dd88df0a5d7f8f7852c662cd0a4bf798f0ab60b8
[linux-2.6.git] / net / ipv6 / ip6_fib.c
1 /*
2  *      Linux INET6 implementation
3  *      Forwarding Information Database
4  *
5  *      Authors:
6  *      Pedro Roque             <roque@di.fc.ul.pt>
7  *
8  *      This program is free software; you can redistribute it and/or
9  *      modify it under the terms of the GNU General Public License
10  *      as published by the Free Software Foundation; either version
11  *      2 of the License, or (at your option) any later version.
12  */
13
14 /*
15  *      Changes:
16  *      Yuji SEKIYA @USAGI:     Support default route on router node;
17  *                              remove ip6_null_entry from the top of
18  *                              routing table.
19  *      Ville Nuorvala:         Fixed routing subtrees.
20  */
21 #include <linux/errno.h>
22 #include <linux/types.h>
23 #include <linux/net.h>
24 #include <linux/route.h>
25 #include <linux/netdevice.h>
26 #include <linux/in6.h>
27 #include <linux/init.h>
28 #include <linux/list.h>
29 #include <linux/slab.h>
30
31 #ifdef  CONFIG_PROC_FS
32 #include <linux/proc_fs.h>
33 #endif
34
35 #include <net/ipv6.h>
36 #include <net/ndisc.h>
37 #include <net/addrconf.h>
38
39 #include <net/ip6_fib.h>
40 #include <net/ip6_route.h>
41
42 #define RT6_DEBUG 2
43
44 #if RT6_DEBUG >= 3
45 #define RT6_TRACE(x...) printk(KERN_DEBUG x)
46 #else
47 #define RT6_TRACE(x...) do { ; } while (0)
48 #endif
49
50 static struct kmem_cache * fib6_node_kmem __read_mostly;
51
52 enum fib_walk_state_t
53 {
54 #ifdef CONFIG_IPV6_SUBTREES
55         FWS_S,
56 #endif
57         FWS_L,
58         FWS_R,
59         FWS_C,
60         FWS_U
61 };
62
63 struct fib6_cleaner_t
64 {
65         struct fib6_walker_t w;
66         struct net *net;
67         int (*func)(struct rt6_info *, void *arg);
68         void *arg;
69 };
70
71 static DEFINE_RWLOCK(fib6_walker_lock);
72
73 #ifdef CONFIG_IPV6_SUBTREES
74 #define FWS_INIT FWS_S
75 #else
76 #define FWS_INIT FWS_L
77 #endif
78
79 static void fib6_prune_clones(struct net *net, struct fib6_node *fn,
80                               struct rt6_info *rt);
81 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn);
82 static struct fib6_node *fib6_repair_tree(struct net *net, struct fib6_node *fn);
83 static int fib6_walk(struct fib6_walker_t *w);
84 static int fib6_walk_continue(struct fib6_walker_t *w);
85
86 /*
87  *      A routing update causes an increase of the serial number on the
88  *      affected subtree. This allows for cached routes to be asynchronously
89  *      tested when modifications are made to the destination cache as a
90  *      result of redirects, path MTU changes, etc.
91  */
92
93 static __u32 rt_sernum;
94
95 static void fib6_gc_timer_cb(unsigned long arg);
96
97 static LIST_HEAD(fib6_walkers);
98 #define FOR_WALKERS(w) list_for_each_entry(w, &fib6_walkers, lh)
99
100 static inline void fib6_walker_link(struct fib6_walker_t *w)
101 {
102         write_lock_bh(&fib6_walker_lock);
103         list_add(&w->lh, &fib6_walkers);
104         write_unlock_bh(&fib6_walker_lock);
105 }
106
107 static inline void fib6_walker_unlink(struct fib6_walker_t *w)
108 {
109         write_lock_bh(&fib6_walker_lock);
110         list_del(&w->lh);
111         write_unlock_bh(&fib6_walker_lock);
112 }
113 static __inline__ u32 fib6_new_sernum(void)
114 {
115         u32 n = ++rt_sernum;
116         if ((__s32)n <= 0)
117                 rt_sernum = n = 1;
118         return n;
119 }
120
121 /*
122  *      Auxiliary address test functions for the radix tree.
123  *
124  *      These assume a 32bit processor (although it will work on
125  *      64bit processors)
126  */
127
128 /*
129  *      test bit
130  */
131 #if defined(__LITTLE_ENDIAN)
132 # define BITOP_BE32_SWIZZLE     (0x1F & ~7)
133 #else
134 # define BITOP_BE32_SWIZZLE     0
135 #endif
136
137 static __inline__ __be32 addr_bit_set(const void *token, int fn_bit)
138 {
139         const __be32 *addr = token;
140         /*
141          * Here,
142          *      1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
143          * is optimized version of
144          *      htonl(1 << ((~fn_bit)&0x1F))
145          * See include/asm-generic/bitops/le.h.
146          */
147         return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
148                addr[fn_bit >> 5];
149 }
150
151 static __inline__ struct fib6_node * node_alloc(void)
152 {
153         struct fib6_node *fn;
154
155         fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
156
157         return fn;
158 }
159
160 static __inline__ void node_free(struct fib6_node * fn)
161 {
162         kmem_cache_free(fib6_node_kmem, fn);
163 }
164
165 static __inline__ void rt6_release(struct rt6_info *rt)
166 {
167         if (atomic_dec_and_test(&rt->rt6i_ref))
168                 dst_free(&rt->dst);
169 }
170
171 static void fib6_link_table(struct net *net, struct fib6_table *tb)
172 {
173         unsigned int h;
174
175         /*
176          * Initialize table lock at a single place to give lockdep a key,
177          * tables aren't visible prior to being linked to the list.
178          */
179         rwlock_init(&tb->tb6_lock);
180
181         h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
182
183         /*
184          * No protection necessary, this is the only list mutatation
185          * operation, tables never disappear once they exist.
