ipv4: fix multicast losses
[linux-2.6.git] / net / ipv4 / tcp_input.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:     Ross Biro
9  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *              Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *              Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *              Florian La Roche, <flla@stud.uni-sb.de>
13  *              Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *              Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *              Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *              Matthew Dillon, <dillon@apollo.west.oic.com>
17  *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *              Jorge Cwik, <jorge@laser.satlink.net>
19  */
20
21 /*
22  * Changes:
23  *              Pedro Roque     :       Fast Retransmit/Recovery.
24  *                                      Two receive queues.
25  *                                      Retransmit queue handled by TCP.
26  *                                      Better retransmit timer handling.
27  *                                      New congestion avoidance.
28  *                                      Header prediction.
29  *                                      Variable renaming.
30  *
31  *              Eric            :       Fast Retransmit.
32  *              Randy Scott     :       MSS option defines.
33  *              Eric Schenk     :       Fixes to slow start algorithm.
34  *              Eric Schenk     :       Yet another double ACK bug.
35  *              Eric Schenk     :       Delayed ACK bug fixes.
36  *              Eric Schenk     :       Floyd style fast retrans war avoidance.
37  *              David S. Miller :       Don't allow zero congestion window.
38  *              Eric Schenk     :       Fix retransmitter so that it sends
39  *                                      next packet on ack of previous packet.
40  *              Andi Kleen      :       Moved open_request checking here
41  *                                      and process RSTs for open_requests.
42  *              Andi Kleen      :       Better prune_queue, and other fixes.
43  *              Andrey Savochkin:       Fix RTT measurements in the presence of
44  *                                      timestamps.
45  *              Andrey Savochkin:       Check sequence numbers correctly when
46  *                                      removing SACKs due to in sequence incoming
47  *                                      data segments.
48  *              Andi Kleen:             Make sure we never ack data there is not
49  *                                      enough room for. Also make this condition
50  *                                      a fatal error if it might still happen.
51  *              Andi Kleen:             Add tcp_measure_rcv_mss to make
52  *                                      connections with MSS<min(MTU,ann. MSS)
53  *                                      work without delayed acks.
54  *              Andi Kleen:             Process packets with PSH set in the
55  *                                      fast path.
56  *              J Hadi Salim:           ECN support
57  *              Andrei Gurtov,
58  *              Pasi Sarolahti,
59  *              Panu Kuhlberg:          Experimental audit of TCP (re)transmission
60  *                                      engine. Lots of bugs are found.
61  *              Pasi Sarolahti:         F-RTO for dealing with spurious RTOs
62  */
63
64 #include <linux/mm.h>
65 #include <linux/slab.h>
66 #include <linux/module.h>
67 #include <linux/sysctl.h>
68 #include <linux/kernel.h>
69 #include <net/dst.h>
70 #include <net/tcp.h>
71 #include <net/inet_common.h>
72 #include <linux/ipsec.h>
73 #include <asm/unaligned.h>
74 #include <net/netdma.h>
75
76 int sysctl_tcp_timestamps __read_mostly = 1;
77 int sysctl_tcp_window_scaling __read_mostly = 1;
78 int sysctl_tcp_sack __read_mostly = 1;
79 int sysctl_tcp_fack __read_mostly = 1;
80 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
81 EXPORT_SYMBOL(sysctl_tcp_reordering);
82 int sysctl_tcp_ecn __read_mostly = 2;
83 EXPORT_SYMBOL(sysctl_tcp_ecn);
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 2;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
88
89 int sysctl_tcp_stdurg __read_mostly;
90 int sysctl_tcp_rfc1337 __read_mostly;
91 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
92 int sysctl_tcp_frto __read_mostly = 2;
93 int sysctl_tcp_frto_response __read_mostly;
94 int sysctl_tcp_nometrics_save __read_mostly;
95
96 int sysctl_tcp_thin_dupack __read_mostly;
97
98 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
99 int sysctl_tcp_abc __read_mostly;
100
101 #define FLAG_DATA               0x01 /* Incoming frame contained data.          */
102 #define FLAG_WIN_UPDATE         0x02 /* Incoming ACK was a window update.       */
103 #define FLAG_DATA_ACKED         0x04 /* This ACK acknowledged new data.         */
104 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted.  */
105 #define FLAG_SYN_ACKED          0x10 /* This ACK acknowledged SYN.              */
106 #define FLAG_DATA_SACKED        0x20 /* New SACK.                               */
107 #define FLAG_ECE                0x40 /* ECE in this ACK                         */
108 #define FLAG_DATA_LOST          0x80 /* SACK detected data lossage.             */
109 #define FLAG_SLOWPATH           0x100 /* Do not skip RFC checks for window update.*/
110 #define FLAG_ONLY_ORIG_SACKED   0x200 /* SACKs only non-rexmit sent before RTO */
111 #define FLAG_SND_UNA_ADVANCED   0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
112 #define FLAG_DSACKING_ACK       0x800 /* SACK blocks contained D-SACK info */
113 #define FLAG_NONHEAD_RETRANS_ACKED      0x1000 /* Non-head rexmitted data was ACKed */
114 #define FLAG_SACK_RENEGING      0x2000 /* snd_una advanced to a sacked seq */
115
116 #define FLAG_ACKED              (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
117 #define FLAG_NOT_DUP            (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
118 #define FLAG_CA_ALERT           (FLAG_DATA_SACKED|FLAG_ECE)
119 #define FLAG_FORWARD_PROGRESS   (FLAG_ACKED|FLAG_DATA_SACKED)
120 #define FLAG_ANY_PROGRESS       (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
121
122 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
123 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
124
125 /* Adapt the MSS value used to make delayed ack decision to the
126  * real world.
127  */
128 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
129 {
130         struct inet_connection_sock *icsk = inet_csk(sk);
131         const unsigned int lss = icsk->icsk_ack.last_seg_size;
132         unsigned int len;
133
134         icsk->icsk_ack.last_seg_size = 0;
135
136         /* skb->len may jitter because of SACKs, even if peer
137          * sends good full-sized frames.
138          */
139         len = skb_shinfo(skb)->gso_size ? : skb->len;
140         if (len >= icsk->icsk_ack.rcv_mss) {
141                 icsk->icsk_ack.rcv_mss = len;
142         } else {
143                 /* Otherwise, we make more careful check taking into account,
144                  * that SACKs block is variable.
145                  *
146                  * "len" is invariant segment length, including TCP header.
147                  */
148                 len += skb->data - skb_transport_header(skb);
149                 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
150                     /* If PSH is not set, packet should be
151                      * full sized, provided peer TCP is not badly broken.
152                      * This observation (if it is correct 8)) allows
153                      * to handle super-low mtu links fairly.
154                      */
155                     (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
156                      !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
157                         /* Subtract also invariant (if peer is RFC compliant),
158                          * tcp header plus fixed timestamp option length.
159                          * Resulting "len" is MSS free of SACK jitter.
160                          */
161                         len -= tcp_sk(sk)->tcp_header_len;
162                         icsk->icsk_ack.last_seg_size = len;
163                         if (len == lss) {
164                                 icsk->icsk_ack.rcv_mss = len;
165                                 return;
166                         }
167                 }
168                 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
169                         icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
170                 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
171         }
172 }
173
174 static void tcp_incr_quickack(struct sock *sk)
175 {
176         struct inet_connection_sock *icsk = inet_csk(sk);
177         unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
178
179         if (quickacks == 0)
180                 quickacks = 2;
181         if (quickacks > icsk->icsk_ack.quick)
182                 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
183 }
184
185 static void tcp_enter_quickack_mode(struct sock *sk)
186 {
187         struct inet_connection_sock *icsk = inet_csk(sk);
188         tcp_incr_quickack(sk);
189         icsk->icsk_ack.pingpong = 0;
190         icsk->icsk_ack.ato = TCP_ATO_MIN;
191 }
192
193 /* Send ACKs quickly, if "quick" count is not exhausted
194  * and the session is not interactive.
195  */
196
197 static inline int tcp_in_quickack_mode(const struct sock *sk)
198 {
199         const struct inet_connection_sock *icsk = inet_csk(sk);
200         return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
201 }
202
203 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
204 {
205         if (tp->ecn_flags & TCP_ECN_OK)
206                 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
207 }
208
209 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
210 {
211         if (tcp_hdr(skb)->cwr)
212                 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
213 }
214
215 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
216 {
217         tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
218 }
219
220 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
221 {
222         if (tp->ecn_flags & TCP_ECN_OK) {
223                 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
224                         tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
225                 /* Funny extension: if ECT is not set on a segment,
226                  * it is surely retransmit. It is not in ECN RFC,
227                  * but Linux follows this rule. */
228                 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
229                         tcp_enter_quickack_mode((struct sock *)tp);
230         }
231 }
232
233 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
234 {
235         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
236                 tp->ecn_flags &= ~TCP_ECN_OK;
237 }
238
239 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
240 {
241         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
242                 tp->ecn_flags &= ~TCP_ECN_OK;
243 }
244
245 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
246 {
247         if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
248                 return 1;
249         return 0;
250 }
251
252 /* Buffer size and advertised window tuning.
253  *
254  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
255  */
256
257 static void tcp_fixup_sndbuf(struct sock *sk)
258 {
259         int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
260                      sizeof(struct sk_buff);
261
262         if (sk->sk_sndbuf < 3 * sndmem) {
263                 sk->sk_sndbuf = 3 * sndmem;
264                 if (sk->sk_sndbuf > sysctl_tcp_wmem[2])
265                         sk->sk_sndbuf = sysctl_tcp_wmem[2];
266         }
267 }
268
269 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
270  *
271  * All tcp_full_space() is split to two parts: "network" buffer, allocated
272  * forward and advertised in receiver window (tp->rcv_wnd) and
273  * "application buffer", required to isolate scheduling/application
274  * latencies from network.
275  * window_clamp is maximal advertised window. It can be less than
276  * tcp_full_space(), in this case tcp_full_space() - window_clamp
277  * is reserved for "application" buffer. The less window_clamp is
278  * the smoother our behaviour from viewpoint of network, but the lower
279  * throughput and the higher sensitivity of the connection to losses. 8)
280  *
281  * rcv_ssthresh is more strict window_clamp used at "slow start"
282  * phase to predict further behaviour of this connection.
283  * It is used for two goals:
284  * - to enforce header prediction at sender, even when application
285  *   requires some significant "application buffer". It is check #1.
286  * - to prevent pruning of receive queue because of misprediction
287  *   of receiver window. Check #2.
288  *
289  * The scheme does not work when sender sends good segments opening
290  * window and then starts to feed us spaghetti. But it should work
291  * in common situations. Otherwise, we have to rely on queue collapsing.
292  */
293
294 /* Slow part of check#2. */
295 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
296 {
297         struct tcp_sock *tp = tcp_sk(sk);
298         /* Optimize this! */
299         int truesize = tcp_win_from_space(skb->truesize) >> 1;
300         int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
301
302         while (tp->rcv_ssthresh <= window) {
303                 if (truesize <= skb->len)
304                         return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
305
306                 truesize >>= 1;
307                 window >>= 1;
308         }
309         return 0;
310 }
311
312 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
313 {
314         struct tcp_sock *tp = tcp_sk(sk);
315
316         /* Check #1 */
317         if (tp->rcv_ssthresh < tp->window_clamp &&
318             (int)tp->rcv_ssthresh < tcp_space(sk) &&
319             !tcp_memory_pressure) {
320                 int incr;
321
322                 /* Check #2. Increase window, if skb with such overhead
323                  * will fit to rcvbuf in future.
324                  */
325                 if (tcp_win_from_space(skb->truesize) <= skb->len)
326                         incr = 2 * tp->advmss;
327                 else
328                         incr = __tcp_grow_window(sk, skb);
329
330                 if (incr) {
331                         tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
332                                                tp->window_clamp);
333                         inet_csk(sk)->icsk_ack.quick |= 1;
334                 }
335         }
336 }
337
338 /* 3. Tuning rcvbuf, when connection enters established state. */
339
340 static void tcp_fixup_rcvbuf(struct sock *sk)
341 {
342         struct tcp_sock *tp = tcp_sk(sk);
343         int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
344
345         /* Try to select rcvbuf so that 4 mss-sized segments
346          * will fit to window and corresponding skbs will fit to our rcvbuf.
347          * (was 3; 4 is minimum to allow fast retransmit to work.)
348          */
349         while (tcp_win_from_space(rcvmem) < tp->advmss)
350                 rcvmem += 128;
351         if (sk->sk_rcvbuf < 4 * rcvmem)
352                 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
353 }
354
355 /* 4. Try to fixup all. It is made immediately after connection enters
356  *    established state.
357  */
358 static void tcp_init_buffer_space(struct sock *sk)
359 {
360         struct tcp_sock *tp = tcp_sk(sk);
361         int maxwin;
362
363         if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
364                 tcp_fixup_rcvbuf(sk);
365         if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
366                 tcp_fixup_sndbuf(sk);
367
368         tp->rcvq_space.space = tp->rcv_wnd;
369
370         maxwin = tcp_full_space(sk);
371
372         if (tp->window_clamp >= maxwin) {
373                 tp->window_clamp = maxwin;
374
375                 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
376                         tp->window_clamp = max(maxwin -
377                                                (maxwin >> sysctl_tcp_app_win),
378                                                4 * tp->advmss);
379         }
380
381         /* Force reservation of one segment. */
382         if (sysctl_tcp_app_win &&
383             tp->window_clamp > 2 * tp->advmss &&
384             tp->window_clamp + tp->advmss > maxwin)
385                 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
386
387         tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
388         tp->snd_cwnd_stamp = tcp_time_stamp;
389 }
390
391 /* 5. Recalculate window clamp after socket hit its memory bounds. */
392 static void tcp_clamp_window(struct sock *sk)
393 {
394         struct tcp_sock *tp = tcp_sk(sk);
395         struct inet_connection_sock *icsk = inet_csk(sk);
396
397         icsk->icsk_ack.quick = 0;
398
399         if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
400             !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
401             !tcp_memory_pressure &&
402             atomic_long_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
403                 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
404                                     sysctl_tcp_rmem[2]);
405         }
406         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
407                 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
408 }
409
410 /* Initialize RCV_MSS value.
411  * RCV_MSS is an our guess about MSS used by the peer.
412  * We haven't any direct information about the MSS.
413  * It's better to underestimate the RCV_MSS rather than overestimate.
414  * Overestimations make us ACKing less frequently than needed.
415  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
416  */
417 void tcp_initialize_rcv_mss(struct sock *sk)
418 {
419         struct tcp_sock *tp = tcp_sk(sk);
420         unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
421
422         hint = min(hint, tp->rcv_wnd / 2);
423         hint = min(hint, TCP_MSS_DEFAULT);
424         hint = max(hint, TCP_MIN_MSS);
425
426         inet_csk(sk)->icsk_ack.rcv_mss = hint;
427 }
428 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
429
430 /* Receiver "autotuning" code.
431  *
432  * The algorithm for RTT estimation w/o timestamps is based on
433  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
434  * <http://public.lanl.gov/radiant/pubs.html#DRS>
435  *
436  * More detail on this code can be found at
437  * <http://staff.psc.edu/jheffner/>,
438  * though this reference is out of date.  A new paper
439  * is pending.
440  */
441 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
442 {
443         u32 new_sample = tp->rcv_rtt_est.rtt;
444         long m = sample;
445
446         if (m == 0)
447                 m = 1;
448
449         if (new_sample != 0) {
450                 /* If we sample in larger samples in the non-timestamp
451                  * case, we could grossly overestimate the RTT especially
452                  * with chatty applications or bulk transfer apps which
453                  * are stalled on filesystem I/O.
454                  *
455                  * Also, since we are only going for a minimum in the
456                  * non-timestamp case, we do not smooth things out
457                  * else with timestamps disabled convergence takes too
458                  * long.
459                  */
460                 if (!win_dep) {
461                         m -= (new_sample >> 3);
462                         new_sample += m;
463                 } else if (m < new_sample)
464                         new_sample = m << 3;
465         } else {
466                 /* No previous measure. */
467                 new_sample = m << 3;
468         }
469
470         if (tp->rcv_rtt_est.rtt != new_sample)
471                 tp->rcv_rtt_est.rtt = new_sample;
472 }
473
474 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
475 {
476         if (tp->rcv_rtt_est.time == 0)
477                 goto new_measure;
478         if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
479                 return;
480         tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
481
482 new_measure:
483         tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
484         tp->rcv_rtt_est.time = tcp_time_stamp;
485 }
486
487 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
488                                           const struct sk_buff *skb)
489 {
490         struct tcp_sock *tp = tcp_sk(sk);
491         if (tp->rx_opt.rcv_tsecr &&
492             (TCP_SKB_CB(skb)->end_seq -
493              TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
494                 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
495 }
496
497 /*
498  * This function should be called every time data is copied to user space.
499  * It calculates the appropriate TCP receive buffer space.
500  */
501 void tcp_rcv_space_adjust(struct sock *sk)
502 {
503         struct tcp_sock *tp = tcp_sk(sk);
504         int time;
505         int space;
506
507         if (tp->rcvq_space.time == 0)
508                 goto new_measure;
509
510         time = tcp_time_stamp - tp->rcvq_space.time;
511         if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
512                 return;
513
514         space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
515
516         space = max(tp->rcvq_space.space, space);
517
518         if (tp->rcvq_space.space != space) {
519                 int rcvmem;
520
521                 tp->rcvq_space.space = space;
522
523                 if (sysctl_tcp_moderate_rcvbuf &&
524                     !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
525                         int new_clamp = space;
526
527                         /* Receive space grows, normalize in order to
528                          * take into account packet headers and sk_buff
529                          * structure overhead.
