tcp: Fix tcp_mark_head_lost() with packets == 0
[linux-2.6.git] / net / ipv4 / tcp_input.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:     Ross Biro
9  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *              Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *              Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *              Florian La Roche, <flla@stud.uni-sb.de>
13  *              Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *              Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *              Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *              Matthew Dillon, <dillon@apollo.west.oic.com>
17  *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *              Jorge Cwik, <jorge@laser.satlink.net>
19  */
20
21 /*
22  * Changes:
23  *              Pedro Roque     :       Fast Retransmit/Recovery.
24  *                                      Two receive queues.
25  *                                      Retransmit queue handled by TCP.
26  *                                      Better retransmit timer handling.
27  *                                      New congestion avoidance.
28  *                                      Header prediction.
29  *                                      Variable renaming.
30  *
31  *              Eric            :       Fast Retransmit.
32  *              Randy Scott     :       MSS option defines.
33  *              Eric Schenk     :       Fixes to slow start algorithm.
34  *              Eric Schenk     :       Yet another double ACK bug.
35  *              Eric Schenk     :       Delayed ACK bug fixes.
36  *              Eric Schenk     :       Floyd style fast retrans war avoidance.
37  *              David S. Miller :       Don't allow zero congestion window.
38  *              Eric Schenk     :       Fix retransmitter so that it sends
39  *                                      next packet on ack of previous packet.
40  *              Andi Kleen      :       Moved open_request checking here
41  *                                      and process RSTs for open_requests.
42  *              Andi Kleen      :       Better prune_queue, and other fixes.
43  *              Andrey Savochkin:       Fix RTT measurements in the presence of
44  *                                      timestamps.
45  *              Andrey Savochkin:       Check sequence numbers correctly when
46  *                                      removing SACKs due to in sequence incoming
47  *                                      data segments.
48  *              Andi Kleen:             Make sure we never ack data there is not
49  *                                      enough room for. Also make this condition
50  *                                      a fatal error if it might still happen.
51  *              Andi Kleen:             Add tcp_measure_rcv_mss to make
52  *                                      connections with MSS<min(MTU,ann. MSS)
53  *                                      work without delayed acks.
54  *              Andi Kleen:             Process packets with PSH set in the
55  *                                      fast path.
56  *              J Hadi Salim:           ECN support
57  *              Andrei Gurtov,
58  *              Pasi Sarolahti,
59  *              Panu Kuhlberg:          Experimental audit of TCP (re)transmission
60  *                                      engine. Lots of bugs are found.
61  *              Pasi Sarolahti:         F-RTO for dealing with spurious RTOs
62  */
63
64 #include <linux/mm.h>
65 #include <linux/module.h>
66 #include <linux/sysctl.h>
67 #include <linux/kernel.h>
68 #include <net/dst.h>
69 #include <net/tcp.h>
70 #include <net/inet_common.h>
71 #include <linux/ipsec.h>
72 #include <asm/unaligned.h>
73 #include <net/netdma.h>
74
75 int sysctl_tcp_timestamps __read_mostly = 1;
76 int sysctl_tcp_window_scaling __read_mostly = 1;
77 int sysctl_tcp_sack __read_mostly = 1;
78 int sysctl_tcp_fack __read_mostly = 1;
79 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn __read_mostly = 2;
81 int sysctl_tcp_dsack __read_mostly = 1;
82 int sysctl_tcp_app_win __read_mostly = 31;
83 int sysctl_tcp_adv_win_scale __read_mostly = 2;
84
85 int sysctl_tcp_stdurg __read_mostly;
86 int sysctl_tcp_rfc1337 __read_mostly;
87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88 int sysctl_tcp_frto __read_mostly = 2;
89 int sysctl_tcp_frto_response __read_mostly;
90 int sysctl_tcp_nometrics_save __read_mostly;
91
92 int sysctl_tcp_thin_dupack __read_mostly;
93
94 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
95 int sysctl_tcp_abc __read_mostly;
96
97 #define FLAG_DATA               0x01 /* Incoming frame contained data.          */
98 #define FLAG_WIN_UPDATE         0x02 /* Incoming ACK was a window update.       */
99 #define FLAG_DATA_ACKED         0x04 /* This ACK acknowledged new data.         */
100 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted.  */
101 #define FLAG_SYN_ACKED          0x10 /* This ACK acknowledged SYN.              */
102 #define FLAG_DATA_SACKED        0x20 /* New SACK.                               */
103 #define FLAG_ECE                0x40 /* ECE in this ACK                         */
104 #define FLAG_DATA_LOST          0x80 /* SACK detected data lossage.             */
105 #define FLAG_SLOWPATH           0x100 /* Do not skip RFC checks for window update.*/
106 #define FLAG_ONLY_ORIG_SACKED   0x200 /* SACKs only non-rexmit sent before RTO */
107 #define FLAG_SND_UNA_ADVANCED   0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
108 #define FLAG_DSACKING_ACK       0x800 /* SACK blocks contained D-SACK info */
109 #define FLAG_NONHEAD_RETRANS_ACKED      0x1000 /* Non-head rexmitted data was ACKed */
110 #define FLAG_SACK_RENEGING      0x2000 /* snd_una advanced to a sacked seq */
111
112 #define FLAG_ACKED              (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
113 #define FLAG_NOT_DUP            (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
114 #define FLAG_CA_ALERT           (FLAG_DATA_SACKED|FLAG_ECE)
115 #define FLAG_FORWARD_PROGRESS   (FLAG_ACKED|FLAG_DATA_SACKED)
116 #define FLAG_ANY_PROGRESS       (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
117
118 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
119 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
120
121 /* Adapt the MSS value used to make delayed ack decision to the
122  * real world.
123  */
124 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
125 {
126         struct inet_connection_sock *icsk = inet_csk(sk);
127         const unsigned int lss = icsk->icsk_ack.last_seg_size;
128         unsigned int len;
129
130         icsk->icsk_ack.last_seg_size = 0;
131
132         /* skb->len may jitter because of SACKs, even if peer
133          * sends good full-sized frames.
134          */
135         len = skb_shinfo(skb)->gso_size ? : skb->len;
136         if (len >= icsk->icsk_ack.rcv_mss) {
137                 icsk->icsk_ack.rcv_mss = len;
138         } else {
139                 /* Otherwise, we make more careful check taking into account,
140                  * that SACKs block is variable.
141                  *
142                  * "len" is invariant segment length, including TCP header.
143                  */
144                 len += skb->data - skb_transport_header(skb);
145                 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
146                     /* If PSH is not set, packet should be
147                      * full sized, provided peer TCP is not badly broken.
148                      * This observation (if it is correct 8)) allows
149                      * to handle super-low mtu links fairly.
150                      */
151                     (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
152                      !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
153                         /* Subtract also invariant (if peer is RFC compliant),
154                          * tcp header plus fixed timestamp option length.
155                          * Resulting "len" is MSS free of SACK jitter.
156                          */
157                         len -= tcp_sk(sk)->tcp_header_len;
158                         icsk->icsk_ack.last_seg_size = len;
159                         if (len == lss) {
160                                 icsk->icsk_ack.rcv_mss = len;
161                                 return;
162                         }
163                 }
164                 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
165                         icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
166                 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
167         }
168 }
169
170 static void tcp_incr_quickack(struct sock *sk)
171 {
172         struct inet_connection_sock *icsk = inet_csk(sk);
173         unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
174
175         if (quickacks == 0)
176                 quickacks = 2;
177         if (quickacks > icsk->icsk_ack.quick)
178                 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
179 }
180
181 void tcp_enter_quickack_mode(struct sock *sk)
182 {
183         struct inet_connection_sock *icsk = inet_csk(sk);
184         tcp_incr_quickack(sk);
185         icsk->icsk_ack.pingpong = 0;
186         icsk->icsk_ack.ato = TCP_ATO_MIN;
187 }
188
189 /* Send ACKs quickly, if "quick" count is not exhausted
190  * and the session is not interactive.
191  */
192
193 static inline int tcp_in_quickack_mode(const struct sock *sk)
194 {
195         const struct inet_connection_sock *icsk = inet_csk(sk);
196         return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
197 }
198
199 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
200 {
201         if (tp->ecn_flags & TCP_ECN_OK)
202                 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
203 }
204
205 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
206 {
207         if (tcp_hdr(skb)->cwr)
208                 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
209 }
210
211 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
212 {
213         tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
214 }
215
216 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
217 {
218         if (tp->ecn_flags & TCP_ECN_OK) {
219                 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
220                         tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
221                 /* Funny extension: if ECT is not set on a segment,
222                  * it is surely retransmit. It is not in ECN RFC,
223                  * but Linux follows this rule. */
224                 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
225                         tcp_enter_quickack_mode((struct sock *)tp);
226         }
227 }
228
229 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
230 {
231         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
232                 tp->ecn_flags &= ~TCP_ECN_OK;
233 }
234
235 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
236 {
237         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
238                 tp->ecn_flags &= ~TCP_ECN_OK;
239 }
240
241 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
242 {
243         if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
244                 return 1;
245         return 0;
246 }
247
248 /* Buffer size and advertised window tuning.
249  *
250  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
251  */
252
253 static void tcp_fixup_sndbuf(struct sock *sk)
254 {
255         int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
256                      sizeof(struct sk_buff);
257
258         if (sk->sk_sndbuf < 3 * sndmem)
259                 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
260 }
261
262 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
263  *
264  * All tcp_full_space() is split to two parts: "network" buffer, allocated
265  * forward and advertised in receiver window (tp->rcv_wnd) and
266  * "application buffer", required to isolate scheduling/application
267  * latencies from network.
268  * window_clamp is maximal advertised window. It can be less than
269  * tcp_full_space(), in this case tcp_full_space() - window_clamp
270  * is reserved for "application" buffer. The less window_clamp is
271  * the smoother our behaviour from viewpoint of network, but the lower
272  * throughput and the higher sensitivity of the connection to losses. 8)
273  *
274  * rcv_ssthresh is more strict window_clamp used at "slow start"
275  * phase to predict further behaviour of this connection.
276  * It is used for two goals:
277  * - to enforce header prediction at sender, even when application
278  *   requires some significant "application buffer". It is check #1.
279  * - to prevent pruning of receive queue because of misprediction
280  *   of receiver window. Check #2.
281  *
282  * The scheme does not work when sender sends good segments opening
283  * window and then starts to feed us spaghetti. But it should work
284  * in common situations. Otherwise, we have to rely on queue collapsing.
285  */
286
287 /* Slow part of check#2. */
288 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
289 {
290         struct tcp_sock *tp = tcp_sk(sk);
291         /* Optimize this! */
292         int truesize = tcp_win_from_space(skb->truesize) >> 1;
293         int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
294
295         while (tp->rcv_ssthresh <= window) {
296                 if (truesize <= skb->len)
297                         return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
298
299                 truesize >>= 1;
300                 window >>= 1;
301         }
302         return 0;
303 }
304
305 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
306 {
307         struct tcp_sock *tp = tcp_sk(sk);
308
309         /* Check #1 */
310         if (tp->rcv_ssthresh < tp->window_clamp &&
311             (int)tp->rcv_ssthresh < tcp_space(sk) &&
312             !tcp_memory_pressure) {
313                 int incr;
314
315                 /* Check #2. Increase window, if skb with such overhead
316                  * will fit to rcvbuf in future.
317                  */
318                 if (tcp_win_from_space(skb->truesize) <= skb->len)
319                         incr = 2 * tp->advmss;
320                 else
321                         incr = __tcp_grow_window(sk, skb);
322
323                 if (incr) {
324                         tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
325                                                tp->window_clamp);
326                         inet_csk(sk)->icsk_ack.quick |= 1;
327                 }
328         }
329 }
330
331 /* 3. Tuning rcvbuf, when connection enters established state. */
332
333 static void tcp_fixup_rcvbuf(struct sock *sk)
334 {
335         struct tcp_sock *tp = tcp_sk(sk);
336         int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
337
338         /* Try to select rcvbuf so that 4 mss-sized segments
339          * will fit to window and corresponding skbs will fit to our rcvbuf.
340          * (was 3; 4 is minimum to allow fast retransmit to work.)
341          */
342         while (tcp_win_from_space(rcvmem) < tp->advmss)
343                 rcvmem += 128;
344         if (sk->sk_rcvbuf < 4 * rcvmem)
345                 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
346 }
347
348 /* 4. Try to fixup all. It is made immediately after connection enters
349  *    established state.
350  */
351 static void tcp_init_buffer_space(struct sock *sk)
352 {
353         struct tcp_sock *tp = tcp_sk(sk);
354         int maxwin;
355
356         if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
357                 tcp_fixup_rcvbuf(sk);
358         if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
359                 tcp_fixup_sndbuf(sk);
360
361         tp->rcvq_space.space = tp->rcv_wnd;
362
363         maxwin = tcp_full_space(sk);
364
365         if (tp->window_clamp >= maxwin) {
366                 tp->window_clamp = maxwin;
367
368                 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
369                         tp->window_clamp = max(maxwin -
370                                                (maxwin >> sysctl_tcp_app_win),
371                                                4 * tp->advmss);
372         }
373
374         /* Force reservation of one segment. */
375         if (sysctl_tcp_app_win &&
376             tp->window_clamp > 2 * tp->advmss &&
377             tp->window_clamp + tp->advmss > maxwin)
378                 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
379
380         tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
381         tp->snd_cwnd_stamp = tcp_time_stamp;
382 }
383
384 /* 5. Recalculate window clamp after socket hit its memory bounds. */
385 static void tcp_clamp_window(struct sock *sk)
386 {
387         struct tcp_sock *tp = tcp_sk(sk);
388         struct inet_connection_sock *icsk = inet_csk(sk);
389
390         icsk->icsk_ack.quick = 0;
391
392         if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
393             !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
394             !tcp_memory_pressure &&
395             atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
396                 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
397                                     sysctl_tcp_rmem[2]);
398         }
399         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
400                 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
401 }
402
403 /* Initialize RCV_MSS value.
404  * RCV_MSS is an our guess about MSS used by the peer.
405  * We haven't any direct information about the MSS.
406  * It's better to underestimate the RCV_MSS rather than overestimate.
407  * Overestimations make us ACKing less frequently than needed.
408  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
409  */
410 void tcp_initialize_rcv_mss(struct sock *sk)
411 {
412         struct tcp_sock *tp = tcp_sk(sk);
413         unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
414
415         hint = min(hint, tp->rcv_wnd / 2);
416         hint = min(hint, TCP_MSS_DEFAULT);
417         hint = max(hint, TCP_MIN_MSS);
418
419         inet_csk(sk)->icsk_ack.rcv_mss = hint;
420 }
421
422 /* Receiver "autotuning" code.
423  *
424  * The algorithm for RTT estimation w/o timestamps is based on
425  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
426  * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
427  *
428  * More detail on this code can be found at
429  * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
430  * though this reference is out of date.  A new paper
431  * is pending.
432  */
433 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
434 {
435         u32 new_sample = tp->rcv_rtt_est.rtt;
436         long m = sample;
437
438         if (m == 0)
439                 m = 1;
440
441         if (new_sample != 0) {
442                 /* If we sample in larger samples in the non-timestamp
443                  * case, we could grossly overestimate the RTT especially
444                  * with chatty applications or bulk transfer apps which
445                  * are stalled on filesystem I/O.
446                  *
447                  * Also, since we are only going for a minimum in the
448                  * non-timestamp case, we do not smooth things out
449                  * else with timestamps disabled convergence takes too
450                  * long.
451                  */
452                 if (!win_dep) {
453                         m -= (new_sample >> 3);
454                         new_sample += m;
455                 } else if (m < new_sample)
456                         new_sample = m << 3;
457         } else {
458                 /* No previous measure. */
459                 new_sample = m << 3;
460         }
461
462         if (tp->rcv_rtt_est.rtt != new_sample)
463                 tp->rcv_rtt_est.rtt = new_sample;
464 }
465
466 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
467 {
468         if (tp->rcv_rtt_est.time == 0)
469                 goto new_measure;
470         if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
471                 return;
472         tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
473
474 new_measure:
475         tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
476         tp->rcv_rtt_est.time = tcp_time_stamp;
477 }
478
479 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
480                                           const struct sk_buff *skb)
481 {
482         struct tcp_sock *tp = tcp_sk(sk);
483         if (tp->rx_opt.rcv_tsecr &&
484             (TCP_SKB_CB(skb)->end_seq -
485              TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
486                 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
487 }
488
489 /*
490  * This function should be called every time data is copied to user space.
491  * It calculates the appropriate TCP receive buffer space.
492  */
493 void tcp_rcv_space_adjust(struct sock *sk)
494 {
495         struct tcp_sock *tp = tcp_sk(sk);
496         int time;
497         int space;
498
499         if (tp->rcvq_space.time == 0)
500                 goto new_measure;
501
502         time = tcp_time_stamp - tp->rcvq_space.time;
503         if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
504                 return;
505
506         space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
507
508         space = max(tp->rcvq_space.space, space);
509
510         if (tp->rcvq_space.space != space) {
511                 int rcvmem;
512
513                 tp->rcvq_space.space = space;
514
515                 if (sysctl_tcp_moderate_rcvbuf &&
516                     !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
517                         int new_clamp = space;
518
519                         /* Receive space grows, normalize in order to
520                          * take into account packet headers and sk_buff
521                          * structure overhead.
522                          */
523                         space /= tp->advmss;
524                         if (!space)
525                                 space = 1;
526                         rcvmem = (tp->advmss + MAX_TCP_HEADER +
527                                   16 + sizeof(struct sk_buff));
528                         while (tcp_win_from_space(rcvmem) < tp->advmss)
529                                 rcvmem += 128;
530                         space *= rcvmem;
531                         space = min(space, sysctl_tcp_rmem[2]);
532                         if (space > sk->sk_rcvbuf) {
533                                 sk->sk_rcvbuf = space;
534
535                                 /* Make the window clamp follow along.  */
536                                 tp->window_clamp = new_clamp;
537                         }
538                 }
539         }
540
541 new_measure:
542         tp->rcvq_space.seq = tp->copied_seq;
543         tp->rcvq_space.time = tcp_time_stamp;
544 }
545
546 /* There is something which you must keep in mind when you analyze the
547  * behavior of the tp->ato delayed ack timeout interval.  When a
548  * connection starts up, we want to ack as quickly as possible.  The
549  * problem is that "good" TCP's do slow start at the beginning of data
550  * transmission.  The means that until we send the first few ACK's the
551  * sender will sit on his end and only queue most of his data, because
552  * he can only send snd_cwnd unacked packets at any given time.  For
553  * each ACK we send, he increments snd_cwnd and transmits more of his
554  * queue.  -DaveM
555  */
556 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
557 {
558         struct tcp_sock *tp = tcp_sk(sk);
559         struct inet_connection_sock *icsk = inet_csk(sk);
560         u32 now;
561
562         inet_csk_schedule_ack(sk);
563
564         tcp_measure_rcv_mss(sk, skb);
565
566         tcp_rcv_rtt_measure(tp);
567
568         now = tcp_time_stamp;
569
570         if (!icsk->icsk_ack.ato) {
571                 /* The _first_ data packet received, initialize
572                  * delayed ACK engine.
573                  */
574                 tcp_incr_quickack(sk);
575                 icsk->icsk_ack.ato = TCP_ATO_MIN;
576         } else {
577                 int m = now - icsk->icsk_ack.lrcvtime;
578
579                 if (m <= TCP_ATO_MIN / 2) {
580                         /* The fastest case is the first. */
581                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
582                 } else if (m < icsk->icsk_ack.ato) {
583                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
584                         if (icsk->icsk_ack.ato > icsk->icsk_rto)
585                                 icsk->icsk_ack.ato = icsk->icsk_rto;
586                 } else if (m > icsk->icsk_rto) {
587                         /* Too long gap. Apparently sender failed to
588                          * restart window, so that we send ACKs quickly.
589                          */
590                         tcp_incr_quickack(sk);
591                         sk_mem_reclaim(sk);
592                 }
593         }
594         icsk->icsk_ack.lrcvtime = now;
595
596         TCP_ECN_check_ce(tp, skb);
597
598         if (skb->len >= 128)
599                 tcp_grow_window(sk, skb);
600 }
601
602 /* Called to compute a smoothed rtt estimate. The data fed to this
603  * routine either comes from timestamps, or from segments that were
604  * known _not_ to have been retransmitted [see Karn/Partridge
605  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
606  * piece by Van Jacobson.
607  * NOTE: the next three routines used to be one big routine.
608  * To save cycles in the RFC 1323 implementation it was better to break
609  * it up into three procedures. -- erics
610  */
611 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
612 {
613         struct tcp_sock *tp = tcp_sk(sk);
614         long m = mrtt; /* RTT */
615
616         /*      The following amusing code comes from Jacobson's
617          *      article in SIGCOMM '88.  Note that rtt and mdev
618          *      are scaled versions of rtt and mean deviation.
619          *      This is designed to be as fast as possible
620          *      m stands for "measurement".
621          *
622          *      On a 1990 paper the rto value is changed to:
623          *      RTO = rtt + 4 * mdev
624          *
625          * Funny. This algorithm seems to be very broken.
626          * These formulae increase RTO, when it should be decreased, increase
627          * too slowly, when it should be increased quickly, decrease too quickly
628          * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
629          * does not matter how to _calculate_ it. Seems, it was trap
630          * that VJ failed to avoid. 8)
631          */
632         if (m == 0)
633                 m = 1;
634         if (tp->srtt != 0) {
635                 m -= (tp->srtt >> 3);   /* m is now error in rtt est */
636                 tp->srtt += m;          /* rtt = 7/8 rtt + 1/8 new */
637                 if (m < 0) {
638                         m = -m;         /* m is now abs(error) */
639                         m -= (tp->mdev >> 2);   /* similar update on mdev */
640                         /* This is similar to one of Eifel findings.
641                          * Eifel blocks mdev updates when rtt decreases.
642                          * This solution is a bit different: we use finer gain
643                          * for mdev in this case (alpha*beta).
644                          * Like Eifel it also prevents growth of rto,
645                          * but also it limits too fast rto decreases,
646                          * happening in pure Eifel.
647                          */
648                         if (m > 0)
649                                 m >>= 3;
650                 } else {
651                         m -= (tp->mdev >> 2);   /* similar update on mdev */
652                 }
653                 tp->mdev += m;          /* mdev = 3/4 mdev + 1/4 new */
654                 if (tp->mdev > tp->mdev_max) {
655                         tp->mdev_max = tp->mdev;
656                         if (tp->mdev_max > tp->rttvar)
657                                 tp->rttvar = tp->mdev_max;
658                 }
659                 if (after(tp->snd_una, tp->rtt_seq)) {
660                         if (tp->mdev_max < tp->rttvar)
661                                 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
662                         tp->rtt_seq = tp->snd_nxt;
663                         tp->mdev_max = tcp_rto_min(sk);
664                 }
665         } else {
666                 /* no previous measure. */
667                 tp->srtt = m << 3;      /* take the measured time to be rtt */
668                 tp->mdev = m << 1;      /* make sure rto = 3*rtt */
669                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
670                 tp->rtt_seq = tp->snd_nxt;
671         }
672 }
673
674 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
675  * routine referred to above.