186          */
187         hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
188 }
189
190 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
191
192 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
193 {
194         struct fib6_table *table;
195
196         table = kzalloc(sizeof(*table), GFP_ATOMIC);
197         if (table != NULL) {
198                 table->tb6_id = id;
199                 table->tb6_root.leaf = net->ipv6.ip6_null_entry;
200                 table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
201         }
202
203         return table;
204 }
205
206 struct fib6_table *fib6_new_table(struct net *net, u32 id)
207 {
208         struct fib6_table *tb;
209
210         if (id == 0)
211                 id = RT6_TABLE_MAIN;
212         tb = fib6_get_table(net, id);
213         if (tb)
214                 return tb;
215
216         tb = fib6_alloc_table(net, id);
217         if (tb != NULL)
218                 fib6_link_table(net, tb);
219
220         return tb;
221 }
222
223 struct fib6_table *fib6_get_table(struct net *net, u32 id)
224 {
225         struct fib6_table *tb;
226         struct hlist_head *head;
227         struct hlist_node *node;
228         unsigned int h;
229
230         if (id == 0)
231                 id = RT6_TABLE_MAIN;
232         h = id & (FIB6_TABLE_HASHSZ - 1);
233         rcu_read_lock();
234         head = &net->ipv6.fib_table_hash[h];
235         hlist_for_each_entry_rcu(tb, node, head, tb6_hlist) {
236                 if (tb->tb6_id == id) {
237                         rcu_read_unlock();
238                         return tb;
239                 }
240         }
241         rcu_read_unlock();
242
243         return NULL;
244 }
245
246 static void __net_init fib6_tables_init(struct net *net)
247 {
248         fib6_link_table(net, net->ipv6.fib6_main_tbl);
249         fib6_link_table(net, net->ipv6.fib6_local_tbl);
250 }
251 #else
252
253 struct fib6_table *fib6_new_table(struct net *net, u32 id)
254 {
255         return fib6_get_table(net, id);
256 }
257
258 struct fib6_table *fib6_get_table(struct net *net, u32 id)
259 {
260           return net->ipv6.fib6_main_tbl;
261 }
262
263 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
264                                    int flags, pol_lookup_t lookup)
265 {
266         return (struct dst_entry *) lookup(net, net->ipv6.fib6_main_tbl, fl6, flags);
267 }
268
269 static void __net_init fib6_tables_init(struct net *net)
270 {
271         fib6_link_table(net, net->ipv6.fib6_main_tbl);
272 }
273
274 #endif
275
276 static int fib6_dump_node(struct fib6_walker_t *w)
277 {
278         int res;
279         struct rt6_info *rt;
280
281         for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
282                 res = rt6_dump_route(rt, w->args);
283                 if (res < 0) {
284                         /* Frame is full, suspend walking */
285                         w->leaf = rt;
286                         return 1;
287                 }
288                 WARN_ON(res == 0);
289         }
290         w->leaf = NULL;
291         return 0;
292 }
293
294 static void fib6_dump_end(struct netlink_callback *cb)
295 {
296         struct fib6_walker_t *w = (void*)cb->args[2];
297
298         if (w) {
299                 if (cb->args[4]) {
300                         cb->args[4] = 0;
301                         fib6_walker_unlink(w);
302                 }
303                 cb->args[2] = 0;
304                 kfree(w);
305         }
306         cb->done = (void*)cb->args[3];
307         cb->args[1] = 3;
308 }
309
310 static int fib6_dump_done(struct netlink_callback *cb)
311 {
312         fib6_dump_end(cb);
313         return cb->done ? cb->done(cb) : 0;
314 }
315
316 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
317                            struct netlink_callback *cb)
318 {
319         struct fib6_walker_t *w;
320         int res;
321
322         w = (void *)cb->args[2];
323         w->root = &table->tb6_root;
324
325         if (cb->args[4] == 0) {
326                 w->count = 0;
327                 w->skip = 0;
328
329                 read_lock_bh(&table->tb6_lock);
330                 res = fib6_walk(w);
331                 read_unlock_bh(&table->tb6_lock);
332                 if (res > 0) {
333                         cb->args[4] = 1;
334                         cb->args[5] = w->root->fn_sernum;
335                 }
336         } else {
337                 if (cb->args[5] != w->root->fn_sernum) {
338                         /* Begin at the root if the tree changed */
339                         cb->args[5] = w->root->fn_sernum;
340                         w->state = FWS_INIT;
341                         w->node = w->root;
342                         w->skip = w->count;
343                 } else
344                         w->skip = 0;
345
346                 read_lock_bh(&table->tb6_lock);
347                 res = fib6_walk_continue(w);
348                 read_unlock_bh(&table->tb6_lock);
349                 if (res <= 0) {
350                         fib6_walker_unlink(w);
351                         cb->args[4] = 0;
352                 }
353         }
354
355         return res;
356 }
357
358 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
359 {
360         struct net *net = sock_net(skb->sk);
361         unsigned int h, s_h;
362         unsigned int e = 0, s_e;
363         struct rt6_rtnl_dump_arg arg;
364         struct fib6_walker_t *w;
365         struct fib6_table *tb;
366         struct hlist_node *node;
367         struct hlist_head *head;
368         int res = 0;
369
370         s_h = cb->args[0];
371         s_e = cb->args[1];
372
373         w = (void *)cb->args[2];
374         if (w == NULL) {
375                 /* New dump:
376                  *
377                  * 1. hook callback destructor.
378                  */
379                 cb->args[3] = (long)cb->done;
380                 cb->done = fib6_dump_done;
381
382                 /*
383                  * 2. allocate and initialize walker.
384                  */
385                 w = kzalloc(sizeof(*w), GFP_ATOMIC);
386                 if (w == NULL)
387                         return -ENOMEM;
388                 w->func = fib6_dump_node;
389                 cb->args[2] = (long)w;
390         }
391
392         arg.skb = skb;
393         arg.cb = cb;
394         arg.net = net;
395         w->args = &arg;
396
397         for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
398                 e = 0;
399                 head = &net->ipv6.fib_table_hash[h];
400                 hlist_for_each_entry(tb, node, head, tb6_hlist) {
401                         if (e < s_e)
402                                 goto next;
403                         res = fib6_dump_table(tb, skb, cb);
404                         if (res != 0)
405                                 goto out;
406 next:
407                         e++;
408                 }
409         }
410 out:
411         cb->args[1] = e;
412         cb->args[0] = h;
413
414         res = res < 0 ? res : skb->len;
415         if (res <= 0)
416                 fib6_dump_end(cb);
417         return res;
418 }
419
420 /*
421  *      Routing Table
422  *
423  *      return the appropriate node for a routing tree "add" operation
424  *      by either creating and inserting or by returning an existing
425  *      node.