530                          */
531                         space /= tp->advmss;
532                         if (!space)
533                                 space = 1;
534                         rcvmem = (tp->advmss + MAX_TCP_HEADER +
535                                   16 + sizeof(struct sk_buff));
536                         while (tcp_win_from_space(rcvmem) < tp->advmss)
537                                 rcvmem += 128;
538                         space *= rcvmem;
539                         space = min(space, sysctl_tcp_rmem[2]);
540                         if (space > sk->sk_rcvbuf) {
541                                 sk->sk_rcvbuf = space;
542
543                                 /* Make the window clamp follow along.  */
544                                 tp->window_clamp = new_clamp;
545                         }
546                 }
547         }
548
549 new_measure:
550         tp->rcvq_space.seq = tp->copied_seq;
551         tp->rcvq_space.time = tcp_time_stamp;
552 }
553
554 /* There is something which you must keep in mind when you analyze the
555  * behavior of the tp->ato delayed ack timeout interval.  When a
556  * connection starts up, we want to ack as quickly as possible.  The
557  * problem is that "good" TCP's do slow start at the beginning of data
558  * transmission.  The means that until we send the first few ACK's the
559  * sender will sit on his end and only queue most of his data, because
560  * he can only send snd_cwnd unacked packets at any given time.  For
561  * each ACK we send, he increments snd_cwnd and transmits more of his
562  * queue.  -DaveM
563  */
564 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
565 {
566         struct tcp_sock *tp = tcp_sk(sk);
567         struct inet_connection_sock *icsk = inet_csk(sk);
568         u32 now;
569
570         inet_csk_schedule_ack(sk);
571
572         tcp_measure_rcv_mss(sk, skb);
573
574         tcp_rcv_rtt_measure(tp);
575
576         now = tcp_time_stamp;
577
578         if (!icsk->icsk_ack.ato) {
579                 /* The _first_ data packet received, initialize
580                  * delayed ACK engine.
581                  */
582                 tcp_incr_quickack(sk);
583                 icsk->icsk_ack.ato = TCP_ATO_MIN;
584         } else {
585                 int m = now - icsk->icsk_ack.lrcvtime;
586
587                 if (m <= TCP_ATO_MIN / 2) {
588                         /* The fastest case is the first. */
589                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
590                 } else if (m < icsk->icsk_ack.ato) {
591                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
592                         if (icsk->icsk_ack.ato > icsk->icsk_rto)
593                                 icsk->icsk_ack.ato = icsk->icsk_rto;
594                 } else if (m > icsk->icsk_rto) {
595                         /* Too long gap. Apparently sender failed to
596                          * restart window, so that we send ACKs quickly.
597                          */
598                         tcp_incr_quickack(sk);
599                         sk_mem_reclaim(sk);
600                 }
601         }
602         icsk->icsk_ack.lrcvtime = now;
603
604         TCP_ECN_check_ce(tp, skb);
605
606         if (skb->len >= 128)
607                 tcp_grow_window(sk, skb);
608 }
609
610 /* Called to compute a smoothed rtt estimate. The data fed to this
611  * routine either comes from timestamps, or from segments that were
612  * known _not_ to have been retransmitted [see Karn/Partridge
613  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
614  * piece by Van Jacobson.
615  * NOTE: the next three routines used to be one big routine.
616  * To save cycles in the RFC 1323 implementation it was better to break
617  * it up into three procedures. -- erics
618  */
619 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
620 {
621         struct tcp_sock *tp = tcp_sk(sk);
622         long m = mrtt; /* RTT */
623
624         /*      The following amusing code comes from Jacobson's
625          *      article in SIGCOMM '88.  Note that rtt and mdev
626          *      are scaled versions of rtt and mean deviation.
627          *      This is designed to be as fast as possible
628          *      m stands for "measurement".
629          *
630          *      On a 1990 paper the rto value is changed to:
631          *      RTO = rtt + 4 * mdev
632          *
633          * Funny. This algorithm seems to be very broken.
634          * These formulae increase RTO, when it should be decreased, increase
635          * too slowly, when it should be increased quickly, decrease too quickly
636          * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
637          * does not matter how to _calculate_ it. Seems, it was trap
638          * that VJ failed to avoid. 8)
639          */
640         if (m == 0)
641                 m = 1;
642         if (tp->srtt != 0) {
643                 m -= (tp->srtt >> 3);   /* m is now error in rtt est */
644                 tp->srtt += m;          /* rtt = 7/8 rtt + 1/8 new */
645                 if (m < 0) {
646                         m = -m;         /* m is now abs(error) */
647                         m -= (tp->mdev >> 2);   /* similar update on mdev */
648                         /* This is similar to one of Eifel findings.
649                          * Eifel blocks mdev updates when rtt decreases.
650                          * This solution is a bit different: we use finer gain
651                          * for mdev in this case (alpha*beta).
652                          * Like Eifel it also prevents growth of rto,
653                          * but also it limits too fast rto decreases,
654                          * happening in pure Eifel.
655                          */
656                         if (m > 0)
657                                 m >>= 3;
658                 } else {
659                         m -= (tp->mdev >> 2);   /* similar update on mdev */
660                 }
661                 tp->mdev += m;          /* mdev = 3/4 mdev + 1/4 new */
662                 if (tp->mdev > tp->mdev_max) {
663                         tp->mdev_max = tp->mdev;
664                         if (tp->mdev_max > tp->rttvar)
665                                 tp->rttvar = tp->mdev_max;
666                 }
667                 if (after(tp->snd_una, tp->rtt_seq)) {
668                         if (tp->mdev_max < tp->rttvar)
669                                 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
670                         tp->rtt_seq = tp->snd_nxt;
671                         tp->mdev_max = tcp_rto_min(sk);
672                 }
673         } else {
674                 /* no previous measure. */
675                 tp->srtt = m << 3;      /* take the measured time to be rtt */
676                 tp->mdev = m << 1;      /* make sure rto = 3*rtt */
677                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
678                 tp->rtt_seq = tp->snd_nxt;
679         }
680 }
681
682 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
683  * routine referred to above.
684  */
685 static inline void tcp_set_rto(struct sock *sk)
686 {
687         const struct tcp_sock *tp = tcp_sk(sk);
688         /* Old crap is replaced with new one. 8)
689          *
690          * More seriously:
691          * 1. If rtt variance happened to be less 50msec, it is hallucination.
692          *    It cannot be less due to utterly erratic ACK generation made
693          *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
694          *    to do with delayed acks, because at cwnd>2 true delack timeout
695          *    is invisible. Actually, Linux-2.4 also generates erratic
696          *    ACKs in some circumstances.
697          */
698         inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
699
700         /* 2. Fixups made earlier cannot be right.
701          *    If we do not estimate RTO correctly without them,
702          *    all the algo is pure shit and should be replaced
703          *    with correct one. It is exactly, which we pretend to do.
704          */
705
706         /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
707          * guarantees that rto is higher.
708          */
709         tcp_bound_rto(sk);
710 }
711
712 /* Save metrics learned by this TCP session.
713    This function is called only, when TCP finishes successfully
714    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
715  */
716 void tcp_update_metrics(struct sock *sk)
717 {
718         struct tcp_sock *tp = tcp_sk(sk);
719         struct dst_entry *dst = __sk_dst_get(sk);
720
721         if (sysctl_tcp_nometrics_save)
722                 return;
723
724         dst_confirm(dst);
725
726         if (dst && (dst->flags & DST_HOST)) {
727                 const struct inet_connection_sock *icsk = inet_csk(sk);
728                 int m;
729                 unsigned long rtt;
730
731                 if (icsk->icsk_backoff || !tp->srtt) {
732                         /* This session failed to estimate rtt. Why?
733                          * Probably, no packets returned in time.
734                          * Reset our results.
735                          */
736                         if (!(dst_metric_locked(dst, RTAX_RTT)))
737                                 dst_metric_set(dst, RTAX_RTT, 0);
738                         return;
739                 }
740
741                 rtt = dst_metric_rtt(dst, RTAX_RTT);
742                 m = rtt - tp->srtt;
743
744                 /* If newly calculated rtt larger than stored one,
745                  * store new one. Otherwise, use EWMA. Remember,
746                  * rtt overestimation is always better than underestimation.
747                  */
748                 if (!(dst_metric_locked(dst, RTAX_RTT))) {
749                         if (m <= 0)
750                                 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
751                         else
752                                 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
753                 }
754
755                 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
756                         unsigned long var;
757                         if (m < 0)
758                                 m = -m;
759
760                         /* Scale deviation to rttvar fixed point */
761                         m >>= 1;
762                         if (m < tp->mdev)
763                                 m = tp->mdev;
764
765                         var = dst_metric_rtt(dst, RTAX_RTTVAR);
766                         if (m >= var)
767                                 var = m;
768                         else
769                                 var -= (var - m) >> 2;
770
771                         set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
772                 }
773
774                 if (tcp_in_initial_slowstart(tp)) {
775                         /* Slow start still did not finish. */
776                         if (dst_metric(dst, RTAX_SSTHRESH) &&
777                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
778                             (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
779                                 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_cwnd >> 1);
780                         if (!dst_metric_locked(dst, RTAX_CWND) &&
781                             tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
782                                 dst_metric_set(dst, RTAX_CWND, tp->snd_cwnd);
783                 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
784                            icsk->icsk_ca_state == TCP_CA_Open) {
785                         /* Cong. avoidance phase, cwnd is reliable. */
786                         if (!dst_metric_locked(dst, RTAX_SSTHRESH))
787                                 dst_metric_set(dst, RTAX_SSTHRESH,
788                                                max(tp->snd_cwnd >> 1, tp->snd_ssthresh));
789                         if (!dst_metric_locked(dst, RTAX_CWND))
790                                 dst_metric_set(dst, RTAX_CWND,
791                                                (dst_metric(dst, RTAX_CWND) +
792                                                 tp->snd_cwnd) >> 1);
793                 } else {
794                         /* Else slow start did not finish, cwnd is non-sense,
795                            ssthresh may be also invalid.
796                          */
797                         if (!dst_metric_locked(dst, RTAX_CWND))
798                                 dst_metric_set(dst, RTAX_CWND,
799                                                (dst_metric(dst, RTAX_CWND) +
800                                                 tp->snd_ssthresh) >> 1);
801                         if (dst_metric(dst, RTAX_SSTHRESH) &&
802                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
803                             tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
804                                 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_ssthresh);
805                 }
806
807                 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
808                         if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
809                             tp->reordering != sysctl_tcp_reordering)
810                                 dst_metric_set(dst, RTAX_REORDERING, tp->reordering);
811                 }
812         }
813 }
814
815 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
816 {
817         __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
818
819         if (!cwnd)
820                 cwnd = TCP_INIT_CWND;
821         return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
822 }
823
824 /* Set slow start threshold and cwnd not falling to slow start */
825 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
826 {
827         struct tcp_sock *tp = tcp_sk(sk);
828         const struct inet_connection_sock *icsk = inet_csk(sk);
829
830         tp->prior_ssthresh = 0;
831         tp->bytes_acked = 0;
832         if (icsk->icsk_ca_state < TCP_CA_CWR) {
833                 tp->undo_marker = 0;
834                 if (set_ssthresh)
835                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
836                 tp->snd_cwnd = min(tp->snd_cwnd,
837                                    tcp_packets_in_flight(tp) + 1U);
838                 tp->snd_cwnd_cnt = 0;
839                 tp->high_seq = tp->snd_nxt;
840                 tp->snd_cwnd_stamp = tcp_time_stamp;
841                 TCP_ECN_queue_cwr(tp);
842
843                 tcp_set_ca_state(sk, TCP_CA_CWR);
844         }
845 }
846
847 /*
848  * Packet counting of FACK is based on in-order assumptions, therefore TCP
849  * disables it when reordering is detected
850  */
851 static void tcp_disable_fack(struct tcp_sock *tp)
852 {
853         /* RFC3517 uses different metric in lost marker => reset on change */
854         if (tcp_is_fack(tp))
855                 tp->lost_skb_hint = NULL;
856         tp->rx_opt.sack_ok &= ~2;
857 }
858
859 /* Take a notice that peer is sending D-SACKs */
860 static void tcp_dsack_seen(struct tcp_sock *tp)
861 {
862         tp->rx_opt.sack_ok |= 4;
863 }
864
865 /* Initialize metrics on socket. */
866
867 static void tcp_init_metrics(struct sock *sk)
868 {
869         struct tcp_sock *tp = tcp_sk(sk);
870         struct dst_entry *dst = __sk_dst_get(sk);
871
872         if (dst == NULL)
873                 goto reset;
874
875         dst_confirm(dst);
876
877         if (dst_metric_locked(dst, RTAX_CWND))
878                 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
879         if (dst_metric(dst, RTAX_SSTHRESH)) {
880                 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
881                 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
882                         tp->snd_ssthresh = tp->snd_cwnd_clamp;
883         }
884         if (dst_metric(dst, RTAX_REORDERING) &&
885             tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
886                 tcp_disable_fack(tp);
887                 tp->reordering = dst_metric(dst, RTAX_REORDERING);
888         }
889
890         if (dst_metric(dst, RTAX_RTT) == 0)
891                 goto reset;
892
893         if (!tp->srtt && dst_metric_rtt(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
894                 goto reset;
895
896         /* Initial rtt is determined from SYN,SYN-ACK.
897          * The segment is small and rtt may appear much
898          * less than real one. Use per-dst memory
899          * to make it more realistic.
900          *
901          * A bit of theory. RTT is time passed after "normal" sized packet
902          * is sent until it is ACKed. In normal circumstances sending small
903          * packets force peer to delay ACKs and calculation is correct too.
904          * The algorithm is adaptive and, provided we follow specs, it
905          * NEVER underestimate RTT. BUT! If peer tries to make some clever
906          * tricks sort of "quick acks" for time long enough to decrease RTT
907          * to low value, and then abruptly stops to do it and starts to delay
908          * ACKs, wait for troubles.
909          */
910         if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
911                 tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
912                 tp->rtt_seq = tp->snd_nxt;
913         }
914         if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
915                 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
916                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
917         }
918         tcp_set_rto(sk);
919         if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp) {
920 reset:
921                 /* Play conservative. If timestamps are not
922                  * supported, TCP will fail to recalculate correct
923                  * rtt, if initial rto is too small. FORGET ALL AND RESET!
924                  */
925                 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
926                         tp->srtt = 0;
927                         tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
928                         inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
929                 }
930         }
931         tp->snd_cwnd = tcp_init_cwnd(tp, dst);
932         tp->snd_cwnd_stamp = tcp_time_stamp;
933 }
934
935 static void tcp_update_reordering(struct sock *sk, const int metric,
936                                   const int ts)
937 {
938         struct tcp_sock *tp = tcp_sk(sk);
939         if (metric > tp->reordering) {
940                 int mib_idx;
941
942                 tp->reordering = min(TCP_MAX_REORDERING, metric);
943
944                 /* This exciting event is worth to be remembered. 8) */
945                 if (ts)
946                         mib_idx = LINUX_MIB_TCPTSREORDER;
947                 else if (tcp_is_reno(tp))
948                         mib_idx = LINUX_MIB_TCPRENOREORDER;
949                 else if (tcp_is_fack(tp))
950                         mib_idx = LINUX_MIB_TCPFACKREORDER;
951                 else
952                         mib_idx = LINUX_MIB_TCPSACKREORDER;
953
954                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
955 #if FASTRETRANS_DEBUG > 1
956                 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
957                        tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
958                        tp->reordering,
959                        tp->fackets_out,
960                        tp->sacked_out,
961                        tp->undo_marker ? tp->undo_retrans : 0);
962 #endif
963                 tcp_disable_fack(tp);
964         }
965 }
966
967 /* This must be called before lost_out is incremented */
968 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
969 {
970         if ((tp->retransmit_skb_hint == NULL) ||
971             before(TCP_SKB_CB(skb)->seq,
972                    TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
973                 tp->retransmit_skb_hint = skb;
974
975         if (!tp->lost_out ||
976             after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
977                 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
978 }
979
980 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
981 {
982         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
983                 tcp_verify_retransmit_hint(tp, skb);
984
985                 tp->lost_out += tcp_skb_pcount(skb);
986                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
987         }
988 }
989
990 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
991                                             struct sk_buff *skb)
992 {
993         tcp_verify_retransmit_hint(tp, skb);
994
995         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
996                 tp->lost_out += tcp_skb_pcount(skb);
997                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
998         }
999 }
1000
1001 /* This procedure tags the retransmission queue when SACKs arrive.
1002  *
1003  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1004  * Packets in queue with these bits set are counted in variables
1005  * sacked_out, retrans_out and lost_out, correspondingly.
1006  *
1007  * Valid combinations are:
1008  * Tag  InFlight        Description
1009  * 0    1               - orig segment is in flight.
1010  * S    0               - nothing flies, orig reached receiver.
1011  * L    0               - nothing flies, orig lost by net.
1012  * R    2               - both orig and retransmit are in flight.
1013  * L|R  1               - orig is lost, retransmit is in flight.
1014  * S|R  1               - orig reached receiver, retrans is still in flight.
1015  * (L|S|R is logically valid, it could occur when L|R is sacked,
1016  *  but it is equivalent to plain S and code short-curcuits it to S.
1017  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1018  *
1019  * These 6 states form finite state machine, controlled by the following events:
1020  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1021  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1022  * 3. Loss detection event of one of three flavors:
1023  *      A. Scoreboard estimator decided the packet is lost.
1024  *         A'. Reno "three dupacks" marks head of queue lost.
1025  *         A''. Its FACK modfication, head until snd.fack is lost.
1026  *      B. SACK arrives sacking data transmitted after never retransmitted
1027  *         hole was sent out.
1028  *      C. SACK arrives sacking SND.NXT at the moment, when the
1029  *         segment was retransmitted.
1030  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1031  *
1032  * It is pleasant to note, that state diagram turns out to be commutative,
1033  * so that we are allowed not to be bothered by order of our actions,
1034  * when multiple events arrive simultaneously. (see the function below).
1035  *
1036  * Reordering detection.
1037  * --------------------
1038  * Reordering metric is maximal distance, which a packet can be displaced
1039  * in packet stream. With SACKs we can estimate it:
1040  *
1041  * 1. SACK fills old hole and the corresponding segment was not
1042  *    ever retransmitted -> reordering. Alas, we cannot use it
1043  *    when segment was retransmitted.