676  */
677 static inline void tcp_set_rto(struct sock *sk)
678 {
679         const struct tcp_sock *tp = tcp_sk(sk);
680         /* Old crap is replaced with new one. 8)
681          *
682          * More seriously:
683          * 1. If rtt variance happened to be less 50msec, it is hallucination.
684          *    It cannot be less due to utterly erratic ACK generation made
685          *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
686          *    to do with delayed acks, because at cwnd>2 true delack timeout
687          *    is invisible. Actually, Linux-2.4 also generates erratic
688          *    ACKs in some circumstances.
689          */
690         inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
691
692         /* 2. Fixups made earlier cannot be right.
693          *    If we do not estimate RTO correctly without them,
694          *    all the algo is pure shit and should be replaced
695          *    with correct one. It is exactly, which we pretend to do.
696          */
697
698         /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
699          * guarantees that rto is higher.
700          */
701         tcp_bound_rto(sk);
702 }
703
704 /* Save metrics learned by this TCP session.
705    This function is called only, when TCP finishes successfully
706    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
707  */
708 void tcp_update_metrics(struct sock *sk)
709 {
710         struct tcp_sock *tp = tcp_sk(sk);
711         struct dst_entry *dst = __sk_dst_get(sk);
712
713         if (sysctl_tcp_nometrics_save)
714                 return;
715
716         dst_confirm(dst);
717
718         if (dst && (dst->flags & DST_HOST)) {
719                 const struct inet_connection_sock *icsk = inet_csk(sk);
720                 int m;
721                 unsigned long rtt;
722
723                 if (icsk->icsk_backoff || !tp->srtt) {
724                         /* This session failed to estimate rtt. Why?
725                          * Probably, no packets returned in time.
726                          * Reset our results.
727                          */
728                         if (!(dst_metric_locked(dst, RTAX_RTT)))
729                                 dst->metrics[RTAX_RTT - 1] = 0;
730                         return;
731                 }
732
733                 rtt = dst_metric_rtt(dst, RTAX_RTT);
734                 m = rtt - tp->srtt;
735
736                 /* If newly calculated rtt larger than stored one,
737                  * store new one. Otherwise, use EWMA. Remember,
738                  * rtt overestimation is always better than underestimation.
739                  */
740                 if (!(dst_metric_locked(dst, RTAX_RTT))) {
741                         if (m <= 0)
742                                 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
743                         else
744                                 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
745                 }
746
747                 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
748                         unsigned long var;
749                         if (m < 0)
750                                 m = -m;
751
752                         /* Scale deviation to rttvar fixed point */
753                         m >>= 1;
754                         if (m < tp->mdev)
755                                 m = tp->mdev;
756
757                         var = dst_metric_rtt(dst, RTAX_RTTVAR);
758                         if (m >= var)
759                                 var = m;
760                         else
761                                 var -= (var - m) >> 2;
762
763                         set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
764                 }
765
766                 if (tcp_in_initial_slowstart(tp)) {
767                         /* Slow start still did not finish. */
768                         if (dst_metric(dst, RTAX_SSTHRESH) &&
769                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
770                             (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
771                                 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
772                         if (!dst_metric_locked(dst, RTAX_CWND) &&
773                             tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
774                                 dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd;
775                 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
776                            icsk->icsk_ca_state == TCP_CA_Open) {
777                         /* Cong. avoidance phase, cwnd is reliable. */
778                         if (!dst_metric_locked(dst, RTAX_SSTHRESH))
779                                 dst->metrics[RTAX_SSTHRESH-1] =
780                                         max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
781                         if (!dst_metric_locked(dst, RTAX_CWND))
782                                 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_cwnd) >> 1;
783                 } else {
784                         /* Else slow start did not finish, cwnd is non-sense,
785                            ssthresh may be also invalid.
786                          */
787                         if (!dst_metric_locked(dst, RTAX_CWND))
788                                 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_ssthresh) >> 1;
789                         if (dst_metric(dst, RTAX_SSTHRESH) &&
790                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
791                             tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
792                                 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
793                 }
794
795                 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
796                         if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
797                             tp->reordering != sysctl_tcp_reordering)
798                                 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
799                 }
800         }
801 }
802
803 /* Numbers are taken from RFC3390.
804  *
805  * John Heffner states:
806  *
807  *      The RFC specifies a window of no more than 4380 bytes
808  *      unless 2*MSS > 4380.  Reading the pseudocode in the RFC
809  *      is a bit misleading because they use a clamp at 4380 bytes
810  *      rather than use a multiplier in the relevant range.
811  */
812 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
813 {
814         __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
815
816         if (!cwnd) {
817                 if (tp->mss_cache > 1460)
818                         cwnd = 2;
819                 else
820                         cwnd = (tp->mss_cache > 1095) ? 3 : 4;
821         }
822         return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
823 }
824
825 /* Set slow start threshold and cwnd not falling to slow start */
826 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
827 {
828         struct tcp_sock *tp = tcp_sk(sk);
829         const struct inet_connection_sock *icsk = inet_csk(sk);
830
831         tp->prior_ssthresh = 0;
832         tp->bytes_acked = 0;
833         if (icsk->icsk_ca_state < TCP_CA_CWR) {
834                 tp->undo_marker = 0;
835                 if (set_ssthresh)
836                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
837                 tp->snd_cwnd = min(tp->snd_cwnd,
838                                    tcp_packets_in_flight(tp) + 1U);
839                 tp->snd_cwnd_cnt = 0;
840                 tp->high_seq = tp->snd_nxt;
841                 tp->snd_cwnd_stamp = tcp_time_stamp;
842                 TCP_ECN_queue_cwr(tp);
843
844                 tcp_set_ca_state(sk, TCP_CA_CWR);
845         }
846 }
847
848 /*
849  * Packet counting of FACK is based on in-order assumptions, therefore TCP
850  * disables it when reordering is detected
851  */
852 static void tcp_disable_fack(struct tcp_sock *tp)
853 {
854         /* RFC3517 uses different metric in lost marker => reset on change */
855         if (tcp_is_fack(tp))
856                 tp->lost_skb_hint = NULL;
857         tp->rx_opt.sack_ok &= ~2;
858 }
859
860 /* Take a notice that peer is sending D-SACKs */
861 static void tcp_dsack_seen(struct tcp_sock *tp)
862 {
863         tp->rx_opt.sack_ok |= 4;
864 }
865
866 /* Initialize metrics on socket. */
867
868 static void tcp_init_metrics(struct sock *sk)
869 {
870         struct tcp_sock *tp = tcp_sk(sk);
871         struct dst_entry *dst = __sk_dst_get(sk);
872
873         if (dst == NULL)
874                 goto reset;
875
876         dst_confirm(dst);
877
878         if (dst_metric_locked(dst, RTAX_CWND))
879                 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
880         if (dst_metric(dst, RTAX_SSTHRESH)) {
881                 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
882                 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
883                         tp->snd_ssthresh = tp->snd_cwnd_clamp;
884         }
885         if (dst_metric(dst, RTAX_REORDERING) &&
886             tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
887                 tcp_disable_fack(tp);
888                 tp->reordering = dst_metric(dst, RTAX_REORDERING);
889         }
890
891         if (dst_metric(dst, RTAX_RTT) == 0)
892                 goto reset;
893
894         if (!tp->srtt && dst_metric_rtt(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
895                 goto reset;
896
897         /* Initial rtt is determined from SYN,SYN-ACK.
898          * The segment is small and rtt may appear much
899          * less than real one. Use per-dst memory
900          * to make it more realistic.
901          *
902          * A bit of theory. RTT is time passed after "normal" sized packet
903          * is sent until it is ACKed. In normal circumstances sending small
904          * packets force peer to delay ACKs and calculation is correct too.
905          * The algorithm is adaptive and, provided we follow specs, it
906          * NEVER underestimate RTT. BUT! If peer tries to make some clever
907          * tricks sort of "quick acks" for time long enough to decrease RTT
908          * to low value, and then abruptly stops to do it and starts to delay
909          * ACKs, wait for troubles.
910          */
911         if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
912                 tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
913                 tp->rtt_seq = tp->snd_nxt;
914         }
915         if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
916                 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
917                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
918         }
919         tcp_set_rto(sk);
920         if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
921                 goto reset;
922
923 cwnd:
924         tp->snd_cwnd = tcp_init_cwnd(tp, dst);
925         tp->snd_cwnd_stamp = tcp_time_stamp;
926         return;
927
928 reset:
929         /* Play conservative. If timestamps are not
930          * supported, TCP will fail to recalculate correct
931          * rtt, if initial rto is too small. FORGET ALL AND RESET!
932          */
933         if (!tp->rx_opt.saw_tstamp && tp->srtt) {
934                 tp->srtt = 0;
935                 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
936                 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
937         }
938         goto cwnd;
939 }
940
941 static void tcp_update_reordering(struct sock *sk, const int metric,
942                                   const int ts)
943 {
944         struct tcp_sock *tp = tcp_sk(sk);
945         if (metric > tp->reordering) {
946                 int mib_idx;
947
948                 tp->reordering = min(TCP_MAX_REORDERING, metric);
949
950                 /* This exciting event is worth to be remembered. 8) */
951                 if (ts)
952                         mib_idx = LINUX_MIB_TCPTSREORDER;
953                 else if (tcp_is_reno(tp))
954                         mib_idx = LINUX_MIB_TCPRENOREORDER;
955                 else if (tcp_is_fack(tp))
956                         mib_idx = LINUX_MIB_TCPFACKREORDER;
957                 else
958                         mib_idx = LINUX_MIB_TCPSACKREORDER;
959
960                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
961 #if FASTRETRANS_DEBUG > 1
962                 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
963                        tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
964                        tp->reordering,
965                        tp->fackets_out,
966                        tp->sacked_out,
967                        tp->undo_marker ? tp->undo_retrans : 0);
968 #endif
969                 tcp_disable_fack(tp);
970         }
971 }
972
973 /* This must be called before lost_out is incremented */
974 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
975 {
976         if ((tp->retransmit_skb_hint == NULL) ||
977             before(TCP_SKB_CB(skb)->seq,
978                    TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
979                 tp->retransmit_skb_hint = skb;
980
981         if (!tp->lost_out ||
982             after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
983                 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
984 }
985
986 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
987 {
988         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
989                 tcp_verify_retransmit_hint(tp, skb);
990
991                 tp->lost_out += tcp_skb_pcount(skb);
992                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
993         }
994 }
995
996 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
997                                             struct sk_buff *skb)
998 {
999         tcp_verify_retransmit_hint(tp, skb);
1000
1001         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1002                 tp->lost_out += tcp_skb_pcount(skb);
1003                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1004         }
1005 }
1006
1007 /* This procedure tags the retransmission queue when SACKs arrive.
1008  *
1009  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1010  * Packets in queue with these bits set are counted in variables
1011  * sacked_out, retrans_out and lost_out, correspondingly.
1012  *
1013  * Valid combinations are:
1014  * Tag  InFlight        Description
1015  * 0    1               - orig segment is in flight.
1016  * S    0               - nothing flies, orig reached receiver.
1017  * L    0               - nothing flies, orig lost by net.
1018  * R    2               - both orig and retransmit are in flight.
1019  * L|R  1               - orig is lost, retransmit is in flight.
1020  * S|R  1               - orig reached receiver, retrans is still in flight.
1021  * (L|S|R is logically valid, it could occur when L|R is sacked,
1022  *  but it is equivalent to plain S and code short-curcuits it to S.
1023  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1024  *
1025  * These 6 states form finite state machine, controlled by the following events:
1026  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1027  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1028  * 3. Loss detection event of one of three flavors:
1029  *      A. Scoreboard estimator decided the packet is lost.
1030  *         A'. Reno "three dupacks" marks head of queue lost.
1031  *         A''. Its FACK modfication, head until snd.fack is lost.
1032  *      B. SACK arrives sacking data transmitted after never retransmitted
1033  *         hole was sent out.
1034  *      C. SACK arrives sacking SND.NXT at the moment, when the
1035  *         segment was retransmitted.
1036  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1037  *
1038  * It is pleasant to note, that state diagram turns out to be commutative,
1039  * so that we are allowed not to be bothered by order of our actions,
1040  * when multiple events arrive simultaneously. (see the function below).
1041  *
1042  * Reordering detection.
1043  * --------------------
1044  * Reordering metric is maximal distance, which a packet can be displaced
1045  * in packet stream. With SACKs we can estimate it:
1046  *
1047  * 1. SACK fills old hole and the corresponding segment was not
1048  *    ever retransmitted -> reordering. Alas, we cannot use it
1049  *    when segment was retransmitted.
1050  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1051  *    for retransmitted and already SACKed segment -> reordering..
1052  * Both of these heuristics are not used in Loss state, when we cannot
1053  * account for retransmits accurately.
1054  *
1055  * SACK block validation.
1056  * ----------------------
1057  *
1058  * SACK block range validation checks that the received SACK block fits to
1059  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1060  * Note that SND.UNA is not included to the range though being valid because
1061  * it means that the receiver is rather inconsistent with itself reporting
1062  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1063  * perfectly valid, however, in light of RFC2018 which explicitly states
1064  * that "SACK block MUST reflect the newest segment.  Even if the newest
1065  * segment is going to be discarded ...", not that it looks very clever
1066  * in case of head skb. Due to potentional receiver driven attacks, we
1067  * choose to avoid immediate execution of a walk in write queue due to
1068  * reneging and defer head skb's loss recovery to standard loss recovery
1069  * procedure that will eventually trigger (nothing forbids us doing this).
1070  *
1071  * Implements also blockage to start_seq wrap-around. Problem lies in the
1072  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1073  * there's no guarantee that it will be before snd_nxt (n). The problem
1074  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1075  * wrap (s_w):
1076  *
1077  *         <- outs wnd ->                          <- wrapzone ->
1078  *         u     e      n                         u_w   e_w  s n_w
1079  *         |     |      |                          |     |   |  |
1080  * |<------------+------+----- TCP seqno space --------------+---------->|
1081  * ...-- <2^31 ->|                                           |<--------...
1082  * ...---- >2^31 ------>|                                    |<--------...
1083  *
1084  * Current code wouldn't be vulnerable but it's better still to discard such
1085  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1086  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1087  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1088  * equal to the ideal case (infinite seqno space without wrap caused issues).
1089  *
1090  * With D-SACK the lower bound is extended to cover sequence space below
1091  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1092  * again, D-SACK block must not to go across snd_una (for the same reason as
1093  * for the normal SACK blocks, explained above). But there all simplicity
1094  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1095  * fully below undo_marker they do not affect behavior in anyway and can
1096  * therefore be safely ignored. In rare cases (which are more or less
1097  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1098  * fragmentation and packet reordering past skb's retransmission. To consider
1099  * them correctly, the acceptable range must be extended even more though
1100  * the exact amount is rather hard to quantify. However, tp->max_window can
1101  * be used as an exaggerated estimate.
1102  */
1103 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1104                                   u32 start_seq, u32 end_seq)
1105 {
1106         /* Too far in future, or reversed (interpretation is ambiguous) */
1107         if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1108                 return 0;
1109
1110         /* Nasty start_seq wrap-around check (see comments above) */
1111         if (!before(start_seq, tp->snd_nxt))
1112                 return 0;
1113
1114         /* In outstanding window? ...This is valid exit for D-SACKs too.
1115          * start_seq == snd_una is non-sensical (see comments above)
1116          */
1117         if (after(start_seq, tp->snd_una))
1118                 return 1;
1119
1120         if (!is_dsack || !tp->undo_marker)
1121                 return 0;
1122
1123         /* ...Then it's D-SACK, and must reside below snd_una completely */
1124         if (!after(end_seq, tp->snd_una))
1125                 return 0;
1126
1127         if (!before(start_seq, tp->undo_marker))
1128                 return 1;
1129
1130         /* Too old */
1131         if (!after(end_seq, tp->undo_marker))
1132                 return 0;
1133
1134         /* Undo_marker boundary crossing (overestimates a lot). Known already:
1135          *   start_seq < undo_marker and end_seq >= undo_marker.
1136          */
1137         return !before(start_seq, end_seq - tp->max_window);
1138 }
1139
1140 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1141  * Event "C". Later note: FACK people cheated me again 8), we have to account
1142  * for reordering! Ugly, but should help.
1143  *
1144  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1145  * less than what is now known to be received by the other end (derived from
1146  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1147  * retransmitted skbs to avoid some costly processing per ACKs.
1148  */
1149 static void tcp_mark_lost_retrans(struct sock *sk)
1150 {
1151         const struct inet_connection_sock *icsk = inet_csk(sk);
1152         struct tcp_sock *tp = tcp_sk(sk);
1153         struct sk_buff *skb;
1154         int cnt = 0;
1155         u32 new_low_seq = tp->snd_nxt;
1156         u32 received_upto = tcp_highest_sack_seq(tp);
1157
1158         if (!tcp_is_fack(tp) || !tp->retrans_out ||
1159             !after(received_upto, tp->lost_retrans_low) ||
1160             icsk->icsk_ca_state != TCP_CA_Recovery)
1161                 return;
1162
1163         tcp_for_write_queue(skb, sk) {
1164                 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1165
1166                 if (skb == tcp_send_head(sk))
1167                         break;
1168                 if (cnt == tp->retrans_out)
1169                         break;
1170                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1171                         continue;
1172
1173                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1174                         continue;
1175
1176                 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1177                  * constraint here (see above) but figuring out that at
1178                  * least tp->reordering SACK blocks reside between ack_seq
1179                  * and received_upto is not easy task to do cheaply with
1180                  * the available datastructures.
1181                  *
1182                  * Whether FACK should check here for tp->reordering segs
1183                  * in-between one could argue for either way (it would be
1184                  * rather simple to implement as we could count fack_count
1185                  * during the walk and do tp->fackets_out - fack_count).
1186                  */
1187                 if (after(received_upto, ack_seq)) {
1188                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1189                         tp->retrans_out -= tcp_skb_pcount(skb);
1190
1191                         tcp_skb_mark_lost_uncond_verify(tp, skb);
1192                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1193                 } else {
1194                         if (before(ack_seq, new_low_seq))
1195                                 new_low_seq = ack_seq;
1196                         cnt += tcp_skb_pcount(skb);
1197                 }
1198         }
1199
1200         if (tp->retrans_out)
1201                 tp->lost_retrans_low = new_low_seq;
1202 }
1203
1204 static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb,
1205                            struct tcp_sack_block_wire *sp, int num_sacks,
1206                            u32 prior_snd_una)
1207 {
1208         struct tcp_sock *tp = tcp_sk(sk);
1209         u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1210         u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1211         int dup_sack = 0;
1212
1213         if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1214                 dup_sack = 1;
1215                 tcp_dsack_seen(tp);
1216                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1217         } else if (num_sacks > 1) {
1218                 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1219                 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1220
1221                 if (!after(end_seq_0, end_seq_1) &&
1222                     !before(start_seq_0, start_seq_1)) {
1223                         dup_sack = 1;
1224                         tcp_dsack_seen(tp);
1225                         NET_INC_STATS_BH(sock_net(sk),
1226                                         LINUX_MIB_TCPDSACKOFORECV);
1227                 }
1228         }
1229
1230         /* D-SACK for already forgotten data... Do dumb counting. */
1231         if (dup_sack &&
1232             !after(end_seq_0, prior_snd_una) &&
1233             after(end_seq_0, tp->undo_marker))
1234                 tp->undo_retrans--;
1235
1236         return dup_sack;
1237 }
1238
1239 struct tcp_sacktag_state {
1240         int reord;
1241         int fack_count;
1242         int flag;
1243 };
1244
1245 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1246  * the incoming SACK may not exactly match but we can find smaller MSS
1247  * aligned portion of it that matches. Therefore we might need to fragment
1248  * which may fail and creates some hassle (caller must handle error case
1249  * returns).
1250  *
1251  * FIXME: this could be merged to shift decision code
1252  */
1253 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1254                                  u32 start_seq, u32 end_seq)
1255 {
1256         int in_sack, err;
1257         unsigned int pkt_len;
1258         unsigned int mss;
1259
1260         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1261                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1262
1263         if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1264             after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1265                 mss = tcp_skb_mss(skb);
1266                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1267
1268                 if (!in_sack) {
1269                         pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1270                         if (pkt_len < mss)
1271                                 pkt_len = mss;
1272                 } else {
1273                         pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1274                         if (pkt_len < mss)
1275                                 return -EINVAL;
1276                 }
1277
1278                 /* Round if necessary so that SACKs cover only full MSSes
1279                  * and/or the remaining small portion (if present)
1280                  */
1281                 if (pkt_len > mss) {
1282                         unsigned int new_len = (pkt_len / mss) * mss;
1283                         if (!in_sack && new_len < pkt_len) {
1284                                 new_len += mss;
1285                                 if (new_len > skb->len)
1286                                         return 0;
1287                         }
1288                         pkt_len = new_len;
1289                 }
1290                 err = tcp_fragment(sk, skb, pkt_len, mss);
1291                 if (err < 0)
1292                         return err;
1293         }
1294
1295         return in_sack;
1296 }
1297
1298 static u8 tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1299                           struct tcp_sacktag_state *state,
1300                           int dup_sack, int pcount)
1301 {
1302         struct tcp_sock *tp = tcp_sk(sk);
1303         u8 sacked = TCP_SKB_CB(skb)->sacked;
1304         int fack_count = state->fack_count;
1305
1306         /* Account D-SACK for retransmitted packet. */
1307         if (dup_sack && (sacked & TCPCB_RETRANS)) {
1308                 if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1309                         tp->undo_retrans--;
1310                 if (sacked & TCPCB_SACKED_ACKED)
1311                         state->reord = min(fack_count, state->reord);
1312         }
1313
1314         /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1315         if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1316                 return sacked;
1317
1318         if (!(sacked & TCPCB_SACKED_ACKED)) {
1319                 if (sacked & TCPCB_SACKED_RETRANS) {
1320                         /* If the segment is not tagged as lost,
1321                          * we do not clear RETRANS, believing
1322                          * that retransmission is still in flight.
1323                          */
1324                         if (sacked & TCPCB_LOST) {
1325                                 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1326                                 tp->lost_out -= pcount;
1327                                 tp->retrans_out -= pcount;
1328                         }
1329                 } else {
1330                         if (!(sacked & TCPCB_RETRANS)) {
1331                                 /* New sack for not retransmitted frame,
1332                                  * which was in hole. It is reordering.
1333                                  */
1334                                 if (before(TCP_SKB_CB(skb)->seq,
1335                                            tcp_highest_sack_seq(tp)))
1336                                         state->reord = min(fack_count,
1337                                                            state->reord);
1338
1339                                 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1340                                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1341                                         state->flag |= FLAG_ONLY_ORIG_SACKED;
1342                         }
1343
1344                         if (sacked & TCPCB_LOST) {
1345                                 sacked &= ~TCPCB_LOST;
1346                                 tp->lost_out -= pcount;
1347                         }
1348                 }
1349
1350                 sacked |= TCPCB_SACKED_ACKED;
1351                 state->flag |= FLAG_DATA_SACKED;
1352                 tp->sacked_out += pcount;
1353
1354                 fack_count += pcount;
1355
1356                 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1357                 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1358                     before(TCP_SKB_CB(skb)->seq,
1359                            TCP_SKB_CB(tp->lost_skb_hint)->seq))
1360                         tp->lost_cnt_hint += pcount;
1361
1362                 if (fack_count > tp->fackets_out)
1363                         tp->fackets_out = fack_count;
1364         }
1365
1366         /* D-SACK. We can detect redundant retransmission in S|R and plain R
1367          * frames and clear it. undo_retrans is decreased above, L|R frames
1368          * are accounted above as well.