426  */
427
428 static struct fib6_node * fib6_add_1(struct fib6_node *root, void *addr,
429                                      int addrlen, int plen,
430                                      int offset)
431 {
432         struct fib6_node *fn, *in, *ln;
433         struct fib6_node *pn = NULL;
434         struct rt6key *key;
435         int     bit;
436         __be32  dir = 0;
437         __u32   sernum = fib6_new_sernum();
438
439         RT6_TRACE("fib6_add_1\n");
440
441         /* insert node in tree */
442
443         fn = root;
444
445         do {
446                 key = (struct rt6key *)((u8 *)fn->leaf + offset);
447
448                 /*
449                  *      Prefix match
450                  */
451                 if (plen < fn->fn_bit ||
452                     !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
453                         goto insert_above;
454
455                 /*
456                  *      Exact match ?
457                  */
458
459                 if (plen == fn->fn_bit) {
460                         /* clean up an intermediate node */
461                         if ((fn->fn_flags & RTN_RTINFO) == 0) {
462                                 rt6_release(fn->leaf);
463                                 fn->leaf = NULL;
464                         }
465
466                         fn->fn_sernum = sernum;
467
468                         return fn;
469                 }
470
471                 /*
472                  *      We have more bits to go
473                  */
474
475                 /* Try to walk down on tree. */
476                 fn->fn_sernum = sernum;
477                 dir = addr_bit_set(addr, fn->fn_bit);
478                 pn = fn;
479                 fn = dir ? fn->right: fn->left;
480         } while (fn);
481
482         /*
483          *      We walked to the bottom of tree.
484          *      Create new leaf node without children.
485          */
486
487         ln = node_alloc();
488
489         if (ln == NULL)
490                 return NULL;
491         ln->fn_bit = plen;
492
493         ln->parent = pn;
494         ln->fn_sernum = sernum;
495
496         if (dir)
497                 pn->right = ln;
498         else
499                 pn->left  = ln;
500
501         return ln;
502
503
504 insert_above:
505         /*
506          * split since we don't have a common prefix anymore or
507          * we have a less significant route.
508          * we've to insert an intermediate node on the list
509          * this new node will point to the one we need to create
510          * and the current
511          */
512
513         pn = fn->parent;
514
515         /* find 1st bit in difference between the 2 addrs.
516
517            See comment in __ipv6_addr_diff: bit may be an invalid value,
518            but if it is >= plen, the value is ignored in any case.
519          */
520
521         bit = __ipv6_addr_diff(addr, &key->addr, addrlen);
522
523         /*
524          *              (intermediate)[in]
525          *                /        \
526          *      (new leaf node)[ln] (old node)[fn]
527          */
528         if (plen > bit) {
529                 in = node_alloc();
530                 ln = node_alloc();
531
532                 if (in == NULL || ln == NULL) {
533                         if (in)
534                                 node_free(in);
535                         if (ln)
536                                 node_free(ln);
537                         return NULL;
538                 }
539
540                 /*
541                  * new intermediate node.
542                  * RTN_RTINFO will
543                  * be off since that an address that chooses one of
544                  * the branches would not match less specific routes
545                  * in the other branch
546                  */
547
548                 in->fn_bit = bit;
549
550                 in->parent = pn;
551                 in->leaf = fn->leaf;
552                 atomic_inc(&in->leaf->rt6i_ref);
553
554                 in->fn_sernum = sernum;
555
556                 /* update parent pointer */
557                 if (dir)
558                         pn->right = in;
559                 else
560                         pn->left  = in;
561
562                 ln->fn_bit = plen;
563
564                 ln->parent = in;
565                 fn->parent = in;
566
567                 ln->fn_sernum = sernum;
568
569                 if (addr_bit_set(addr, bit)) {
570                         in->right = ln;
571                         in->left  = fn;
572                 } else {
573                         in->left  = ln;
574                         in->right = fn;
575                 }
576         } else { /* plen <= bit */
577
578                 /*
579                  *              (new leaf node)[ln]
580                  *                /        \
581                  *           (old node)[fn] NULL
582                  */
583
584                 ln = node_alloc();
585
586                 if (ln == NULL)
587                         return NULL;
588
589                 ln->fn_bit = plen;
590
591                 ln->parent = pn;
592
593                 ln->fn_sernum = sernum;
594
595                 if (dir)
596                         pn->right = ln;
597                 else
598                         pn->left  = ln;
599
600                 if (addr_bit_set(&key->addr, plen))
601                         ln->right = fn;
602                 else
603                         ln->left  = fn;
604
605                 fn->parent = ln;
606         }
607         return ln;
608 }
609
610 /*
611  *      Insert routing information in a node.
612  */
613
614 static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
615                             struct nl_info *info)
616 {
617         struct rt6_info *iter = NULL;
618         struct rt6_info **ins;
619
620         ins = &fn->leaf;
621
622         for (iter = fn->leaf; iter; iter=iter->dst.rt6_next) {
623                 /*
624                  *      Search for duplicates
625                  */
626
627                 if (iter->rt6i_metric == rt->rt6i_metric) {
628                         /*
629                          *      Same priority level
630                          */
631
632                         if (iter->rt6i_dev == rt->rt6i_dev &&
633                             iter->rt6i_idev == rt->rt6i_idev &&
634                             ipv6_addr_equal(&iter->rt6i_gateway,
635                                             &rt->rt6i_gateway)) {
636                                 if (!(iter->rt6i_flags&RTF_EXPIRES))
637                                         return -EEXIST;
638                                 iter->rt6i_expires = rt->rt6i_expires;
639                                 if (!(rt->rt6i_flags&RTF_EXPIRES)) {
640                                         iter->rt6i_flags &= ~RTF_EXPIRES;
641                                         iter->rt6i_expires = 0;
642                                 }
643                                 return -EEXIST;
644                         }
645                 }
646
647                 if (iter->rt6i_metric > rt->rt6i_metric)
648                         break;
649
650                 ins = &iter->dst.rt6_next;
651         }
652
653         /* Reset round-robin state, if necessary */
654         if (ins == &fn->leaf)
655                 fn->rr_ptr = NULL;
656
657         /*
658          *      insert node
659          */
660
661         rt->dst.rt6_next = iter;
662         *ins = rt;
663         rt->rt6i_node = fn;
664         atomic_inc(&rt->rt6i_ref);
665         inet6_rt_notify(RTM_NEWROUTE, rt, info);
666         info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
667
668         if ((fn->fn_flags & RTN_RTINFO) == 0) {
669                 info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
670                 fn->fn_flags |= RTN_RTINFO;
671         }
672
673         return 0;
674 }
675
676 static __inline__ void fib6_start_gc(struct net *net, struct rt6_info *rt)
677 {
678         if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
679             (rt->rt6i_flags & (RTF_EXPIRES|RTF_CACHE)))
680                 mod_timer(&net->ipv6.ip6_fib_timer,
681                           jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
682 }
683
684 void fib6_force_start_gc(struct net *net)
685 {
686         if (!timer_pending(&net->ipv6.ip6_fib_timer))
687                 mod_timer(&net->ipv6.ip6_fib_timer,
688                           jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
689 }
690
691 /*
692  *      Add routing information to the routing tree.
