2720                 skb = skb_copy(skb, GFP_ATOMIC);
2721                 if (!skb) {
2722                         if (net_ratelimit())
2723                                 wiphy_debug(local->hw.wiphy,
2724                                         "failed to copy skb for %s\n",
2725                                         sdata->name);
2726                         return true;
2727                 }
2728
2729                 rx->skb = skb;
2730         }
2731
2732         ieee80211_invoke_rx_handlers(rx);
2733         return true;
2734 }
2735
2736 /*
2737  * This is the actual Rx frames handler. as it blongs to Rx path it must
2738  * be called with rcu_read_lock protection.
2739  */
2740 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
2741                                          struct sk_buff *skb)
2742 {
2743         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2744         struct ieee80211_local *local = hw_to_local(hw);
2745         struct ieee80211_sub_if_data *sdata;
2746         struct ieee80211_hdr *hdr;
2747         __le16 fc;
2748         struct ieee80211_rx_data rx;
2749         struct ieee80211_sub_if_data *prev;
2750         struct sta_info *sta, *tmp, *prev_sta;
2751         int err = 0;
2752
2753         fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
2754         memset(&rx, 0, sizeof(rx));
2755         rx.skb = skb;
2756         rx.local = local;
2757
2758         if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
2759                 local->dot11ReceivedFragmentCount++;
2760
2761         if (unlikely(test_bit(SCAN_HW_SCANNING, &local->scanning) ||
2762                      test_bit(SCAN_SW_SCANNING, &local->scanning)))
2763                 status->rx_flags |= IEEE80211_RX_IN_SCAN;
2764
2765         if (ieee80211_is_mgmt(fc))
2766                 err = skb_linearize(skb);
2767         else
2768                 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
2769
2770         if (err) {
2771                 dev_kfree_skb(skb);
2772                 return;
2773         }
2774
2775         hdr = (struct ieee80211_hdr *)skb->data;
2776         ieee80211_parse_qos(&rx);
2777         ieee80211_verify_alignment(&rx);
2778
2779         if (ieee80211_is_data(fc)) {
2780                 prev_sta = NULL;
2781
2782                 for_each_sta_info(local, hdr->addr2, sta, tmp) {
2783                         if (!prev_sta) {
2784                                 prev_sta = sta;
2785                                 continue;
2786                         }
2787
2788                         rx.sta = prev_sta;
2789                         rx.sdata = prev_sta->sdata;
2790                         ieee80211_prepare_and_rx_handle(&rx, skb, false);
2791
2792                         prev_sta = sta;
2793                 }
2794
2795                 if (prev_sta) {
2796                         rx.sta = prev_sta;
2797                         rx.sdata = prev_sta->sdata;
2798
2799                         if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
2800                                 return;
2801                         goto out;
2802                 }
2803         }
2804
2805         prev = NULL;
2806
2807         list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2808                 if (!ieee80211_sdata_running(sdata))
2809                         continue;
2810
2811                 if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
2812                     sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
2813                         continue;
2814
2815                 /*
2816                  * frame is destined for this interface, but if it's
2817                  * not also for the previous one we handle that after
2818                  * the loop to avoid copying the SKB once too much
2819                  */
2820
2821                 if (!prev) {
2822                         prev = sdata;
2823                         continue;
2824                 }
2825
2826                 rx.sta = sta_info_get_bss(prev, hdr->addr2);
2827                 rx.sdata = prev;
2828                 ieee80211_prepare_and_rx_handle(&rx, skb, false);
2829
2830                 prev = sdata;
2831         }
2832
2833         if (prev) {
2834                 rx.sta = sta_info_get_bss(prev, hdr->addr2);
2835                 rx.sdata = prev;
2836
2837                 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
2838                         return;
2839         }
2840
2841  out:
2842         dev_kfree_skb(skb);
2843 }
2844
2845 /*
2846  * This is the receive path handler. It is called by a low level driver when an
2847  * 802.11 MPDU is received from the hardware.