1369          */
1370         if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1371                 sacked &= ~TCPCB_SACKED_RETRANS;
1372                 tp->retrans_out -= pcount;
1373         }
1374
1375         return sacked;
1376 }
1377
1378 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1379                            struct tcp_sacktag_state *state,
1380                            unsigned int pcount, int shifted, int mss,
1381                            int dup_sack)
1382 {
1383         struct tcp_sock *tp = tcp_sk(sk);
1384         struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1385
1386         BUG_ON(!pcount);
1387
1388         /* Tweak before seqno plays */
1389         if (!tcp_is_fack(tp) && tcp_is_sack(tp) && tp->lost_skb_hint &&
1390             !before(TCP_SKB_CB(tp->lost_skb_hint)->seq, TCP_SKB_CB(skb)->seq))
1391                 tp->lost_cnt_hint += pcount;
1392
1393         TCP_SKB_CB(prev)->end_seq += shifted;
1394         TCP_SKB_CB(skb)->seq += shifted;
1395
1396         skb_shinfo(prev)->gso_segs += pcount;
1397         BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1398         skb_shinfo(skb)->gso_segs -= pcount;
1399
1400         /* When we're adding to gso_segs == 1, gso_size will be zero,
1401          * in theory this shouldn't be necessary but as long as DSACK
1402          * code can come after this skb later on it's better to keep
1403          * setting gso_size to something.
1404          */
1405         if (!skb_shinfo(prev)->gso_size) {
1406                 skb_shinfo(prev)->gso_size = mss;
1407                 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1408         }
1409
1410         /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1411         if (skb_shinfo(skb)->gso_segs <= 1) {
1412                 skb_shinfo(skb)->gso_size = 0;
1413                 skb_shinfo(skb)->gso_type = 0;
1414         }
1415
1416         /* We discard results */
1417         tcp_sacktag_one(skb, sk, state, dup_sack, pcount);
1418
1419         /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1420         TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1421
1422         if (skb->len > 0) {
1423                 BUG_ON(!tcp_skb_pcount(skb));
1424                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1425                 return 0;
1426         }
1427
1428         /* Whole SKB was eaten :-) */
1429
1430         if (skb == tp->retransmit_skb_hint)
1431                 tp->retransmit_skb_hint = prev;
1432         if (skb == tp->scoreboard_skb_hint)
1433                 tp->scoreboard_skb_hint = prev;
1434         if (skb == tp->lost_skb_hint) {
1435                 tp->lost_skb_hint = prev;
1436                 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1437         }
1438
1439         TCP_SKB_CB(skb)->flags |= TCP_SKB_CB(prev)->flags;
1440         if (skb == tcp_highest_sack(sk))
1441                 tcp_advance_highest_sack(sk, skb);
1442
1443         tcp_unlink_write_queue(skb, sk);
1444         sk_wmem_free_skb(sk, skb);
1445
1446         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1447
1448         return 1;
1449 }
1450
1451 /* I wish gso_size would have a bit more sane initialization than
1452  * something-or-zero which complicates things
1453  */
1454 static int tcp_skb_seglen(struct sk_buff *skb)
1455 {
1456         return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1457 }
1458
1459 /* Shifting pages past head area doesn't work */
1460 static int skb_can_shift(struct sk_buff *skb)
1461 {
1462         return !skb_headlen(skb) && skb_is_nonlinear(skb);
1463 }
1464
1465 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1466  * skb.
1467  */
1468 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1469                                           struct tcp_sacktag_state *state,
1470                                           u32 start_seq, u32 end_seq,
1471                                           int dup_sack)
1472 {
1473         struct tcp_sock *tp = tcp_sk(sk);
1474         struct sk_buff *prev;
1475         int mss;
1476         int pcount = 0;
1477         int len;
1478         int in_sack;
1479
1480         if (!sk_can_gso(sk))
1481                 goto fallback;
1482
1483         /* Normally R but no L won't result in plain S */
1484         if (!dup_sack &&
1485             (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1486                 goto fallback;
1487         if (!skb_can_shift(skb))
1488                 goto fallback;
1489         /* This frame is about to be dropped (was ACKed). */
1490         if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1491                 goto fallback;
1492
1493         /* Can only happen with delayed DSACK + discard craziness */
1494         if (unlikely(skb == tcp_write_queue_head(sk)))
1495                 goto fallback;
1496         prev = tcp_write_queue_prev(sk, skb);
1497
1498         if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1499                 goto fallback;
1500
1501         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1502                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1503
1504         if (in_sack) {
1505                 len = skb->len;
1506                 pcount = tcp_skb_pcount(skb);
1507                 mss = tcp_skb_seglen(skb);
1508
1509                 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1510                  * drop this restriction as unnecessary
1511                  */
1512                 if (mss != tcp_skb_seglen(prev))
1513                         goto fallback;
1514         } else {
1515                 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1516                         goto noop;
1517                 /* CHECKME: This is non-MSS split case only?, this will
1518                  * cause skipped skbs due to advancing loop btw, original
1519                  * has that feature too
1520                  */
1521                 if (tcp_skb_pcount(skb) <= 1)
1522                         goto noop;
1523
1524                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1525                 if (!in_sack) {
1526                         /* TODO: head merge to next could be attempted here
1527                          * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1528                          * though it might not be worth of the additional hassle
1529                          *
1530                          * ...we can probably just fallback to what was done
1531                          * previously. We could try merging non-SACKed ones
1532                          * as well but it probably isn't going to buy off
1533                          * because later SACKs might again split them, and
1534                          * it would make skb timestamp tracking considerably
1535                          * harder problem.
1536                          */
1537                         goto fallback;
1538                 }
1539
1540                 len = end_seq - TCP_SKB_CB(skb)->seq;
1541                 BUG_ON(len < 0);
1542                 BUG_ON(len > skb->len);
1543
1544                 /* MSS boundaries should be honoured or else pcount will
1545                  * severely break even though it makes things bit trickier.
1546                  * Optimize common case to avoid most of the divides
1547                  */
1548                 mss = tcp_skb_mss(skb);
1549
1550                 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1551                  * drop this restriction as unnecessary
1552                  */
1553                 if (mss != tcp_skb_seglen(prev))
1554                         goto fallback;
1555
1556                 if (len == mss) {
1557                         pcount = 1;
1558                 } else if (len < mss) {
1559                         goto noop;
1560                 } else {
1561                         pcount = len / mss;
1562                         len = pcount * mss;
1563                 }
1564         }
1565
1566         if (!skb_shift(prev, skb, len))
1567                 goto fallback;
1568         if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1569                 goto out;
1570
1571         /* Hole filled allows collapsing with the next as well, this is very
1572          * useful when hole on every nth skb pattern happens
1573          */
1574         if (prev == tcp_write_queue_tail(sk))
1575                 goto out;
1576         skb = tcp_write_queue_next(sk, prev);
1577
1578         if (!skb_can_shift(skb) ||
1579             (skb == tcp_send_head(sk)) ||
1580             ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1581             (mss != tcp_skb_seglen(skb)))
1582                 goto out;
1583
1584         len = skb->len;
1585         if (skb_shift(prev, skb, len)) {
1586                 pcount += tcp_skb_pcount(skb);
1587                 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1588         }
1589
1590 out:
1591         state->fack_count += pcount;
1592         return prev;
1593
1594 noop:
1595         return skb;
1596
1597 fallback:
1598         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1599         return NULL;
1600 }
1601
1602 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1603                                         struct tcp_sack_block *next_dup,
1604                                         struct tcp_sacktag_state *state,
1605                                         u32 start_seq, u32 end_seq,
1606                                         int dup_sack_in)
1607 {
1608         struct tcp_sock *tp = tcp_sk(sk);
1609         struct sk_buff *tmp;
1610
1611         tcp_for_write_queue_from(skb, sk) {
1612                 int in_sack = 0;
1613                 int dup_sack = dup_sack_in;
1614
1615                 if (skb == tcp_send_head(sk))
1616                         break;
1617
1618                 /* queue is in-order => we can short-circuit the walk early */
1619                 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1620                         break;
1621
1622                 if ((next_dup != NULL) &&
1623                     before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1624                         in_sack = tcp_match_skb_to_sack(sk, skb,
1625                                                         next_dup->start_seq,
1626                                                         next_dup->end_seq);
1627                         if (in_sack > 0)
1628                                 dup_sack = 1;
1629                 }
1630
1631                 /* skb reference here is a bit tricky to get right, since
1632                  * shifting can eat and free both this skb and the next,
1633                  * so not even _safe variant of the loop is enough.
1634                  */
1635                 if (in_sack <= 0) {
1636                         tmp = tcp_shift_skb_data(sk, skb, state,
1637                                                  start_seq, end_seq, dup_sack);
1638                         if (tmp != NULL) {
1639                                 if (tmp != skb) {
1640                                         skb = tmp;
1641                                         continue;
1642                                 }
1643
1644                                 in_sack = 0;
1645                         } else {
1646                                 in_sack = tcp_match_skb_to_sack(sk, skb,
1647                                                                 start_seq,
1648                                                                 end_seq);
1649                         }
1650                 }
1651
1652                 if (unlikely(in_sack < 0))
1653                         break;
1654
1655                 if (in_sack) {
1656                         TCP_SKB_CB(skb)->sacked = tcp_sacktag_one(skb, sk,
1657                                                                   state,
1658                                                                   dup_sack,
1659                                                                   tcp_skb_pcount(skb));
1660
1661                         if (!before(TCP_SKB_CB(skb)->seq,
1662                                     tcp_highest_sack_seq(tp)))
1663                                 tcp_advance_highest_sack(sk, skb);
1664                 }
1665
1666                 state->fack_count += tcp_skb_pcount(skb);
1667         }
1668         return skb;
1669 }
1670
1671 /* Avoid all extra work that is being done by sacktag while walking in
1672  * a normal way
1673  */
1674 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1675                                         struct tcp_sacktag_state *state,
1676                                         u32 skip_to_seq)
1677 {
1678         tcp_for_write_queue_from(skb, sk) {
1679                 if (skb == tcp_send_head(sk))
1680                         break;
1681
1682                 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1683                         break;
1684
1685                 state->fack_count += tcp_skb_pcount(skb);
1686         }
1687         return skb;
1688 }
1689
1690 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1691                                                 struct sock *sk,
1692                                                 struct tcp_sack_block *next_dup,
1693                                                 struct tcp_sacktag_state *state,
1694                                                 u32 skip_to_seq)
1695 {
1696         if (next_dup == NULL)
1697                 return skb;
1698
1699         if (before(next_dup->start_seq, skip_to_seq)) {
1700                 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1701                 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1702                                        next_dup->start_seq, next_dup->end_seq,
1703                                        1);
1704         }
1705
1706         return skb;
1707 }
1708
1709 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1710 {
1711         return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1712 }
1713
1714 static int
1715 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1716                         u32 prior_snd_una)
1717 {
1718         const struct inet_connection_sock *icsk = inet_csk(sk);
1719         struct tcp_sock *tp = tcp_sk(sk);
1720         unsigned char *ptr = (skb_transport_header(ack_skb) +
1721                               TCP_SKB_CB(ack_skb)->sacked);
1722         struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1723         struct tcp_sack_block sp[TCP_NUM_SACKS];
1724         struct tcp_sack_block *cache;
1725         struct tcp_sacktag_state state;
1726         struct sk_buff *skb;
1727         int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1728         int used_sacks;
1729         int found_dup_sack = 0;
1730         int i, j;
1731         int first_sack_index;
1732
1733         state.flag = 0;
1734         state.reord = tp->packets_out;
1735
1736         if (!tp->sacked_out) {
1737                 if (WARN_ON(tp->fackets_out))
1738                         tp->fackets_out = 0;
1739                 tcp_highest_sack_reset(sk);
1740         }
1741
1742         found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1743                                          num_sacks, prior_snd_una);
1744         if (found_dup_sack)
1745                 state.flag |= FLAG_DSACKING_ACK;
1746
1747         /* Eliminate too old ACKs, but take into
1748          * account more or less fresh ones, they can
1749          * contain valid SACK info.
1750          */
1751         if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1752                 return 0;
1753
1754         if (!tp->packets_out)
1755                 goto out;
1756
1757         used_sacks = 0;
1758         first_sack_index = 0;
1759         for (i = 0; i < num_sacks; i++) {
1760                 int dup_sack = !i && found_dup_sack;
1761
1762                 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1763                 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1764
1765                 if (!tcp_is_sackblock_valid(tp, dup_sack,
1766                                             sp[used_sacks].start_seq,
1767                                             sp[used_sacks].end_seq)) {
1768                         int mib_idx;
1769
1770                         if (dup_sack) {
1771                                 if (!tp->undo_marker)
1772                                         mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1773                                 else
1774                                         mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1775                         } else {
1776                                 /* Don't count olds caused by ACK reordering */
1777                                 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1778                                     !after(sp[used_sacks].end_seq, tp->snd_una))
1779                                         continue;
1780                                 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1781                         }
1782
1783                         NET_INC_STATS_BH(sock_net(sk), mib_idx);
1784                         if (i == 0)
1785                                 first_sack_index = -1;
1786                         continue;
1787                 }
1788
1789                 /* Ignore very old stuff early */
1790                 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1791                         continue;
1792
1793                 used_sacks++;
1794         }
1795
1796         /* order SACK blocks to allow in order walk of the retrans queue */
1797         for (i = used_sacks - 1; i > 0; i--) {
1798                 for (j = 0; j < i; j++) {
1799                         if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1800                                 swap(sp[j], sp[j + 1]);
1801
1802                                 /* Track where the first SACK block goes to */
1803                                 if (j == first_sack_index)
1804                                         first_sack_index = j + 1;
1805                         }
1806                 }
1807         }
1808
1809         skb = tcp_write_queue_head(sk);
1810         state.fack_count = 0;
1811         i = 0;
1812
1813         if (!tp->sacked_out) {
1814                 /* It's already past, so skip checking against it */
1815                 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1816         } else {
1817                 cache = tp->recv_sack_cache;
1818                 /* Skip empty blocks in at head of the cache */
1819                 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1820                        !cache->end_seq)
1821                         cache++;
1822         }
1823
1824         while (i < used_sacks) {
1825                 u32 start_seq = sp[i].start_seq;
1826                 u32 end_seq = sp[i].end_seq;
1827                 int dup_sack = (found_dup_sack && (i == first_sack_index));
1828                 struct tcp_sack_block *next_dup = NULL;
1829
1830                 if (found_dup_sack && ((i + 1) == first_sack_index))
1831                         next_dup = &sp[i + 1];
1832
1833                 /* Event "B" in the comment above. */
1834                 if (after(end_seq, tp->high_seq))
1835                         state.flag |= FLAG_DATA_LOST;
1836
1837                 /* Skip too early cached blocks */
1838                 while (tcp_sack_cache_ok(tp, cache) &&
1839                        !before(start_seq, cache->end_seq))
1840                         cache++;
1841
1842                 /* Can skip some work by looking recv_sack_cache? */
1843                 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1844                     after(end_seq, cache->start_seq)) {
1845
1846                         /* Head todo? */
1847                         if (before(start_seq, cache->start_seq)) {
1848                                 skb = tcp_sacktag_skip(skb, sk, &state,
1849                                                        start_seq);
1850                                 skb = tcp_sacktag_walk(skb, sk, next_dup,
1851                                                        &state,
1852                                                        start_seq,
1853                                                        cache->start_seq,
1854                                                        dup_sack);
1855                         }
1856
1857                         /* Rest of the block already fully processed? */
1858                         if (!after(end_seq, cache->end_seq))
1859                                 goto advance_sp;
1860
1861                         skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1862                                                        &state,
1863                                                        cache->end_seq);
1864
1865                         /* ...tail remains todo... */
1866                         if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1867                                 /* ...but better entrypoint exists! */
1868                                 skb = tcp_highest_sack(sk);
1869                                 if (skb == NULL)
1870                                         break;
1871                                 state.fack_count = tp->fackets_out;
1872                                 cache++;
1873                                 goto walk;
1874                         }
1875
1876                         skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1877                         /* Check overlap against next cached too (past this one already) */
1878                         cache++;
1879                         continue;
1880                 }
1881
1882                 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1883                         skb = tcp_highest_sack(sk);
1884                         if (skb == NULL)
1885                                 break;
1886                         state.fack_count = tp->fackets_out;
1887                 }
1888                 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1889
1890 walk:
1891                 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1892                                        start_seq, end_seq, dup_sack);
1893
1894 advance_sp:
1895                 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1896                  * due to in-order walk
1897                  */
1898                 if (after(end_seq, tp->frto_highmark))
1899                         state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1900
1901                 i++;
1902         }
1903
1904         /* Clear the head of the cache sack blocks so we can skip it next time */
1905         for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1906                 tp->recv_sack_cache[i].start_seq = 0;
1907                 tp->recv_sack_cache[i].end_seq = 0;
1908         }
1909         for (j = 0; j < used_sacks; j++)
1910                 tp->recv_sack_cache[i++] = sp[j];
1911
1912         tcp_mark_lost_retrans(sk);
1913
1914         tcp_verify_left_out(tp);
1915
1916         if ((state.reord < tp->fackets_out) &&
1917             ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1918             (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1919                 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1920
1921 out:
1922
1923 #if FASTRETRANS_DEBUG > 0
1924         WARN_ON((int)tp->sacked_out < 0);
1925         WARN_ON((int)tp->lost_out < 0);
1926         WARN_ON((int)tp->retrans_out < 0);
1927         WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1928 #endif
1929         return state.flag;
1930 }
1931
1932 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1933  * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1934  */
1935 static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1936 {
1937         u32 holes;
1938
1939         holes = max(tp->lost_out, 1U);
1940         holes = min(holes, tp->packets_out);
1941
1942         if ((tp->sacked_out + holes) > tp->packets_out) {
1943                 tp->sacked_out = tp->packets_out - holes;
1944                 return 1;
1945         }
1946         return 0;
1947 }
1948
1949 /* If we receive more dupacks than we expected counting segments
1950  * in assumption of absent reordering, interpret this as reordering.
1951  * The only another reason could be bug in receiver TCP.
1952  */
1953 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1954 {
1955         struct tcp_sock *tp = tcp_sk(sk);
1956         if (tcp_limit_reno_sacked(tp))
1957                 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1958 }
1959
1960 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1961
1962 static void tcp_add_reno_sack(struct sock *sk)
1963 {
1964         struct tcp_sock *tp = tcp_sk(sk);
1965         tp->sacked_out++;
1966         tcp_check_reno_reordering(sk, 0);
1967         tcp_verify_left_out(tp);
1968 }
1969
1970 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1971
1972 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1973 {
1974         struct tcp_sock *tp = tcp_sk(sk);
1975
1976         if (acked > 0) {
1977                 /* One ACK acked hole. The rest eat duplicate ACKs. */
1978                 if (acked - 1 >= tp->sacked_out)
1979                         tp->sacked_out = 0;
1980                 else
1981                         tp->sacked_out -= acked - 1;
1982         }
1983         tcp_check_reno_reordering(sk, acked);
1984         tcp_verify_left_out(tp);
1985 }
1986
1987 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1988 {
1989         tp->sacked_out = 0;
1990 }
1991
1992 static int tcp_is_sackfrto(const struct tcp_sock *tp)
1993 {
1994         return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
1995 }
1996
1997 /* F-RTO can only be used if TCP has never retransmitted anything other than
1998  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1999  */
2000 int tcp_use_frto(struct sock *sk)
2001 {
2002         const struct tcp_sock *tp = tcp_sk(sk);
2003         const struct inet_connection_sock *icsk = inet_csk(sk);
2004         struct sk_buff *skb;
2005
2006         if (!sysctl_tcp_frto)
2007                 return 0;
2008
2009         /* MTU probe and F-RTO won't really play nicely along currently */
2010         if (icsk->icsk_mtup.probe_size)
2011                 return 0;
2012
2013         if (tcp_is_sackfrto(tp))
2014                 return 1;
2015
2016         /* Avoid expensive walking of rexmit queue if possible */
2017         if (tp->retrans_out > 1)
2018                 return 0;
2019
2020         skb = tcp_write_queue_head(sk);
2021         if (tcp_skb_is_last(sk, skb))
2022                 return 1;
2023         skb = tcp_write_queue_next(sk, skb);    /* Skips head */
2024         tcp_for_write_queue_from(skb, sk) {
2025                 if (skb == tcp_send_head(sk))
2026                         break;
2027                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2028                         return 0;
2029                 /* Short-circuit when first non-SACKed skb has been checked */
2030                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2031                         break;
2032         }
2033         return 1;
2034 }
2035
2036 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2037  * recovery a bit and use heuristics in tcp_process_frto() to detect if
2038  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2039  * keep retrans_out counting accurate (with SACK F-RTO, other than head
2040  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2041  * bits are handled if the Loss state is really to be entered (in
2042  * tcp_enter_frto_loss).
2043  *
2044  * Do like tcp_enter_loss() would; when RTO expires the second time it
2045  * does:
2046  *  "Reduce ssthresh if it has not yet been made inside this window."
2047  */
2048 void tcp_enter_frto(struct sock *sk)
2049 {
2050         const struct inet_connection_sock *icsk = inet_csk(sk);
2051         struct tcp_sock *tp = tcp_sk(sk);
2052         struct sk_buff *skb;
2053
2054         if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2055             tp->snd_una == tp->high_seq ||
2056             ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2057              !icsk->icsk_retransmits)) {
2058                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2059                 /* Our state is too optimistic in ssthresh() call because cwnd
2060                  * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2061                  * recovery has not yet completed. Pattern would be this: RTO,
2062                  * Cumulative ACK, RTO (2xRTO for the same segment does not end
2063                  * up here twice).
2064                  * RFC4138 should be more specific on what to do, even though
2065                  * RTO is quite unlikely to occur after the first Cumulative ACK
2066                  * due to back-off and complexity of triggering events ...
2067                  */
2068                 if (tp->frto_counter) {
2069                         u32 stored_cwnd;
2070                         stored_cwnd = tp->snd_cwnd;
2071                         tp->snd_cwnd = 2;
2072                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2073                         tp->snd_cwnd = stored_cwnd;
2074                 } else {
2075                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2076                 }
2077                 /* ... in theory, cong.control module could do "any tricks" in
2078                  * ssthresh(), which means that ca_state, lost bits and lost_out
2079                  * counter would have to be faked before the call occurs. We
2080                  * consider that too expensive, unlikely and hacky, so modules
2081                  * using these in ssthresh() must deal these incompatibility
2082                  * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2083                  */
2084                 tcp_ca_event(sk, CA_EVENT_FRTO);
2085         }
2086
2087         tp->undo_marker = tp->snd_una;
2088         tp->undo_retrans = 0;
2089
2090         skb = tcp_write_queue_head(sk);
2091         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2092                 tp->undo_marker = 0;
2093         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2094                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2095                 tp->retrans_out -= tcp_skb_pcount(skb);
2096         }
2097         tcp_verify_left_out(tp);
2098
2099         /* Too bad if TCP was application limited */
2100         tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2101
2102         /* Earlier loss recovery underway (see RFC4138; Appendix B).