693  *      <destination addr>/<source addr>
694  *      with source addr info in sub-trees
695  */
696
697 int fib6_add(struct fib6_node *root, struct rt6_info *rt, struct nl_info *info)
698 {
699         struct fib6_node *fn, *pn = NULL;
700         int err = -ENOMEM;
701
702         fn = fib6_add_1(root, &rt->rt6i_dst.addr, sizeof(struct in6_addr),
703                         rt->rt6i_dst.plen, offsetof(struct rt6_info, rt6i_dst));
704
705         if (fn == NULL)
706                 goto out;
707
708         pn = fn;
709
710 #ifdef CONFIG_IPV6_SUBTREES
711         if (rt->rt6i_src.plen) {
712                 struct fib6_node *sn;
713
714                 if (fn->subtree == NULL) {
715                         struct fib6_node *sfn;
716
717                         /*
718                          * Create subtree.
719                          *
720                          *              fn[main tree]
721                          *              |
722                          *              sfn[subtree root]
723                          *                 \
724                          *                  sn[new leaf node]
725                          */
726
727                         /* Create subtree root node */
728                         sfn = node_alloc();
729                         if (sfn == NULL)
730                                 goto st_failure;
731
732                         sfn->leaf = info->nl_net->ipv6.ip6_null_entry;
733                         atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
734                         sfn->fn_flags = RTN_ROOT;
735                         sfn->fn_sernum = fib6_new_sernum();
736
737                         /* Now add the first leaf node to new subtree */
738
739                         sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
740                                         sizeof(struct in6_addr), rt->rt6i_src.plen,
741                                         offsetof(struct rt6_info, rt6i_src));
742
743                         if (sn == NULL) {
744                                 /* If it is failed, discard just allocated
745                                    root, and then (in st_failure) stale node
746                                    in main tree.
747                                  */
748                                 node_free(sfn);
749                                 goto st_failure;
750                         }
751
752                         /* Now link new subtree to main tree */
753                         sfn->parent = fn;
754                         fn->subtree = sfn;
755                 } else {
756                         sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
757                                         sizeof(struct in6_addr), rt->rt6i_src.plen,
758                                         offsetof(struct rt6_info, rt6i_src));
759
760                         if (sn == NULL)
761                                 goto st_failure;
762                 }
763
764                 if (fn->leaf == NULL) {
765                         fn->leaf = rt;
766                         atomic_inc(&rt->rt6i_ref);
767                 }
768                 fn = sn;
769         }
770 #endif
771
772         err = fib6_add_rt2node(fn, rt, info);
773
774         if (err == 0) {
775                 fib6_start_gc(info->nl_net, rt);
776                 if (!(rt->rt6i_flags&RTF_CACHE))
777                         fib6_prune_clones(info->nl_net, pn, rt);
778         }
779
780 out:
781         if (err) {
782 #ifdef CONFIG_IPV6_SUBTREES
783                 /*
784                  * If fib6_add_1 has cleared the old leaf pointer in the
785                  * super-tree leaf node we have to find a new one for it.
786                  */
787                 if (pn != fn && pn->leaf == rt) {
788                         pn->leaf = NULL;
789                         atomic_dec(&rt->rt6i_ref);
790                 }
791                 if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) {
792                         pn->leaf = fib6_find_prefix(info->nl_net, pn);
793 #if RT6_DEBUG >= 2
794                         if (!pn->leaf) {
795                                 WARN_ON(pn->leaf == NULL);
796                                 pn->leaf = info->nl_net->ipv6.ip6_null_entry;
797                         }
798 #endif
799                         atomic_inc(&pn->leaf->rt6i_ref);
800                 }
801 #endif
802                 dst_free(&rt->dst);
803         }
804         return err;
805
806 #ifdef CONFIG_IPV6_SUBTREES
807         /* Subtree creation failed, probably main tree node
808            is orphan. If it is, shoot it.