1044  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1045  *    for retransmitted and already SACKed segment -> reordering..
1046  * Both of these heuristics are not used in Loss state, when we cannot
1047  * account for retransmits accurately.
1048  *
1049  * SACK block validation.
1050  * ----------------------
1051  *
1052  * SACK block range validation checks that the received SACK block fits to
1053  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1054  * Note that SND.UNA is not included to the range though being valid because
1055  * it means that the receiver is rather inconsistent with itself reporting
1056  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1057  * perfectly valid, however, in light of RFC2018 which explicitly states
1058  * that "SACK block MUST reflect the newest segment.  Even if the newest
1059  * segment is going to be discarded ...", not that it looks very clever
1060  * in case of head skb. Due to potentional receiver driven attacks, we
1061  * choose to avoid immediate execution of a walk in write queue due to
1062  * reneging and defer head skb's loss recovery to standard loss recovery
1063  * procedure that will eventually trigger (nothing forbids us doing this).
1064  *
1065  * Implements also blockage to start_seq wrap-around. Problem lies in the
1066  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1067  * there's no guarantee that it will be before snd_nxt (n). The problem
1068  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1069  * wrap (s_w):
1070  *
1071  *         <- outs wnd ->                          <- wrapzone ->
1072  *         u     e      n                         u_w   e_w  s n_w
1073  *         |     |      |                          |     |   |  |
1074  * |<------------+------+----- TCP seqno space --------------+---------->|
1075  * ...-- <2^31 ->|                                           |<--------...
1076  * ...---- >2^31 ------>|                                    |<--------...
1077  *
1078  * Current code wouldn't be vulnerable but it's better still to discard such
1079  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1080  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1081  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1082  * equal to the ideal case (infinite seqno space without wrap caused issues).
1083  *
1084  * With D-SACK the lower bound is extended to cover sequence space below
1085  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1086  * again, D-SACK block must not to go across snd_una (for the same reason as
1087  * for the normal SACK blocks, explained above). But there all simplicity
1088  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1089  * fully below undo_marker they do not affect behavior in anyway and can
1090  * therefore be safely ignored. In rare cases (which are more or less
1091  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1092  * fragmentation and packet reordering past skb's retransmission. To consider
1093  * them correctly, the acceptable range must be extended even more though
1094  * the exact amount is rather hard to quantify. However, tp->max_window can
1095  * be used as an exaggerated estimate.
1096  */
1097 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1098                                   u32 start_seq, u32 end_seq)
1099 {
1100         /* Too far in future, or reversed (interpretation is ambiguous) */
1101         if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1102                 return 0;
1103
1104         /* Nasty start_seq wrap-around check (see comments above) */
1105         if (!before(start_seq, tp->snd_nxt))
1106                 return 0;
1107
1108         /* In outstanding window? ...This is valid exit for D-SACKs too.
1109          * start_seq == snd_una is non-sensical (see comments above)
1110          */
1111         if (after(start_seq, tp->snd_una))
1112                 return 1;
1113
1114         if (!is_dsack || !tp->undo_marker)
1115                 return 0;
1116
1117         /* ...Then it's D-SACK, and must reside below snd_una completely */
1118         if (!after(end_seq, tp->snd_una))
1119                 return 0;
1120
1121         if (!before(start_seq, tp->undo_marker))
1122                 return 1;
1123
1124         /* Too old */
1125         if (!after(end_seq, tp->undo_marker))
1126                 return 0;
1127
1128         /* Undo_marker boundary crossing (overestimates a lot). Known already:
1129          *   start_seq < undo_marker and end_seq >= undo_marker.
1130          */
1131         return !before(start_seq, end_seq - tp->max_window);
1132 }
1133
1134 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1135  * Event "C". Later note: FACK people cheated me again 8), we have to account
1136  * for reordering! Ugly, but should help.
1137  *
1138  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1139  * less than what is now known to be received by the other end (derived from
1140  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1141  * retransmitted skbs to avoid some costly processing per ACKs.
1142  */
1143 static void tcp_mark_lost_retrans(struct sock *sk)
1144 {
1145         const struct inet_connection_sock *icsk = inet_csk(sk);
1146         struct tcp_sock *tp = tcp_sk(sk);
1147         struct sk_buff *skb;
1148         int cnt = 0;
1149         u32 new_low_seq = tp->snd_nxt;
1150         u32 received_upto = tcp_highest_sack_seq(tp);
1151
1152         if (!tcp_is_fack(tp) || !tp->retrans_out ||
1153             !after(received_upto, tp->lost_retrans_low) ||
1154             icsk->icsk_ca_state != TCP_CA_Recovery)
1155                 return;
1156
1157         tcp_for_write_queue(skb, sk) {
1158                 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1159
1160                 if (skb == tcp_send_head(sk))
1161                         break;
1162                 if (cnt == tp->retrans_out)
1163                         break;
1164                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1165                         continue;
1166
1167                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1168                         continue;
1169
1170                 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1171                  * constraint here (see above) but figuring out that at
1172                  * least tp->reordering SACK blocks reside between ack_seq
1173                  * and received_upto is not easy task to do cheaply with
1174                  * the available datastructures.
1175                  *
1176                  * Whether FACK should check here for tp->reordering segs
1177                  * in-between one could argue for either way (it would be
1178                  * rather simple to implement as we could count fack_count
1179                  * during the walk and do tp->fackets_out - fack_count).
1180                  */
1181                 if (after(received_upto, ack_seq)) {
1182                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1183                         tp->retrans_out -= tcp_skb_pcount(skb);
1184
1185                         tcp_skb_mark_lost_uncond_verify(tp, skb);
1186                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1187                 } else {
1188                         if (before(ack_seq, new_low_seq))
1189                                 new_low_seq = ack_seq;
1190                         cnt += tcp_skb_pcount(skb);
1191                 }
1192         }
1193
1194         if (tp->retrans_out)
1195                 tp->lost_retrans_low = new_low_seq;
1196 }
1197
1198 static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb,
1199                            struct tcp_sack_block_wire *sp, int num_sacks,
1200                            u32 prior_snd_una)
1201 {
1202         struct tcp_sock *tp = tcp_sk(sk);
1203         u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1204         u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1205         int dup_sack = 0;
1206
1207         if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1208                 dup_sack = 1;
1209                 tcp_dsack_seen(tp);
1210                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1211         } else if (num_sacks > 1) {
1212                 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1213                 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1214
1215                 if (!after(end_seq_0, end_seq_1) &&
1216                     !before(start_seq_0, start_seq_1)) {
1217                         dup_sack = 1;
1218                         tcp_dsack_seen(tp);
1219                         NET_INC_STATS_BH(sock_net(sk),
1220                                         LINUX_MIB_TCPDSACKOFORECV);
1221                 }
1222         }
1223
1224         /* D-SACK for already forgotten data... Do dumb counting. */
1225         if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1226             !after(end_seq_0, prior_snd_una) &&
1227             after(end_seq_0, tp->undo_marker))
1228                 tp->undo_retrans--;
1229
1230         return dup_sack;
1231 }
1232
1233 struct tcp_sacktag_state {
1234         int reord;
1235         int fack_count;
1236         int flag;
1237 };
1238
1239 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1240  * the incoming SACK may not exactly match but we can find smaller MSS
1241  * aligned portion of it that matches. Therefore we might need to fragment
1242  * which may fail and creates some hassle (caller must handle error case
1243  * returns).
1244  *
1245  * FIXME: this could be merged to shift decision code
1246  */
1247 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1248                                  u32 start_seq, u32 end_seq)
1249 {
1250         int in_sack, err;
1251         unsigned int pkt_len;
1252         unsigned int mss;
1253
1254         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1255                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1256
1257         if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1258             after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1259                 mss = tcp_skb_mss(skb);
1260                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1261
1262                 if (!in_sack) {
1263                         pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1264                         if (pkt_len < mss)
1265                                 pkt_len = mss;
1266                 } else {
1267                         pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1268                         if (pkt_len < mss)
1269                                 return -EINVAL;
1270                 }
1271
1272                 /* Round if necessary so that SACKs cover only full MSSes
1273                  * and/or the remaining small portion (if present)
1274                  */
1275                 if (pkt_len > mss) {
1276                         unsigned int new_len = (pkt_len / mss) * mss;
1277                         if (!in_sack && new_len < pkt_len) {
1278                                 new_len += mss;
1279                                 if (new_len > skb->len)
1280                                         return 0;
1281                         }
1282                         pkt_len = new_len;
1283                 }
1284                 err = tcp_fragment(sk, skb, pkt_len, mss);
1285                 if (err < 0)
1286                         return err;
1287         }
1288
1289         return in_sack;
1290 }
1291
1292 static u8 tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1293                           struct tcp_sacktag_state *state,
1294                           int dup_sack, int pcount)
1295 {
1296         struct tcp_sock *tp = tcp_sk(sk);
1297         u8 sacked = TCP_SKB_CB(skb)->sacked;
1298         int fack_count = state->fack_count;
1299
1300         /* Account D-SACK for retransmitted packet. */
1301         if (dup_sack && (sacked & TCPCB_RETRANS)) {
1302                 if (tp->undo_marker && tp->undo_retrans &&
1303                     after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1304                         tp->undo_retrans--;
1305                 if (sacked & TCPCB_SACKED_ACKED)
1306                         state->reord = min(fack_count, state->reord);
1307         }
1308
1309         /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1310         if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1311                 return sacked;
1312
1313         if (!(sacked & TCPCB_SACKED_ACKED)) {
1314                 if (sacked & TCPCB_SACKED_RETRANS) {
1315                         /* If the segment is not tagged as lost,
1316                          * we do not clear RETRANS, believing
1317                          * that retransmission is still in flight.
1318                          */
1319                         if (sacked & TCPCB_LOST) {
1320                                 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1321                                 tp->lost_out -= pcount;
1322                                 tp->retrans_out -= pcount;
1323                         }
1324                 } else {
1325                         if (!(sacked & TCPCB_RETRANS)) {
1326                                 /* New sack for not retransmitted frame,
1327                                  * which was in hole. It is reordering.
1328                                  */
1329                                 if (before(TCP_SKB_CB(skb)->seq,
1330                                            tcp_highest_sack_seq(tp)))
1331                                         state->reord = min(fack_count,
1332                                                            state->reord);
1333
1334                                 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1335                                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1336                                         state->flag |= FLAG_ONLY_ORIG_SACKED;
1337                         }
1338
1339                         if (sacked & TCPCB_LOST) {
1340                                 sacked &= ~TCPCB_LOST;
1341                                 tp->lost_out -= pcount;
1342                         }
1343                 }
1344
1345                 sacked |= TCPCB_SACKED_ACKED;
1346                 state->flag |= FLAG_DATA_SACKED;
1347                 tp->sacked_out += pcount;
1348
1349                 fack_count += pcount;
1350
1351                 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1352                 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1353                     before(TCP_SKB_CB(skb)->seq,
1354                            TCP_SKB_CB(tp->lost_skb_hint)->seq))
1355                         tp->lost_cnt_hint += pcount;
1356
1357                 if (fack_count > tp->fackets_out)
1358                         tp->fackets_out = fack_count;
1359         }
1360
1361         /* D-SACK. We can detect redundant retransmission in S|R and plain R
1362          * frames and clear it. undo_retrans is decreased above, L|R frames
1363          * are accounted above as well.
1364          */
1365         if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1366                 sacked &= ~TCPCB_SACKED_RETRANS;
1367                 tp->retrans_out -= pcount;
1368         }
1369
1370         return sacked;
1371 }
1372
1373 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1374                            struct tcp_sacktag_state *state,
1375                            unsigned int pcount, int shifted, int mss,
1376                            int dup_sack)
1377 {
1378         struct tcp_sock *tp = tcp_sk(sk);
1379         struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1380
1381         BUG_ON(!pcount);
1382
1383         /* Tweak before seqno plays */
1384         if (!tcp_is_fack(tp) && tcp_is_sack(tp) && tp->lost_skb_hint &&
1385             !before(TCP_SKB_CB(tp->lost_skb_hint)->seq, TCP_SKB_CB(skb)->seq))
1386                 tp->lost_cnt_hint += pcount;
1387
1388         TCP_SKB_CB(prev)->end_seq += shifted;
1389         TCP_SKB_CB(skb)->seq += shifted;
1390
1391         skb_shinfo(prev)->gso_segs += pcount;
1392         BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1393         skb_shinfo(skb)->gso_segs -= pcount;
1394
1395         /* When we're adding to gso_segs == 1, gso_size will be zero,
1396          * in theory this shouldn't be necessary but as long as DSACK
1397          * code can come after this skb later on it's better to keep
1398          * setting gso_size to something.
1399          */
1400         if (!skb_shinfo(prev)->gso_size) {
1401                 skb_shinfo(prev)->gso_size = mss;
1402                 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1403         }
1404
1405         /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1406         if (skb_shinfo(skb)->gso_segs <= 1) {
1407                 skb_shinfo(skb)->gso_size = 0;
1408                 skb_shinfo(skb)->gso_type = 0;
1409         }
1410
1411         /* We discard results */
1412         tcp_sacktag_one(skb, sk, state, dup_sack, pcount);
1413
1414         /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1415         TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1416
1417         if (skb->len > 0) {
1418                 BUG_ON(!tcp_skb_pcount(skb));
1419                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1420                 return 0;
1421         }
1422
1423         /* Whole SKB was eaten :-) */
1424
1425         if (skb == tp->retransmit_skb_hint)
1426                 tp->retransmit_skb_hint = prev;
1427         if (skb == tp->scoreboard_skb_hint)
1428                 tp->scoreboard_skb_hint = prev;
1429         if (skb == tp->lost_skb_hint) {
1430                 tp->lost_skb_hint = prev;
1431                 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1432         }
1433
1434         TCP_SKB_CB(skb)->flags |= TCP_SKB_CB(prev)->flags;
1435         if (skb == tcp_highest_sack(sk))
1436                 tcp_advance_highest_sack(sk, skb);
1437
1438         tcp_unlink_write_queue(skb, sk);
1439         sk_wmem_free_skb(sk, skb);
1440
1441         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1442
1443         return 1;
1444 }
1445
1446 /* I wish gso_size would have a bit more sane initialization than
1447  * something-or-zero which complicates things
1448  */
1449 static int tcp_skb_seglen(struct sk_buff *skb)
1450 {
1451         return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1452 }
1453
1454 /* Shifting pages past head area doesn't work */
1455 static int skb_can_shift(struct sk_buff *skb)
1456 {
1457         return !skb_headlen(skb) && skb_is_nonlinear(skb);
1458 }
1459
1460 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1461  * skb.
1462  */
1463 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1464                                           struct tcp_sacktag_state *state,
1465                                           u32 start_seq, u32 end_seq,
1466                                           int dup_sack)
1467 {
1468         struct tcp_sock *tp = tcp_sk(sk);
1469         struct sk_buff *prev;
1470         int mss;
1471         int pcount = 0;
1472         int len;
1473         int in_sack;
1474
1475         if (!sk_can_gso(sk))
1476                 goto fallback;
1477
1478         /* Normally R but no L won't result in plain S */
1479         if (!dup_sack &&
1480             (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1481                 goto fallback;
1482         if (!skb_can_shift(skb))
1483                 goto fallback;
1484         /* This frame is about to be dropped (was ACKed). */
1485         if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1486                 goto fallback;
1487
1488         /* Can only happen with delayed DSACK + discard craziness */
1489         if (unlikely(skb == tcp_write_queue_head(sk)))
1490                 goto fallback;
1491         prev = tcp_write_queue_prev(sk, skb);
1492
1493         if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1494                 goto fallback;
1495
1496         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1497                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1498
1499         if (in_sack) {
1500                 len = skb->len;
1501                 pcount = tcp_skb_pcount(skb);
1502                 mss = tcp_skb_seglen(skb);
1503
1504                 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1505                  * drop this restriction as unnecessary
1506                  */
1507                 if (mss != tcp_skb_seglen(prev))
1508                         goto fallback;
1509         } else {
1510                 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1511                         goto noop;
1512                 /* CHECKME: This is non-MSS split case only?, this will
1513                  * cause skipped skbs due to advancing loop btw, original
1514                  * has that feature too
1515                  */
1516                 if (tcp_skb_pcount(skb) <= 1)
1517                         goto noop;
1518
1519                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1520                 if (!in_sack) {
1521                         /* TODO: head merge to next could be attempted here
1522                          * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1523                          * though it might not be worth of the additional hassle
1524                          *
1525                          * ...we can probably just fallback to what was done
1526                          * previously. We could try merging non-SACKed ones
1527                          * as well but it probably isn't going to buy off
1528                          * because later SACKs might again split them, and
1529                          * it would make skb timestamp tracking considerably
1530                          * harder problem.
1531                          */
1532                         goto fallback;
1533                 }
1534
1535                 len = end_seq - TCP_SKB_CB(skb)->seq;
1536                 BUG_ON(len < 0);
1537                 BUG_ON(len > skb->len);
1538
1539                 /* MSS boundaries should be honoured or else pcount will
1540                  * severely break even though it makes things bit trickier.