2103          * The last condition is necessary at least in tp->frto_counter case.
2104          */
2105         if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2106             ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2107             after(tp->high_seq, tp->snd_una)) {
2108                 tp->frto_highmark = tp->high_seq;
2109         } else {
2110                 tp->frto_highmark = tp->snd_nxt;
2111         }
2112         tcp_set_ca_state(sk, TCP_CA_Disorder);
2113         tp->high_seq = tp->snd_nxt;
2114         tp->frto_counter = 1;
2115 }
2116
2117 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2118  * which indicates that we should follow the traditional RTO recovery,
2119  * i.e. mark everything lost and do go-back-N retransmission.
2120  */
2121 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2122 {
2123         struct tcp_sock *tp = tcp_sk(sk);
2124         struct sk_buff *skb;
2125
2126         tp->lost_out = 0;
2127         tp->retrans_out = 0;
2128         if (tcp_is_reno(tp))
2129                 tcp_reset_reno_sack(tp);
2130
2131         tcp_for_write_queue(skb, sk) {
2132                 if (skb == tcp_send_head(sk))
2133                         break;
2134
2135                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2136                 /*
2137                  * Count the retransmission made on RTO correctly (only when
2138                  * waiting for the first ACK and did not get it)...
2139                  */
2140                 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2141                         /* For some reason this R-bit might get cleared? */
2142                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2143                                 tp->retrans_out += tcp_skb_pcount(skb);
2144                         /* ...enter this if branch just for the first segment */
2145                         flag |= FLAG_DATA_ACKED;
2146                 } else {
2147                         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2148                                 tp->undo_marker = 0;
2149                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2150                 }
2151
2152                 /* Marking forward transmissions that were made after RTO lost
2153                  * can cause unnecessary retransmissions in some scenarios,
2154                  * SACK blocks will mitigate that in some but not in all cases.
2155                  * We used to not mark them but it was causing break-ups with
2156                  * receivers that do only in-order receival.
2157                  *
2158                  * TODO: we could detect presence of such receiver and select
2159                  * different behavior per flow.
2160                  */
2161                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2162                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2163                         tp->lost_out += tcp_skb_pcount(skb);
2164                         tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2165                 }
2166         }
2167         tcp_verify_left_out(tp);
2168
2169         tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2170         tp->snd_cwnd_cnt = 0;
2171         tp->snd_cwnd_stamp = tcp_time_stamp;
2172         tp->frto_counter = 0;
2173         tp->bytes_acked = 0;
2174
2175         tp->reordering = min_t(unsigned int, tp->reordering,
2176                                sysctl_tcp_reordering);
2177         tcp_set_ca_state(sk, TCP_CA_Loss);
2178         tp->high_seq = tp->snd_nxt;
2179         TCP_ECN_queue_cwr(tp);
2180
2181         tcp_clear_all_retrans_hints(tp);
2182 }
2183
2184 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2185 {
2186         tp->retrans_out = 0;
2187         tp->lost_out = 0;
2188
2189         tp->undo_marker = 0;
2190         tp->undo_retrans = 0;
2191 }
2192
2193 void tcp_clear_retrans(struct tcp_sock *tp)
2194 {
2195         tcp_clear_retrans_partial(tp);
2196
2197         tp->fackets_out = 0;
2198         tp->sacked_out = 0;
2199 }
2200
2201 /* Enter Loss state. If "how" is not zero, forget all SACK information
2202  * and reset tags completely, otherwise preserve SACKs. If receiver
2203  * dropped its ofo queue, we will know this due to reneging detection.
2204  */
2205 void tcp_enter_loss(struct sock *sk, int how)
2206 {
2207         const struct inet_connection_sock *icsk = inet_csk(sk);
2208         struct tcp_sock *tp = tcp_sk(sk);
2209         struct sk_buff *skb;
2210
2211         /* Reduce ssthresh if it has not yet been made inside this window. */
2212         if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2213             (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2214                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2215                 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2216                 tcp_ca_event(sk, CA_EVENT_LOSS);
2217         }
2218         tp->snd_cwnd       = 1;
2219         tp->snd_cwnd_cnt   = 0;
2220         tp->snd_cwnd_stamp = tcp_time_stamp;
2221
2222         tp->bytes_acked = 0;
2223         tcp_clear_retrans_partial(tp);
2224
2225         if (tcp_is_reno(tp))
2226                 tcp_reset_reno_sack(tp);
2227
2228         if (!how) {
2229                 /* Push undo marker, if it was plain RTO and nothing
2230                  * was retransmitted. */
2231                 tp->undo_marker = tp->snd_una;
2232         } else {
2233                 tp->sacked_out = 0;
2234                 tp->fackets_out = 0;
2235         }
2236         tcp_clear_all_retrans_hints(tp);
2237
2238         tcp_for_write_queue(skb, sk) {
2239                 if (skb == tcp_send_head(sk))
2240                         break;
2241
2242                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2243                         tp->undo_marker = 0;
2244                 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2245                 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2246                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2247                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2248                         tp->lost_out += tcp_skb_pcount(skb);
2249                         tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2250                 }
2251         }
2252         tcp_verify_left_out(tp);
2253
2254         tp->reordering = min_t(unsigned int, tp->reordering,
2255                                sysctl_tcp_reordering);
2256         tcp_set_ca_state(sk, TCP_CA_Loss);
2257         tp->high_seq = tp->snd_nxt;
2258         TCP_ECN_queue_cwr(tp);
2259         /* Abort F-RTO algorithm if one is in progress */
2260         tp->frto_counter = 0;
2261 }
2262
2263 /* If ACK arrived pointing to a remembered SACK, it means that our
2264  * remembered SACKs do not reflect real state of receiver i.e.
2265  * receiver _host_ is heavily congested (or buggy).
2266  *
2267  * Do processing similar to RTO timeout.
2268  */
2269 static int tcp_check_sack_reneging(struct sock *sk, int flag)
2270 {
2271         if (flag & FLAG_SACK_RENEGING) {
2272                 struct inet_connection_sock *icsk = inet_csk(sk);
2273                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2274
2275                 tcp_enter_loss(sk, 1);
2276                 icsk->icsk_retransmits++;
2277                 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2278                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2279                                           icsk->icsk_rto, TCP_RTO_MAX);
2280                 return 1;
2281         }
2282         return 0;
2283 }
2284
2285 static inline int tcp_fackets_out(struct tcp_sock *tp)
2286 {
2287         return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2288 }
2289
2290 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2291  * counter when SACK is enabled (without SACK, sacked_out is used for
2292  * that purpose).
2293  *
2294  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2295  * segments up to the highest received SACK block so far and holes in
2296  * between them.
2297  *
2298  * With reordering, holes may still be in flight, so RFC3517 recovery
2299  * uses pure sacked_out (total number of SACKed segments) even though
2300  * it violates the RFC that uses duplicate ACKs, often these are equal
2301  * but when e.g. out-of-window ACKs or packet duplication occurs,
2302  * they differ. Since neither occurs due to loss, TCP should really
2303  * ignore them.
2304  */
2305 static inline int tcp_dupack_heuristics(struct tcp_sock *tp)
2306 {
2307         return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2308 }
2309
2310 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
2311 {
2312         return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
2313 }
2314
2315 static inline int tcp_head_timedout(struct sock *sk)
2316 {
2317         struct tcp_sock *tp = tcp_sk(sk);
2318
2319         return tp->packets_out &&
2320                tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2321 }
2322
2323 /* Linux NewReno/SACK/FACK/ECN state machine.
2324  * --------------------------------------
2325  *
2326  * "Open"       Normal state, no dubious events, fast path.
2327  * "Disorder"   In all the respects it is "Open",
2328  *              but requires a bit more attention. It is entered when
2329  *              we see some SACKs or dupacks. It is split of "Open"
2330  *              mainly to move some processing from fast path to slow one.
2331  * "CWR"        CWND was reduced due to some Congestion Notification event.
2332  *              It can be ECN, ICMP source quench, local device congestion.
2333  * "Recovery"   CWND was reduced, we are fast-retransmitting.
2334  * "Loss"       CWND was reduced due to RTO timeout or SACK reneging.
2335  *
2336  * tcp_fastretrans_alert() is entered:
2337  * - each incoming ACK, if state is not "Open"
2338  * - when arrived ACK is unusual, namely:
2339  *      * SACK
2340  *      * Duplicate ACK.
2341  *      * ECN ECE.
2342  *
2343  * Counting packets in flight is pretty simple.
2344  *
2345  *      in_flight = packets_out - left_out + retrans_out
2346  *
2347  *      packets_out is SND.NXT-SND.UNA counted in packets.
2348  *
2349  *      retrans_out is number of retransmitted segments.
2350  *
2351  *      left_out is number of segments left network, but not ACKed yet.
2352  *
2353  *              left_out = sacked_out + lost_out
2354  *
2355  *     sacked_out: Packets, which arrived to receiver out of order
2356  *                 and hence not ACKed. With SACKs this number is simply
2357  *                 amount of SACKed data. Even without SACKs
2358  *                 it is easy to give pretty reliable estimate of this number,
2359  *                 counting duplicate ACKs.
2360  *
2361  *       lost_out: Packets lost by network. TCP has no explicit
2362  *                 "loss notification" feedback from network (for now).
2363  *                 It means that this number can be only _guessed_.
2364  *                 Actually, it is the heuristics to predict lossage that
2365  *                 distinguishes different algorithms.
2366  *
2367  *      F.e. after RTO, when all the queue is considered as lost,
2368  *      lost_out = packets_out and in_flight = retrans_out.
2369  *
2370  *              Essentially, we have now two algorithms counting
2371  *              lost packets.
2372  *
2373  *              FACK: It is the simplest heuristics. As soon as we decided
2374  *              that something is lost, we decide that _all_ not SACKed
2375  *              packets until the most forward SACK are lost. I.e.
2376  *              lost_out = fackets_out - sacked_out and left_out = fackets_out.
2377  *              It is absolutely correct estimate, if network does not reorder
2378  *              packets. And it loses any connection to reality when reordering
2379  *              takes place. We use FACK by default until reordering
2380  *              is suspected on the path to this destination.
2381  *
2382  *              NewReno: when Recovery is entered, we assume that one segment
2383  *              is lost (classic Reno). While we are in Recovery and
2384  *              a partial ACK arrives, we assume that one more packet
2385  *              is lost (NewReno). This heuristics are the same in NewReno
2386  *              and SACK.
2387  *
2388  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2389  *  deflation etc. CWND is real congestion window, never inflated, changes
2390  *  only according to classic VJ rules.
2391  *
2392  * Really tricky (and requiring careful tuning) part of algorithm
2393  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2394  * The first determines the moment _when_ we should reduce CWND and,
2395  * hence, slow down forward transmission. In fact, it determines the moment
2396  * when we decide that hole is caused by loss, rather than by a reorder.
2397  *
2398  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2399  * holes, caused by lost packets.
2400  *
2401  * And the most logically complicated part of algorithm is undo
2402  * heuristics. We detect false retransmits due to both too early
2403  * fast retransmit (reordering) and underestimated RTO, analyzing
2404  * timestamps and D-SACKs. When we detect that some segments were
2405  * retransmitted by mistake and CWND reduction was wrong, we undo
2406  * window reduction and abort recovery phase. This logic is hidden
2407  * inside several functions named tcp_try_undo_<something>.
2408  */
2409
2410 /* This function decides, when we should leave Disordered state
2411  * and enter Recovery phase, reducing congestion window.
2412  *
2413  * Main question: may we further continue forward transmission
2414  * with the same cwnd?
2415  */
2416 static int tcp_time_to_recover(struct sock *sk)
2417 {
2418         struct tcp_sock *tp = tcp_sk(sk);
2419         __u32 packets_out;
2420
2421         /* Do not perform any recovery during F-RTO algorithm */
2422         if (tp->frto_counter)
2423                 return 0;
2424
2425         /* Trick#1: The loss is proven. */
2426         if (tp->lost_out)
2427                 return 1;
2428
2429         /* Not-A-Trick#2 : Classic rule... */
2430         if (tcp_dupack_heuristics(tp) > tp->reordering)
2431                 return 1;
2432
2433         /* Trick#3 : when we use RFC2988 timer restart, fast
2434          * retransmit can be triggered by timeout of queue head.
2435          */
2436         if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2437                 return 1;
2438
2439         /* Trick#4: It is still not OK... But will it be useful to delay
2440          * recovery more?
2441          */
2442         packets_out = tp->packets_out;
2443         if (packets_out <= tp->reordering &&
2444             tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2445             !tcp_may_send_now(sk)) {
2446                 /* We have nothing to send. This connection is limited
2447                  * either by receiver window or by application.
2448                  */
2449                 return 1;
2450         }
2451
2452         /* If a thin stream is detected, retransmit after first
2453          * received dupack. Employ only if SACK is supported in order
2454          * to avoid possible corner-case series of spurious retransmissions
2455          * Use only if there are no unsent data.
2456          */
2457         if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2458             tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2459             tcp_is_sack(tp) && !tcp_send_head(sk))
2460                 return 1;
2461
2462         return 0;
2463 }
2464
2465 /* New heuristics: it is possible only after we switched to restart timer
2466  * each time when something is ACKed. Hence, we can detect timed out packets
2467  * during fast retransmit without falling to slow start.
2468  *
2469  * Usefulness of this as is very questionable, since we should know which of
2470  * the segments is the next to timeout which is relatively expensive to find
2471  * in general case unless we add some data structure just for that. The
2472  * current approach certainly won't find the right one too often and when it
2473  * finally does find _something_ it usually marks large part of the window
2474  * right away (because a retransmission with a larger timestamp blocks the
2475  * loop from advancing). -ij
2476  */
2477 static void tcp_timeout_skbs(struct sock *sk)
2478 {
2479         struct tcp_sock *tp = tcp_sk(sk);
2480         struct sk_buff *skb;
2481
2482         if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2483                 return;
2484
2485         skb = tp->scoreboard_skb_hint;
2486         if (tp->scoreboard_skb_hint == NULL)
2487                 skb = tcp_write_queue_head(sk);
2488
2489         tcp_for_write_queue_from(skb, sk) {
2490                 if (skb == tcp_send_head(sk))
2491                         break;
2492                 if (!tcp_skb_timedout(sk, skb))
2493                         break;
2494
2495                 tcp_skb_mark_lost(tp, skb);
2496         }
2497
2498         tp->scoreboard_skb_hint = skb;
2499
2500         tcp_verify_left_out(tp);
2501 }
2502
2503 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2504  * is against sacked "cnt", otherwise it's against facked "cnt"
2505  */
2506 static void tcp_mark_head_lost(struct sock *sk, int packets)
2507 {
2508         struct tcp_sock *tp = tcp_sk(sk);
2509         struct sk_buff *skb;
2510         int cnt, oldcnt;
2511         int err;
2512         unsigned int mss;
2513
2514         if (packets == 0)
2515                 return;
2516
2517         WARN_ON(packets > tp->packets_out);
2518         if (tp->lost_skb_hint) {
2519                 skb = tp->lost_skb_hint;
2520                 cnt = tp->lost_cnt_hint;
2521         } else {
2522                 skb = tcp_write_queue_head(sk);
2523                 cnt = 0;
2524         }
2525
2526         tcp_for_write_queue_from(skb, sk) {
2527                 if (skb == tcp_send_head(sk))
2528                         break;
2529                 /* TODO: do this better */
2530                 /* this is not the most efficient way to do this... */
2531                 tp->lost_skb_hint = skb;
2532                 tp->lost_cnt_hint = cnt;
2533
2534                 if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2535                         break;
2536
2537                 oldcnt = cnt;
2538                 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2539                     (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2540                         cnt += tcp_skb_pcount(skb);
2541
2542                 if (cnt > packets) {
2543                         if (tcp_is_sack(tp) || (oldcnt >= packets))
2544                                 break;
2545
2546                         mss = skb_shinfo(skb)->gso_size;
2547                         err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2548                         if (err < 0)
2549                                 break;
2550                         cnt = packets;
2551                 }
2552
2553                 tcp_skb_mark_lost(tp, skb);
2554         }
2555         tcp_verify_left_out(tp);
2556 }
2557
2558 /* Account newly detected lost packet(s) */
2559
2560 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2561 {
2562         struct tcp_sock *tp = tcp_sk(sk);
2563
2564         if (tcp_is_reno(tp)) {
2565                 tcp_mark_head_lost(sk, 1);
2566         } else if (tcp_is_fack(tp)) {
2567                 int lost = tp->fackets_out - tp->reordering;
2568                 if (lost <= 0)
2569                         lost = 1;
2570                 tcp_mark_head_lost(sk, lost);
2571         } else {
2572                 int sacked_upto = tp->sacked_out - tp->reordering;
2573                 if (sacked_upto < fast_rexmit)
2574                         sacked_upto = fast_rexmit;
2575                 tcp_mark_head_lost(sk, sacked_upto);
2576         }
2577
2578         tcp_timeout_skbs(sk);
2579 }
2580
2581 /* CWND moderation, preventing bursts due to too big ACKs
2582  * in dubious situations.
2583  */
2584 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2585 {
2586         tp->snd_cwnd = min(tp->snd_cwnd,
2587                            tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2588         tp->snd_cwnd_stamp = tcp_time_stamp;
2589 }
2590
2591 /* Lower bound on congestion window is slow start threshold
2592  * unless congestion avoidance choice decides to overide it.
2593  */
2594 static inline u32 tcp_cwnd_min(const struct sock *sk)
2595 {
2596         const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2597
2598         return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2599 }
2600
2601 /* Decrease cwnd each second ack. */
2602 static void tcp_cwnd_down(struct sock *sk, int flag)
2603 {
2604         struct tcp_sock *tp = tcp_sk(sk);
2605         int decr = tp->snd_cwnd_cnt + 1;
2606
2607         if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2608             (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2609                 tp->snd_cwnd_cnt = decr & 1;
2610                 decr >>= 1;
2611
2612                 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2613                         tp->snd_cwnd -= decr;
2614
2615                 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2616                 tp->snd_cwnd_stamp = tcp_time_stamp;
2617         }
2618 }
2619
2620 /* Nothing was retransmitted or returned timestamp is less
2621  * than timestamp of the first retransmission.
2622  */
2623 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2624 {
2625         return !tp->retrans_stamp ||
2626                 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2627                  before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2628 }
2629
2630 /* Undo procedures. */
2631
2632 #if FASTRETRANS_DEBUG > 1
2633 static void DBGUNDO(struct sock *sk, const char *msg)
2634 {
2635         struct tcp_sock *tp = tcp_sk(sk);
2636         struct inet_sock *inet = inet_sk(sk);
2637
2638         if (sk->sk_family == AF_INET) {
2639                 printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2640                        msg,
2641                        &inet->daddr, ntohs(inet->dport),
2642                        tp->snd_cwnd, tcp_left_out(tp),
2643                        tp->snd_ssthresh, tp->prior_ssthresh,
2644                        tp->packets_out);
2645         }
2646 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2647         else if (sk->sk_family == AF_INET6) {
2648                 struct ipv6_pinfo *np = inet6_sk(sk);
2649                 printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2650                        msg,
2651                        &np->daddr, ntohs(inet->dport),
2652                        tp->snd_cwnd, tcp_left_out(tp),
2653                        tp->snd_ssthresh, tp->prior_ssthresh,
2654                        tp->packets_out);
2655         }
2656 #endif
2657 }
2658 #else
2659 #define DBGUNDO(x...) do { } while (0)
2660 #endif
2661
2662 static void tcp_undo_cwr(struct sock *sk, const int undo)
2663 {
2664         struct tcp_sock *tp = tcp_sk(sk);
2665
2666         if (tp->prior_ssthresh) {
2667                 const struct inet_connection_sock *icsk = inet_csk(sk);
2668
2669                 if (icsk->icsk_ca_ops->undo_cwnd)
2670                         tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2671                 else
2672                         tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2673
2674                 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2675                         tp->snd_ssthresh = tp->prior_ssthresh;
2676                         TCP_ECN_withdraw_cwr(tp);
2677                 }
2678         } else {
2679                 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2680         }
2681         tcp_moderate_cwnd(tp);
2682         tp->snd_cwnd_stamp = tcp_time_stamp;
2683 }
2684
2685 static inline int tcp_may_undo(struct tcp_sock *tp)
2686 {
2687         return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2688 }
2689
2690 /* People celebrate: "We love our President!" */
2691 static int tcp_try_undo_recovery(struct sock *sk)
2692 {
2693         struct tcp_sock *tp = tcp_sk(sk);
2694
2695         if (tcp_may_undo(tp)) {
2696                 int mib_idx;
2697
2698                 /* Happy end! We did not retransmit anything
2699                  * or our original transmission succeeded.
2700                  */
2701                 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2702                 tcp_undo_cwr(sk, 1);
2703                 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2704                         mib_idx = LINUX_MIB_TCPLOSSUNDO;
2705                 else
2706                         mib_idx = LINUX_MIB_TCPFULLUNDO;
2707
2708                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2709                 tp->undo_marker = 0;
2710         }
2711         if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2712                 /* Hold old state until something *above* high_seq
2713                  * is ACKed. For Reno it is MUST to prevent false
2714                  * fast retransmits (RFC2582). SACK TCP is safe. */
2715                 tcp_moderate_cwnd(tp);
2716                 return 1;
2717         }
2718         tcp_set_ca_state(sk, TCP_CA_Open);
2719         return 0;
2720 }
2721
2722 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2723 static void tcp_try_undo_dsack(struct sock *sk)
2724 {
2725         struct tcp_sock *tp = tcp_sk(sk);
2726
2727         if (tp->undo_marker && !tp->undo_retrans) {
2728                 DBGUNDO(sk, "D-SACK");
2729                 tcp_undo_cwr(sk, 1);
2730                 tp->undo_marker = 0;
2731                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2732         }
2733 }
2734
2735 /* We can clear retrans_stamp when there are no retransmissions in the
2736  * window. It would seem that it is trivially available for us in
2737  * tp->retrans_out, however, that kind of assumptions doesn't consider
2738  * what will happen if errors occur when sending retransmission for the
2739  * second time. ...It could the that such segment has only
2740  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2741  * the head skb is enough except for some reneging corner cases that
2742  * are not worth the effort.
2743  *
2744  * Main reason for all this complexity is the fact that connection dying
2745  * time now depends on the validity of the retrans_stamp, in particular,
2746  * that successive retransmissions of a segment must not advance
2747  * retrans_stamp under any conditions.