809          */
810 st_failure:
811         if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
812                 fib6_repair_tree(info->nl_net, fn);
813         dst_free(&rt->dst);
814         return err;
815 #endif
816 }
817
818 /*
819  *      Routing tree lookup
820  *
821  */
822
823 struct lookup_args {
824         int             offset;         /* key offset on rt6_info       */
825         const struct in6_addr   *addr;          /* search key                   */
826 };
827
828 static struct fib6_node * fib6_lookup_1(struct fib6_node *root,
829                                         struct lookup_args *args)
830 {
831         struct fib6_node *fn;
832         __be32 dir;
833
834         if (unlikely(args->offset == 0))
835                 return NULL;
836
837         /*
838          *      Descend on a tree
839          */
840
841         fn = root;
842
843         for (;;) {
844                 struct fib6_node *next;
845
846                 dir = addr_bit_set(args->addr, fn->fn_bit);
847
848                 next = dir ? fn->right : fn->left;
849
850                 if (next) {
851                         fn = next;
852                         continue;
853                 }
854
855                 break;
856         }
857
858         while(fn) {
859                 if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) {
860                         struct rt6key *key;
861
862                         key = (struct rt6key *) ((u8 *) fn->leaf +
863                                                  args->offset);
864
865                         if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
866 #ifdef CONFIG_IPV6_SUBTREES
867                                 if (fn->subtree)
868                                         fn = fib6_lookup_1(fn->subtree, args + 1);
869 #endif
870                                 if (!fn || fn->fn_flags & RTN_RTINFO)
871                                         return fn;
872                         }
873                 }
874
875                 if (fn->fn_flags & RTN_ROOT)
876                         break;
877
878                 fn = fn->parent;
879         }
880
881         return NULL;
882 }
883
884 struct fib6_node * fib6_lookup(struct fib6_node *root, const struct in6_addr *daddr,
885                                const struct in6_addr *saddr)
886 {
887         struct fib6_node *fn;
888         struct lookup_args args[] = {
889                 {
890                         .offset = offsetof(struct rt6_info, rt6i_dst),
891                         .addr = daddr,
892                 },
893 #ifdef CONFIG_IPV6_SUBTREES
894                 {
895                         .offset = offsetof(struct rt6_info, rt6i_src),
896                         .addr = saddr,
897                 },
898 #endif
899                 {
900                         .offset = 0,    /* sentinel */
901                 }
902         };
903
904         fn = fib6_lookup_1(root, daddr ? args : args + 1);
905
906         if (fn == NULL || fn->fn_flags & RTN_TL_ROOT)
907                 fn = root;
908
909         return fn;
910 }
911
912 /*
913  *      Get node with specified destination prefix (and source prefix,
914  *      if subtrees are used)
915  */
916
917
918 static struct fib6_node * fib6_locate_1(struct fib6_node *root,
919                                         const struct in6_addr *addr,
920                                         int plen, int offset)
921 {
922         struct fib6_node *fn;
923
924         for (fn = root; fn ; ) {
925                 struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
926
927                 /*
928                  *      Prefix match
929                  */
930                 if (plen < fn->fn_bit ||
931                     !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
932                         return NULL;
933
934                 if (plen == fn->fn_bit)
935                         return fn;
936
937                 /*
938                  *      We have more bits to go
939                  */
940                 if (addr_bit_set(addr, fn->fn_bit))
941                         fn = fn->right;
942                 else
943                         fn = fn->left;
944         }
945         return NULL;
946 }
947
948 struct fib6_node * fib6_locate(struct fib6_node *root,
949                                const struct in6_addr *daddr, int dst_len,
950                                const struct in6_addr *saddr, int src_len)
951 {
952         struct fib6_node *fn;
953
954         fn = fib6_locate_1(root, daddr, dst_len,
955                            offsetof(struct rt6_info, rt6i_dst));
956
957 #ifdef CONFIG_IPV6_SUBTREES
958         if (src_len) {
959                 WARN_ON(saddr == NULL);
960                 if (fn && fn->subtree)
961                         fn = fib6_locate_1(fn->subtree, saddr, src_len,
962                                            offsetof(struct rt6_info, rt6i_src));
963         }
964 #endif
965
966         if (fn && fn->fn_flags&RTN_RTINFO)
967                 return fn;
968
969         return NULL;
970 }
971
972
973 /*
974  *      Deletion
975  *
976  */
977
978 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn)
979 {
980         if (fn->fn_flags&RTN_ROOT)
981                 return net->ipv6.ip6_null_entry;
982
983         while(fn) {
984                 if(fn->left)
985                         return fn->left->leaf;
986
987                 if(fn->right)
988                         return fn->right->leaf;
989
990                 fn = FIB6_SUBTREE(fn);
991         }
992         return NULL;
993 }
994
995 /*
996  *      Called to trim the tree of intermediate nodes when possible. "fn"
997  *      is the node we want to try and remove.
998  */
999
1000 static struct fib6_node *fib6_repair_tree(struct net *net,
1001                                            struct fib6_node *fn)
1002 {
1003         int children;
1004         int nstate;
1005         struct fib6_node *child, *pn;
1006         struct fib6_walker_t *w;
1007         int iter = 0;
1008
1009         for (;;) {
1010                 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1011                 iter++;
1012
1013                 WARN_ON(fn->fn_flags & RTN_RTINFO);
1014                 WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1015                 WARN_ON(fn->leaf != NULL);
1016
1017                 children = 0;
1018                 child = NULL;
1019                 if (fn->right) child = fn->right, children |= 1;
1020                 if (fn->left) child = fn->left, children |= 2;
1021
1022                 if (children == 3 || FIB6_SUBTREE(fn)
1023 #ifdef CONFIG_IPV6_SUBTREES
1024                     /* Subtree root (i.e. fn) may have one child */
1025                     || (children && fn->fn_flags&RTN_ROOT)
1026 #endif
1027                     ) {
1028                         fn->leaf = fib6_find_prefix(net, fn);
1029 #if RT6_DEBUG >= 2
1030                         if (fn->leaf==NULL) {
1031                                 WARN_ON(!fn->leaf);
1032                                 fn->leaf = net->ipv6.ip6_null_entry;
1033                         }
1034 #endif
1035                         atomic_inc(&fn->leaf->rt6i_ref);
1036                         return fn->parent;
1037                 }
1038
1039                 pn = fn->parent;
1040 #ifdef CONFIG_IPV6_SUBTREES
1041                 if (FIB6_SUBTREE(pn) == fn) {
1042                         WARN_ON(!(fn->fn_flags & RTN_ROOT));
1043                         FIB6_SUBTREE(pn) = NULL;
1044                         nstate = FWS_L;
1045                 } else {