1541                  * Optimize common case to avoid most of the divides
1542                  */
1543                 mss = tcp_skb_mss(skb);
1544
1545                 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1546                  * drop this restriction as unnecessary
1547                  */
1548                 if (mss != tcp_skb_seglen(prev))
1549                         goto fallback;
1550
1551                 if (len == mss) {
1552                         pcount = 1;
1553                 } else if (len < mss) {
1554                         goto noop;
1555                 } else {
1556                         pcount = len / mss;
1557                         len = pcount * mss;
1558                 }
1559         }
1560
1561         if (!skb_shift(prev, skb, len))
1562                 goto fallback;
1563         if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1564                 goto out;
1565
1566         /* Hole filled allows collapsing with the next as well, this is very
1567          * useful when hole on every nth skb pattern happens
1568          */
1569         if (prev == tcp_write_queue_tail(sk))
1570                 goto out;
1571         skb = tcp_write_queue_next(sk, prev);
1572
1573         if (!skb_can_shift(skb) ||
1574             (skb == tcp_send_head(sk)) ||
1575             ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1576             (mss != tcp_skb_seglen(skb)))
1577                 goto out;
1578
1579         len = skb->len;
1580         if (skb_shift(prev, skb, len)) {
1581                 pcount += tcp_skb_pcount(skb);
1582                 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1583         }
1584
1585 out:
1586         state->fack_count += pcount;
1587         return prev;
1588
1589 noop:
1590         return skb;
1591
1592 fallback:
1593         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1594         return NULL;
1595 }
1596
1597 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1598                                         struct tcp_sack_block *next_dup,
1599                                         struct tcp_sacktag_state *state,
1600                                         u32 start_seq, u32 end_seq,
1601                                         int dup_sack_in)
1602 {
1603         struct tcp_sock *tp = tcp_sk(sk);
1604         struct sk_buff *tmp;
1605
1606         tcp_for_write_queue_from(skb, sk) {
1607                 int in_sack = 0;
1608                 int dup_sack = dup_sack_in;
1609
1610                 if (skb == tcp_send_head(sk))
1611                         break;
1612
1613                 /* queue is in-order => we can short-circuit the walk early */
1614                 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1615                         break;
1616
1617                 if ((next_dup != NULL) &&
1618                     before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1619                         in_sack = tcp_match_skb_to_sack(sk, skb,
1620                                                         next_dup->start_seq,
1621                                                         next_dup->end_seq);
1622                         if (in_sack > 0)
1623                                 dup_sack = 1;
1624                 }
1625
1626                 /* skb reference here is a bit tricky to get right, since
1627                  * shifting can eat and free both this skb and the next,
1628                  * so not even _safe variant of the loop is enough.
1629                  */
1630                 if (in_sack <= 0) {
1631                         tmp = tcp_shift_skb_data(sk, skb, state,
1632                                                  start_seq, end_seq, dup_sack);
1633                         if (tmp != NULL) {
1634                                 if (tmp != skb) {
1635                                         skb = tmp;
1636                                         continue;
1637                                 }
1638
1639                                 in_sack = 0;
1640                         } else {
1641                                 in_sack = tcp_match_skb_to_sack(sk, skb,
1642                                                                 start_seq,
1643                                                                 end_seq);
1644                         }
1645                 }
1646
1647                 if (unlikely(in_sack < 0))
1648                         break;
1649
1650                 if (in_sack) {
1651                         TCP_SKB_CB(skb)->sacked = tcp_sacktag_one(skb, sk,
1652                                                                   state,
1653                                                                   dup_sack,
1654                                                                   tcp_skb_pcount(skb));
1655
1656                         if (!before(TCP_SKB_CB(skb)->seq,
1657                                     tcp_highest_sack_seq(tp)))
1658                                 tcp_advance_highest_sack(sk, skb);
1659                 }
1660
1661                 state->fack_count += tcp_skb_pcount(skb);
1662         }
1663         return skb;
1664 }
1665
1666 /* Avoid all extra work that is being done by sacktag while walking in
1667  * a normal way
1668  */
1669 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1670                                         struct tcp_sacktag_state *state,
1671                                         u32 skip_to_seq)
1672 {
1673         tcp_for_write_queue_from(skb, sk) {
1674                 if (skb == tcp_send_head(sk))
1675                         break;
1676
1677                 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1678                         break;
1679
1680                 state->fack_count += tcp_skb_pcount(skb);
1681         }
1682         return skb;
1683 }
1684
1685 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1686                                                 struct sock *sk,
1687                                                 struct tcp_sack_block *next_dup,
1688                                                 struct tcp_sacktag_state *state,
1689                                                 u32 skip_to_seq)
1690 {
1691         if (next_dup == NULL)
1692                 return skb;
1693
1694         if (before(next_dup->start_seq, skip_to_seq)) {
1695                 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1696                 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1697                                        next_dup->start_seq, next_dup->end_seq,
1698                                        1);
1699         }
1700
1701         return skb;
1702 }
1703
1704 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1705 {
1706         return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1707 }
1708
1709 static int
1710 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1711                         u32 prior_snd_una)
1712 {
1713         const struct inet_connection_sock *icsk = inet_csk(sk);
1714         struct tcp_sock *tp = tcp_sk(sk);
1715         unsigned char *ptr = (skb_transport_header(ack_skb) +
1716                               TCP_SKB_CB(ack_skb)->sacked);
1717         struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1718         struct tcp_sack_block sp[TCP_NUM_SACKS];
1719         struct tcp_sack_block *cache;
1720         struct tcp_sacktag_state state;
1721         struct sk_buff *skb;
1722         int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1723         int used_sacks;
1724         int found_dup_sack = 0;
1725         int i, j;
1726         int first_sack_index;
1727
1728         state.flag = 0;
1729         state.reord = tp->packets_out;
1730
1731         if (!tp->sacked_out) {
1732                 if (WARN_ON(tp->fackets_out))
1733                         tp->fackets_out = 0;
1734                 tcp_highest_sack_reset(sk);
1735         }
1736
1737         found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1738                                          num_sacks, prior_snd_una);
1739         if (found_dup_sack)
1740                 state.flag |= FLAG_DSACKING_ACK;
1741
1742         /* Eliminate too old ACKs, but take into
1743          * account more or less fresh ones, they can
1744          * contain valid SACK info.
1745          */
1746         if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1747                 return 0;
1748
1749         if (!tp->packets_out)
1750                 goto out;
1751
1752         used_sacks = 0;
1753         first_sack_index = 0;
1754         for (i = 0; i < num_sacks; i++) {
1755                 int dup_sack = !i && found_dup_sack;
1756
1757                 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1758                 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1759
1760                 if (!tcp_is_sackblock_valid(tp, dup_sack,
1761                                             sp[used_sacks].start_seq,
1762                                             sp[used_sacks].end_seq)) {
1763                         int mib_idx;
1764
1765                         if (dup_sack) {
1766                                 if (!tp->undo_marker)
1767                                         mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1768                                 else
1769                                         mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1770                         } else {
1771                                 /* Don't count olds caused by ACK reordering */
1772                                 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1773                                     !after(sp[used_sacks].end_seq, tp->snd_una))
1774                                         continue;
1775                                 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1776                         }
1777
1778                         NET_INC_STATS_BH(sock_net(sk), mib_idx);
1779                         if (i == 0)
1780                                 first_sack_index = -1;
1781                         continue;
1782                 }
1783
1784                 /* Ignore very old stuff early */
1785                 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1786                         continue;
1787
1788                 used_sacks++;
1789         }
1790
1791         /* order SACK blocks to allow in order walk of the retrans queue */
1792         for (i = used_sacks - 1; i > 0; i--) {
1793                 for (j = 0; j < i; j++) {
1794                         if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1795                                 swap(sp[j], sp[j + 1]);
1796
1797                                 /* Track where the first SACK block goes to */
1798                                 if (j == first_sack_index)
1799                                         first_sack_index = j + 1;
1800                         }
1801                 }
1802         }
1803
1804         skb = tcp_write_queue_head(sk);
1805         state.fack_count = 0;
1806         i = 0;
1807
1808         if (!tp->sacked_out) {
1809                 /* It's already past, so skip checking against it */
1810                 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1811         } else {
1812                 cache = tp->recv_sack_cache;
1813                 /* Skip empty blocks in at head of the cache */
1814                 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1815                        !cache->end_seq)
1816                         cache++;
1817         }
1818
1819         while (i < used_sacks) {
1820                 u32 start_seq = sp[i].start_seq;
1821                 u32 end_seq = sp[i].end_seq;
1822                 int dup_sack = (found_dup_sack && (i == first_sack_index));
1823                 struct tcp_sack_block *next_dup = NULL;
1824
1825                 if (found_dup_sack && ((i + 1) == first_sack_index))
1826                         next_dup = &sp[i + 1];
1827
1828                 /* Event "B" in the comment above. */
1829                 if (after(end_seq, tp->high_seq))
1830                         state.flag |= FLAG_DATA_LOST;
1831
1832                 /* Skip too early cached blocks */
1833                 while (tcp_sack_cache_ok(tp, cache) &&
1834                        !before(start_seq, cache->end_seq))
1835                         cache++;
1836
1837                 /* Can skip some work by looking recv_sack_cache? */
1838                 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1839                     after(end_seq, cache->start_seq)) {
1840
1841                         /* Head todo? */
1842                         if (before(start_seq, cache->start_seq)) {
1843                                 skb = tcp_sacktag_skip(skb, sk, &state,
1844                                                        start_seq);
1845                                 skb = tcp_sacktag_walk(skb, sk, next_dup,
1846                                                        &state,
1847                                                        start_seq,
1848                                                        cache->start_seq,
1849                                                        dup_sack);
1850                         }
1851
1852                         /* Rest of the block already fully processed? */
1853                         if (!after(end_seq, cache->end_seq))
1854                                 goto advance_sp;
1855
1856                         skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1857                                                        &state,
1858                                                        cache->end_seq);
1859
1860                         /* ...tail remains todo... */
1861                         if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1862                                 /* ...but better entrypoint exists! */
1863                                 skb = tcp_highest_sack(sk);
1864                                 if (skb == NULL)
1865                                         break;
1866                                 state.fack_count = tp->fackets_out;
1867                                 cache++;
1868                                 goto walk;
1869                         }
1870
1871                         skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1872                         /* Check overlap against next cached too (past this one already) */
1873                         cache++;
1874                         continue;
1875                 }
1876
1877                 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1878                         skb = tcp_highest_sack(sk);
1879                         if (skb == NULL)
1880                                 break;
1881                         state.fack_count = tp->fackets_out;
1882                 }
1883                 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1884
1885 walk:
1886                 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1887                                        start_seq, end_seq, dup_sack);
1888
1889 advance_sp:
1890                 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1891                  * due to in-order walk
1892                  */
1893                 if (after(end_seq, tp->frto_highmark))
1894                         state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1895
1896                 i++;
1897         }
1898
1899         /* Clear the head of the cache sack blocks so we can skip it next time */
1900         for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1901                 tp->recv_sack_cache[i].start_seq = 0;
1902                 tp->recv_sack_cache[i].end_seq = 0;
1903         }
1904         for (j = 0; j < used_sacks; j++)
1905                 tp->recv_sack_cache[i++] = sp[j];
1906
1907         tcp_mark_lost_retrans(sk);
1908
1909         tcp_verify_left_out(tp);
1910
1911         if ((state.reord < tp->fackets_out) &&
1912             ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1913             (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1914                 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1915
1916 out:
1917
1918 #if FASTRETRANS_DEBUG > 0
1919         WARN_ON((int)tp->sacked_out < 0);
1920         WARN_ON((int)tp->lost_out < 0);
1921         WARN_ON((int)tp->retrans_out < 0);
1922         WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1923 #endif
1924         return state.flag;
1925 }
1926
1927 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1928  * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1929  */
1930 static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1931 {
1932         u32 holes;
1933
1934         holes = max(tp->lost_out, 1U);
1935         holes = min(holes, tp->packets_out);
1936
1937         if ((tp->sacked_out + holes) > tp->packets_out) {
1938                 tp->sacked_out = tp->packets_out - holes;
1939                 return 1;
1940         }
1941         return 0;
1942 }
1943
1944 /* If we receive more dupacks than we expected counting segments
1945  * in assumption of absent reordering, interpret this as reordering.
1946  * The only another reason could be bug in receiver TCP.
1947  */
1948 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1949 {
1950         struct tcp_sock *tp = tcp_sk(sk);
1951         if (tcp_limit_reno_sacked(tp))
1952                 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1953 }
1954
1955 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1956
1957 static void tcp_add_reno_sack(struct sock *sk)
1958 {
1959         struct tcp_sock *tp = tcp_sk(sk);
1960         tp->sacked_out++;
1961         tcp_check_reno_reordering(sk, 0);
1962         tcp_verify_left_out(tp);
1963 }
1964
1965 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1966
1967 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1968 {
1969         struct tcp_sock *tp = tcp_sk(sk);
1970
1971         if (acked > 0) {
1972                 /* One ACK acked hole. The rest eat duplicate ACKs. */
1973                 if (acked - 1 >= tp->sacked_out)
1974                         tp->sacked_out = 0;
1975                 else
1976                         tp->sacked_out -= acked - 1;
1977         }
1978         tcp_check_reno_reordering(sk, acked);
1979         tcp_verify_left_out(tp);
1980 }
1981
1982 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1983 {
1984         tp->sacked_out = 0;
1985 }
1986
1987 static int tcp_is_sackfrto(const struct tcp_sock *tp)
1988 {
1989         return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
1990 }
1991
1992 /* F-RTO can only be used if TCP has never retransmitted anything other than
1993  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1994  */
1995 int tcp_use_frto(struct sock *sk)
1996 {
1997         const struct tcp_sock *tp = tcp_sk(sk);
1998         const struct inet_connection_sock *icsk = inet_csk(sk);
1999         struct sk_buff *skb;
2000
2001         if (!sysctl_tcp_frto)
2002                 return 0;
2003
2004         /* MTU probe and F-RTO won't really play nicely along currently */
2005         if (icsk->icsk_mtup.probe_size)
2006                 return 0;
2007
2008         if (tcp_is_sackfrto(tp))
2009                 return 1;
2010
2011         /* Avoid expensive walking of rexmit queue if possible */
2012         if (tp->retrans_out > 1)
2013                 return 0;
2014
2015         skb = tcp_write_queue_head(sk);
2016         if (tcp_skb_is_last(sk, skb))
2017                 return 1;
2018         skb = tcp_write_queue_next(sk, skb);    /* Skips head */
2019         tcp_for_write_queue_from(skb, sk) {
2020                 if (skb == tcp_send_head(sk))
2021                         break;
2022                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2023                         return 0;
2024                 /* Short-circuit when first non-SACKed skb has been checked */
2025                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2026                         break;
2027         }
2028         return 1;
2029 }
2030
2031 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2032  * recovery a bit and use heuristics in tcp_process_frto() to detect if
2033  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2034  * keep retrans_out counting accurate (with SACK F-RTO, other than head
2035  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2036  * bits are handled if the Loss state is really to be entered (in
2037  * tcp_enter_frto_loss).
2038  *
2039  * Do like tcp_enter_loss() would; when RTO expires the second time it
2040  * does:
2041  *  "Reduce ssthresh if it has not yet been made inside this window."
2042  */
2043 void tcp_enter_frto(struct sock *sk)
2044 {
2045         const struct inet_connection_sock *icsk = inet_csk(sk);
2046         struct tcp_sock *tp = tcp_sk(sk);
2047         struct sk_buff *skb;
2048
2049         if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2050             tp->snd_una == tp->high_seq ||
2051             ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2052              !icsk->icsk_retransmits)) {
2053                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2054                 /* Our state is too optimistic in ssthresh() call because cwnd
2055                  * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2056                  * recovery has not yet completed. Pattern would be this: RTO,
2057                  * Cumulative ACK, RTO (2xRTO for the same segment does not end
2058                  * up here twice).
2059                  * RFC4138 should be more specific on what to do, even though
2060                  * RTO is quite unlikely to occur after the first Cumulative ACK
2061                  * due to back-off and complexity of triggering events ...
2062                  */
2063                 if (tp->frto_counter) {
2064                         u32 stored_cwnd;
2065                         stored_cwnd = tp->snd_cwnd;
2066                         tp->snd_cwnd = 2;
2067                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2068                         tp->snd_cwnd = stored_cwnd;
2069                 } else {
2070                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2071                 }
2072                 /* ... in theory, cong.control module could do "any tricks" in
2073                  * ssthresh(), which means that ca_state, lost bits and lost_out
2074                  * counter would have to be faked before the call occurs. We
2075                  * consider that too expensive, unlikely and hacky, so modules
2076                  * using these in ssthresh() must deal these incompatibility
2077                  * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2078                  */
2079                 tcp_ca_event(sk, CA_EVENT_FRTO);
2080         }
2081
2082         tp->undo_marker = tp->snd_una;
2083         tp->undo_retrans = 0;
2084
2085         skb = tcp_write_queue_head(sk);
2086         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2087                 tp->undo_marker = 0;
2088         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2089                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2090                 tp->retrans_out -= tcp_skb_pcount(skb);
2091         }
2092         tcp_verify_left_out(tp);
2093
2094         /* Too bad if TCP was application limited */
2095         tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2096
2097         /* Earlier loss recovery underway (see RFC4138; Appendix B).
2098          * The last condition is necessary at least in tp->frto_counter case.
2099          */
2100         if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2101             ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2102             after(tp->high_seq, tp->snd_una)) {
2103                 tp->frto_highmark = tp->high_seq;
2104         } else {
2105                 tp->frto_highmark = tp->snd_nxt;
2106         }
2107         tcp_set_ca_state(sk, TCP_CA_Disorder);
2108         tp->high_seq = tp->snd_nxt;
2109         tp->frto_counter = 1;
2110 }
2111
2112 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2113  * which indicates that we should follow the traditional RTO recovery,
2114  * i.e. mark everything lost and do go-back-N retransmission.
2115  */
2116 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2117 {
2118         struct tcp_sock *tp = tcp_sk(sk);
2119         struct sk_buff *skb;
2120
2121         tp->lost_out = 0;
2122         tp->retrans_out = 0;
2123         if (tcp_is_reno(tp))
2124                 tcp_reset_reno_sack(tp);
2125
2126         tcp_for_write_queue(skb, sk) {
2127                 if (skb == tcp_send_head(sk))
2128                         break;
2129
2130                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2131                 /*
2132                  * Count the retransmission made on RTO correctly (only when
2133                  * waiting for the first ACK and did not get it)...
2134                  */
2135                 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2136                         /* For some reason this R-bit might get cleared? */
2137                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2138                                 tp->retrans_out += tcp_skb_pcount(skb);
2139                         /* ...enter this if branch just for the first segment */
2140                         flag |= FLAG_DATA_ACKED;
2141                 } else {
2142                         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2143                                 tp->undo_marker = 0;
2144                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2145                 }
2146
2147                 /* Marking forward transmissions that were made after RTO lost
2148                  * can cause unnecessary retransmissions in some scenarios,
2149                  * SACK blocks will mitigate that in some but not in all cases.