2748  */
2749 static int tcp_any_retrans_done(struct sock *sk)
2750 {
2751         struct tcp_sock *tp = tcp_sk(sk);
2752         struct sk_buff *skb;
2753
2754         if (tp->retrans_out)
2755                 return 1;
2756
2757         skb = tcp_write_queue_head(sk);
2758         if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2759                 return 1;
2760
2761         return 0;
2762 }
2763
2764 /* Undo during fast recovery after partial ACK. */
2765
2766 static int tcp_try_undo_partial(struct sock *sk, int acked)
2767 {
2768         struct tcp_sock *tp = tcp_sk(sk);
2769         /* Partial ACK arrived. Force Hoe's retransmit. */
2770         int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2771
2772         if (tcp_may_undo(tp)) {
2773                 /* Plain luck! Hole if filled with delayed
2774                  * packet, rather than with a retransmit.
2775                  */
2776                 if (!tcp_any_retrans_done(sk))
2777                         tp->retrans_stamp = 0;
2778
2779                 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2780
2781                 DBGUNDO(sk, "Hoe");
2782                 tcp_undo_cwr(sk, 0);
2783                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2784
2785                 /* So... Do not make Hoe's retransmit yet.
2786                  * If the first packet was delayed, the rest
2787                  * ones are most probably delayed as well.
2788                  */
2789                 failed = 0;
2790         }
2791         return failed;
2792 }
2793
2794 /* Undo during loss recovery after partial ACK. */
2795 static int tcp_try_undo_loss(struct sock *sk)
2796 {
2797         struct tcp_sock *tp = tcp_sk(sk);
2798
2799         if (tcp_may_undo(tp)) {
2800                 struct sk_buff *skb;
2801                 tcp_for_write_queue(skb, sk) {
2802                         if (skb == tcp_send_head(sk))
2803                                 break;
2804                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2805                 }
2806
2807                 tcp_clear_all_retrans_hints(tp);
2808
2809                 DBGUNDO(sk, "partial loss");
2810                 tp->lost_out = 0;
2811                 tcp_undo_cwr(sk, 1);
2812                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2813                 inet_csk(sk)->icsk_retransmits = 0;
2814                 tp->undo_marker = 0;
2815                 if (tcp_is_sack(tp))
2816                         tcp_set_ca_state(sk, TCP_CA_Open);
2817                 return 1;
2818         }
2819         return 0;
2820 }
2821
2822 static inline void tcp_complete_cwr(struct sock *sk)
2823 {
2824         struct tcp_sock *tp = tcp_sk(sk);
2825         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2826         tp->snd_cwnd_stamp = tcp_time_stamp;
2827         tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2828 }
2829
2830 static void tcp_try_keep_open(struct sock *sk)
2831 {
2832         struct tcp_sock *tp = tcp_sk(sk);
2833         int state = TCP_CA_Open;
2834
2835         if (tcp_left_out(tp) || tcp_any_retrans_done(sk) || tp->undo_marker)
2836                 state = TCP_CA_Disorder;
2837
2838         if (inet_csk(sk)->icsk_ca_state != state) {
2839                 tcp_set_ca_state(sk, state);
2840                 tp->high_seq = tp->snd_nxt;
2841         }
2842 }
2843
2844 static void tcp_try_to_open(struct sock *sk, int flag)
2845 {
2846         struct tcp_sock *tp = tcp_sk(sk);
2847
2848         tcp_verify_left_out(tp);
2849
2850         if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2851                 tp->retrans_stamp = 0;
2852
2853         if (flag & FLAG_ECE)
2854                 tcp_enter_cwr(sk, 1);
2855
2856         if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2857                 tcp_try_keep_open(sk);
2858                 tcp_moderate_cwnd(tp);
2859         } else {
2860                 tcp_cwnd_down(sk, flag);
2861         }
2862 }
2863
2864 static void tcp_mtup_probe_failed(struct sock *sk)
2865 {
2866         struct inet_connection_sock *icsk = inet_csk(sk);
2867
2868         icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2869         icsk->icsk_mtup.probe_size = 0;
2870 }
2871
2872 static void tcp_mtup_probe_success(struct sock *sk)
2873 {
2874         struct tcp_sock *tp = tcp_sk(sk);
2875         struct inet_connection_sock *icsk = inet_csk(sk);
2876
2877         /* FIXME: breaks with very large cwnd */
2878         tp->prior_ssthresh = tcp_current_ssthresh(sk);
2879         tp->snd_cwnd = tp->snd_cwnd *
2880                        tcp_mss_to_mtu(sk, tp->mss_cache) /
2881                        icsk->icsk_mtup.probe_size;
2882         tp->snd_cwnd_cnt = 0;
2883         tp->snd_cwnd_stamp = tcp_time_stamp;
2884         tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2885
2886         icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2887         icsk->icsk_mtup.probe_size = 0;
2888         tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2889 }
2890
2891 /* Do a simple retransmit without using the backoff mechanisms in
2892  * tcp_timer. This is used for path mtu discovery.
2893  * The socket is already locked here.
2894  */
2895 void tcp_simple_retransmit(struct sock *sk)
2896 {
2897         const struct inet_connection_sock *icsk = inet_csk(sk);
2898         struct tcp_sock *tp = tcp_sk(sk);
2899         struct sk_buff *skb;
2900         unsigned int mss = tcp_current_mss(sk);
2901         u32 prior_lost = tp->lost_out;
2902
2903         tcp_for_write_queue(skb, sk) {
2904                 if (skb == tcp_send_head(sk))
2905                         break;
2906                 if (tcp_skb_seglen(skb) > mss &&
2907                     !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2908                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2909                                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2910                                 tp->retrans_out -= tcp_skb_pcount(skb);
2911                         }
2912                         tcp_skb_mark_lost_uncond_verify(tp, skb);
2913                 }
2914         }
2915
2916         tcp_clear_retrans_hints_partial(tp);
2917
2918         if (prior_lost == tp->lost_out)
2919                 return;
2920
2921         if (tcp_is_reno(tp))
2922                 tcp_limit_reno_sacked(tp);
2923
2924         tcp_verify_left_out(tp);
2925
2926         /* Don't muck with the congestion window here.
2927          * Reason is that we do not increase amount of _data_
2928          * in network, but units changed and effective
2929          * cwnd/ssthresh really reduced now.
2930          */
2931         if (icsk->icsk_ca_state != TCP_CA_Loss) {
2932                 tp->high_seq = tp->snd_nxt;
2933                 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2934                 tp->prior_ssthresh = 0;
2935                 tp->undo_marker = 0;
2936                 tcp_set_ca_state(sk, TCP_CA_Loss);
2937         }
2938         tcp_xmit_retransmit_queue(sk);
2939 }
2940
2941 /* Process an event, which can update packets-in-flight not trivially.
2942  * Main goal of this function is to calculate new estimate for left_out,
2943  * taking into account both packets sitting in receiver's buffer and
2944  * packets lost by network.
2945  *
2946  * Besides that it does CWND reduction, when packet loss is detected
2947  * and changes state of machine.
2948  *
2949  * It does _not_ decide what to send, it is made in function
2950  * tcp_xmit_retransmit_queue().
2951  */
2952 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2953 {
2954         struct inet_connection_sock *icsk = inet_csk(sk);
2955         struct tcp_sock *tp = tcp_sk(sk);
2956         int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
2957         int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2958                                     (tcp_fackets_out(tp) > tp->reordering));
2959         int fast_rexmit = 0, mib_idx;
2960
2961         if (WARN_ON(!tp->packets_out && tp->sacked_out))
2962                 tp->sacked_out = 0;
2963         if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2964                 tp->fackets_out = 0;
2965
2966         /* Now state machine starts.
2967          * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2968         if (flag & FLAG_ECE)
2969                 tp->prior_ssthresh = 0;
2970
2971         /* B. In all the states check for reneging SACKs. */
2972         if (tcp_check_sack_reneging(sk, flag))
2973                 return;
2974
2975         /* C. Process data loss notification, provided it is valid. */
2976         if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2977             before(tp->snd_una, tp->high_seq) &&
2978             icsk->icsk_ca_state != TCP_CA_Open &&
2979             tp->fackets_out > tp->reordering) {
2980                 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering);
2981                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS);
2982         }
2983
2984         /* D. Check consistency of the current state. */
2985         tcp_verify_left_out(tp);
2986
2987         /* E. Check state exit conditions. State can be terminated
2988          *    when high_seq is ACKed. */
2989         if (icsk->icsk_ca_state == TCP_CA_Open) {
2990                 WARN_ON(tp->retrans_out != 0);
2991                 tp->retrans_stamp = 0;
2992         } else if (!before(tp->snd_una, tp->high_seq)) {
2993                 switch (icsk->icsk_ca_state) {
2994                 case TCP_CA_Loss:
2995                         icsk->icsk_retransmits = 0;
2996                         if (tcp_try_undo_recovery(sk))
2997                                 return;
2998                         break;
2999
3000                 case TCP_CA_CWR:
3001                         /* CWR is to be held something *above* high_seq
3002                          * is ACKed for CWR bit to reach receiver. */
3003                         if (tp->snd_una != tp->high_seq) {
3004                                 tcp_complete_cwr(sk);
3005                                 tcp_set_ca_state(sk, TCP_CA_Open);
3006                         }
3007                         break;
3008
3009                 case TCP_CA_Disorder:
3010                         tcp_try_undo_dsack(sk);
3011                         if (!tp->undo_marker ||
3012                             /* For SACK case do not Open to allow to undo
3013                              * catching for all duplicate ACKs. */
3014                             tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
3015                                 tp->undo_marker = 0;
3016                                 tcp_set_ca_state(sk, TCP_CA_Open);
3017                         }
3018                         break;
3019
3020                 case TCP_CA_Recovery:
3021                         if (tcp_is_reno(tp))
3022                                 tcp_reset_reno_sack(tp);
3023                         if (tcp_try_undo_recovery(sk))
3024                                 return;
3025                         tcp_complete_cwr(sk);
3026                         break;
3027                 }
3028         }
3029
3030         /* F. Process state. */
3031         switch (icsk->icsk_ca_state) {
3032         case TCP_CA_Recovery:
3033                 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3034                         if (tcp_is_reno(tp) && is_dupack)
3035                                 tcp_add_reno_sack(sk);
3036                 } else
3037                         do_lost = tcp_try_undo_partial(sk, pkts_acked);
3038                 break;
3039         case TCP_CA_Loss:
3040                 if (flag & FLAG_DATA_ACKED)
3041                         icsk->icsk_retransmits = 0;
3042                 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
3043                         tcp_reset_reno_sack(tp);
3044                 if (!tcp_try_undo_loss(sk)) {
3045                         tcp_moderate_cwnd(tp);
3046                         tcp_xmit_retransmit_queue(sk);
3047                         return;
3048                 }
3049                 if (icsk->icsk_ca_state != TCP_CA_Open)
3050                         return;
3051                 /* Loss is undone; fall through to processing in Open state. */
3052         default:
3053                 if (tcp_is_reno(tp)) {
3054                         if (flag & FLAG_SND_UNA_ADVANCED)
3055                                 tcp_reset_reno_sack(tp);
3056                         if (is_dupack)
3057                                 tcp_add_reno_sack(sk);
3058                 }
3059
3060                 if (icsk->icsk_ca_state == TCP_CA_Disorder)
3061                         tcp_try_undo_dsack(sk);
3062
3063                 if (!tcp_time_to_recover(sk)) {
3064                         tcp_try_to_open(sk, flag);
3065                         return;
3066                 }
3067
3068                 /* MTU probe failure: don't reduce cwnd */
3069                 if (icsk->icsk_ca_state < TCP_CA_CWR &&
3070                     icsk->icsk_mtup.probe_size &&
3071                     tp->snd_una == tp->mtu_probe.probe_seq_start) {
3072                         tcp_mtup_probe_failed(sk);
3073                         /* Restores the reduction we did in tcp_mtup_probe() */
3074                         tp->snd_cwnd++;
3075                         tcp_simple_retransmit(sk);
3076                         return;
3077                 }
3078
3079                 /* Otherwise enter Recovery state */
3080
3081                 if (tcp_is_reno(tp))
3082                         mib_idx = LINUX_MIB_TCPRENORECOVERY;
3083                 else
3084                         mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3085
3086                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3087
3088                 tp->high_seq = tp->snd_nxt;
3089                 tp->prior_ssthresh = 0;
3090                 tp->undo_marker = tp->snd_una;
3091                 tp->undo_retrans = tp->retrans_out;
3092
3093                 if (icsk->icsk_ca_state < TCP_CA_CWR) {
3094                         if (!(flag & FLAG_ECE))
3095                                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
3096                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
3097                         TCP_ECN_queue_cwr(tp);
3098                 }
3099
3100                 tp->bytes_acked = 0;
3101                 tp->snd_cwnd_cnt = 0;
3102                 tcp_set_ca_state(sk, TCP_CA_Recovery);
3103                 fast_rexmit = 1;
3104         }
3105
3106         if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3107                 tcp_update_scoreboard(sk, fast_rexmit);
3108         tcp_cwnd_down(sk, flag);
3109         tcp_xmit_retransmit_queue(sk);
3110 }
3111
3112 static void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3113 {
3114         tcp_rtt_estimator(sk, seq_rtt);
3115         tcp_set_rto(sk);
3116         inet_csk(sk)->icsk_backoff = 0;
3117 }
3118
3119 /* Read draft-ietf-tcplw-high-performance before mucking
3120  * with this code. (Supersedes RFC1323)
3121  */
3122 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3123 {
3124         /* RTTM Rule: A TSecr value received in a segment is used to
3125          * update the averaged RTT measurement only if the segment
3126          * acknowledges some new data, i.e., only if it advances the
3127          * left edge of the send window.
3128          *
3129          * See draft-ietf-tcplw-high-performance-00, section 3.3.
3130          * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3131          *
3132          * Changed: reset backoff as soon as we see the first valid sample.
3133          * If we do not, we get strongly overestimated rto. With timestamps
3134          * samples are accepted even from very old segments: f.e., when rtt=1
3135          * increases to 8, we retransmit 5 times and after 8 seconds delayed
3136          * answer arrives rto becomes 120 seconds! If at least one of segments
3137          * in window is lost... Voila.                          --ANK (010210)
3138          */
3139         struct tcp_sock *tp = tcp_sk(sk);
3140
3141         tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3142 }
3143
3144 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3145 {
3146         /* We don't have a timestamp. Can only use
3147          * packets that are not retransmitted to determine
3148          * rtt estimates. Also, we must not reset the
3149          * backoff for rto until we get a non-retransmitted
3150          * packet. This allows us to deal with a situation
3151          * where the network delay has increased suddenly.
3152          * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3153          */
3154
3155         if (flag & FLAG_RETRANS_DATA_ACKED)
3156                 return;
3157
3158         tcp_valid_rtt_meas(sk, seq_rtt);
3159 }
3160
3161 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3162                                       const s32 seq_rtt)
3163 {
3164         const struct tcp_sock *tp = tcp_sk(sk);
3165         /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3166         if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3167                 tcp_ack_saw_tstamp(sk, flag);
3168         else if (seq_rtt >= 0)
3169                 tcp_ack_no_tstamp(sk, seq_rtt, flag);
3170 }
3171
3172 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3173 {
3174         const struct inet_connection_sock *icsk = inet_csk(sk);
3175         icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3176         tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3177 }
3178
3179 /* Restart timer after forward progress on connection.
3180  * RFC2988 recommends to restart timer to now+rto.
3181  */
3182 static void tcp_rearm_rto(struct sock *sk)
3183 {
3184         struct tcp_sock *tp = tcp_sk(sk);
3185
3186         if (!tp->packets_out) {
3187                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3188         } else {
3189                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3190                                           inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3191         }
3192 }
3193
3194 /* If we get here, the whole TSO packet has not been acked. */
3195 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3196 {
3197         struct tcp_sock *tp = tcp_sk(sk);
3198         u32 packets_acked;
3199
3200         BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3201
3202         packets_acked = tcp_skb_pcount(skb);
3203         if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3204                 return 0;
3205         packets_acked -= tcp_skb_pcount(skb);
3206
3207         if (packets_acked) {
3208                 BUG_ON(tcp_skb_pcount(skb) == 0);
3209                 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3210         }
3211
3212         return packets_acked;
3213 }
3214
3215 /* Remove acknowledged frames from the retransmission queue. If our packet
3216  * is before the ack sequence we can discard it as it's confirmed to have
3217  * arrived at the other end.
3218  */
3219 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3220                                u32 prior_snd_una)
3221 {
3222         struct tcp_sock *tp = tcp_sk(sk);
3223         const struct inet_connection_sock *icsk = inet_csk(sk);
3224         struct sk_buff *skb;
3225         u32 now = tcp_time_stamp;
3226         int fully_acked = 1;
3227         int flag = 0;
3228         u32 pkts_acked = 0;
3229         u32 reord = tp->packets_out;
3230         u32 prior_sacked = tp->sacked_out;
3231         s32 seq_rtt = -1;
3232         s32 ca_seq_rtt = -1;
3233         ktime_t last_ackt = net_invalid_timestamp();
3234
3235         while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3236                 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3237                 u32 acked_pcount;
3238                 u8 sacked = scb->sacked;
3239
3240                 /* Determine how many packets and what bytes were acked, tso and else */
3241                 if (after(scb->end_seq, tp->snd_una)) {
3242                         if (tcp_skb_pcount(skb) == 1 ||
3243                             !after(tp->snd_una, scb->seq))
3244                                 break;
3245
3246                         acked_pcount = tcp_tso_acked(sk, skb);
3247                         if (!acked_pcount)
3248                                 break;
3249
3250                         fully_acked = 0;
3251                 } else {
3252                         acked_pcount = tcp_skb_pcount(skb);
3253                 }
3254
3255                 if (sacked & TCPCB_RETRANS) {
3256                         if (sacked & TCPCB_SACKED_RETRANS)
3257                                 tp->retrans_out -= acked_pcount;
3258                         flag |= FLAG_RETRANS_DATA_ACKED;
3259                         ca_seq_rtt = -1;
3260                         seq_rtt = -1;
3261                         if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3262                                 flag |= FLAG_NONHEAD_RETRANS_ACKED;
3263                 } else {
3264                         ca_seq_rtt = now - scb->when;
3265                         last_ackt = skb->tstamp;
3266                         if (seq_rtt < 0) {
3267                                 seq_rtt = ca_seq_rtt;
3268                         }
3269                         if (!(sacked & TCPCB_SACKED_ACKED))
3270                                 reord = min(pkts_acked, reord);
3271                 }
3272
3273                 if (sacked & TCPCB_SACKED_ACKED)
3274                         tp->sacked_out -= acked_pcount;
3275                 if (sacked & TCPCB_LOST)
3276                         tp->lost_out -= acked_pcount;
3277
3278                 tp->packets_out -= acked_pcount;
3279                 pkts_acked += acked_pcount;
3280
3281                 /* Initial outgoing SYN's get put onto the write_queue
3282                  * just like anything else we transmit.  It is not
3283                  * true data, and if we misinform our callers that
3284                  * this ACK acks real data, we will erroneously exit
3285                  * connection startup slow start one packet too
3286                  * quickly.  This is severely frowned upon behavior.
3287                  */
3288                 if (!(scb->flags & TCPCB_FLAG_SYN)) {
3289                         flag |= FLAG_DATA_ACKED;
3290                 } else {
3291                         flag |= FLAG_SYN_ACKED;
3292                         tp->retrans_stamp = 0;
3293                 }
3294
3295                 if (!fully_acked)
3296                         break;
3297
3298                 tcp_unlink_write_queue(skb, sk);
3299                 sk_wmem_free_skb(sk, skb);
3300                 tp->scoreboard_skb_hint = NULL;
3301                 if (skb == tp->retransmit_skb_hint)
3302                         tp->retransmit_skb_hint = NULL;
3303                 if (skb == tp->lost_skb_hint)
3304                         tp->lost_skb_hint = NULL;
3305         }
3306
3307         if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3308                 tp->snd_up = tp->snd_una;
3309
3310         if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3311                 flag |= FLAG_SACK_RENEGING;
3312
3313         if (flag & FLAG_ACKED) {
3314                 const struct tcp_congestion_ops *ca_ops
3315                         = inet_csk(sk)->icsk_ca_ops;
3316
3317                 if (unlikely(icsk->icsk_mtup.probe_size &&
3318                              !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3319                         tcp_mtup_probe_success(sk);
3320                 }
3321
3322                 tcp_ack_update_rtt(sk, flag, seq_rtt);
3323                 tcp_rearm_rto(sk);
3324
3325                 if (tcp_is_reno(tp)) {
3326                         tcp_remove_reno_sacks(sk, pkts_acked);
3327                 } else {
3328                         int delta;
3329
3330                         /* Non-retransmitted hole got filled? That's reordering */
3331                         if (reord < prior_fackets)
3332                                 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3333
3334                         delta = tcp_is_fack(tp) ? pkts_acked :
3335                                                   prior_sacked - tp->sacked_out;
3336                         tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3337                 }
3338
3339                 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3340
3341                 if (ca_ops->pkts_acked) {
3342                         s32 rtt_us = -1;
3343
3344                         /* Is the ACK triggering packet unambiguous? */
3345                         if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3346                                 /* High resolution needed and available? */
3347                                 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3348                                     !ktime_equal(last_ackt,
3349                                                  net_invalid_timestamp()))
3350                                         rtt_us = ktime_us_delta(ktime_get_real(),
3351                                                                 last_ackt);
3352                                 else if (ca_seq_rtt > 0)
3353                                         rtt_us = jiffies_to_usecs(ca_seq_rtt);
3354                         }
3355
3356                         ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3357                 }
3358         }
3359
3360 #if FASTRETRANS_DEBUG > 0
3361         WARN_ON((int)tp->sacked_out < 0);
3362         WARN_ON((int)tp->lost_out < 0);
3363         WARN_ON((int)tp->retrans_out < 0);
3364         if (!tp->packets_out && tcp_is_sack(tp)) {
3365                 icsk = inet_csk(sk);
3366                 if (tp->lost_out) {
3367                         printk(KERN_DEBUG "Leak l=%u %d\n",
3368                                tp->lost_out, icsk->icsk_ca_state);
3369                         tp->lost_out = 0;
3370                 }
3371                 if (tp->sacked_out) {
3372                         printk(KERN_DEBUG "Leak s=%u %d\n",
3373                                tp->sacked_out, icsk->icsk_ca_state);
3374                         tp->sacked_out = 0;
3375                 }
3376                 if (tp->retrans_out) {
3377                         printk(KERN_DEBUG "Leak r=%u %d\n",
3378                                tp->retrans_out, icsk->icsk_ca_state);
3379                         tp->retrans_out = 0;
3380                 }
3381         }
3382 #endif
3383         return flag;
3384 }
3385
3386 static void tcp_ack_probe(struct sock *sk)
3387 {
3388         const struct tcp_sock *tp = tcp_sk(sk);
3389         struct inet_connection_sock *icsk = inet_csk(sk);
3390
3391         /* Was it a usable window open? */
3392
3393         if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3394                 icsk->icsk_backoff = 0;
3395                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3396                 /* Socket must be waked up by subsequent tcp_data_snd_check().
3397                  * This function is not for random using!