1046                         WARN_ON(fn->fn_flags & RTN_ROOT);
1047 #endif
1048                         if (pn->right == fn) pn->right = child;
1049                         else if (pn->left == fn) pn->left = child;
1050 #if RT6_DEBUG >= 2
1051                         else
1052                                 WARN_ON(1);
1053 #endif
1054                         if (child)
1055                                 child->parent = pn;
1056                         nstate = FWS_R;
1057 #ifdef CONFIG_IPV6_SUBTREES
1058                 }
1059 #endif
1060
1061                 read_lock(&fib6_walker_lock);
1062                 FOR_WALKERS(w) {
1063                         if (child == NULL) {
1064                                 if (w->root == fn) {
1065                                         w->root = w->node = NULL;
1066                                         RT6_TRACE("W %p adjusted by delroot 1\n", w);
1067                                 } else if (w->node == fn) {
1068                                         RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1069                                         w->node = pn;
1070                                         w->state = nstate;
1071                                 }
1072                         } else {
1073                                 if (w->root == fn) {
1074                                         w->root = child;
1075                                         RT6_TRACE("W %p adjusted by delroot 2\n", w);
1076                                 }
1077                                 if (w->node == fn) {
1078                                         w->node = child;
1079                                         if (children&2) {
1080                                                 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1081                                                 w->state = w->state>=FWS_R ? FWS_U : FWS_INIT;
1082                                         } else {
1083                                                 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1084                                                 w->state = w->state>=FWS_C ? FWS_U : FWS_INIT;
1085                                         }
1086                                 }
1087                         }
1088                 }
1089                 read_unlock(&fib6_walker_lock);
1090
1091                 node_free(fn);
1092                 if (pn->fn_flags&RTN_RTINFO || FIB6_SUBTREE(pn))
1093                         return pn;
1094
1095                 rt6_release(pn->leaf);
1096                 pn->leaf = NULL;
1097                 fn = pn;
1098         }
1099 }
1100
1101 static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
1102                            struct nl_info *info)
1103 {
1104         struct fib6_walker_t *w;
1105         struct rt6_info *rt = *rtp;
1106         struct net *net = info->nl_net;
1107
1108         RT6_TRACE("fib6_del_route\n");
1109
1110         /* Unlink it */
1111         *rtp = rt->dst.rt6_next;
1112         rt->rt6i_node = NULL;
1113         net->ipv6.rt6_stats->fib_rt_entries--;
1114         net->ipv6.rt6_stats->fib_discarded_routes++;
1115
1116         /* Reset round-robin state, if necessary */
1117         if (fn->rr_ptr == rt)
1118                 fn->rr_ptr = NULL;
1119
1120         /* Adjust walkers */
1121         read_lock(&fib6_walker_lock);
1122         FOR_WALKERS(w) {
1123                 if (w->state == FWS_C && w->leaf == rt) {
1124                         RT6_TRACE("walker %p adjusted by delroute\n", w);
1125                         w->leaf = rt->dst.rt6_next;
1126                         if (w->leaf == NULL)
1127                                 w->state = FWS_U;
1128                 }
1129         }
1130         read_unlock(&fib6_walker_lock);
1131
1132         rt->dst.rt6_next = NULL;
1133
1134         /* If it was last route, expunge its radix tree node */
1135         if (fn->leaf == NULL) {
1136                 fn->fn_flags &= ~RTN_RTINFO;
1137                 net->ipv6.rt6_stats->fib_route_nodes--;
1138                 fn = fib6_repair_tree(net, fn);
1139         }
1140
1141         if (atomic_read(&rt->rt6i_ref) != 1) {
1142                 /* This route is used as dummy address holder in some split
1143                  * nodes. It is not leaked, but it still holds other resources,
1144                  * which must be released in time. So, scan ascendant nodes
1145                  * and replace dummy references to this route with references
1146                  * to still alive ones.
1147                  */
1148                 while (fn) {
1149                         if (!(fn->fn_flags&RTN_RTINFO) && fn->leaf == rt) {
1150                                 fn->leaf = fib6_find_prefix(net, fn);
1151                                 atomic_inc(&fn->leaf->rt6i_ref);
1152                                 rt6_release(rt);
1153                         }
1154                         fn = fn->parent;
1155                 }
1156                 /* No more references are possible at this point. */
1157                 BUG_ON(atomic_read(&rt->rt6i_ref) != 1);
1158         }
1159
1160         inet6_rt_notify(RTM_DELROUTE, rt, info);
1161         rt6_release(rt);
1162 }
1163
1164 int fib6_del(struct rt6_info *rt, struct nl_info *info)
1165 {
1166         struct net *net = info->nl_net;
1167         struct fib6_node *fn = rt->rt6i_node;
1168         struct rt6_info **rtp;
1169
1170 #if RT6_DEBUG >= 2
1171         if (rt->dst.obsolete>0) {
1172                 WARN_ON(fn != NULL);
1173                 return -ENOENT;
1174         }
1175 #endif
1176         if (fn == NULL || rt == net->ipv6.ip6_null_entry)
1177                 return -ENOENT;
1178
1179         WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1180
1181         if (!(rt->rt6i_flags&RTF_CACHE)) {
1182                 struct fib6_node *pn = fn;
1183 #ifdef CONFIG_IPV6_SUBTREES
1184                 /* clones of this route might be in another subtree */
1185                 if (rt->rt6i_src.plen) {
1186                         while (!(pn->fn_flags&RTN_ROOT))
1187                                 pn = pn->parent;
1188                         pn = pn->parent;
1189                 }
1190 #endif
1191                 fib6_prune_clones(info->nl_net, pn, rt);
1192         }
1193
1194         /*
1195          *      Walk the leaf entries looking for ourself
1196          */
1197
1198         for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->dst.rt6_next) {
1199                 if (*rtp == rt) {
1200                         fib6_del_route(fn, rtp, info);
1201                         return 0;
1202                 }
1203         }
1204         return -ENOENT;
1205 }
1206
1207 /*
1208  *      Tree traversal function.
1209  *
1210  *      Certainly, it is not interrupt safe.
1211  *      However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1212  *      It means, that we can modify tree during walking
1213  *      and use this function for garbage collection, clone pruning,
1214  *      cleaning tree when a device goes down etc. etc.
1215  *
1216  *      It guarantees that every node will be traversed,
1217  *      and that it will be traversed only once.
1218  *
1219  *      Callback function w->func may return:
1220  *      0 -> continue walking.
1221  *      positive value -> walking is suspended (used by tree dumps,
1222  *      and probably by gc, if it will be split to several slices)
1223  *      negative value -> terminate walking.
1224  *
1225  *      The function itself returns:
1226  *      0   -> walk is complete.