2150                  * We used to not mark them but it was causing break-ups with
2151                  * receivers that do only in-order receival.
2152                  *
2153                  * TODO: we could detect presence of such receiver and select
2154                  * different behavior per flow.
2155                  */
2156                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2157                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2158                         tp->lost_out += tcp_skb_pcount(skb);
2159                         tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2160                 }
2161         }
2162         tcp_verify_left_out(tp);
2163
2164         tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2165         tp->snd_cwnd_cnt = 0;
2166         tp->snd_cwnd_stamp = tcp_time_stamp;
2167         tp->frto_counter = 0;
2168         tp->bytes_acked = 0;
2169
2170         tp->reordering = min_t(unsigned int, tp->reordering,
2171                                sysctl_tcp_reordering);
2172         tcp_set_ca_state(sk, TCP_CA_Loss);
2173         tp->high_seq = tp->snd_nxt;
2174         TCP_ECN_queue_cwr(tp);
2175
2176         tcp_clear_all_retrans_hints(tp);
2177 }
2178
2179 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2180 {
2181         tp->retrans_out = 0;
2182         tp->lost_out = 0;
2183
2184         tp->undo_marker = 0;
2185         tp->undo_retrans = 0;
2186 }
2187
2188 void tcp_clear_retrans(struct tcp_sock *tp)
2189 {
2190         tcp_clear_retrans_partial(tp);
2191
2192         tp->fackets_out = 0;
2193         tp->sacked_out = 0;
2194 }
2195
2196 /* Enter Loss state. If "how" is not zero, forget all SACK information
2197  * and reset tags completely, otherwise preserve SACKs. If receiver
2198  * dropped its ofo queue, we will know this due to reneging detection.
2199  */
2200 void tcp_enter_loss(struct sock *sk, int how)
2201 {
2202         const struct inet_connection_sock *icsk = inet_csk(sk);
2203         struct tcp_sock *tp = tcp_sk(sk);
2204         struct sk_buff *skb;
2205
2206         /* Reduce ssthresh if it has not yet been made inside this window. */
2207         if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2208             (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2209                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2210                 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2211                 tcp_ca_event(sk, CA_EVENT_LOSS);
2212         }
2213         tp->snd_cwnd       = 1;
2214         tp->snd_cwnd_cnt   = 0;
2215         tp->snd_cwnd_stamp = tcp_time_stamp;
2216
2217         tp->bytes_acked = 0;
2218         tcp_clear_retrans_partial(tp);
2219
2220         if (tcp_is_reno(tp))
2221                 tcp_reset_reno_sack(tp);
2222
2223         if (!how) {
2224                 /* Push undo marker, if it was plain RTO and nothing
2225                  * was retransmitted. */
2226                 tp->undo_marker = tp->snd_una;
2227         } else {
2228                 tp->sacked_out = 0;
2229                 tp->fackets_out = 0;
2230         }
2231         tcp_clear_all_retrans_hints(tp);
2232
2233         tcp_for_write_queue(skb, sk) {
2234                 if (skb == tcp_send_head(sk))
2235                         break;
2236
2237                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2238                         tp->undo_marker = 0;
2239                 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2240                 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2241                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2242                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2243                         tp->lost_out += tcp_skb_pcount(skb);
2244                         tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2245                 }
2246         }
2247         tcp_verify_left_out(tp);
2248
2249         tp->reordering = min_t(unsigned int, tp->reordering,
2250                                sysctl_tcp_reordering);
2251         tcp_set_ca_state(sk, TCP_CA_Loss);
2252         tp->high_seq = tp->snd_nxt;
2253         TCP_ECN_queue_cwr(tp);
2254         /* Abort F-RTO algorithm if one is in progress */
2255         tp->frto_counter = 0;
2256 }
2257
2258 /* If ACK arrived pointing to a remembered SACK, it means that our
2259  * remembered SACKs do not reflect real state of receiver i.e.
2260  * receiver _host_ is heavily congested (or buggy).
2261  *
2262  * Do processing similar to RTO timeout.
2263  */
2264 static int tcp_check_sack_reneging(struct sock *sk, int flag)
2265 {
2266         if (flag & FLAG_SACK_RENEGING) {
2267                 struct inet_connection_sock *icsk = inet_csk(sk);
2268                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2269
2270                 tcp_enter_loss(sk, 1);
2271                 icsk->icsk_retransmits++;
2272                 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2273                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2274                                           icsk->icsk_rto, TCP_RTO_MAX);
2275                 return 1;
2276         }
2277         return 0;
2278 }
2279
2280 static inline int tcp_fackets_out(struct tcp_sock *tp)
2281 {
2282         return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2283 }
2284
2285 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2286  * counter when SACK is enabled (without SACK, sacked_out is used for
2287  * that purpose).
2288  *
2289  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2290  * segments up to the highest received SACK block so far and holes in
2291  * between them.
2292  *
2293  * With reordering, holes may still be in flight, so RFC3517 recovery
2294  * uses pure sacked_out (total number of SACKed segments) even though
2295  * it violates the RFC that uses duplicate ACKs, often these are equal
2296  * but when e.g. out-of-window ACKs or packet duplication occurs,
2297  * they differ. Since neither occurs due to loss, TCP should really
2298  * ignore them.
2299  */
2300 static inline int tcp_dupack_heuristics(struct tcp_sock *tp)
2301 {
2302         return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2303 }
2304
2305 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
2306 {
2307         return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
2308 }
2309
2310 static inline int tcp_head_timedout(struct sock *sk)
2311 {
2312         struct tcp_sock *tp = tcp_sk(sk);
2313
2314         return tp->packets_out &&
2315                tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2316 }
2317
2318 /* Linux NewReno/SACK/FACK/ECN state machine.
2319  * --------------------------------------
2320  *
2321  * "Open"       Normal state, no dubious events, fast path.
2322  * "Disorder"   In all the respects it is "Open",
2323  *              but requires a bit more attention. It is entered when
2324  *              we see some SACKs or dupacks. It is split of "Open"
2325  *              mainly to move some processing from fast path to slow one.
2326  * "CWR"        CWND was reduced due to some Congestion Notification event.
2327  *              It can be ECN, ICMP source quench, local device congestion.
2328  * "Recovery"   CWND was reduced, we are fast-retransmitting.
2329  * "Loss"       CWND was reduced due to RTO timeout or SACK reneging.
2330  *
2331  * tcp_fastretrans_alert() is entered:
2332  * - each incoming ACK, if state is not "Open"
2333  * - when arrived ACK is unusual, namely:
2334  *      * SACK
2335  *      * Duplicate ACK.
2336  *      * ECN ECE.
2337  *
2338  * Counting packets in flight is pretty simple.
2339  *
2340  *      in_flight = packets_out - left_out + retrans_out
2341  *
2342  *      packets_out is SND.NXT-SND.UNA counted in packets.
2343  *
2344  *      retrans_out is number of retransmitted segments.
2345  *
2346  *      left_out is number of segments left network, but not ACKed yet.
2347  *
2348  *              left_out = sacked_out + lost_out
2349  *
2350  *     sacked_out: Packets, which arrived to receiver out of order
2351  *                 and hence not ACKed. With SACKs this number is simply
2352  *                 amount of SACKed data. Even without SACKs
2353  *                 it is easy to give pretty reliable estimate of this number,
2354  *                 counting duplicate ACKs.
2355  *
2356  *       lost_out: Packets lost by network. TCP has no explicit
2357  *                 "loss notification" feedback from network (for now).
2358  *                 It means that this number can be only _guessed_.
2359  *                 Actually, it is the heuristics to predict lossage that
2360  *                 distinguishes different algorithms.
2361  *
2362  *      F.e. after RTO, when all the queue is considered as lost,
2363  *      lost_out = packets_out and in_flight = retrans_out.
2364  *
2365  *              Essentially, we have now two algorithms counting
2366  *              lost packets.
2367  *
2368  *              FACK: It is the simplest heuristics. As soon as we decided
2369  *              that something is lost, we decide that _all_ not SACKed
2370  *              packets until the most forward SACK are lost. I.e.
2371  *              lost_out = fackets_out - sacked_out and left_out = fackets_out.
2372  *              It is absolutely correct estimate, if network does not reorder
2373  *              packets. And it loses any connection to reality when reordering
2374  *              takes place. We use FACK by default until reordering
2375  *              is suspected on the path to this destination.
2376  *
2377  *              NewReno: when Recovery is entered, we assume that one segment
2378  *              is lost (classic Reno). While we are in Recovery and
2379  *              a partial ACK arrives, we assume that one more packet
2380  *              is lost (NewReno). This heuristics are the same in NewReno
2381  *              and SACK.
2382  *
2383  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2384  *  deflation etc. CWND is real congestion window, never inflated, changes
2385  *  only according to classic VJ rules.
2386  *
2387  * Really tricky (and requiring careful tuning) part of algorithm
2388  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2389  * The first determines the moment _when_ we should reduce CWND and,
2390  * hence, slow down forward transmission. In fact, it determines the moment
2391  * when we decide that hole is caused by loss, rather than by a reorder.
2392  *
2393  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2394  * holes, caused by lost packets.
2395  *
2396  * And the most logically complicated part of algorithm is undo
2397  * heuristics. We detect false retransmits due to both too early
2398  * fast retransmit (reordering) and underestimated RTO, analyzing
2399  * timestamps and D-SACKs. When we detect that some segments were
2400  * retransmitted by mistake and CWND reduction was wrong, we undo
2401  * window reduction and abort recovery phase. This logic is hidden
2402  * inside several functions named tcp_try_undo_<something>.
2403  */
2404
2405 /* This function decides, when we should leave Disordered state
2406  * and enter Recovery phase, reducing congestion window.
2407  *
2408  * Main question: may we further continue forward transmission
2409  * with the same cwnd?
2410  */
2411 static int tcp_time_to_recover(struct sock *sk)
2412 {
2413         struct tcp_sock *tp = tcp_sk(sk);
2414         __u32 packets_out;
2415
2416         /* Do not perform any recovery during F-RTO algorithm */
2417         if (tp->frto_counter)
2418                 return 0;
2419
2420         /* Trick#1: The loss is proven. */
2421         if (tp->lost_out)
2422                 return 1;
2423
2424         /* Not-A-Trick#2 : Classic rule... */
2425         if (tcp_dupack_heuristics(tp) > tp->reordering)
2426                 return 1;
2427
2428         /* Trick#3 : when we use RFC2988 timer restart, fast
2429          * retransmit can be triggered by timeout of queue head.
2430          */
2431         if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2432                 return 1;
2433
2434         /* Trick#4: It is still not OK... But will it be useful to delay
2435          * recovery more?
2436          */
2437         packets_out = tp->packets_out;
2438         if (packets_out <= tp->reordering &&
2439             tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2440             !tcp_may_send_now(sk)) {
2441                 /* We have nothing to send. This connection is limited
2442                  * either by receiver window or by application.
2443                  */
2444                 return 1;
2445         }
2446
2447         /* If a thin stream is detected, retransmit after first
2448          * received dupack. Employ only if SACK is supported in order
2449          * to avoid possible corner-case series of spurious retransmissions
2450          * Use only if there are no unsent data.
2451          */
2452         if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2453             tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2454             tcp_is_sack(tp) && !tcp_send_head(sk))
2455                 return 1;
2456
2457         return 0;
2458 }
2459
2460 /* New heuristics: it is possible only after we switched to restart timer
2461  * each time when something is ACKed. Hence, we can detect timed out packets
2462  * during fast retransmit without falling to slow start.
2463  *
2464  * Usefulness of this as is very questionable, since we should know which of
2465  * the segments is the next to timeout which is relatively expensive to find
2466  * in general case unless we add some data structure just for that. The
2467  * current approach certainly won't find the right one too often and when it
2468  * finally does find _something_ it usually marks large part of the window
2469  * right away (because a retransmission with a larger timestamp blocks the
2470  * loop from advancing). -ij
2471  */
2472 static void tcp_timeout_skbs(struct sock *sk)
2473 {
2474         struct tcp_sock *tp = tcp_sk(sk);
2475         struct sk_buff *skb;
2476
2477         if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2478                 return;
2479
2480         skb = tp->scoreboard_skb_hint;
2481         if (tp->scoreboard_skb_hint == NULL)
2482                 skb = tcp_write_queue_head(sk);
2483
2484         tcp_for_write_queue_from(skb, sk) {
2485                 if (skb == tcp_send_head(sk))
2486                         break;
2487                 if (!tcp_skb_timedout(sk, skb))
2488                         break;
2489
2490                 tcp_skb_mark_lost(tp, skb);
2491         }
2492
2493         tp->scoreboard_skb_hint = skb;
2494
2495         tcp_verify_left_out(tp);
2496 }
2497
2498 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2499  * is against sacked "cnt", otherwise it's against facked "cnt"
2500  */
2501 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2502 {
2503         struct tcp_sock *tp = tcp_sk(sk);
2504         struct sk_buff *skb;
2505         int cnt, oldcnt;
2506         int err;
2507         unsigned int mss;
2508
2509         WARN_ON(packets > tp->packets_out);
2510         if (tp->lost_skb_hint) {
2511                 skb = tp->lost_skb_hint;
2512                 cnt = tp->lost_cnt_hint;
2513                 /* Head already handled? */
2514                 if (mark_head && skb != tcp_write_queue_head(sk))
2515                         return;
2516         } else {
2517                 skb = tcp_write_queue_head(sk);
2518                 cnt = 0;
2519         }
2520
2521         tcp_for_write_queue_from(skb, sk) {
2522                 if (skb == tcp_send_head(sk))
2523                         break;
2524                 /* TODO: do this better */
2525                 /* this is not the most efficient way to do this... */
2526                 tp->lost_skb_hint = skb;
2527                 tp->lost_cnt_hint = cnt;
2528
2529                 if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2530                         break;
2531
2532                 oldcnt = cnt;
2533                 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2534                     (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2535                         cnt += tcp_skb_pcount(skb);
2536
2537                 if (cnt > packets) {
2538                         if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2539                             (oldcnt >= packets))
2540                                 break;
2541
2542                         mss = skb_shinfo(skb)->gso_size;
2543                         err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2544                         if (err < 0)
2545                                 break;
2546                         cnt = packets;
2547                 }
2548
2549                 tcp_skb_mark_lost(tp, skb);
2550
2551                 if (mark_head)
2552                         break;
2553         }
2554         tcp_verify_left_out(tp);
2555 }
2556
2557 /* Account newly detected lost packet(s) */
2558
2559 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2560 {
2561         struct tcp_sock *tp = tcp_sk(sk);
2562
2563         if (tcp_is_reno(tp)) {
2564                 tcp_mark_head_lost(sk, 1, 1);
2565         } else if (tcp_is_fack(tp)) {
2566                 int lost = tp->fackets_out - tp->reordering;
2567                 if (lost <= 0)
2568                         lost = 1;
2569                 tcp_mark_head_lost(sk, lost, 0);
2570         } else {
2571                 int sacked_upto = tp->sacked_out - tp->reordering;
2572                 if (sacked_upto >= 0)
2573                         tcp_mark_head_lost(sk, sacked_upto, 0);
2574                 else if (fast_rexmit)
2575                         tcp_mark_head_lost(sk, 1, 1);
2576         }
2577
2578         tcp_timeout_skbs(sk);
2579 }
2580
2581 /* CWND moderation, preventing bursts due to too big ACKs
2582  * in dubious situations.
2583  */
2584 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2585 {
2586         tp->snd_cwnd = min(tp->snd_cwnd,
2587                            tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2588         tp->snd_cwnd_stamp = tcp_time_stamp;
2589 }
2590
2591 /* Lower bound on congestion window is slow start threshold
2592  * unless congestion avoidance choice decides to overide it.
2593  */
2594 static inline u32 tcp_cwnd_min(const struct sock *sk)
2595 {
2596         const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2597
2598         return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2599 }
2600
2601 /* Decrease cwnd each second ack. */
2602 static void tcp_cwnd_down(struct sock *sk, int flag)
2603 {
2604         struct tcp_sock *tp = tcp_sk(sk);
2605         int decr = tp->snd_cwnd_cnt + 1;
2606
2607         if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2608             (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2609                 tp->snd_cwnd_cnt = decr & 1;
2610                 decr >>= 1;
2611
2612                 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2613                         tp->snd_cwnd -= decr;
2614
2615                 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2616                 tp->snd_cwnd_stamp = tcp_time_stamp;
2617         }
2618 }
2619
2620 /* Nothing was retransmitted or returned timestamp is less
2621  * than timestamp of the first retransmission.
2622  */
2623 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2624 {
2625         return !tp->retrans_stamp ||
2626                 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2627                  before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2628 }
2629
2630 /* Undo procedures. */
2631
2632 #if FASTRETRANS_DEBUG > 1
2633 static void DBGUNDO(struct sock *sk, const char *msg)
2634 {
2635         struct tcp_sock *tp = tcp_sk(sk);
2636         struct inet_sock *inet = inet_sk(sk);
2637
2638         if (sk->sk_family == AF_INET) {
2639                 printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2640                        msg,
2641                        &inet->inet_daddr, ntohs(inet->inet_dport),
2642                        tp->snd_cwnd, tcp_left_out(tp),
2643                        tp->snd_ssthresh, tp->prior_ssthresh,
2644                        tp->packets_out);
2645         }
2646 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2647         else if (sk->sk_family == AF_INET6) {
2648                 struct ipv6_pinfo *np = inet6_sk(sk);
2649                 printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2650                        msg,
2651                        &np->daddr, ntohs(inet->inet_dport),
2652                        tp->snd_cwnd, tcp_left_out(tp),
2653                        tp->snd_ssthresh, tp->prior_ssthresh,
2654                        tp->packets_out);
2655         }
2656 #endif
2657 }
2658 #else
2659 #define DBGUNDO(x...) do { } while (0)
2660 #endif
2661
2662 static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
2663 {
2664         struct tcp_sock *tp = tcp_sk(sk);
2665
2666         if (tp->prior_ssthresh) {
2667                 const struct inet_connection_sock *icsk = inet_csk(sk);
2668
2669                 if (icsk->icsk_ca_ops->undo_cwnd)
2670                         tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2671                 else
2672                         tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2673
2674                 if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
2675                         tp->snd_ssthresh = tp->prior_ssthresh;
2676                         TCP_ECN_withdraw_cwr(tp);
2677                 }
2678         } else {
2679                 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2680         }
2681         tp->snd_cwnd_stamp = tcp_time_stamp;
2682 }
2683
2684 static inline int tcp_may_undo(struct tcp_sock *tp)
2685 {
2686         return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2687 }
2688
2689 /* People celebrate: "We love our President!" */
2690 static int tcp_try_undo_recovery(struct sock *sk)
2691 {
2692         struct tcp_sock *tp = tcp_sk(sk);
2693
2694         if (tcp_may_undo(tp)) {
2695                 int mib_idx;
2696
2697                 /* Happy end! We did not retransmit anything
2698                  * or our original transmission succeeded.