3398                  */
3399         } else {
3400                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3401                                           min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3402                                           TCP_RTO_MAX);
3403         }
3404 }
3405
3406 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3407 {
3408         return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3409                 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
3410 }
3411
3412 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3413 {
3414         const struct tcp_sock *tp = tcp_sk(sk);
3415         return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3416                 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3417 }
3418
3419 /* Check that window update is acceptable.
3420  * The function assumes that snd_una<=ack<=snd_next.
3421  */
3422 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3423                                         const u32 ack, const u32 ack_seq,
3424                                         const u32 nwin)
3425 {
3426         return (after(ack, tp->snd_una) ||
3427                 after(ack_seq, tp->snd_wl1) ||
3428                 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
3429 }
3430
3431 /* Update our send window.
3432  *
3433  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3434  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3435  */
3436 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
3437                                  u32 ack_seq)
3438 {
3439         struct tcp_sock *tp = tcp_sk(sk);
3440         int flag = 0;
3441         u32 nwin = ntohs(tcp_hdr(skb)->window);
3442
3443         if (likely(!tcp_hdr(skb)->syn))
3444                 nwin <<= tp->rx_opt.snd_wscale;
3445
3446         if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3447                 flag |= FLAG_WIN_UPDATE;
3448                 tcp_update_wl(tp, ack_seq);
3449
3450                 if (tp->snd_wnd != nwin) {
3451                         tp->snd_wnd = nwin;
3452
3453                         /* Note, it is the only place, where
3454                          * fast path is recovered for sending TCP.
3455                          */
3456                         tp->pred_flags = 0;
3457                         tcp_fast_path_check(sk);
3458
3459                         if (nwin > tp->max_window) {
3460                                 tp->max_window = nwin;
3461                                 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3462                         }
3463                 }
3464         }
3465
3466         tp->snd_una = ack;
3467
3468         return flag;
3469 }
3470
3471 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3472  * continue in congestion avoidance.
3473  */
3474 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3475 {
3476         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3477         tp->snd_cwnd_cnt = 0;
3478         tp->bytes_acked = 0;
3479         TCP_ECN_queue_cwr(tp);
3480         tcp_moderate_cwnd(tp);
3481 }
3482
3483 /* A conservative spurious RTO response algorithm: reduce cwnd using
3484  * rate halving and continue in congestion avoidance.
3485  */
3486 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3487 {
3488         tcp_enter_cwr(sk, 0);
3489 }
3490
3491 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3492 {
3493         if (flag & FLAG_ECE)
3494                 tcp_ratehalving_spur_to_response(sk);
3495         else
3496                 tcp_undo_cwr(sk, 1);
3497 }
3498
3499 /* F-RTO spurious RTO detection algorithm (RFC4138)
3500  *
3501  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3502  * comments). State (ACK number) is kept in frto_counter. When ACK advances
3503  * window (but not to or beyond highest sequence sent before RTO):
3504  *   On First ACK,  send two new segments out.
3505  *   On Second ACK, RTO was likely spurious. Do spurious response (response
3506  *                  algorithm is not part of the F-RTO detection algorithm
3507  *                  given in RFC4138 but can be selected separately).
3508  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3509  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3510  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3511  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3512  *
3513  * Rationale: if the RTO was spurious, new ACKs should arrive from the
3514  * original window even after we transmit two new data segments.
3515  *
3516  * SACK version:
3517  *   on first step, wait until first cumulative ACK arrives, then move to
3518  *   the second step. In second step, the next ACK decides.
3519  *
3520  * F-RTO is implemented (mainly) in four functions:
3521  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3522  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3523  *     called when tcp_use_frto() showed green light
3524  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3525  *   - tcp_enter_frto_loss() is called if there is not enough evidence
3526  *     to prove that the RTO is indeed spurious. It transfers the control
3527  *     from F-RTO to the conventional RTO recovery
3528  */
3529 static int tcp_process_frto(struct sock *sk, int flag)
3530 {
3531         struct tcp_sock *tp = tcp_sk(sk);
3532
3533         tcp_verify_left_out(tp);
3534
3535         /* Duplicate the behavior from Loss state (fastretrans_alert) */
3536         if (flag & FLAG_DATA_ACKED)
3537                 inet_csk(sk)->icsk_retransmits = 0;
3538
3539         if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3540             ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3541                 tp->undo_marker = 0;
3542
3543         if (!before(tp->snd_una, tp->frto_highmark)) {
3544                 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3545                 return 1;
3546         }
3547
3548         if (!tcp_is_sackfrto(tp)) {
3549                 /* RFC4138 shortcoming in step 2; should also have case c):
3550                  * ACK isn't duplicate nor advances window, e.g., opposite dir
3551                  * data, winupdate
3552                  */
3553                 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3554                         return 1;
3555
3556                 if (!(flag & FLAG_DATA_ACKED)) {
3557                         tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3558                                             flag);
3559                         return 1;
3560                 }
3561         } else {
3562                 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3563                         /* Prevent sending of new data. */
3564                         tp->snd_cwnd = min(tp->snd_cwnd,
3565                                            tcp_packets_in_flight(tp));
3566                         return 1;
3567                 }
3568
3569                 if ((tp->frto_counter >= 2) &&
3570                     (!(flag & FLAG_FORWARD_PROGRESS) ||
3571                      ((flag & FLAG_DATA_SACKED) &&
3572                       !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3573                         /* RFC4138 shortcoming (see comment above) */
3574                         if (!(flag & FLAG_FORWARD_PROGRESS) &&
3575                             (flag & FLAG_NOT_DUP))
3576                                 return 1;
3577
3578                         tcp_enter_frto_loss(sk, 3, flag);
3579                         return 1;
3580                 }
3581         }
3582
3583         if (tp->frto_counter == 1) {
3584                 /* tcp_may_send_now needs to see updated state */
3585                 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3586                 tp->frto_counter = 2;
3587
3588                 if (!tcp_may_send_now(sk))
3589                         tcp_enter_frto_loss(sk, 2, flag);
3590
3591                 return 1;
3592         } else {
3593                 switch (sysctl_tcp_frto_response) {
3594                 case 2:
3595                         tcp_undo_spur_to_response(sk, flag);
3596                         break;
3597                 case 1:
3598                         tcp_conservative_spur_to_response(tp);
3599                         break;
3600                 default:
3601                         tcp_ratehalving_spur_to_response(sk);
3602                         break;
3603                 }
3604                 tp->frto_counter = 0;
3605                 tp->undo_marker = 0;
3606                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3607         }
3608         return 0;
3609 }
3610
3611 /* This routine deals with incoming acks, but not outgoing ones. */
3612 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3613 {
3614         struct inet_connection_sock *icsk = inet_csk(sk);
3615         struct tcp_sock *tp = tcp_sk(sk);
3616         u32 prior_snd_una = tp->snd_una;
3617         u32 ack_seq = TCP_SKB_CB(skb)->seq;
3618         u32 ack = TCP_SKB_CB(skb)->ack_seq;
3619         u32 prior_in_flight;
3620         u32 prior_fackets;
3621         int prior_packets;
3622         int frto_cwnd = 0;
3623
3624         /* If the ack is older than previous acks
3625          * then we can probably ignore it.
3626          */
3627         if (before(ack, prior_snd_una))
3628                 goto old_ack;
3629
3630         /* If the ack includes data we haven't sent yet, discard
3631          * this segment (RFC793 Section 3.9).
3632          */
3633         if (after(ack, tp->snd_nxt))
3634                 goto invalid_ack;
3635
3636         if (after(ack, prior_snd_una))
3637                 flag |= FLAG_SND_UNA_ADVANCED;
3638
3639         if (sysctl_tcp_abc) {
3640                 if (icsk->icsk_ca_state < TCP_CA_CWR)
3641                         tp->bytes_acked += ack - prior_snd_una;
3642                 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3643                         /* we assume just one segment left network */
3644                         tp->bytes_acked += min(ack - prior_snd_una,
3645                                                tp->mss_cache);
3646         }
3647
3648         prior_fackets = tp->fackets_out;
3649         prior_in_flight = tcp_packets_in_flight(tp);
3650
3651         if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3652                 /* Window is constant, pure forward advance.
3653                  * No more checks are required.
3654                  * Note, we use the fact that SND.UNA>=SND.WL2.
3655                  */
3656                 tcp_update_wl(tp, ack_seq);
3657                 tp->snd_una = ack;
3658                 flag |= FLAG_WIN_UPDATE;
3659
3660                 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3661
3662                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3663         } else {
3664                 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3665                         flag |= FLAG_DATA;
3666                 else
3667                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3668
3669                 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3670
3671                 if (TCP_SKB_CB(skb)->sacked)
3672                         flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3673
3674                 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3675                         flag |= FLAG_ECE;
3676
3677                 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3678         }
3679
3680         /* We passed data and got it acked, remove any soft error
3681          * log. Something worked...
3682          */
3683         sk->sk_err_soft = 0;
3684         icsk->icsk_probes_out = 0;
3685         tp->rcv_tstamp = tcp_time_stamp;
3686         prior_packets = tp->packets_out;
3687         if (!prior_packets)
3688                 goto no_queue;
3689
3690         /* See if we can take anything off of the retransmit queue. */
3691         flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3692
3693         if (tp->frto_counter)
3694                 frto_cwnd = tcp_process_frto(sk, flag);
3695         /* Guarantee sacktag reordering detection against wrap-arounds */
3696         if (before(tp->frto_highmark, tp->snd_una))
3697                 tp->frto_highmark = 0;
3698
3699         if (tcp_ack_is_dubious(sk, flag)) {
3700                 /* Advance CWND, if state allows this. */
3701                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3702                     tcp_may_raise_cwnd(sk, flag))
3703                         tcp_cong_avoid(sk, ack, prior_in_flight);
3704                 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3705                                       flag);
3706         } else {
3707                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3708                         tcp_cong_avoid(sk, ack, prior_in_flight);
3709         }
3710
3711         if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3712                 dst_confirm(sk->sk_dst_cache);
3713
3714         return 1;
3715
3716 no_queue:
3717         /* If this ack opens up a zero window, clear backoff.  It was
3718          * being used to time the probes, and is probably far higher than
3719          * it needs to be for normal retransmission.
3720          */
3721         if (tcp_send_head(sk))
3722                 tcp_ack_probe(sk);
3723         return 1;
3724
3725 invalid_ack:
3726         SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3727         return -1;
3728
3729 old_ack:
3730         if (TCP_SKB_CB(skb)->sacked) {
3731                 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3732                 if (icsk->icsk_ca_state == TCP_CA_Open)
3733                         tcp_try_keep_open(sk);
3734         }
3735
3736         SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3737         return 0;
3738 }
3739
3740 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3741  * But, this can also be called on packets in the established flow when
3742  * the fast version below fails.
3743  */
3744 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
3745                        u8 **hvpp, int estab)
3746 {
3747         unsigned char *ptr;
3748         struct tcphdr *th = tcp_hdr(skb);
3749         int length = (th->doff * 4) - sizeof(struct tcphdr);
3750
3751         ptr = (unsigned char *)(th + 1);
3752         opt_rx->saw_tstamp = 0;
3753
3754         while (length > 0) {
3755                 int opcode = *ptr++;
3756                 int opsize;
3757
3758                 switch (opcode) {
3759                 case TCPOPT_EOL:
3760                         return;
3761                 case TCPOPT_NOP:        /* Ref: RFC 793 section 3.1 */
3762                         length--;
3763                         continue;
3764                 default:
3765                         opsize = *ptr++;
3766                         if (opsize < 2) /* "silly options" */
3767                                 return;
3768                         if (opsize > length)
3769                                 return; /* don't parse partial options */
3770                         switch (opcode) {
3771                         case TCPOPT_MSS:
3772                                 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3773                                         u16 in_mss = get_unaligned_be16(ptr);
3774                                         if (in_mss) {
3775                                                 if (opt_rx->user_mss &&
3776                                                     opt_rx->user_mss < in_mss)
3777                                                         in_mss = opt_rx->user_mss;
3778                                                 opt_rx->mss_clamp = in_mss;
3779                                         }
3780                                 }
3781                                 break;
3782                         case TCPOPT_WINDOW:
3783                                 if (opsize == TCPOLEN_WINDOW && th->syn &&
3784                                     !estab && sysctl_tcp_window_scaling) {
3785                                         __u8 snd_wscale = *(__u8 *)ptr;
3786                                         opt_rx->wscale_ok = 1;
3787                                         if (snd_wscale > 14) {
3788                                                 if (net_ratelimit())
3789                                                         printk(KERN_INFO "tcp_parse_options: Illegal window "
3790                                                                "scaling value %d >14 received.\n",
3791                                                                snd_wscale);
3792                                                 snd_wscale = 14;
3793                                         }
3794                                         opt_rx->snd_wscale = snd_wscale;
3795                                 }
3796                                 break;
3797                         case TCPOPT_TIMESTAMP:
3798                                 if ((opsize == TCPOLEN_TIMESTAMP) &&
3799                                     ((estab && opt_rx->tstamp_ok) ||
3800                                      (!estab && sysctl_tcp_timestamps))) {
3801                                         opt_rx->saw_tstamp = 1;
3802                                         opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3803                                         opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3804                                 }
3805                                 break;
3806                         case TCPOPT_SACK_PERM:
3807                                 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3808                                     !estab && sysctl_tcp_sack) {
3809                                         opt_rx->sack_ok = 1;
3810                                         tcp_sack_reset(opt_rx);
3811                                 }
3812                                 break;
3813
3814                         case TCPOPT_SACK:
3815                                 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3816                                    !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3817                                    opt_rx->sack_ok) {
3818                                         TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3819                                 }
3820                                 break;
3821 #ifdef CONFIG_TCP_MD5SIG
3822                         case TCPOPT_MD5SIG:
3823                                 /*
3824                                  * The MD5 Hash has already been
3825                                  * checked (see tcp_v{4,6}_do_rcv()).
3826                                  */
3827                                 break;
3828 #endif
3829                         case TCPOPT_COOKIE:
3830                                 /* This option is variable length.
3831                                  */
3832                                 switch (opsize) {
3833                                 case TCPOLEN_COOKIE_BASE:
3834                                         /* not yet implemented */
3835                                         break;
3836                                 case TCPOLEN_COOKIE_PAIR:
3837                                         /* not yet implemented */
3838                                         break;
3839                                 case TCPOLEN_COOKIE_MIN+0:
3840                                 case TCPOLEN_COOKIE_MIN+2:
3841                                 case TCPOLEN_COOKIE_MIN+4:
3842                                 case TCPOLEN_COOKIE_MIN+6:
3843                                 case TCPOLEN_COOKIE_MAX:
3844                                         /* 16-bit multiple */
3845                                         opt_rx->cookie_plus = opsize;
3846                                         *hvpp = ptr;
3847                                 default:
3848                                         /* ignore option */
3849                                         break;
3850                                 };
3851                                 break;
3852                         };
3853
3854                         ptr += opsize-2;
3855                         length -= opsize;
3856                 }
3857         }
3858 }
3859
3860 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, struct tcphdr *th)
3861 {
3862         __be32 *ptr = (__be32 *)(th + 1);
3863
3864         if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3865                           | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3866                 tp->rx_opt.saw_tstamp = 1;
3867                 ++ptr;
3868                 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3869                 ++ptr;
3870                 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3871                 return 1;
3872         }
3873         return 0;
3874 }
3875
3876 /* Fast parse options. This hopes to only see timestamps.
3877  * If it is wrong it falls back on tcp_parse_options().
3878  */
3879 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3880                                   struct tcp_sock *tp, u8 **hvpp)
3881 {
3882         /* In the spirit of fast parsing, compare doff directly to constant
3883          * values.  Because equality is used, short doff can be ignored here.
3884          */
3885         if (th->doff == (sizeof(*th) / 4)) {
3886                 tp->rx_opt.saw_tstamp = 0;
3887                 return 0;
3888         } else if (tp->rx_opt.tstamp_ok &&
3889                    th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3890                 if (tcp_parse_aligned_timestamp(tp, th))
3891                         return 1;
3892         }
3893         tcp_parse_options(skb, &tp->rx_opt, hvpp, 1);
3894         return 1;
3895 }
3896
3897 #ifdef CONFIG_TCP_MD5SIG
3898 /*
3899  * Parse MD5 Signature option
3900  */
3901 u8 *tcp_parse_md5sig_option(struct tcphdr *th)
3902 {
3903         int length = (th->doff << 2) - sizeof (*th);
3904         u8 *ptr = (u8*)(th + 1);
3905
3906         /* If the TCP option is too short, we can short cut */
3907         if (length < TCPOLEN_MD5SIG)
3908                 return NULL;
3909
3910         while (length > 0) {
3911                 int opcode = *ptr++;
3912                 int opsize;
3913
3914                 switch(opcode) {
3915                 case TCPOPT_EOL:
3916                         return NULL;
3917                 case TCPOPT_NOP:
3918                         length--;
3919                         continue;
3920                 default:
3921                         opsize = *ptr++;
3922                         if (opsize < 2 || opsize > length)
3923                                 return NULL;
3924                         if (opcode == TCPOPT_MD5SIG)
3925                                 return ptr;
3926                 }
3927                 ptr += opsize - 2;
3928                 length -= opsize;
3929         }
3930         return NULL;
3931 }
3932 #endif
3933
3934 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3935 {
3936         tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3937         tp->rx_opt.ts_recent_stamp = get_seconds();
3938 }
3939
3940 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3941 {
3942         if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3943                 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3944                  * extra check below makes sure this can only happen
3945                  * for pure ACK frames.  -DaveM
3946                  *
3947                  * Not only, also it occurs for expired timestamps.
3948                  */
3949
3950                 if (tcp_paws_check(&tp->rx_opt, 0))
3951                         tcp_store_ts_recent(tp);
3952         }
3953 }
3954
3955 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3956  *
3957  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3958  * it can pass through stack. So, the following predicate verifies that
3959  * this segment is not used for anything but congestion avoidance or
3960  * fast retransmit. Moreover, we even are able to eliminate most of such
3961  * second order effects, if we apply some small "replay" window (~RTO)
3962  * to timestamp space.
3963  *
3964  * All these measures still do not guarantee that we reject wrapped ACKs
3965  * on networks with high bandwidth, when sequence space is recycled fastly,
3966  * but it guarantees that such events will be very rare and do not affect
3967  * connection seriously. This doesn't look nice, but alas, PAWS is really
3968  * buggy extension.
3969  *
3970  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3971  * states that events when retransmit arrives after original data are rare.
3972  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3973  * the biggest problem on large power networks even with minor reordering.
3974  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3975  * up to bandwidth of 18Gigabit/sec. 8) ]
3976  */
3977
3978 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3979 {
3980         struct tcp_sock *tp = tcp_sk(sk);
3981         struct tcphdr *th = tcp_hdr(skb);
3982         u32 seq = TCP_SKB_CB(skb)->seq;
3983         u32 ack = TCP_SKB_CB(skb)->ack_seq;
3984
3985         return (/* 1. Pure ACK with correct sequence number. */
3986                 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3987
3988                 /* 2. ... and duplicate ACK. */
3989                 ack == tp->snd_una &&
3990
3991                 /* 3. ... and does not update window. */
3992                 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3993
3994                 /* 4. ... and sits in replay window. */
3995                 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3996 }
3997
3998 static inline int tcp_paws_discard(const struct sock *sk,
3999                                    const struct sk_buff *skb)
4000 {
4001         const struct tcp_sock *tp = tcp_sk(sk);
4002
4003         return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4004                !tcp_disordered_ack(sk, skb);
4005 }
4006
4007 /* Check segment sequence number for validity.
4008  *
4009  * Segment controls are considered valid, if the segment
4010  * fits to the window after truncation to the window. Acceptability
4011  * of data (and SYN, FIN, of course) is checked separately.
4012  * See tcp_data_queue(), for example.
4013  *
4014  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4015  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4016  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4017  * (borrowed from freebsd)
4018  */
4019
4020 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
4021 {
4022         return  !before(end_seq, tp->rcv_wup) &&
4023                 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4024 }
4025
4026 /* When we get a reset we do this. */
4027 static void tcp_reset(struct sock *sk)
4028 {
4029         /* We want the right error as BSD sees it (and indeed as we do). */
4030         switch (sk->sk_state) {
4031         case TCP_SYN_SENT:
4032                 sk->sk_err = ECONNREFUSED;
4033                 break;
4034         case TCP_CLOSE_WAIT:
4035                 sk->sk_err = EPIPE;
4036                 break;
4037         case TCP_CLOSE:
4038                 return;
4039         default:
4040                 sk->sk_err = ECONNRESET;
4041         }
4042
4043         if (!sock_flag(sk, SOCK_DEAD))
4044                 sk->sk_error_report(sk);
4045
4046         tcp_done(sk);
4047 }
4048
4049 /*
4050  *      Process the FIN bit. This now behaves as it is supposed to work
4051  *      and the FIN takes effect when it is validly part of sequence
4052  *      space. Not before when we get holes.
4053  *
4054  *      If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4055  *      (and thence onto LAST-ACK and finally, CLOSE, we never enter
4056  *      TIME-WAIT)
4057  *
4058  *      If we are in FINWAIT-1, a received FIN indicates simultaneous
4059  *      close and we go into CLOSING (and later onto TIME-WAIT)
4060  *
4061  *      If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4062  */
4063 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
4064 {
4065         struct tcp_sock *tp = tcp_sk(sk);
4066
4067         inet_csk_schedule_ack(sk);
4068
4069         sk->sk_shutdown |= RCV_SHUTDOWN;
4070         sock_set_flag(sk, SOCK_DONE);
4071
4072         switch (sk->sk_state) {
4073         case TCP_SYN_RECV:
4074         case TCP_ESTABLISHED:
4075                 /* Move to CLOSE_WAIT */
4076                 tcp_set_state(sk, TCP_CLOSE_WAIT);
4077                 inet_csk(sk)->icsk_ack.pingpong = 1;
4078                 break;
4079
4080         case TCP_CLOSE_WAIT:
4081         case TCP_CLOSING:
4082                 /* Received a retransmission of the FIN, do
4083                  * nothing.
4084                  */
4085                 break;
4086         case TCP_LAST_ACK:
4087                 /* RFC793: Remain in the LAST-ACK state. */
4088                 break;
4089
4090         case TCP_FIN_WAIT1:
4091                 /* This case occurs when a simultaneous close
4092                  * happens, we must ack the received FIN and
4093                  * enter the CLOSING state.
4094                  */
4095                 tcp_send_ack(sk);
4096                 tcp_set_state(sk, TCP_CLOSING);
4097                 break;
4098         case TCP_FIN_WAIT2:
4099                 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4100                 tcp_send_ack(sk);
4101                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4102                 break;
4103         default:
4104                 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4105                  * cases we should never reach this piece of code.
4106                  */
4107                 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
4108                        __func__, sk->sk_state);
4109                 break;
4110         }
4111
4112         /* It _is_ possible, that we have something out-of-order _after_ FIN.
4113          * Probably, we should reset in this case. For now drop them.