1227  *      >0  -> walk is incomplete (i.e. suspended)
1228  *      <0  -> walk is terminated by an error.
1229  */
1230
1231 static int fib6_walk_continue(struct fib6_walker_t *w)
1232 {
1233         struct fib6_node *fn, *pn;
1234
1235         for (;;) {
1236                 fn = w->node;
1237                 if (fn == NULL)
1238                         return 0;
1239
1240                 if (w->prune && fn != w->root &&
1241                     fn->fn_flags&RTN_RTINFO && w->state < FWS_C) {
1242                         w->state = FWS_C;
1243                         w->leaf = fn->leaf;
1244                 }
1245                 switch (w->state) {
1246 #ifdef CONFIG_IPV6_SUBTREES
1247                 case FWS_S:
1248                         if (FIB6_SUBTREE(fn)) {
1249                                 w->node = FIB6_SUBTREE(fn);
1250                                 continue;
1251                         }
1252                         w->state = FWS_L;
1253 #endif
1254                 case FWS_L:
1255                         if (fn->left) {
1256                                 w->node = fn->left;
1257                                 w->state = FWS_INIT;
1258                                 continue;
1259                         }
1260                         w->state = FWS_R;
1261                 case FWS_R:
1262                         if (fn->right) {
1263                                 w->node = fn->right;
1264                                 w->state = FWS_INIT;
1265                                 continue;
1266                         }
1267                         w->state = FWS_C;
1268                         w->leaf = fn->leaf;
1269                 case FWS_C:
1270                         if (w->leaf && fn->fn_flags&RTN_RTINFO) {
1271                                 int err;
1272
1273                                 if (w->count < w->skip) {
1274                                         w->count++;
1275                                         continue;
1276                                 }
1277
1278                                 err = w->func(w);
1279                                 if (err)
1280                                         return err;
1281
1282                                 w->count++;
1283                                 continue;
1284                         }
1285                         w->state = FWS_U;
1286                 case FWS_U:
1287                         if (fn == w->root)
1288                                 return 0;
1289                         pn = fn->parent;
1290                         w->node = pn;
1291 #ifdef CONFIG_IPV6_SUBTREES
1292                         if (FIB6_SUBTREE(pn) == fn) {
1293                                 WARN_ON(!(fn->fn_flags & RTN_ROOT));
1294                                 w->state = FWS_L;
1295                                 continue;
1296                         }
1297 #endif
1298                         if (pn->left == fn) {
1299                                 w->state = FWS_R;
1300                                 continue;
1301                         }
1302                         if (pn->right == fn) {
1303                                 w->state = FWS_C;
1304                                 w->leaf = w->node->leaf;
1305                                 continue;
1306                         }
1307 #if RT6_DEBUG >= 2
1308                         WARN_ON(1);
1309 #endif
1310                 }
1311         }
1312 }
1313
1314 static int fib6_walk(struct fib6_walker_t *w)
1315 {
1316         int res;
1317
1318         w->state = FWS_INIT;
1319         w->node = w->root;
1320
1321         fib6_walker_link(w);
1322         res = fib6_walk_continue(w);
1323         if (res <= 0)
1324                 fib6_walker_unlink(w);
1325         return res;
1326 }
1327
1328 static int fib6_clean_node(struct fib6_walker_t *w)
1329 {
1330         int res;
1331         struct rt6_info *rt;
1332         struct fib6_cleaner_t *c = container_of(w, struct fib6_cleaner_t, w);
1333         struct nl_info info = {
1334                 .nl_net = c->net,
1335         };
1336
1337         for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
1338                 res = c->func(rt, c->arg);
1339                 if (res < 0) {
1340                         w->leaf = rt;
1341                         res = fib6_del(rt, &info);
1342                         if (res) {
1343 #if RT6_DEBUG >= 2
1344                                 printk(KERN_DEBUG "fib6_clean_node: del failed: rt=%p@%p err=%d\n", rt, rt->rt6i_node, res);
1345 #endif
1346                                 continue;
1347                         }
1348                         return 0;
1349                 }
1350                 WARN_ON(res != 0);
1351         }
1352         w->leaf = rt;
1353         return 0;
1354 }
1355
1356 /*
1357  *      Convenient frontend to tree walker.
1358  *
1359  *      func is called on each route.
1360  *              It may return -1 -> delete this route.
1361  *                            0  -> continue walking
1362  *
1363  *      prune==1 -> only immediate children of node (certainly,
1364  *      ignoring pure split nodes) will be scanned.
1365  */
1366
1367 static void fib6_clean_tree(struct net *net, struct fib6_node *root,
1368                             int (*func)(struct rt6_info *, void *arg),
1369                             int prune, void *arg)
1370 {
1371         struct fib6_cleaner_t c;
1372
1373         c.w.root = root;
1374         c.w.func = fib6_clean_node;
1375         c.w.prune = prune;
1376         c.w.count = 0;
1377         c.w.skip = 0;
1378         c.func = func;
1379         c.arg = arg;
1380         c.net = net;
1381
1382         fib6_walk(&c.w);
1383 }
1384
1385 void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *arg),
1386                     int prune, void *arg)
1387 {
1388         struct fib6_table *table;
1389         struct hlist_node *node;
1390         struct hlist_head *head;
1391         unsigned int h;
1392
1393         rcu_read_lock();
1394         for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1395                 head = &net->ipv6.fib_table_hash[h];
1396                 hlist_for_each_entry_rcu(table, node, head, tb6_hlist) {
1397                         write_lock_bh(&table->tb6_lock);
1398                         fib6_clean_tree(net, &table->tb6_root,
1399                                         func, prune, arg);
1400                         write_unlock_bh(&table->tb6_lock);
1401                 }
1402         }
1403         rcu_read_unlock();
1404 }
1405
1406 static int fib6_prune_clone(struct rt6_info *rt, void *arg)
1407 {
1408         if (rt->rt6i_flags & RTF_CACHE) {
1409                 RT6_TRACE("pruning clone %p\n", rt);
1410                 return -1;
1411         }
1412
1413         return 0;
1414 }
1415
1416 static void fib6_prune_clones(struct net *net, struct fib6_node *fn,
1417                               struct rt6_info *rt)
1418 {
1419         fib6_clean_tree(net, fn, fib6_prune_clone, 1, rt);
1420 }
1421
1422 /*
1423  *      Garbage collection
1424  */
1425
1426 static struct fib6_gc_args
1427 {
1428         int                     timeout;
1429         int                     more;
1430 } gc_args;
1431
1432 static int fib6_age(struct rt6_info *rt, void *arg)
1433 {
1434         unsigned long now = jiffies;
1435
1436         /*
1437          *      check addrconf expiration here.