2699                  */
2700                 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2701                 tcp_undo_cwr(sk, true);
2702                 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2703                         mib_idx = LINUX_MIB_TCPLOSSUNDO;
2704                 else
2705                         mib_idx = LINUX_MIB_TCPFULLUNDO;
2706
2707                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2708                 tp->undo_marker = 0;
2709         }
2710         if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2711                 /* Hold old state until something *above* high_seq
2712                  * is ACKed. For Reno it is MUST to prevent false
2713                  * fast retransmits (RFC2582). SACK TCP is safe. */
2714                 tcp_moderate_cwnd(tp);
2715                 return 1;
2716         }
2717         tcp_set_ca_state(sk, TCP_CA_Open);
2718         return 0;
2719 }
2720
2721 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2722 static void tcp_try_undo_dsack(struct sock *sk)
2723 {
2724         struct tcp_sock *tp = tcp_sk(sk);
2725
2726         if (tp->undo_marker && !tp->undo_retrans) {
2727                 DBGUNDO(sk, "D-SACK");
2728                 tcp_undo_cwr(sk, true);
2729                 tp->undo_marker = 0;
2730                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2731         }
2732 }
2733
2734 /* We can clear retrans_stamp when there are no retransmissions in the
2735  * window. It would seem that it is trivially available for us in
2736  * tp->retrans_out, however, that kind of assumptions doesn't consider
2737  * what will happen if errors occur when sending retransmission for the
2738  * second time. ...It could the that such segment has only
2739  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2740  * the head skb is enough except for some reneging corner cases that
2741  * are not worth the effort.
2742  *
2743  * Main reason for all this complexity is the fact that connection dying
2744  * time now depends on the validity of the retrans_stamp, in particular,
2745  * that successive retransmissions of a segment must not advance
2746  * retrans_stamp under any conditions.
2747  */
2748 static int tcp_any_retrans_done(struct sock *sk)
2749 {
2750         struct tcp_sock *tp = tcp_sk(sk);
2751         struct sk_buff *skb;
2752
2753         if (tp->retrans_out)
2754                 return 1;
2755
2756         skb = tcp_write_queue_head(sk);
2757         if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2758                 return 1;
2759
2760         return 0;
2761 }
2762
2763 /* Undo during fast recovery after partial ACK. */
2764
2765 static int tcp_try_undo_partial(struct sock *sk, int acked)
2766 {
2767         struct tcp_sock *tp = tcp_sk(sk);
2768         /* Partial ACK arrived. Force Hoe's retransmit. */
2769         int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2770
2771         if (tcp_may_undo(tp)) {
2772                 /* Plain luck! Hole if filled with delayed
2773                  * packet, rather than with a retransmit.
2774                  */
2775                 if (!tcp_any_retrans_done(sk))
2776                         tp->retrans_stamp = 0;
2777
2778                 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2779
2780                 DBGUNDO(sk, "Hoe");
2781                 tcp_undo_cwr(sk, false);
2782                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2783
2784                 /* So... Do not make Hoe's retransmit yet.
2785                  * If the first packet was delayed, the rest
2786                  * ones are most probably delayed as well.
2787                  */
2788                 failed = 0;
2789         }
2790         return failed;
2791 }
2792
2793 /* Undo during loss recovery after partial ACK. */
2794 static int tcp_try_undo_loss(struct sock *sk)
2795 {
2796         struct tcp_sock *tp = tcp_sk(sk);
2797
2798         if (tcp_may_undo(tp)) {
2799                 struct sk_buff *skb;
2800                 tcp_for_write_queue(skb, sk) {
2801                         if (skb == tcp_send_head(sk))
2802                                 break;
2803                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2804                 }
2805
2806                 tcp_clear_all_retrans_hints(tp);
2807
2808                 DBGUNDO(sk, "partial loss");
2809                 tp->lost_out = 0;
2810                 tcp_undo_cwr(sk, true);
2811                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2812                 inet_csk(sk)->icsk_retransmits = 0;
2813                 tp->undo_marker = 0;
2814                 if (tcp_is_sack(tp))
2815                         tcp_set_ca_state(sk, TCP_CA_Open);
2816                 return 1;
2817         }
2818         return 0;
2819 }
2820
2821 static inline void tcp_complete_cwr(struct sock *sk)
2822 {
2823         struct tcp_sock *tp = tcp_sk(sk);
2824         /* Do not moderate cwnd if it's already undone in cwr or recovery */
2825         if (tp->undo_marker && tp->snd_cwnd > tp->snd_ssthresh) {
2826                 tp->snd_cwnd = tp->snd_ssthresh;
2827                 tp->snd_cwnd_stamp = tcp_time_stamp;
2828         }
2829         tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2830 }
2831
2832 static void tcp_try_keep_open(struct sock *sk)
2833 {
2834         struct tcp_sock *tp = tcp_sk(sk);
2835         int state = TCP_CA_Open;
2836
2837         if (tcp_left_out(tp) || tcp_any_retrans_done(sk) || tp->undo_marker)
2838                 state = TCP_CA_Disorder;
2839
2840         if (inet_csk(sk)->icsk_ca_state != state) {
2841                 tcp_set_ca_state(sk, state);
2842                 tp->high_seq = tp->snd_nxt;
2843         }
2844 }
2845
2846 static void tcp_try_to_open(struct sock *sk, int flag)
2847 {
2848         struct tcp_sock *tp = tcp_sk(sk);
2849
2850         tcp_verify_left_out(tp);
2851
2852         if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2853                 tp->retrans_stamp = 0;
2854
2855         if (flag & FLAG_ECE)
2856                 tcp_enter_cwr(sk, 1);
2857
2858         if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2859                 tcp_try_keep_open(sk);
2860                 tcp_moderate_cwnd(tp);
2861         } else {
2862                 tcp_cwnd_down(sk, flag);
2863         }
2864 }
2865
2866 static void tcp_mtup_probe_failed(struct sock *sk)
2867 {
2868         struct inet_connection_sock *icsk = inet_csk(sk);
2869
2870         icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2871         icsk->icsk_mtup.probe_size = 0;
2872 }
2873
2874 static void tcp_mtup_probe_success(struct sock *sk)
2875 {
2876         struct tcp_sock *tp = tcp_sk(sk);
2877         struct inet_connection_sock *icsk = inet_csk(sk);
2878
2879         /* FIXME: breaks with very large cwnd */
2880         tp->prior_ssthresh = tcp_current_ssthresh(sk);
2881         tp->snd_cwnd = tp->snd_cwnd *
2882                        tcp_mss_to_mtu(sk, tp->mss_cache) /
2883                        icsk->icsk_mtup.probe_size;
2884         tp->snd_cwnd_cnt = 0;
2885         tp->snd_cwnd_stamp = tcp_time_stamp;
2886         tp->snd_ssthresh = tcp_current_ssthresh(sk);
2887
2888         icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2889         icsk->icsk_mtup.probe_size = 0;
2890         tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2891 }
2892
2893 /* Do a simple retransmit without using the backoff mechanisms in
2894  * tcp_timer. This is used for path mtu discovery.
2895  * The socket is already locked here.
2896  */
2897 void tcp_simple_retransmit(struct sock *sk)
2898 {
2899         const struct inet_connection_sock *icsk = inet_csk(sk);
2900         struct tcp_sock *tp = tcp_sk(sk);
2901         struct sk_buff *skb;
2902         unsigned int mss = tcp_current_mss(sk);
2903         u32 prior_lost = tp->lost_out;
2904
2905         tcp_for_write_queue(skb, sk) {
2906                 if (skb == tcp_send_head(sk))
2907                         break;
2908                 if (tcp_skb_seglen(skb) > mss &&
2909                     !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2910                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2911                                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2912                                 tp->retrans_out -= tcp_skb_pcount(skb);
2913                         }
2914                         tcp_skb_mark_lost_uncond_verify(tp, skb);
2915                 }
2916         }
2917
2918         tcp_clear_retrans_hints_partial(tp);
2919
2920         if (prior_lost == tp->lost_out)
2921                 return;
2922
2923         if (tcp_is_reno(tp))
2924                 tcp_limit_reno_sacked(tp);
2925
2926         tcp_verify_left_out(tp);
2927
2928         /* Don't muck with the congestion window here.
2929          * Reason is that we do not increase amount of _data_
2930          * in network, but units changed and effective
2931          * cwnd/ssthresh really reduced now.
2932          */
2933         if (icsk->icsk_ca_state != TCP_CA_Loss) {
2934                 tp->high_seq = tp->snd_nxt;
2935                 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2936                 tp->prior_ssthresh = 0;
2937                 tp->undo_marker = 0;
2938                 tcp_set_ca_state(sk, TCP_CA_Loss);
2939         }
2940         tcp_xmit_retransmit_queue(sk);
2941 }
2942 EXPORT_SYMBOL(tcp_simple_retransmit);
2943
2944 /* Process an event, which can update packets-in-flight not trivially.
2945  * Main goal of this function is to calculate new estimate for left_out,
2946  * taking into account both packets sitting in receiver's buffer and
2947  * packets lost by network.
2948  *
2949  * Besides that it does CWND reduction, when packet loss is detected
2950  * and changes state of machine.
2951  *
2952  * It does _not_ decide what to send, it is made in function
2953  * tcp_xmit_retransmit_queue().
2954  */
2955 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2956 {
2957         struct inet_connection_sock *icsk = inet_csk(sk);
2958         struct tcp_sock *tp = tcp_sk(sk);
2959         int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
2960         int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2961                                     (tcp_fackets_out(tp) > tp->reordering));
2962         int fast_rexmit = 0, mib_idx;
2963
2964         if (WARN_ON(!tp->packets_out && tp->sacked_out))
2965                 tp->sacked_out = 0;
2966         if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2967                 tp->fackets_out = 0;
2968
2969         /* Now state machine starts.
2970          * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2971         if (flag & FLAG_ECE)
2972                 tp->prior_ssthresh = 0;
2973
2974         /* B. In all the states check for reneging SACKs. */
2975         if (tcp_check_sack_reneging(sk, flag))
2976                 return;
2977
2978         /* C. Process data loss notification, provided it is valid. */
2979         if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2980             before(tp->snd_una, tp->high_seq) &&
2981             icsk->icsk_ca_state != TCP_CA_Open &&
2982             tp->fackets_out > tp->reordering) {
2983                 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering, 0);
2984                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS);
2985         }
2986
2987         /* D. Check consistency of the current state. */
2988         tcp_verify_left_out(tp);
2989
2990         /* E. Check state exit conditions. State can be terminated
2991          *    when high_seq is ACKed. */
2992         if (icsk->icsk_ca_state == TCP_CA_Open) {
2993                 WARN_ON(tp->retrans_out != 0);
2994                 tp->retrans_stamp = 0;
2995         } else if (!before(tp->snd_una, tp->high_seq)) {
2996                 switch (icsk->icsk_ca_state) {
2997                 case TCP_CA_Loss:
2998                         icsk->icsk_retransmits = 0;
2999                         if (tcp_try_undo_recovery(sk))
3000                                 return;
3001                         break;
3002
3003                 case TCP_CA_CWR:
3004                         /* CWR is to be held something *above* high_seq
3005                          * is ACKed for CWR bit to reach receiver. */
3006                         if (tp->snd_una != tp->high_seq) {
3007                                 tcp_complete_cwr(sk);
3008                                 tcp_set_ca_state(sk, TCP_CA_Open);
3009                         }
3010                         break;
3011
3012                 case TCP_CA_Disorder:
3013                         tcp_try_undo_dsack(sk);
3014                         if (!tp->undo_marker ||
3015                             /* For SACK case do not Open to allow to undo
3016                              * catching for all duplicate ACKs. */
3017                             tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
3018                                 tp->undo_marker = 0;
3019                                 tcp_set_ca_state(sk, TCP_CA_Open);
3020                         }
3021                         break;
3022
3023                 case TCP_CA_Recovery:
3024                         if (tcp_is_reno(tp))
3025                                 tcp_reset_reno_sack(tp);
3026                         if (tcp_try_undo_recovery(sk))
3027                                 return;
3028                         tcp_complete_cwr(sk);
3029                         break;
3030                 }
3031         }
3032
3033         /* F. Process state. */
3034         switch (icsk->icsk_ca_state) {
3035         case TCP_CA_Recovery:
3036                 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3037                         if (tcp_is_reno(tp) && is_dupack)
3038                                 tcp_add_reno_sack(sk);
3039                 } else
3040                         do_lost = tcp_try_undo_partial(sk, pkts_acked);
3041                 break;
3042         case TCP_CA_Loss:
3043                 if (flag & FLAG_DATA_ACKED)
3044                         icsk->icsk_retransmits = 0;
3045                 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
3046                         tcp_reset_reno_sack(tp);
3047                 if (!tcp_try_undo_loss(sk)) {
3048                         tcp_moderate_cwnd(tp);
3049                         tcp_xmit_retransmit_queue(sk);
3050                         return;
3051                 }
3052                 if (icsk->icsk_ca_state != TCP_CA_Open)
3053                         return;
3054                 /* Loss is undone; fall through to processing in Open state. */
3055         default:
3056                 if (tcp_is_reno(tp)) {
3057                         if (flag & FLAG_SND_UNA_ADVANCED)
3058                                 tcp_reset_reno_sack(tp);
3059                         if (is_dupack)
3060                                 tcp_add_reno_sack(sk);
3061                 }
3062
3063                 if (icsk->icsk_ca_state == TCP_CA_Disorder)
3064                         tcp_try_undo_dsack(sk);
3065
3066                 if (!tcp_time_to_recover(sk)) {
3067                         tcp_try_to_open(sk, flag);
3068                         return;
3069                 }
3070
3071                 /* MTU probe failure: don't reduce cwnd */
3072                 if (icsk->icsk_ca_state < TCP_CA_CWR &&
3073                     icsk->icsk_mtup.probe_size &&
3074                     tp->snd_una == tp->mtu_probe.probe_seq_start) {
3075                         tcp_mtup_probe_failed(sk);
3076                         /* Restores the reduction we did in tcp_mtup_probe() */
3077                         tp->snd_cwnd++;
3078                         tcp_simple_retransmit(sk);
3079                         return;
3080                 }
3081
3082                 /* Otherwise enter Recovery state */
3083
3084                 if (tcp_is_reno(tp))
3085                         mib_idx = LINUX_MIB_TCPRENORECOVERY;
3086                 else
3087                         mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3088
3089                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3090
3091                 tp->high_seq = tp->snd_nxt;
3092                 tp->prior_ssthresh = 0;
3093                 tp->undo_marker = tp->snd_una;
3094                 tp->undo_retrans = tp->retrans_out;
3095
3096                 if (icsk->icsk_ca_state < TCP_CA_CWR) {
3097                         if (!(flag & FLAG_ECE))
3098                                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
3099                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
3100                         TCP_ECN_queue_cwr(tp);
3101                 }
3102
3103                 tp->bytes_acked = 0;
3104                 tp->snd_cwnd_cnt = 0;
3105                 tcp_set_ca_state(sk, TCP_CA_Recovery);
3106                 fast_rexmit = 1;
3107         }
3108
3109         if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3110                 tcp_update_scoreboard(sk, fast_rexmit);
3111         tcp_cwnd_down(sk, flag);
3112         tcp_xmit_retransmit_queue(sk);
3113 }
3114
3115 static void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3116 {
3117         tcp_rtt_estimator(sk, seq_rtt);
3118         tcp_set_rto(sk);
3119         inet_csk(sk)->icsk_backoff = 0;
3120 }
3121
3122 /* Read draft-ietf-tcplw-high-performance before mucking
3123  * with this code. (Supersedes RFC1323)
3124  */
3125 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3126 {
3127         /* RTTM Rule: A TSecr value received in a segment is used to
3128          * update the averaged RTT measurement only if the segment
3129          * acknowledges some new data, i.e., only if it advances the
3130          * left edge of the send window.
3131          *
3132          * See draft-ietf-tcplw-high-performance-00, section 3.3.
3133          * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3134          *
3135          * Changed: reset backoff as soon as we see the first valid sample.
3136          * If we do not, we get strongly overestimated rto. With timestamps
3137          * samples are accepted even from very old segments: f.e., when rtt=1
3138          * increases to 8, we retransmit 5 times and after 8 seconds delayed
3139          * answer arrives rto becomes 120 seconds! If at least one of segments
3140          * in window is lost... Voila.                          --ANK (010210)
3141          */
3142         struct tcp_sock *tp = tcp_sk(sk);
3143
3144         tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3145 }
3146
3147 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3148 {
3149         /* We don't have a timestamp. Can only use
3150          * packets that are not retransmitted to determine
3151          * rtt estimates. Also, we must not reset the
3152          * backoff for rto until we get a non-retransmitted
3153          * packet. This allows us to deal with a situation
3154          * where the network delay has increased suddenly.