4114          */
4115         __skb_queue_purge(&tp->out_of_order_queue);
4116         if (tcp_is_sack(tp))
4117                 tcp_sack_reset(&tp->rx_opt);
4118         sk_mem_reclaim(sk);
4119
4120         if (!sock_flag(sk, SOCK_DEAD)) {
4121                 sk->sk_state_change(sk);
4122
4123                 /* Do not send POLL_HUP for half duplex close. */
4124                 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4125                     sk->sk_state == TCP_CLOSE)
4126                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4127                 else
4128                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4129         }
4130 }
4131
4132 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4133                                   u32 end_seq)
4134 {
4135         if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4136                 if (before(seq, sp->start_seq))
4137                         sp->start_seq = seq;
4138                 if (after(end_seq, sp->end_seq))
4139                         sp->end_seq = end_seq;
4140                 return 1;
4141         }
4142         return 0;
4143 }
4144
4145 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4146 {
4147         struct tcp_sock *tp = tcp_sk(sk);
4148
4149         if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4150                 int mib_idx;
4151
4152                 if (before(seq, tp->rcv_nxt))
4153                         mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4154                 else
4155                         mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4156
4157                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
4158
4159                 tp->rx_opt.dsack = 1;
4160                 tp->duplicate_sack[0].start_seq = seq;
4161                 tp->duplicate_sack[0].end_seq = end_seq;
4162         }
4163 }
4164
4165 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4166 {
4167         struct tcp_sock *tp = tcp_sk(sk);
4168
4169         if (!tp->rx_opt.dsack)
4170                 tcp_dsack_set(sk, seq, end_seq);
4171         else
4172                 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4173 }
4174
4175 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
4176 {
4177         struct tcp_sock *tp = tcp_sk(sk);
4178
4179         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4180             before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4181                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4182                 tcp_enter_quickack_mode(sk);
4183
4184                 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4185                         u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4186
4187                         if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4188                                 end_seq = tp->rcv_nxt;
4189                         tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4190                 }
4191         }
4192
4193         tcp_send_ack(sk);
4194 }
4195
4196 /* These routines update the SACK block as out-of-order packets arrive or
4197  * in-order packets close up the sequence space.
4198  */
4199 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4200 {
4201         int this_sack;
4202         struct tcp_sack_block *sp = &tp->selective_acks[0];
4203         struct tcp_sack_block *swalk = sp + 1;
4204
4205         /* See if the recent change to the first SACK eats into
4206          * or hits the sequence space of other SACK blocks, if so coalesce.
4207          */
4208         for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4209                 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4210                         int i;
4211
4212                         /* Zap SWALK, by moving every further SACK up by one slot.
4213                          * Decrease num_sacks.
4214                          */
4215                         tp->rx_opt.num_sacks--;
4216                         for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4217                                 sp[i] = sp[i + 1];
4218                         continue;
4219                 }
4220                 this_sack++, swalk++;
4221         }
4222 }
4223
4224 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4225 {
4226         struct tcp_sock *tp = tcp_sk(sk);
4227         struct tcp_sack_block *sp = &tp->selective_acks[0];
4228         int cur_sacks = tp->rx_opt.num_sacks;
4229         int this_sack;
4230
4231         if (!cur_sacks)
4232                 goto new_sack;
4233
4234         for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4235                 if (tcp_sack_extend(sp, seq, end_seq)) {
4236                         /* Rotate this_sack to the first one. */
4237                         for (; this_sack > 0; this_sack--, sp--)
4238                                 swap(*sp, *(sp - 1));
4239                         if (cur_sacks > 1)
4240                                 tcp_sack_maybe_coalesce(tp);
4241                         return;
4242                 }
4243         }
4244
4245         /* Could not find an adjacent existing SACK, build a new one,
4246          * put it at the front, and shift everyone else down.  We
4247          * always know there is at least one SACK present already here.
4248          *
4249          * If the sack array is full, forget about the last one.
4250          */
4251         if (this_sack >= TCP_NUM_SACKS) {
4252                 this_sack--;
4253                 tp->rx_opt.num_sacks--;
4254                 sp--;
4255         }
4256         for (; this_sack > 0; this_sack--, sp--)
4257                 *sp = *(sp - 1);
4258
4259 new_sack:
4260         /* Build the new head SACK, and we're done. */
4261         sp->start_seq = seq;
4262         sp->end_seq = end_seq;
4263         tp->rx_opt.num_sacks++;
4264 }
4265
4266 /* RCV.NXT advances, some SACKs should be eaten. */
4267
4268 static void tcp_sack_remove(struct tcp_sock *tp)
4269 {
4270         struct tcp_sack_block *sp = &tp->selective_acks[0];
4271         int num_sacks = tp->rx_opt.num_sacks;
4272         int this_sack;
4273
4274         /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4275         if (skb_queue_empty(&tp->out_of_order_queue)) {
4276                 tp->rx_opt.num_sacks = 0;
4277                 return;
4278         }
4279
4280         for (this_sack = 0; this_sack < num_sacks;) {
4281                 /* Check if the start of the sack is covered by RCV.NXT. */
4282                 if (!before(tp->rcv_nxt, sp->start_seq)) {
4283                         int i;
4284
4285                         /* RCV.NXT must cover all the block! */
4286                         WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4287
4288                         /* Zap this SACK, by moving forward any other SACKS. */
4289                         for (i=this_sack+1; i < num_sacks; i++)
4290                                 tp->selective_acks[i-1] = tp->selective_acks[i];
4291                         num_sacks--;
4292                         continue;
4293                 }
4294                 this_sack++;
4295                 sp++;
4296         }
4297         tp->rx_opt.num_sacks = num_sacks;
4298 }
4299
4300 /* This one checks to see if we can put data from the
4301  * out_of_order queue into the receive_queue.
4302  */
4303 static void tcp_ofo_queue(struct sock *sk)
4304 {
4305         struct tcp_sock *tp = tcp_sk(sk);
4306         __u32 dsack_high = tp->rcv_nxt;
4307         struct sk_buff *skb;
4308
4309         while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4310                 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4311                         break;
4312
4313                 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4314                         __u32 dsack = dsack_high;
4315                         if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4316                                 dsack_high = TCP_SKB_CB(skb)->end_seq;
4317                         tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4318                 }
4319
4320                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4321                         SOCK_DEBUG(sk, "ofo packet was already received \n");
4322                         __skb_unlink(skb, &tp->out_of_order_queue);
4323                         __kfree_skb(skb);
4324                         continue;
4325                 }
4326                 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4327                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4328                            TCP_SKB_CB(skb)->end_seq);
4329
4330                 __skb_unlink(skb, &tp->out_of_order_queue);
4331                 __skb_queue_tail(&sk->sk_receive_queue, skb);
4332                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4333                 if (tcp_hdr(skb)->fin)
4334                         tcp_fin(skb, sk, tcp_hdr(skb));
4335         }
4336 }
4337
4338 static int tcp_prune_ofo_queue(struct sock *sk);
4339 static int tcp_prune_queue(struct sock *sk);
4340
4341 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4342 {
4343         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4344             !sk_rmem_schedule(sk, size)) {
4345
4346                 if (tcp_prune_queue(sk) < 0)
4347                         return -1;
4348
4349                 if (!sk_rmem_schedule(sk, size)) {
4350                         if (!tcp_prune_ofo_queue(sk))
4351                                 return -1;
4352
4353                         if (!sk_rmem_schedule(sk, size))
4354                                 return -1;
4355                 }
4356         }
4357         return 0;
4358 }
4359
4360 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4361 {
4362         struct tcphdr *th = tcp_hdr(skb);
4363         struct tcp_sock *tp = tcp_sk(sk);
4364         int eaten = -1;
4365
4366         if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4367                 goto drop;
4368
4369         __skb_pull(skb, th->doff * 4);
4370
4371         TCP_ECN_accept_cwr(tp, skb);
4372
4373         tp->rx_opt.dsack = 0;
4374
4375         /*  Queue data for delivery to the user.
4376          *  Packets in sequence go to the receive queue.
4377          *  Out of sequence packets to the out_of_order_queue.
4378          */
4379         if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4380                 if (tcp_receive_window(tp) == 0)
4381                         goto out_of_window;
4382
4383                 /* Ok. In sequence. In window. */
4384                 if (tp->ucopy.task == current &&
4385                     tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4386                     sock_owned_by_user(sk) && !tp->urg_data) {
4387                         int chunk = min_t(unsigned int, skb->len,
4388                                           tp->ucopy.len);
4389
4390                         __set_current_state(TASK_RUNNING);
4391
4392                         local_bh_enable();
4393                         if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4394                                 tp->ucopy.len -= chunk;
4395                                 tp->copied_seq += chunk;
4396                                 eaten = (chunk == skb->len && !th->fin);
4397                                 tcp_rcv_space_adjust(sk);
4398                         }
4399                         local_bh_disable();
4400                 }
4401
4402                 if (eaten <= 0) {
4403 queue_and_out:
4404                         if (eaten < 0 &&
4405                             tcp_try_rmem_schedule(sk, skb->truesize))
4406                                 goto drop;
4407
4408                         skb_set_owner_r(skb, sk);
4409                         __skb_queue_tail(&sk->sk_receive_queue, skb);
4410                 }
4411                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4412                 if (skb->len)
4413                         tcp_event_data_recv(sk, skb);
4414                 if (th->fin)
4415                         tcp_fin(skb, sk, th);
4416
4417                 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4418                         tcp_ofo_queue(sk);
4419
4420                         /* RFC2581. 4.2. SHOULD send immediate ACK, when
4421                          * gap in queue is filled.
4422                          */
4423                         if (skb_queue_empty(&tp->out_of_order_queue))
4424                                 inet_csk(sk)->icsk_ack.pingpong = 0;
4425                 }
4426
4427                 if (tp->rx_opt.num_sacks)
4428                         tcp_sack_remove(tp);
4429
4430                 tcp_fast_path_check(sk);
4431
4432                 if (eaten > 0)
4433                         __kfree_skb(skb);
4434                 else if (!sock_flag(sk, SOCK_DEAD))
4435                         sk->sk_data_ready(sk, 0);
4436                 return;
4437         }
4438
4439         if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4440                 /* A retransmit, 2nd most common case.  Force an immediate ack. */
4441                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4442                 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4443
4444 out_of_window:
4445                 tcp_enter_quickack_mode(sk);
4446                 inet_csk_schedule_ack(sk);
4447 drop:
4448                 __kfree_skb(skb);
4449                 return;
4450         }
4451
4452         /* Out of window. F.e. zero window probe. */
4453         if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4454                 goto out_of_window;
4455
4456         tcp_enter_quickack_mode(sk);
4457
4458         if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4459                 /* Partial packet, seq < rcv_next < end_seq */
4460                 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4461                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4462                            TCP_SKB_CB(skb)->end_seq);
4463
4464                 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4465
4466                 /* If window is closed, drop tail of packet. But after
4467                  * remembering D-SACK for its head made in previous line.
4468                  */
4469                 if (!tcp_receive_window(tp))
4470                         goto out_of_window;
4471                 goto queue_and_out;
4472         }
4473
4474         TCP_ECN_check_ce(tp, skb);
4475
4476         if (tcp_try_rmem_schedule(sk, skb->truesize))
4477                 goto drop;
4478
4479         /* Disable header prediction. */
4480         tp->pred_flags = 0;
4481         inet_csk_schedule_ack(sk);
4482
4483         SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4484                    tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4485
4486         skb_set_owner_r(skb, sk);
4487
4488         if (!skb_peek(&tp->out_of_order_queue)) {
4489                 /* Initial out of order segment, build 1 SACK. */
4490                 if (tcp_is_sack(tp)) {
4491                         tp->rx_opt.num_sacks = 1;
4492                         tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4493                         tp->selective_acks[0].end_seq =
4494                                                 TCP_SKB_CB(skb)->end_seq;
4495                 }
4496                 __skb_queue_head(&tp->out_of_order_queue, skb);
4497         } else {
4498                 struct sk_buff *skb1 = skb_peek_tail(&tp->out_of_order_queue);
4499                 u32 seq = TCP_SKB_CB(skb)->seq;
4500                 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4501
4502                 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4503                         __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4504
4505                         if (!tp->rx_opt.num_sacks ||
4506                             tp->selective_acks[0].end_seq != seq)
4507                                 goto add_sack;
4508
4509                         /* Common case: data arrive in order after hole. */
4510                         tp->selective_acks[0].end_seq = end_seq;
4511                         return;
4512                 }
4513
4514                 /* Find place to insert this segment. */
4515                 while (1) {
4516                         if (!after(TCP_SKB_CB(skb1)->seq, seq))
4517                                 break;
4518                         if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4519                                 skb1 = NULL;
4520                                 break;
4521                         }
4522                         skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4523                 }
4524
4525                 /* Do skb overlap to previous one? */
4526                 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4527                         if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4528                                 /* All the bits are present. Drop. */
4529                                 __kfree_skb(skb);
4530                                 tcp_dsack_set(sk, seq, end_seq);
4531                                 goto add_sack;
4532                         }
4533                         if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4534                                 /* Partial overlap. */
4535                                 tcp_dsack_set(sk, seq,
4536                                               TCP_SKB_CB(skb1)->end_seq);
4537                         } else {
4538                                 if (skb_queue_is_first(&tp->out_of_order_queue,
4539                                                        skb1))
4540                                         skb1 = NULL;
4541                                 else
4542                                         skb1 = skb_queue_prev(
4543                                                 &tp->out_of_order_queue,
4544                                                 skb1);
4545                         }
4546                 }
4547                 if (!skb1)
4548                         __skb_queue_head(&tp->out_of_order_queue, skb);
4549                 else
4550                         __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4551
4552                 /* And clean segments covered by new one as whole. */
4553                 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4554                         skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4555
4556                         if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4557                                 break;
4558                         if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4559                                 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4560                                                  end_seq);
4561                                 break;
4562                         }
4563                         __skb_unlink(skb1, &tp->out_of_order_queue);
4564                         tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4565                                          TCP_SKB_CB(skb1)->end_seq);
4566                         __kfree_skb(skb1);
4567                 }
4568
4569 add_sack:
4570                 if (tcp_is_sack(tp))
4571                         tcp_sack_new_ofo_skb(sk, seq, end_seq);
4572         }
4573 }
4574
4575 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4576                                         struct sk_buff_head *list)
4577 {
4578         struct sk_buff *next = NULL;
4579
4580         if (!skb_queue_is_last(list, skb))
4581                 next = skb_queue_next(list, skb);
4582
4583         __skb_unlink(skb, list);
4584         __kfree_skb(skb);
4585         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4586
4587         return next;
4588 }
4589
4590 /* Collapse contiguous sequence of skbs head..tail with
4591  * sequence numbers start..end.
4592  *
4593  * If tail is NULL, this means until the end of the list.
4594  *
4595  * Segments with FIN/SYN are not collapsed (only because this
4596  * simplifies code)
4597  */
4598 static void
4599 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4600              struct sk_buff *head, struct sk_buff *tail,
4601              u32 start, u32 end)
4602 {
4603         struct sk_buff *skb, *n;
4604         bool end_of_skbs;
4605
4606         /* First, check that queue is collapsible and find
4607          * the point where collapsing can be useful. */
4608         skb = head;
4609 restart:
4610         end_of_skbs = true;
4611         skb_queue_walk_from_safe(list, skb, n) {
4612                 if (skb == tail)
4613                         break;
4614                 /* No new bits? It is possible on ofo queue. */
4615                 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4616                         skb = tcp_collapse_one(sk, skb, list);
4617                         if (!skb)
4618                                 break;
4619                         goto restart;
4620                 }
4621
4622                 /* The first skb to collapse is:
4623                  * - not SYN/FIN and
4624                  * - bloated or contains data before "start" or
4625                  *   overlaps to the next one.
4626                  */
4627                 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4628                     (tcp_win_from_space(skb->truesize) > skb->len ||
4629                      before(TCP_SKB_CB(skb)->seq, start))) {
4630                         end_of_skbs = false;
4631                         break;
4632                 }
4633
4634                 if (!skb_queue_is_last(list, skb)) {
4635                         struct sk_buff *next = skb_queue_next(list, skb);
4636                         if (next != tail &&
4637                             TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4638                                 end_of_skbs = false;
4639                                 break;
4640                         }
4641                 }
4642
4643                 /* Decided to skip this, advance start seq. */
4644                 start = TCP_SKB_CB(skb)->end_seq;
4645         }
4646         if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4647                 return;
4648
4649         while (before(start, end)) {
4650                 struct sk_buff *nskb;
4651                 unsigned int header = skb_headroom(skb);
4652                 int copy = SKB_MAX_ORDER(header, 0);
4653
4654                 /* Too big header? This can happen with IPv6. */
4655                 if (copy < 0)
4656                         return;
4657                 if (end - start < copy)
4658                         copy = end - start;
4659                 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4660                 if (!nskb)
4661                         return;
4662
4663                 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4664                 skb_set_network_header(nskb, (skb_network_header(skb) -
4665                                               skb->head));
4666                 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4667                                                 skb->head));
4668                 skb_reserve(nskb, header);
4669                 memcpy(nskb->head, skb->head, header);
4670                 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4671                 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4672                 __skb_queue_before(list, skb, nskb);
4673                 skb_set_owner_r(nskb, sk);
4674
4675                 /* Copy data, releasing collapsed skbs. */
4676                 while (copy > 0) {
4677                         int offset = start - TCP_SKB_CB(skb)->seq;
4678                         int size = TCP_SKB_CB(skb)->end_seq - start;
4679
4680                         BUG_ON(offset < 0);
4681                         if (size > 0) {
4682                                 size = min(copy, size);
4683                                 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4684                                         BUG();
4685                                 TCP_SKB_CB(nskb)->end_seq += size;
4686                                 copy -= size;
4687                                 start += size;
4688                         }
4689                         if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4690                                 skb = tcp_collapse_one(sk, skb, list);
4691                                 if (!skb ||
4692                                     skb == tail ||
4693                                     tcp_hdr(skb)->syn ||
4694                                     tcp_hdr(skb)->fin)
4695                                         return;
4696                         }
4697                 }
4698         }
4699 }
4700
4701 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4702  * and tcp_collapse() them until all the queue is collapsed.
4703  */
4704 static void tcp_collapse_ofo_queue(struct sock *sk)
4705 {
4706         struct tcp_sock *tp = tcp_sk(sk);
4707         struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4708         struct sk_buff *head;
4709         u32 start, end;
4710
4711         if (skb == NULL)
4712                 return;
4713
4714         start = TCP_SKB_CB(skb)->seq;
4715         end = TCP_SKB_CB(skb)->end_seq;
4716         head = skb;
4717
4718         for (;;) {
4719                 struct sk_buff *next = NULL;
4720
4721                 if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4722                         next = skb_queue_next(&tp->out_of_order_queue, skb);
4723                 skb = next;
4724
4725                 /* Segment is terminated when we see gap or when
4726                  * we are at the end of all the queue. */
4727                 if (!skb ||
4728                     after(TCP_SKB_CB(skb)->seq, end) ||
4729                     before(TCP_SKB_CB(skb)->end_seq, start)) {
4730                         tcp_collapse(sk, &tp->out_of_order_queue,
4731                                      head, skb, start, end);
4732                         head = skb;
4733                         if (!skb)
4734                                 break;
4735                         /* Start new segment */
4736                         start = TCP_SKB_CB(skb)->seq;
4737                         end = TCP_SKB_CB(skb)->end_seq;
4738                 } else {
4739                         if (before(TCP_SKB_CB(skb)->seq, start))
4740                                 start = TCP_SKB_CB(skb)->seq;
4741                         if (after(TCP_SKB_CB(skb)->end_seq, end))
4742                                 end = TCP_SKB_CB(skb)->end_seq;
4743                 }
4744         }
4745 }
4746
4747 /*
4748  * Purge the out-of-order queue.
4749  * Return true if queue was pruned.
4750  */
4751 static int tcp_prune_ofo_queue(struct sock *sk)
4752 {
4753         struct tcp_sock *tp = tcp_sk(sk);
4754         int res = 0;
4755
4756         if (!skb_queue_empty(&tp->out_of_order_queue)) {
4757                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4758                 __skb_queue_purge(&tp->out_of_order_queue);
4759
4760                 /* Reset SACK state.  A conforming SACK implementation will
4761                  * do the same at a timeout based retransmit.  When a connection
4762                  * is in a sad state like this, we care only about integrity
4763                  * of the connection not performance.
4764                  */
4765                 if (tp->rx_opt.sack_ok)
4766                         tcp_sack_reset(&tp->rx_opt);
4767                 sk_mem_reclaim(sk);
4768                 res = 1;
4769         }
4770         return res;
4771 }
4772
4773 /* Reduce allocated memory if we can, trying to get
4774  * the socket within its memory limits again.
4775  *
4776  * Return less than zero if we should start dropping frames
4777  * until the socket owning process reads some of the data
4778  * to stabilize the situation.
4779  */
4780 static int tcp_prune_queue(struct sock *sk)
4781 {
4782         struct tcp_sock *tp = tcp_sk(sk);
4783
4784         SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4785
4786         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4787
4788         if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4789                 tcp_clamp_window(sk);
4790         else if (tcp_memory_pressure)
4791                 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4792
4793         tcp_collapse_ofo_queue(sk);
4794         if (!skb_queue_empty(&sk->sk_receive_queue))
4795                 tcp_collapse(sk, &sk->sk_receive_queue,
4796                              skb_peek(&sk->sk_receive_queue),
4797                              NULL,
4798                              tp->copied_seq, tp->rcv_nxt);
4799         sk_mem_reclaim(sk);
4800
4801         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4802                 return 0;
4803
4804         /* Collapsing did not help, destructive actions follow.
4805          * This must not ever occur. */
4806
4807         tcp_prune_ofo_queue(sk);
4808
4809         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4810                 return 0;
4811
4812         /* If we are really being abused, tell the caller to silently
4813          * drop receive data on the floor.  It will get retransmitted
4814          * and hopefully then we'll have sufficient space.
4815          */
4816         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4817
4818         /* Massive buffer overcommit. */
4819         tp->pred_flags = 0;
4820         return -1;
4821 }
4822
4823 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4824  * As additional protections, we do not touch cwnd in retransmission phases,
4825  * and if application hit its sndbuf limit recently.
4826  */
4827 void tcp_cwnd_application_limited(struct sock *sk)
4828 {
4829         struct tcp_sock *tp = tcp_sk(sk);
4830
4831         if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4832             sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4833                 /* Limited by application or receiver window. */
4834                 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4835                 u32 win_used = max(tp->snd_cwnd_used, init_win);
4836                 if (win_used < tp->snd_cwnd) {
4837                         tp->snd_ssthresh = tcp_current_ssthresh(sk);
4838                         tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4839                 }
4840                 tp->snd_cwnd_used = 0;
4841         }
4842         tp->snd_cwnd_stamp = tcp_time_stamp;
4843 }
4844
4845 static int tcp_should_expand_sndbuf(struct sock *sk)
4846 {
4847         struct tcp_sock *tp = tcp_sk(sk);
4848
4849         /* If the user specified a specific send buffer setting, do
4850          * not modify it.
4851          */
4852         if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4853                 return 0;
4854
4855         /* If we are under global TCP memory pressure, do not expand.  */
4856         if (tcp_memory_pressure)
4857                 return 0;
4858
4859         /* If we are under soft global TCP memory pressure, do not expand.  */
4860         if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4861                 return 0;
4862
4863         /* If we filled the congestion window, do not expand.  */
4864         if (tp->packets_out >= tp->snd_cwnd)
4865                 return 0;
4866
4867         return 1;
4868 }
4869
4870 /* When incoming ACK allowed to free some skb from write_queue,
4871  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4872  * on the exit from tcp input handler.