1438          *      Routes are expired even if they are in use.
1439          *
1440          *      Also age clones. Note, that clones are aged out
1441          *      only if they are not in use now.
1442          */
1443
1444         if (rt->rt6i_flags&RTF_EXPIRES && rt->rt6i_expires) {
1445                 if (time_after(now, rt->rt6i_expires)) {
1446                         RT6_TRACE("expiring %p\n", rt);
1447                         return -1;
1448                 }
1449                 gc_args.more++;
1450         } else if (rt->rt6i_flags & RTF_CACHE) {
1451                 if (atomic_read(&rt->dst.__refcnt) == 0 &&
1452                     time_after_eq(now, rt->dst.lastuse + gc_args.timeout)) {
1453                         RT6_TRACE("aging clone %p\n", rt);
1454                         return -1;
1455                 } else if ((rt->rt6i_flags & RTF_GATEWAY) &&
1456                            (!(rt->rt6i_nexthop->flags & NTF_ROUTER))) {
1457                         RT6_TRACE("purging route %p via non-router but gateway\n",
1458                                   rt);
1459                         return -1;
1460                 }
1461                 gc_args.more++;
1462         }
1463
1464         return 0;
1465 }
1466
1467 static DEFINE_SPINLOCK(fib6_gc_lock);
1468
1469 void fib6_run_gc(unsigned long expires, struct net *net)
1470 {
1471         if (expires != ~0UL) {
1472                 spin_lock_bh(&fib6_gc_lock);
1473                 gc_args.timeout = expires ? (int)expires :
1474                         net->ipv6.sysctl.ip6_rt_gc_interval;
1475         } else {
1476                 if (!spin_trylock_bh(&fib6_gc_lock)) {
1477                         mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
1478                         return;
1479                 }
1480                 gc_args.timeout = net->ipv6.sysctl.ip6_rt_gc_interval;
1481         }
1482
1483         gc_args.more = icmp6_dst_gc();
1484
1485         fib6_clean_all(net, fib6_age, 0, NULL);
1486
1487         if (gc_args.more)
1488                 mod_timer(&net->ipv6.ip6_fib_timer,
1489                           round_jiffies(jiffies
1490                                         + net->ipv6.sysctl.ip6_rt_gc_interval));
1491         else
1492                 del_timer(&net->ipv6.ip6_fib_timer);
1493         spin_unlock_bh(&fib6_gc_lock);
1494 }
1495
1496 static void fib6_gc_timer_cb(unsigned long arg)
1497 {
1498         fib6_run_gc(0, (struct net *)arg);
1499 }
1500
1501 static int __net_init fib6_net_init(struct net *net)
1502 {
1503         size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
1504
1505         setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net);
1506
1507         net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
1508         if (!net->ipv6.rt6_stats)
1509                 goto out_timer;
1510
1511         /* Avoid false sharing : Use at least a full cache line */
1512         size = max_t(size_t, size, L1_CACHE_BYTES);
1513
1514         net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
1515         if (!net->ipv6.fib_table_hash)
1516                 goto out_rt6_stats;
1517
1518         net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
1519                                           GFP_KERNEL);
1520         if (!net->ipv6.fib6_main_tbl)
1521                 goto out_fib_table_hash;
1522
1523         net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
1524         net->ipv6.fib6_main_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1525         net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
1526                 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1527
1528 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1529         net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
1530                                            GFP_KERNEL);
1531         if (!net->ipv6.fib6_local_tbl)
1532                 goto out_fib6_main_tbl;
1533         net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
1534         net->ipv6.fib6_local_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1535         net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
1536                 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1537 #endif
1538         fib6_tables_init(net);
1539
1540         return 0;
1541
1542 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1543 out_fib6_main_tbl:
1544         kfree(net->ipv6.fib6_main_tbl);
1545 #endif
1546 out_fib_table_hash:
1547         kfree(net->ipv6.fib_table_hash);
1548 out_rt6_stats:
1549         kfree(net->ipv6.rt6_stats);
1550 out_timer:
1551         return -ENOMEM;
1552  }
1553
1554 static void fib6_net_exit(struct net *net)
1555 {
1556         rt6_ifdown(net, NULL);
1557         del_timer_sync(&net->ipv6.ip6_fib_timer);
1558
1559 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1560         kfree(net->ipv6.fib6_local_tbl);
1561 #endif
1562         kfree(net->ipv6.fib6_main_tbl);
1563         kfree(net->ipv6.fib_table_hash);
1564         kfree(net->ipv6.rt6_stats);
1565 }
1566
1567 static struct pernet_operations fib6_net_ops = {
1568         .init = fib6_net_init,
1569         .exit = fib6_net_exit,
1570 };
1571
1572 int __init fib6_init(void)
1573 {
1574         int ret = -ENOMEM;
1575
1576         fib6_node_kmem = kmem_cache_create("fib6_nodes",
1577                                            sizeof(struct fib6_node),
1578                                            0, SLAB_HWCACHE_ALIGN,
1579                                            NULL);
1580         if (!fib6_node_kmem)
1581                 goto out;
1582
1583         ret = register_pernet_subsys(&fib6_net_ops);
1584         if (ret)
1585                 goto out_kmem_cache_create;
1586
1587         ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib);
1588         if (ret)
1589                 goto out_unregister_subsys;
1590 out:
1591         return ret;
1592
1593 out_unregister_subsys:
1594         unregister_pernet_subsys(&fib6_net_ops);
1595 out_kmem_cache_create:
1596         kmem_cache_destroy(fib6_node_kmem);
1597         goto out;
1598 }
1599
1600 void fib6_gc_cleanup(void)
1601 {
1602         unregister_pernet_subsys(&fib6_net_ops);
1603         kmem_cache_destroy(fib6_node_kmem);
1604 }