3155          * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3156          */
3157
3158         if (flag & FLAG_RETRANS_DATA_ACKED)
3159                 return;
3160
3161         tcp_valid_rtt_meas(sk, seq_rtt);
3162 }
3163
3164 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3165                                       const s32 seq_rtt)
3166 {
3167         const struct tcp_sock *tp = tcp_sk(sk);
3168         /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3169         if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3170                 tcp_ack_saw_tstamp(sk, flag);
3171         else if (seq_rtt >= 0)
3172                 tcp_ack_no_tstamp(sk, seq_rtt, flag);
3173 }
3174
3175 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3176 {
3177         const struct inet_connection_sock *icsk = inet_csk(sk);
3178         icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3179         tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3180 }
3181
3182 /* Restart timer after forward progress on connection.
3183  * RFC2988 recommends to restart timer to now+rto.
3184  */
3185 static void tcp_rearm_rto(struct sock *sk)
3186 {
3187         struct tcp_sock *tp = tcp_sk(sk);
3188
3189         if (!tp->packets_out) {
3190                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3191         } else {
3192                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3193                                           inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3194         }
3195 }
3196
3197 /* If we get here, the whole TSO packet has not been acked. */
3198 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3199 {
3200         struct tcp_sock *tp = tcp_sk(sk);
3201         u32 packets_acked;
3202
3203         BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3204
3205         packets_acked = tcp_skb_pcount(skb);
3206         if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3207                 return 0;
3208         packets_acked -= tcp_skb_pcount(skb);
3209
3210         if (packets_acked) {
3211                 BUG_ON(tcp_skb_pcount(skb) == 0);
3212                 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3213         }
3214
3215         return packets_acked;
3216 }
3217
3218 /* Remove acknowledged frames from the retransmission queue. If our packet
3219  * is before the ack sequence we can discard it as it's confirmed to have
3220  * arrived at the other end.
3221  */
3222 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3223                                u32 prior_snd_una)
3224 {
3225         struct tcp_sock *tp = tcp_sk(sk);
3226         const struct inet_connection_sock *icsk = inet_csk(sk);
3227         struct sk_buff *skb;
3228         u32 now = tcp_time_stamp;
3229         int fully_acked = 1;
3230         int flag = 0;
3231         u32 pkts_acked = 0;
3232         u32 reord = tp->packets_out;
3233         u32 prior_sacked = tp->sacked_out;
3234         s32 seq_rtt = -1;
3235         s32 ca_seq_rtt = -1;
3236         ktime_t last_ackt = net_invalid_timestamp();
3237
3238         while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3239                 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3240                 u32 acked_pcount;
3241                 u8 sacked = scb->sacked;
3242
3243                 /* Determine how many packets and what bytes were acked, tso and else */
3244                 if (after(scb->end_seq, tp->snd_una)) {
3245                         if (tcp_skb_pcount(skb) == 1 ||
3246                             !after(tp->snd_una, scb->seq))
3247                                 break;
3248
3249                         acked_pcount = tcp_tso_acked(sk, skb);
3250                         if (!acked_pcount)
3251                                 break;
3252
3253                         fully_acked = 0;
3254                 } else {
3255                         acked_pcount = tcp_skb_pcount(skb);
3256                 }
3257
3258                 if (sacked & TCPCB_RETRANS) {
3259                         if (sacked & TCPCB_SACKED_RETRANS)
3260                                 tp->retrans_out -= acked_pcount;
3261                         flag |= FLAG_RETRANS_DATA_ACKED;
3262                         ca_seq_rtt = -1;
3263                         seq_rtt = -1;
3264                         if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3265                                 flag |= FLAG_NONHEAD_RETRANS_ACKED;
3266                 } else {
3267                         ca_seq_rtt = now - scb->when;
3268                         last_ackt = skb->tstamp;
3269                         if (seq_rtt < 0) {
3270                                 seq_rtt = ca_seq_rtt;
3271                         }
3272                         if (!(sacked & TCPCB_SACKED_ACKED))
3273                                 reord = min(pkts_acked, reord);
3274                 }
3275
3276                 if (sacked & TCPCB_SACKED_ACKED)
3277                         tp->sacked_out -= acked_pcount;
3278                 if (sacked & TCPCB_LOST)
3279                         tp->lost_out -= acked_pcount;
3280
3281                 tp->packets_out -= acked_pcount;
3282                 pkts_acked += acked_pcount;
3283
3284                 /* Initial outgoing SYN's get put onto the write_queue
3285                  * just like anything else we transmit.  It is not
3286                  * true data, and if we misinform our callers that
3287                  * this ACK acks real data, we will erroneously exit
3288                  * connection startup slow start one packet too
3289                  * quickly.  This is severely frowned upon behavior.
3290                  */
3291                 if (!(scb->flags & TCPHDR_SYN)) {
3292                         flag |= FLAG_DATA_ACKED;
3293                 } else {
3294                         flag |= FLAG_SYN_ACKED;
3295                         tp->retrans_stamp = 0;
3296                 }
3297
3298                 if (!fully_acked)
3299                         break;
3300
3301                 tcp_unlink_write_queue(skb, sk);
3302                 sk_wmem_free_skb(sk, skb);
3303                 tp->scoreboard_skb_hint = NULL;
3304                 if (skb == tp->retransmit_skb_hint)
3305                         tp->retransmit_skb_hint = NULL;
3306                 if (skb == tp->lost_skb_hint)
3307                         tp->lost_skb_hint = NULL;
3308         }
3309
3310         if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3311                 tp->snd_up = tp->snd_una;
3312
3313         if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3314                 flag |= FLAG_SACK_RENEGING;
3315
3316         if (flag & FLAG_ACKED) {
3317                 const struct tcp_congestion_ops *ca_ops
3318                         = inet_csk(sk)->icsk_ca_ops;
3319
3320                 if (unlikely(icsk->icsk_mtup.probe_size &&
3321                              !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3322                         tcp_mtup_probe_success(sk);
3323                 }
3324
3325                 tcp_ack_update_rtt(sk, flag, seq_rtt);
3326                 tcp_rearm_rto(sk);
3327
3328                 if (tcp_is_reno(tp)) {
3329                         tcp_remove_reno_sacks(sk, pkts_acked);
3330                 } else {
3331                         int delta;
3332
3333                         /* Non-retransmitted hole got filled? That's reordering */
3334                         if (reord < prior_fackets)
3335                                 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3336
3337                         delta = tcp_is_fack(tp) ? pkts_acked :
3338                                                   prior_sacked - tp->sacked_out;
3339                         tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3340                 }
3341
3342                 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3343
3344                 if (ca_ops->pkts_acked) {
3345                         s32 rtt_us = -1;
3346
3347                         /* Is the ACK triggering packet unambiguous? */
3348                         if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3349                                 /* High resolution needed and available? */
3350                                 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3351                                     !ktime_equal(last_ackt,
3352                                                  net_invalid_timestamp()))
3353                                         rtt_us = ktime_us_delta(ktime_get_real(),
3354                                                                 last_ackt);
3355                                 else if (ca_seq_rtt >= 0)
3356                                         rtt_us = jiffies_to_usecs(ca_seq_rtt);
3357                         }
3358
3359                         ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3360                 }
3361         }
3362
3363 #if FASTRETRANS_DEBUG > 0
3364         WARN_ON((int)tp->sacked_out < 0);
3365         WARN_ON((int)tp->lost_out < 0);
3366         WARN_ON((int)tp->retrans_out < 0);
3367         if (!tp->packets_out && tcp_is_sack(tp)) {
3368                 icsk = inet_csk(sk);
3369                 if (tp->lost_out) {
3370                         printk(KERN_DEBUG "Leak l=%u %d\n",
3371                                tp->lost_out, icsk->icsk_ca_state);
3372                         tp->lost_out = 0;
3373                 }
3374                 if (tp->sacked_out) {
3375                         printk(KERN_DEBUG "Leak s=%u %d\n",
3376                                tp->sacked_out, icsk->icsk_ca_state);
3377                         tp->sacked_out = 0;
3378                 }
3379                 if (tp->retrans_out) {
3380                         printk(KERN_DEBUG "Leak r=%u %d\n",
3381                                tp->retrans_out, icsk->icsk_ca_state);
3382                         tp->retrans_out = 0;
3383                 }
3384         }
3385 #endif
3386         return flag;
3387 }
3388
3389 static void tcp_ack_probe(struct sock *sk)
3390 {
3391         const struct tcp_sock *tp = tcp_sk(sk);
3392         struct inet_connection_sock *icsk = inet_csk(sk);
3393
3394         /* Was it a usable window open? */
3395
3396         if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3397                 icsk->icsk_backoff = 0;
3398                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3399                 /* Socket must be waked up by subsequent tcp_data_snd_check().
3400                  * This function is not for random using!
3401                  */
3402         } else {
3403                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3404                                           min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3405                                           TCP_RTO_MAX);
3406         }
3407 }
3408
3409 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3410 {
3411         return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3412                 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3413 }
3414
3415 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3416 {
3417         const struct tcp_sock *tp = tcp_sk(sk);
3418         return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3419                 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3420 }
3421
3422 /* Check that window update is acceptable.
3423  * The function assumes that snd_una<=ack<=snd_next.
3424  */
3425 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3426                                         const u32 ack, const u32 ack_seq,
3427                                         const u32 nwin)
3428 {
3429         return  after(ack, tp->snd_una) ||
3430                 after(ack_seq, tp->snd_wl1) ||
3431                 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3432 }
3433
3434 /* Update our send window.
3435  *
3436  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3437  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3438  */
3439 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
3440                                  u32 ack_seq)
3441 {
3442         struct tcp_sock *tp = tcp_sk(sk);
3443         int flag = 0;
3444         u32 nwin = ntohs(tcp_hdr(skb)->window);
3445
3446         if (likely(!tcp_hdr(skb)->syn))
3447                 nwin <<= tp->rx_opt.snd_wscale;
3448
3449         if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3450                 flag |= FLAG_WIN_UPDATE;
3451                 tcp_update_wl(tp, ack_seq);
3452
3453                 if (tp->snd_wnd != nwin) {
3454                         tp->snd_wnd = nwin;
3455
3456                         /* Note, it is the only place, where
3457                          * fast path is recovered for sending TCP.
3458                          */
3459                         tp->pred_flags = 0;
3460                         tcp_fast_path_check(sk);
3461
3462                         if (nwin > tp->max_window) {
3463                                 tp->max_window = nwin;
3464                                 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3465                         }
3466                 }
3467         }
3468
3469         tp->snd_una = ack;
3470
3471         return flag;
3472 }
3473
3474 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3475  * continue in congestion avoidance.
3476  */
3477 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3478 {
3479         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3480         tp->snd_cwnd_cnt = 0;
3481         tp->bytes_acked = 0;
3482         TCP_ECN_queue_cwr(tp);
3483         tcp_moderate_cwnd(tp);
3484 }
3485
3486 /* A conservative spurious RTO response algorithm: reduce cwnd using
3487  * rate halving and continue in congestion avoidance.
3488  */
3489 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3490 {
3491         tcp_enter_cwr(sk, 0);
3492 }
3493
3494 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3495 {
3496         if (flag & FLAG_ECE)
3497                 tcp_ratehalving_spur_to_response(sk);
3498         else
3499                 tcp_undo_cwr(sk, true);
3500 }
3501
3502 /* F-RTO spurious RTO detection algorithm (RFC4138)
3503  *
3504  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3505  * comments). State (ACK number) is kept in frto_counter. When ACK advances
3506  * window (but not to or beyond highest sequence sent before RTO):
3507  *   On First ACK,  send two new segments out.
3508  *   On Second ACK, RTO was likely spurious. Do spurious response (response
3509  *                  algorithm is not part of the F-RTO detection algorithm
3510  *                  given in RFC4138 but can be selected separately).
3511  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3512  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3513  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3514  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3515  *
3516  * Rationale: if the RTO was spurious, new ACKs should arrive from the
3517  * original window even after we transmit two new data segments.
3518  *
3519  * SACK version:
3520  *   on first step, wait until first cumulative ACK arrives, then move to
3521  *   the second step. In second step, the next ACK decides.
3522  *
3523  * F-RTO is implemented (mainly) in four functions:
3524  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3525  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3526  *     called when tcp_use_frto() showed green light
3527  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3528  *   - tcp_enter_frto_loss() is called if there is not enough evidence
3529  *     to prove that the RTO is indeed spurious. It transfers the control
3530  *     from F-RTO to the conventional RTO recovery
3531  */
3532 static int tcp_process_frto(struct sock *sk, int flag)
3533 {
3534         struct tcp_sock *tp = tcp_sk(sk);
3535
3536         tcp_verify_left_out(tp);
3537
3538         /* Duplicate the behavior from Loss state (fastretrans_alert) */
3539         if (flag & FLAG_DATA_ACKED)
3540                 inet_csk(sk)->icsk_retransmits = 0;
3541
3542         if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3543             ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3544                 tp->undo_marker = 0;
3545
3546         if (!before(tp->snd_una, tp->frto_highmark)) {
3547                 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3548                 return 1;
3549         }
3550
3551         if (!tcp_is_sackfrto(tp)) {
3552                 /* RFC4138 shortcoming in step 2; should also have case c):
3553                  * ACK isn't duplicate nor advances window, e.g., opposite dir
3554                  * data, winupdate
3555                  */
3556                 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3557                         return 1;
3558
3559                 if (!(flag & FLAG_DATA_ACKED)) {
3560                         tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3561                                             flag);
3562                         return 1;
3563                 }
3564         } else {
3565                 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3566                         /* Prevent sending of new data. */
3567                         tp->snd_cwnd = min(tp->snd_cwnd,
3568                                            tcp_packets_in_flight(tp));
3569                         return 1;
3570                 }
3571
3572                 if ((tp->frto_counter >= 2) &&
3573                     (!(flag & FLAG_FORWARD_PROGRESS) ||
3574                      ((flag & FLAG_DATA_SACKED) &&
3575                       !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3576                         /* RFC4138 shortcoming (see comment above) */
3577                         if (!(flag & FLAG_FORWARD_PROGRESS) &&
3578                             (flag & FLAG_NOT_DUP))
3579                                 return 1;
3580
3581                         tcp_enter_frto_loss(sk, 3, flag);
3582                         return 1;
3583                 }
3584         }
3585
3586         if (tp->frto_counter == 1) {
3587                 /* tcp_may_send_now needs to see updated state */
3588                 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3589                 tp->frto_counter = 2;
3590
3591                 if (!tcp_may_send_now(sk))
3592                         tcp_enter_frto_loss(sk, 2, flag);
3593
3594                 return 1;
3595         } else {
3596                 switch (sysctl_tcp_frto_response) {
3597                 case 2:
3598                         tcp_undo_spur_to_response(sk, flag);
3599                         break;
3600                 case 1:
3601                         tcp_conservative_spur_to_response(tp);
3602                         break;
3603                 default:
3604                         tcp_ratehalving_spur_to_response(sk);
3605                         break;
3606                 }
3607                 tp->frto_counter = 0;
3608                 tp->undo_marker = 0;
3609                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3610         }
3611         return 0;
3612 }
3613
3614 /* This routine deals with incoming acks, but not outgoing ones. */
3615 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3616 {
3617         struct inet_connection_sock *icsk = inet_csk(sk);
3618         struct tcp_sock *tp = tcp_sk(sk);
3619         u32 prior_snd_una = tp->snd_una;
3620         u32 ack_seq = TCP_SKB_CB(skb)->seq;
3621         u32 ack = TCP_SKB_CB(skb)->ack_seq;
3622         u32 prior_in_flight;
3623         u32 prior_fackets;
3624         int prior_packets;
3625         int frto_cwnd = 0;
3626
3627         /* If the ack is older than previous acks
3628          * then we can probably ignore it.
3629          */
3630         if (before(ack, prior_snd_una))
3631                 goto old_ack;
3632
3633         /* If the ack includes data we haven't sent yet, discard
3634          * this segment (RFC793 Section 3.9).
3635          */
3636         if (after(ack, tp->snd_nxt))
3637                 goto invalid_ack;
3638
3639         if (after(ack, prior_snd_una))
3640                 flag |= FLAG_SND_UNA_ADVANCED;
3641
3642         if (sysctl_tcp_abc) {
3643                 if (icsk->icsk_ca_state < TCP_CA_CWR)
3644                         tp->bytes_acked += ack - prior_snd_una;
3645                 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3646                         /* we assume just one segment left network */
3647                         tp->bytes_acked += min(ack - prior_snd_una,
3648                                                tp->mss_cache);
3649         }
3650
3651         prior_fackets = tp->fackets_out;
3652         prior_in_flight = tcp_packets_in_flight(tp);
3653
3654         if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3655                 /* Window is constant, pure forward advance.
3656                  * No more checks are required.
3657                  * Note, we use the fact that SND.UNA>=SND.WL2.
3658                  */
3659                 tcp_update_wl(tp, ack_seq);
3660                 tp->snd_una = ack;
3661                 flag |= FLAG_WIN_UPDATE;
3662
3663                 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3664
3665                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3666         } else {
3667                 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3668                         flag |= FLAG_DATA;
3669                 else
3670                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3671
3672                 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3673
3674                 if (TCP_SKB_CB(skb)->sacked)
3675                         flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3676
3677                 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3678                         flag |= FLAG_ECE;
3679
3680                 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3681         }
3682
3683         /* We passed data and got it acked, remove any soft error
3684          * log. Something worked...
3685          */
3686         sk->sk_err_soft = 0;
3687         icsk->icsk_probes_out = 0;
3688         tp->rcv_tstamp = tcp_time_stamp;
3689         prior_packets = tp->packets_out;
3690         if (!prior_packets)
3691                 goto no_queue;
3692
3693         /* See if we can take anything off of the retransmit queue. */
3694         flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3695
3696         if (tp->frto_counter)
3697                 frto_cwnd = tcp_process_frto(sk, flag);
3698         /* Guarantee sacktag reordering detection against wrap-arounds */
3699         if (before(tp->frto_highmark, tp->snd_una))
3700                 tp->frto_highmark = 0;
3701
3702         if (tcp_ack_is_dubious(sk, flag)) {
3703                 /* Advance CWND, if state allows this. */
3704                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3705                     tcp_may_raise_cwnd(sk, flag))
3706                         tcp_cong_avoid(sk, ack, prior_in_flight);
3707                 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3708                                       flag);
3709         } else {
3710                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3711                         tcp_cong_avoid(sk, ack, prior_in_flight);
3712         }
3713
3714         if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3715                 dst_confirm(__sk_dst_get(sk));
3716
3717         return 1;
3718
3719 no_queue:
3720         /* If this ack opens up a zero window, clear backoff.  It was
3721          * being used to time the probes, and is probably far higher than
3722          * it needs to be for normal retransmission.