2848  */
2849 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb)
2850 {
2851         struct ieee80211_local *local = hw_to_local(hw);
2852         struct ieee80211_rate *rate = NULL;
2853         struct ieee80211_supported_band *sband;
2854         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2855
2856         WARN_ON_ONCE(softirq_count() == 0);
2857
2858         if (WARN_ON(status->band < 0 ||
2859                     status->band >= IEEE80211_NUM_BANDS))
2860                 goto drop;
2861
2862         sband = local->hw.wiphy->bands[status->band];
2863         if (WARN_ON(!sband))
2864                 goto drop;
2865
2866         /*
2867          * If we're suspending, it is possible although not too likely
2868          * that we'd be receiving frames after having already partially
2869          * quiesced the stack. We can't process such frames then since
2870          * that might, for example, cause stations to be added or other
2871          * driver callbacks be invoked.
2872          */
2873         if (unlikely(local->quiescing || local->suspended))
2874                 goto drop;
2875
2876         /*
2877          * The same happens when we're not even started,
2878          * but that's worth a warning.
2879          */
2880         if (WARN_ON(!local->started))
2881                 goto drop;
2882
2883         if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
2884                 /*
2885                  * Validate the rate, unless a PLCP error means that
2886                  * we probably can't have a valid rate here anyway.
2887                  */
2888
2889                 if (status->flag & RX_FLAG_HT) {
2890                         /*
2891                          * rate_idx is MCS index, which can be [0-76]
2892                          * as documented on:
2893                          *
2894                          * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
2895                          *
2896                          * Anything else would be some sort of driver or
2897                          * hardware error. The driver should catch hardware
2898                          * errors.
2899                          */
2900                         if (WARN((status->rate_idx < 0 ||
2901                                  status->rate_idx > 76),
2902                                  "Rate marked as an HT rate but passed "
2903                                  "status->rate_idx is not "
2904                                  "an MCS index [0-76]: %d (0x%02x)\n",
2905                                  status->rate_idx,
2906                                  status->rate_idx))
2907                                 goto drop;
2908                 } else {
2909                         if (WARN_ON(status->rate_idx < 0 ||
2910                                     status->rate_idx >= sband->n_bitrates))
2911                                 goto drop;
2912                         rate = &sband->bitrates[status->rate_idx];
2913                 }
2914         }
2915
2916         status->rx_flags = 0;
2917
2918         /*
2919          * key references and virtual interfaces are protected using RCU
2920          * and this requires that we are in a read-side RCU section during
2921          * receive processing
2922          */
2923         rcu_read_lock();
2924
2925         /*
2926          * Frames with failed FCS/PLCP checksum are not returned,
2927          * all other frames are returned without radiotap header
2928          * if it was previously present.
2929          * Also, frames with less than 16 bytes are dropped.
2930          */
2931         skb = ieee80211_rx_monitor(local, skb, rate);
2932         if (!skb) {
2933                 rcu_read_unlock();
2934                 return;
2935         }
2936
2937         ieee80211_tpt_led_trig_rx(local,
2938                         ((struct ieee80211_hdr *)skb->data)->frame_control,
2939                         skb->len);
2940         __ieee80211_rx_handle_packet(hw, skb);
2941
2942         rcu_read_unlock();
2943
2944         return;
2945  drop:
2946         kfree_skb(skb);
2947 }
2948 EXPORT_SYMBOL(ieee80211_rx);
2949
2950 /* This is a version of the rx handler that can be called from hard irq
2951  * context. Post the skb on the queue and schedule the tasklet */
2952 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
2953 {
2954         struct ieee80211_local *local = hw_to_local(hw);
2955
2956         BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
2957
2958         skb->pkt_type = IEEE80211_RX_MSG;
2959         skb_queue_tail(&local->skb_queue, skb);
2960         tasklet_schedule(&local->tasklet);
2961 }
2962 EXPORT_SYMBOL(ieee80211_rx_irqsafe);