4873  *
4874  * PROBLEM: sndbuf expansion does not work well with largesend.
4875  */
4876 static void tcp_new_space(struct sock *sk)
4877 {
4878         struct tcp_sock *tp = tcp_sk(sk);
4879
4880         if (tcp_should_expand_sndbuf(sk)) {
4881                 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4882                         MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
4883                 int demanded = max_t(unsigned int, tp->snd_cwnd,
4884                                      tp->reordering + 1);
4885                 sndmem *= 2 * demanded;
4886                 if (sndmem > sk->sk_sndbuf)
4887                         sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4888                 tp->snd_cwnd_stamp = tcp_time_stamp;
4889         }
4890
4891         sk->sk_write_space(sk);
4892 }
4893
4894 static void tcp_check_space(struct sock *sk)
4895 {
4896         if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4897                 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4898                 if (sk->sk_socket &&
4899                     test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4900                         tcp_new_space(sk);
4901         }
4902 }
4903
4904 static inline void tcp_data_snd_check(struct sock *sk)
4905 {
4906         tcp_push_pending_frames(sk);
4907         tcp_check_space(sk);
4908 }
4909
4910 /*
4911  * Check if sending an ack is needed.
4912  */
4913 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4914 {
4915         struct tcp_sock *tp = tcp_sk(sk);
4916
4917             /* More than one full frame received... */
4918         if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4919              /* ... and right edge of window advances far enough.
4920               * (tcp_recvmsg() will send ACK otherwise). Or...
4921               */
4922              __tcp_select_window(sk) >= tp->rcv_wnd) ||
4923             /* We ACK each frame or... */
4924             tcp_in_quickack_mode(sk) ||
4925             /* We have out of order data. */
4926             (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4927                 /* Then ack it now */
4928                 tcp_send_ack(sk);
4929         } else {
4930                 /* Else, send delayed ack. */
4931                 tcp_send_delayed_ack(sk);
4932         }
4933 }
4934
4935 static inline void tcp_ack_snd_check(struct sock *sk)
4936 {
4937         if (!inet_csk_ack_scheduled(sk)) {
4938                 /* We sent a data segment already. */
4939                 return;
4940         }
4941         __tcp_ack_snd_check(sk, 1);
4942 }
4943
4944 /*
4945  *      This routine is only called when we have urgent data
4946  *      signaled. Its the 'slow' part of tcp_urg. It could be
4947  *      moved inline now as tcp_urg is only called from one
4948  *      place. We handle URGent data wrong. We have to - as
4949  *      BSD still doesn't use the correction from RFC961.
4950  *      For 1003.1g we should support a new option TCP_STDURG to permit
4951  *      either form (or just set the sysctl tcp_stdurg).
4952  */
4953
4954 static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
4955 {
4956         struct tcp_sock *tp = tcp_sk(sk);
4957         u32 ptr = ntohs(th->urg_ptr);
4958
4959         if (ptr && !sysctl_tcp_stdurg)
4960                 ptr--;
4961         ptr += ntohl(th->seq);
4962
4963         /* Ignore urgent data that we've already seen and read. */
4964         if (after(tp->copied_seq, ptr))
4965                 return;
4966
4967         /* Do not replay urg ptr.
4968          *
4969          * NOTE: interesting situation not covered by specs.
4970          * Misbehaving sender may send urg ptr, pointing to segment,
4971          * which we already have in ofo queue. We are not able to fetch
4972          * such data and will stay in TCP_URG_NOTYET until will be eaten
4973          * by recvmsg(). Seems, we are not obliged to handle such wicked
4974          * situations. But it is worth to think about possibility of some
4975          * DoSes using some hypothetical application level deadlock.
4976          */
4977         if (before(ptr, tp->rcv_nxt))
4978                 return;
4979
4980         /* Do we already have a newer (or duplicate) urgent pointer? */
4981         if (tp->urg_data && !after(ptr, tp->urg_seq))
4982                 return;
4983
4984         /* Tell the world about our new urgent pointer. */
4985         sk_send_sigurg(sk);
4986
4987         /* We may be adding urgent data when the last byte read was
4988          * urgent. To do this requires some care. We cannot just ignore
4989          * tp->copied_seq since we would read the last urgent byte again
4990          * as data, nor can we alter copied_seq until this data arrives
4991          * or we break the semantics of SIOCATMARK (and thus sockatmark())
4992          *
4993          * NOTE. Double Dutch. Rendering to plain English: author of comment
4994          * above did something sort of  send("A", MSG_OOB); send("B", MSG_OOB);
4995          * and expect that both A and B disappear from stream. This is _wrong_.
4996          * Though this happens in BSD with high probability, this is occasional.
4997          * Any application relying on this is buggy. Note also, that fix "works"
4998          * only in this artificial test. Insert some normal data between A and B and we will
4999          * decline of BSD again. Verdict: it is better to remove to trap
5000          * buggy users.
5001          */
5002         if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5003             !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5004                 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5005                 tp->copied_seq++;
5006                 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5007                         __skb_unlink(skb, &sk->sk_receive_queue);
5008                         __kfree_skb(skb);
5009                 }
5010         }
5011
5012         tp->urg_data = TCP_URG_NOTYET;
5013         tp->urg_seq = ptr;
5014
5015         /* Disable header prediction. */
5016         tp->pred_flags = 0;
5017 }
5018
5019 /* This is the 'fast' part of urgent handling. */
5020 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
5021 {
5022         struct tcp_sock *tp = tcp_sk(sk);
5023
5024         /* Check if we get a new urgent pointer - normally not. */
5025         if (th->urg)
5026                 tcp_check_urg(sk, th);
5027
5028         /* Do we wait for any urgent data? - normally not... */
5029         if (tp->urg_data == TCP_URG_NOTYET) {
5030                 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5031                           th->syn;
5032
5033                 /* Is the urgent pointer pointing into this packet? */
5034                 if (ptr < skb->len) {
5035                         u8 tmp;
5036                         if (skb_copy_bits(skb, ptr, &tmp, 1))
5037                                 BUG();
5038                         tp->urg_data = TCP_URG_VALID | tmp;
5039                         if (!sock_flag(sk, SOCK_DEAD))
5040                                 sk->sk_data_ready(sk, 0);
5041                 }
5042         }
5043 }
5044
5045 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5046 {
5047         struct tcp_sock *tp = tcp_sk(sk);
5048         int chunk = skb->len - hlen;
5049         int err;
5050
5051         local_bh_enable();
5052         if (skb_csum_unnecessary(skb))
5053                 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
5054         else
5055                 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
5056                                                        tp->ucopy.iov);
5057
5058         if (!err) {
5059                 tp->ucopy.len -= chunk;
5060                 tp->copied_seq += chunk;
5061                 tcp_rcv_space_adjust(sk);
5062         }
5063
5064         local_bh_disable();
5065         return err;
5066 }
5067
5068 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5069                                             struct sk_buff *skb)
5070 {
5071         __sum16 result;
5072
5073         if (sock_owned_by_user(sk)) {
5074                 local_bh_enable();
5075                 result = __tcp_checksum_complete(skb);
5076                 local_bh_disable();
5077         } else {
5078                 result = __tcp_checksum_complete(skb);
5079         }
5080         return result;
5081 }
5082
5083 static inline int tcp_checksum_complete_user(struct sock *sk,
5084                                              struct sk_buff *skb)
5085 {
5086         return !skb_csum_unnecessary(skb) &&
5087                __tcp_checksum_complete_user(sk, skb);
5088 }
5089
5090 #ifdef CONFIG_NET_DMA
5091 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5092                                   int hlen)
5093 {
5094         struct tcp_sock *tp = tcp_sk(sk);
5095         int chunk = skb->len - hlen;
5096         int dma_cookie;
5097         int copied_early = 0;
5098
5099         if (tp->ucopy.wakeup)
5100                 return 0;
5101
5102         if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5103                 tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
5104
5105         if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5106
5107                 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5108                                                          skb, hlen,
5109                                                          tp->ucopy.iov, chunk,
5110                                                          tp->ucopy.pinned_list);
5111
5112                 if (dma_cookie < 0)
5113                         goto out;
5114
5115                 tp->ucopy.dma_cookie = dma_cookie;
5116                 copied_early = 1;
5117
5118                 tp->ucopy.len -= chunk;
5119                 tp->copied_seq += chunk;
5120                 tcp_rcv_space_adjust(sk);
5121
5122                 if ((tp->ucopy.len == 0) ||
5123                     (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5124                     (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5125                         tp->ucopy.wakeup = 1;
5126                         sk->sk_data_ready(sk, 0);
5127                 }
5128         } else if (chunk > 0) {
5129                 tp->ucopy.wakeup = 1;
5130                 sk->sk_data_ready(sk, 0);
5131         }
5132 out:
5133         return copied_early;
5134 }
5135 #endif /* CONFIG_NET_DMA */
5136
5137 /* Does PAWS and seqno based validation of an incoming segment, flags will
5138  * play significant role here.
5139  */
5140 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5141                               struct tcphdr *th, int syn_inerr)
5142 {
5143         u8 *hash_location;
5144         struct tcp_sock *tp = tcp_sk(sk);
5145
5146         /* RFC1323: H1. Apply PAWS check first. */
5147         if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
5148             tp->rx_opt.saw_tstamp &&
5149             tcp_paws_discard(sk, skb)) {
5150                 if (!th->rst) {
5151                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5152                         tcp_send_dupack(sk, skb);
5153                         goto discard;
5154                 }
5155                 /* Reset is accepted even if it did not pass PAWS. */
5156         }
5157
5158         /* Step 1: check sequence number */
5159         if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5160                 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5161                  * (RST) segments are validated by checking their SEQ-fields."
5162                  * And page 69: "If an incoming segment is not acceptable,
5163                  * an acknowledgment should be sent in reply (unless the RST
5164                  * bit is set, if so drop the segment and return)".
5165                  */
5166                 if (!th->rst)
5167                         tcp_send_dupack(sk, skb);
5168                 goto discard;
5169         }
5170
5171         /* Step 2: check RST bit */
5172         if (th->rst) {
5173                 tcp_reset(sk);
5174                 goto discard;
5175         }
5176
5177         /* ts_recent update must be made after we are sure that the packet
5178          * is in window.
5179          */
5180         tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5181
5182         /* step 3: check security and precedence [ignored] */
5183
5184         /* step 4: Check for a SYN in window. */
5185         if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5186                 if (syn_inerr)
5187                         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5188                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5189                 tcp_reset(sk);
5190                 return -1;
5191         }
5192
5193         return 1;
5194
5195 discard:
5196         __kfree_skb(skb);
5197         return 0;
5198 }
5199
5200 /*
5201  *      TCP receive function for the ESTABLISHED state.
5202  *
5203  *      It is split into a fast path and a slow path. The fast path is
5204  *      disabled when:
5205  *      - A zero window was announced from us - zero window probing
5206  *        is only handled properly in the slow path.
5207  *      - Out of order segments arrived.
5208  *      - Urgent data is expected.
5209  *      - There is no buffer space left
5210  *      - Unexpected TCP flags/window values/header lengths are received
5211  *        (detected by checking the TCP header against pred_flags)
5212  *      - Data is sent in both directions. Fast path only supports pure senders
5213  *        or pure receivers (this means either the sequence number or the ack
5214  *        value must stay constant)
5215  *      - Unexpected TCP option.
5216  *
5217  *      When these conditions are not satisfied it drops into a standard
5218  *      receive procedure patterned after RFC793 to handle all cases.
5219  *      The first three cases are guaranteed by proper pred_flags setting,
5220  *      the rest is checked inline. Fast processing is turned on in
5221  *      tcp_data_queue when everything is OK.
5222  */
5223 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5224                         struct tcphdr *th, unsigned len)
5225 {
5226         struct tcp_sock *tp = tcp_sk(sk);
5227         int res;
5228
5229         /*
5230          *      Header prediction.
5231          *      The code loosely follows the one in the famous
5232          *      "30 instruction TCP receive" Van Jacobson mail.
5233          *
5234          *      Van's trick is to deposit buffers into socket queue
5235          *      on a device interrupt, to call tcp_recv function
5236          *      on the receive process context and checksum and copy
5237          *      the buffer to user space. smart...
5238          *
5239          *      Our current scheme is not silly either but we take the
5240          *      extra cost of the net_bh soft interrupt processing...
5241          *      We do checksum and copy also but from device to kernel.
5242          */
5243
5244         tp->rx_opt.saw_tstamp = 0;
5245
5246         /*      pred_flags is 0xS?10 << 16 + snd_wnd
5247          *      if header_prediction is to be made
5248          *      'S' will always be tp->tcp_header_len >> 2
5249          *      '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5250          *  turn it off (when there are holes in the receive
5251          *       space for instance)
5252          *      PSH flag is ignored.
5253          */
5254
5255         if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5256             TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5257             !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5258                 int tcp_header_len = tp->tcp_header_len;
5259
5260                 /* Timestamp header prediction: tcp_header_len
5261                  * is automatically equal to th->doff*4 due to pred_flags
5262                  * match.
5263                  */
5264
5265                 /* Check timestamp */
5266                 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5267                         /* No? Slow path! */
5268                         if (!tcp_parse_aligned_timestamp(tp, th))
5269                                 goto slow_path;
5270
5271                         /* If PAWS failed, check it more carefully in slow path */
5272                         if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5273                                 goto slow_path;
5274
5275                         /* DO NOT update ts_recent here, if checksum fails
5276                          * and timestamp was corrupted part, it will result
5277                          * in a hung connection since we will drop all
5278                          * future packets due to the PAWS test.
5279                          */
5280                 }
5281
5282                 if (len <= tcp_header_len) {
5283                         /* Bulk data transfer: sender */
5284                         if (len == tcp_header_len) {
5285                                 /* Predicted packet is in window by definition.
5286                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5287                                  * Hence, check seq<=rcv_wup reduces to:
5288                                  */
5289                                 if (tcp_header_len ==
5290                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5291                                     tp->rcv_nxt == tp->rcv_wup)
5292                                         tcp_store_ts_recent(tp);
5293
5294                                 /* We know that such packets are checksummed
5295                                  * on entry.
5296                                  */
5297                                 tcp_ack(sk, skb, 0);
5298                                 __kfree_skb(skb);
5299                                 tcp_data_snd_check(sk);
5300                                 return 0;
5301                         } else { /* Header too small */
5302                                 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5303                                 goto discard;
5304                         }
5305                 } else {
5306                         int eaten = 0;
5307                         int copied_early = 0;
5308
5309                         if (tp->copied_seq == tp->rcv_nxt &&
5310                             len - tcp_header_len <= tp->ucopy.len) {
5311 #ifdef CONFIG_NET_DMA
5312                                 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5313                                         copied_early = 1;
5314                                         eaten = 1;
5315                                 }
5316 #endif
5317                                 if (tp->ucopy.task == current &&
5318                                     sock_owned_by_user(sk) && !copied_early) {
5319                                         __set_current_state(TASK_RUNNING);
5320
5321                                         if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5322                                                 eaten = 1;
5323                                 }
5324                                 if (eaten) {
5325                                         /* Predicted packet is in window by definition.
5326                                          * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5327                                          * Hence, check seq<=rcv_wup reduces to:
5328                                          */
5329                                         if (tcp_header_len ==
5330                                             (sizeof(struct tcphdr) +
5331                                              TCPOLEN_TSTAMP_ALIGNED) &&
5332                                             tp->rcv_nxt == tp->rcv_wup)
5333                                                 tcp_store_ts_recent(tp);
5334
5335                                         tcp_rcv_rtt_measure_ts(sk, skb);
5336
5337                                         __skb_pull(skb, tcp_header_len);
5338                                         tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5339                                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5340                                 }
5341                                 if (copied_early)
5342                                         tcp_cleanup_rbuf(sk, skb->len);
5343                         }
5344                         if (!eaten) {
5345                                 if (tcp_checksum_complete_user(sk, skb))
5346                                         goto csum_error;
5347
5348                                 /* Predicted packet is in window by definition.
5349                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5350                                  * Hence, check seq<=rcv_wup reduces to:
5351                                  */
5352                                 if (tcp_header_len ==
5353                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5354                                     tp->rcv_nxt == tp->rcv_wup)
5355                                         tcp_store_ts_recent(tp);
5356
5357                                 tcp_rcv_rtt_measure_ts(sk, skb);
5358
5359                                 if ((int)skb->truesize > sk->sk_forward_alloc)
5360                                         goto step5;
5361
5362                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5363
5364                                 /* Bulk data transfer: receiver */
5365                                 __skb_pull(skb, tcp_header_len);
5366                                 __skb_queue_tail(&sk->sk_receive_queue, skb);
5367                                 skb_set_owner_r(skb, sk);
5368                                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5369                         }
5370
5371                         tcp_event_data_recv(sk, skb);
5372
5373                         if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5374                                 /* Well, only one small jumplet in fast path... */
5375                                 tcp_ack(sk, skb, FLAG_DATA);
5376                                 tcp_data_snd_check(sk);
5377                                 if (!inet_csk_ack_scheduled(sk))
5378                                         goto no_ack;
5379                         }
5380
5381                         if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5382                                 __tcp_ack_snd_check(sk, 0);
5383 no_ack:
5384 #ifdef CONFIG_NET_DMA
5385                         if (copied_early)
5386                                 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5387                         else
5388 #endif
5389                         if (eaten)
5390                                 __kfree_skb(skb);
5391                         else
5392                                 sk->sk_data_ready(sk, 0);
5393                         return 0;
5394                 }
5395         }
5396
5397 slow_path:
5398         if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5399                 goto csum_error;
5400
5401         /*
5402          *      Standard slow path.
5403          */
5404
5405         res = tcp_validate_incoming(sk, skb, th, 1);
5406         if (res <= 0)
5407                 return -res;
5408
5409 step5:
5410         if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
5411                 goto discard;
5412
5413         tcp_rcv_rtt_measure_ts(sk, skb);
5414
5415         /* Process urgent data. */
5416         tcp_urg(sk, skb, th);
5417
5418         /* step 7: process the segment text */
5419         tcp_data_queue(sk, skb);
5420
5421         tcp_data_snd_check(sk);
5422         tcp_ack_snd_check(sk);
5423         return 0;
5424
5425 csum_error:
5426         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5427
5428 discard:
5429         __kfree_skb(skb);
5430         return 0;
5431 }
5432
5433 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5434                                          struct tcphdr *th, unsigned len)
5435 {
5436         u8 *hash_location;
5437         struct inet_connection_sock *icsk = inet_csk(sk);
5438         struct tcp_sock *tp = tcp_sk(sk);
5439         struct tcp_cookie_values *cvp = tp->cookie_values;
5440         int saved_clamp = tp->rx_opt.mss_clamp;
5441
5442         tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0);
5443
5444         if (th->ack) {
5445                 /* rfc793:
5446                  * "If the state is SYN-SENT then
5447                  *    first check the ACK bit
5448                  *      If the ACK bit is set
5449                  *        If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5450                  *        a reset (unless the RST bit is set, if so drop
5451                  *        the segment and return)"
5452                  *
5453                  *  We do not send data with SYN, so that RFC-correct
5454                  *  test reduces to:
5455                  */
5456                 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5457                         goto reset_and_undo;
5458
5459                 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5460                     !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5461                              tcp_time_stamp)) {
5462                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5463                         goto reset_and_undo;
5464                 }
5465
5466                 /* Now ACK is acceptable.
5467                  *
5468                  * "If the RST bit is set
5469                  *    If the ACK was acceptable then signal the user "error:
5470                  *    connection reset", drop the segment, enter CLOSED state,
5471                  *    delete TCB, and return."
5472                  */
5473
5474                 if (th->rst) {
5475                         tcp_reset(sk);
5476                         goto discard;
5477                 }
5478
5479                 /* rfc793:
5480                  *   "fifth, if neither of the SYN or RST bits is set then
5481                  *    drop the segment and return."
5482                  *
5483                  *    See note below!
5484                  *                                        --ANK(990513)
5485                  */
5486                 if (!th->syn)
5487                         goto discard_and_undo;
5488
5489                 /* rfc793:
5490                  *   "If the SYN bit is on ...
5491                  *    are acceptable then ...
5492                  *    (our SYN has been ACKed), change the connection
5493                  *    state to ESTABLISHED..."
5494                  */
5495
5496                 TCP_ECN_rcv_synack(tp, th);
5497
5498                 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5499                 tcp_ack(sk, skb, FLAG_SLOWPATH);
5500
5501                 /* Ok.. it's good. Set up sequence numbers and
5502                  * move to established.
5503                  */
5504                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5505                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5506
5507                 /* RFC1323: The window in SYN & SYN/ACK segments is
5508                  * never scaled.
5509                  */
5510                 tp->snd_wnd = ntohs(th->window);
5511                 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5512
5513                 if (!tp->rx_opt.wscale_ok) {
5514                         tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5515                         tp->window_clamp = min(tp->window_clamp, 65535U);
5516                 }
5517
5518                 if (tp->rx_opt.saw_tstamp) {
5519                         tp->rx_opt.tstamp_ok       = 1;
5520                         tp->tcp_header_len =
5521                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5522                         tp->advmss          -= TCPOLEN_TSTAMP_ALIGNED;
5523                         tcp_store_ts_recent(tp);
5524                 } else {
5525                         tp->tcp_header_len = sizeof(struct tcphdr);
5526                 }
5527
5528                 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5529                         tcp_enable_fack(tp);
5530
5531                 tcp_mtup_init(sk);
5532                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5533                 tcp_initialize_rcv_mss(sk);
5534
5535                 /* Remember, tcp_poll() does not lock socket!
5536                  * Change state from SYN-SENT only after copied_seq
5537                  * is initialized. */
5538                 tp->copied_seq = tp->rcv_nxt;
5539
5540                 if (cvp != NULL &&
5541                     cvp->cookie_pair_size > 0 &&
5542                     tp->rx_opt.cookie_plus > 0) {
5543                         int cookie_size = tp->rx_opt.cookie_plus
5544                                         - TCPOLEN_COOKIE_BASE;
5545                         int cookie_pair_size = cookie_size
5546                                              + cvp->cookie_desired;
5547
5548                         /* A cookie extension option was sent and returned.
5549                          * Note that each incoming SYNACK replaces the
5550                          * Responder cookie.  The initial exchange is most
5551                          * fragile, as protection against spoofing relies
5552                          * entirely upon the sequence and timestamp (above).
5553                          * This replacement strategy allows the correct pair to
5554                          * pass through, while any others will be filtered via
5555                          * Responder verification later.
5556                          */
5557                         if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
5558                                 memcpy(&cvp->cookie_pair[cvp->cookie_desired],
5559                                        hash_location, cookie_size);
5560                                 cvp->cookie_pair_size = cookie_pair_size;
5561                         }
5562                 }
5563
5564                 smp_mb();
5565                 tcp_set_state(sk, TCP_ESTABLISHED);
5566
5567                 security_inet_conn_establ