3723          */
3724         if (tcp_send_head(sk))
3725                 tcp_ack_probe(sk);
3726         return 1;
3727
3728 invalid_ack:
3729         SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3730         return -1;
3731
3732 old_ack:
3733         if (TCP_SKB_CB(skb)->sacked) {
3734                 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3735                 if (icsk->icsk_ca_state == TCP_CA_Open)
3736                         tcp_try_keep_open(sk);
3737         }
3738
3739         SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3740         return 0;
3741 }
3742
3743 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3744  * But, this can also be called on packets in the established flow when
3745  * the fast version below fails.
3746  */
3747 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
3748                        u8 **hvpp, int estab)
3749 {
3750         unsigned char *ptr;
3751         struct tcphdr *th = tcp_hdr(skb);
3752         int length = (th->doff * 4) - sizeof(struct tcphdr);
3753
3754         ptr = (unsigned char *)(th + 1);
3755         opt_rx->saw_tstamp = 0;
3756
3757         while (length > 0) {
3758                 int opcode = *ptr++;
3759                 int opsize;
3760
3761                 switch (opcode) {
3762                 case TCPOPT_EOL:
3763                         return;
3764                 case TCPOPT_NOP:        /* Ref: RFC 793 section 3.1 */
3765                         length--;
3766                         continue;
3767                 default:
3768                         opsize = *ptr++;
3769                         if (opsize < 2) /* "silly options" */
3770                                 return;
3771                         if (opsize > length)
3772                                 return; /* don't parse partial options */
3773                         switch (opcode) {
3774                         case TCPOPT_MSS:
3775                                 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3776                                         u16 in_mss = get_unaligned_be16(ptr);
3777                                         if (in_mss) {
3778                                                 if (opt_rx->user_mss &&
3779                                                     opt_rx->user_mss < in_mss)
3780                                                         in_mss = opt_rx->user_mss;
3781                                                 opt_rx->mss_clamp = in_mss;
3782                                         }
3783                                 }
3784                                 break;
3785                         case TCPOPT_WINDOW:
3786                                 if (opsize == TCPOLEN_WINDOW && th->syn &&
3787                                     !estab && sysctl_tcp_window_scaling) {
3788                                         __u8 snd_wscale = *(__u8 *)ptr;
3789                                         opt_rx->wscale_ok = 1;
3790                                         if (snd_wscale > 14) {
3791                                                 if (net_ratelimit())
3792                                                         printk(KERN_INFO "tcp_parse_options: Illegal window "
3793                                                                "scaling value %d >14 received.\n",
3794                                                                snd_wscale);
3795                                                 snd_wscale = 14;
3796                                         }
3797                                         opt_rx->snd_wscale = snd_wscale;
3798                                 }
3799                                 break;
3800                         case TCPOPT_TIMESTAMP:
3801                                 if ((opsize == TCPOLEN_TIMESTAMP) &&
3802                                     ((estab && opt_rx->tstamp_ok) ||
3803                                      (!estab && sysctl_tcp_timestamps))) {
3804                                         opt_rx->saw_tstamp = 1;
3805                                         opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3806                                         opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3807                                 }
3808                                 break;
3809                         case TCPOPT_SACK_PERM:
3810                                 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3811                                     !estab && sysctl_tcp_sack) {
3812                                         opt_rx->sack_ok = 1;
3813                                         tcp_sack_reset(opt_rx);
3814                                 }
3815                                 break;
3816
3817                         case TCPOPT_SACK:
3818                                 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3819                                    !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3820                                    opt_rx->sack_ok) {
3821                                         TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3822                                 }
3823                                 break;
3824 #ifdef CONFIG_TCP_MD5SIG
3825                         case TCPOPT_MD5SIG:
3826                                 /*
3827                                  * The MD5 Hash has already been
3828                                  * checked (see tcp_v{4,6}_do_rcv()).
3829                                  */
3830                                 break;
3831 #endif
3832                         case TCPOPT_COOKIE:
3833                                 /* This option is variable length.
3834                                  */
3835                                 switch (opsize) {
3836                                 case TCPOLEN_COOKIE_BASE:
3837                                         /* not yet implemented */
3838                                         break;
3839                                 case TCPOLEN_COOKIE_PAIR:
3840                                         /* not yet implemented */
3841                                         break;
3842                                 case TCPOLEN_COOKIE_MIN+0:
3843                                 case TCPOLEN_COOKIE_MIN+2:
3844                                 case TCPOLEN_COOKIE_MIN+4:
3845                                 case TCPOLEN_COOKIE_MIN+6:
3846                                 case TCPOLEN_COOKIE_MAX:
3847                                         /* 16-bit multiple */
3848                                         opt_rx->cookie_plus = opsize;
3849                                         *hvpp = ptr;
3850                                         break;
3851                                 default:
3852                                         /* ignore option */
3853                                         break;
3854                                 }
3855                                 break;
3856                         }
3857
3858                         ptr += opsize-2;
3859                         length -= opsize;
3860                 }
3861         }
3862 }
3863 EXPORT_SYMBOL(tcp_parse_options);
3864
3865 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, struct tcphdr *th)
3866 {
3867         __be32 *ptr = (__be32 *)(th + 1);
3868
3869         if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3870                           | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3871                 tp->rx_opt.saw_tstamp = 1;
3872                 ++ptr;
3873                 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3874                 ++ptr;
3875                 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3876                 return 1;
3877         }
3878         return 0;
3879 }
3880
3881 /* Fast parse options. This hopes to only see timestamps.
3882  * If it is wrong it falls back on tcp_parse_options().
3883  */
3884 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3885                                   struct tcp_sock *tp, u8 **hvpp)
3886 {
3887         /* In the spirit of fast parsing, compare doff directly to constant
3888          * values.  Because equality is used, short doff can be ignored here.
3889          */
3890         if (th->doff == (sizeof(*th) / 4)) {
3891                 tp->rx_opt.saw_tstamp = 0;
3892                 return 0;
3893         } else if (tp->rx_opt.tstamp_ok &&
3894                    th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3895                 if (tcp_parse_aligned_timestamp(tp, th))
3896                         return 1;
3897         }
3898         tcp_parse_options(skb, &tp->rx_opt, hvpp, 1);
3899         return 1;
3900 }
3901
3902 #ifdef CONFIG_TCP_MD5SIG
3903 /*
3904  * Parse MD5 Signature option
3905  */
3906 u8 *tcp_parse_md5sig_option(struct tcphdr *th)
3907 {
3908         int length = (th->doff << 2) - sizeof (*th);
3909         u8 *ptr = (u8*)(th + 1);
3910
3911         /* If the TCP option is too short, we can short cut */
3912         if (length < TCPOLEN_MD5SIG)
3913                 return NULL;
3914
3915         while (length > 0) {
3916                 int opcode = *ptr++;
3917                 int opsize;
3918
3919                 switch(opcode) {
3920                 case TCPOPT_EOL:
3921                         return NULL;
3922                 case TCPOPT_NOP:
3923                         length--;
3924                         continue;
3925                 default:
3926                         opsize = *ptr++;
3927                         if (opsize < 2 || opsize > length)
3928                                 return NULL;
3929                         if (opcode == TCPOPT_MD5SIG)
3930                                 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3931                 }
3932                 ptr += opsize - 2;
3933                 length -= opsize;
3934         }
3935         return NULL;
3936 }
3937 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3938 #endif
3939
3940 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3941 {
3942         tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3943         tp->rx_opt.ts_recent_stamp = get_seconds();
3944 }
3945
3946 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3947 {
3948         if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3949                 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3950                  * extra check below makes sure this can only happen
3951                  * for pure ACK frames.  -DaveM
3952                  *
3953                  * Not only, also it occurs for expired timestamps.
3954                  */
3955
3956                 if (tcp_paws_check(&tp->rx_opt, 0))
3957                         tcp_store_ts_recent(tp);
3958         }
3959 }
3960
3961 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3962  *
3963  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3964  * it can pass through stack. So, the following predicate verifies that
3965  * this segment is not used for anything but congestion avoidance or
3966  * fast retransmit. Moreover, we even are able to eliminate most of such
3967  * second order effects, if we apply some small "replay" window (~RTO)
3968  * to timestamp space.
3969  *
3970  * All these measures still do not guarantee that we reject wrapped ACKs
3971  * on networks with high bandwidth, when sequence space is recycled fastly,
3972  * but it guarantees that such events will be very rare and do not affect
3973  * connection seriously. This doesn't look nice, but alas, PAWS is really
3974  * buggy extension.
3975  *
3976  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3977  * states that events when retransmit arrives after original data are rare.
3978  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3979  * the biggest problem on large power networks even with minor reordering.
3980  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3981  * up to bandwidth of 18Gigabit/sec. 8) ]
3982  */
3983
3984 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3985 {
3986         struct tcp_sock *tp = tcp_sk(sk);
3987         struct tcphdr *th = tcp_hdr(skb);
3988         u32 seq = TCP_SKB_CB(skb)->seq;
3989         u32 ack = TCP_SKB_CB(skb)->ack_seq;
3990
3991         return (/* 1. Pure ACK with correct sequence number. */
3992                 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3993
3994                 /* 2. ... and duplicate ACK. */
3995                 ack == tp->snd_una &&
3996
3997                 /* 3. ... and does not update window. */
3998                 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3999
4000                 /* 4. ... and sits in replay window. */
4001                 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4002 }
4003
4004 static inline int tcp_paws_discard(const struct sock *sk,
4005                                    const struct sk_buff *skb)
4006 {
4007         const struct tcp_sock *tp = tcp_sk(sk);
4008
4009         return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4010                !tcp_disordered_ack(sk, skb);
4011 }
4012
4013 /* Check segment sequence number for validity.
4014  *
4015  * Segment controls are considered valid, if the segment
4016  * fits to the window after truncation to the window. Acceptability
4017  * of data (and SYN, FIN, of course) is checked separately.
4018  * See tcp_data_queue(), for example.
4019  *
4020  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4021  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4022  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4023  * (borrowed from freebsd)
4024  */
4025
4026 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
4027 {
4028         return  !before(end_seq, tp->rcv_wup) &&
4029                 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4030 }
4031
4032 /* When we get a reset we do this. */
4033 static void tcp_reset(struct sock *sk)
4034 {
4035         /* We want the right error as BSD sees it (and indeed as we do). */
4036         switch (sk->sk_state) {
4037         case TCP_SYN_SENT:
4038                 sk->sk_err = ECONNREFUSED;
4039                 break;
4040         case TCP_CLOSE_WAIT:
4041                 sk->sk_err = EPIPE;
4042                 break;
4043         case TCP_CLOSE:
4044                 return;
4045         default:
4046                 sk->sk_err = ECONNRESET;
4047         }
4048         /* This barrier is coupled with smp_rmb() in tcp_poll() */
4049         smp_wmb();
4050
4051         if (!sock_flag(sk, SOCK_DEAD))
4052                 sk->sk_error_report(sk);
4053
4054         tcp_done(sk);
4055 }
4056
4057 /*
4058  *      Process the FIN bit. This now behaves as it is supposed to work
4059  *      and the FIN takes effect when it is validly part of sequence
4060  *      space. Not before when we get holes.
4061  *
4062  *      If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4063  *      (and thence onto LAST-ACK and finally, CLOSE, we never enter
4064  *      TIME-WAIT)
4065  *
4066  *      If we are in FINWAIT-1, a received FIN indicates simultaneous
4067  *      close and we go into CLOSING (and later onto TIME-WAIT)
4068  *
4069  *      If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4070  */
4071 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
4072 {
4073         struct tcp_sock *tp = tcp_sk(sk);
4074
4075         inet_csk_schedule_ack(sk);
4076
4077         sk->sk_shutdown |= RCV_SHUTDOWN;
4078         sock_set_flag(sk, SOCK_DONE);
4079
4080         switch (sk->sk_state) {
4081         case TCP_SYN_RECV:
4082         case TCP_ESTABLISHED:
4083                 /* Move to CLOSE_WAIT */
4084                 tcp_set_state(sk, TCP_CLOSE_WAIT);
4085                 inet_csk(sk)->icsk_ack.pingpong = 1;
4086                 break;
4087
4088         case TCP_CLOSE_WAIT:
4089         case TCP_CLOSING:
4090                 /* Received a retransmission of the FIN, do
4091                  * nothing.
4092                  */
4093                 break;
4094         case TCP_LAST_ACK:
4095                 /* RFC793: Remain in the LAST-ACK state. */
4096                 break;
4097
4098         case TCP_FIN_WAIT1:
4099                 /* This case occurs when a simultaneous close
4100                  * happens, we must ack the received FIN and
4101                  * enter the CLOSING state.
4102                  */
4103                 tcp_send_ack(sk);
4104                 tcp_set_state(sk, TCP_CLOSING);
4105                 break;
4106         case TCP_FIN_WAIT2:
4107                 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4108                 tcp_send_ack(sk);
4109                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4110                 break;
4111         default:
4112                 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4113                  * cases we should never reach this piece of code.
4114                  */
4115                 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
4116                        __func__, sk->sk_state);
4117                 break;
4118         }
4119
4120         /* It _is_ possible, that we have something out-of-order _after_ FIN.
4121          * Probably, we should reset in this case. For now drop them.
4122          */
4123         __skb_queue_purge(&tp->out_of_order_queue);
4124         if (tcp_is_sack(tp))
4125                 tcp_sack_reset(&tp->rx_opt);
4126         sk_mem_reclaim(sk);
4127
4128         if (!sock_flag(sk, SOCK_DEAD)) {
4129                 sk->sk_state_change(sk);
4130
4131                 /* Do not send POLL_HUP for half duplex close. */
4132                 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4133                     sk->sk_state == TCP_CLOSE)
4134                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4135                 else
4136                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4137         }
4138 }
4139
4140 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4141                                   u32 end_seq)
4142 {
4143         if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4144                 if (before(seq, sp->start_seq))
4145                         sp->start_seq = seq;
4146                 if (after(end_seq, sp->end_seq))
4147                         sp->end_seq = end_seq;
4148                 return 1;
4149         }
4150         return 0;
4151 }
4152
4153 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4154 {
4155         struct tcp_sock *tp = tcp_sk(sk);
4156
4157         if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4158                 int mib_idx;
4159
4160                 if (before(seq, tp->rcv_nxt))
4161                         mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4162                 else
4163                         mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4164
4165                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
4166
4167                 tp->rx_opt.dsack = 1;
4168                 tp->duplicate_sack[0].start_seq = seq;
4169                 tp->duplicate_sack[0].end_seq = end_seq;
4170         }
4171 }
4172
4173 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4174 {
4175         struct tcp_sock *tp = tcp_sk(sk);
4176
4177         if (!tp->rx_opt.dsack)
4178                 tcp_dsack_set(sk, seq, end_seq);
4179         else
4180                 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4181 }
4182
4183 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
4184 {
4185         struct tcp_sock *tp = tcp_sk(sk);
4186
4187         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4188             before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4189                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4190                 tcp_enter_quickack_mode(sk);
4191
4192                 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4193                         u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4194
4195                         if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4196                                 end_seq = tp->rcv_nxt;
4197                         tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4198                 }
4199         }
4200
4201         tcp_send_ack(sk);
4202 }
4203
4204 /* These routines update the SACK block as out-of-order packets arrive or
4205  * in-order packets close up the sequence space.
4206  */
4207 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4208 {
4209         int this_sack;
4210         struct tcp_sack_block *sp = &tp->selective_acks[0];
4211         struct tcp_sack_block *swalk = sp + 1;
4212
4213         /* See if the recent change to the first SACK eats into
4214          * or hits the sequence space of other SACK blocks, if so coalesce.
4215          */
4216         for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4217                 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4218                         int i;
4219
4220                         /* Zap SWALK, by moving every further SACK up by one slot.
4221                          * Decrease num_sacks.
4222                          */
4223                         tp->rx_opt.num_sacks--;
4224                         for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4225                                 sp[i] = sp[i + 1];
4226                         continue;
4227                 }
4228                 this_sack++, swalk++;
4229         }
4230 }
4231
4232 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4233 {
4234         struct tcp_sock *tp = tcp_sk(sk);
4235         struct tcp_sack_block *sp = &tp->selective_acks[0];
4236         int cur_sacks = tp->rx_opt.num_sacks;
4237         int this_sack;
4238
4239         if (!cur_sacks)
4240                 goto new_sack;
4241
4242         for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4243                 if (tcp_sack_extend(sp, seq, end_seq)) {
4244                         /* Rotate this_sack to the first one. */
4245                         for (; this_sack > 0; this_sack--, sp--)
4246                                 swap(*sp, *(sp - 1));
4247                         if (cur_sacks > 1)
4248                                 tcp_sack_maybe_coalesce(tp);
4249                         return;
4250                 }
4251         }
4252
4253         /* Could not find an adjacent existing SACK, build a new one,
4254          * put it at the front, and shift everyone else down.  We
4255          * always know there is at least one SACK present already here.
4256          *
4257          * If the sack array is full, forget about the last one.
4258          */
4259         if (this_sack >= TCP_NUM_SACKS) {
4260                 this_sack--;
4261                 tp->rx_opt.num_sacks--;
4262                 sp--;
4263         }
4264         for (; this_sack > 0; this_sack--, sp--)
4265                 *sp = *(sp - 1);
4266
4267 new_sack:
4268         /* Build the new head SACK, and we're done. */
4269         sp->start_seq = seq;
4270         sp->end_seq = end_seq;
4271         tp->rx_opt.num_sacks++;
4272 }
4273
4274 /* RCV.NXT advances, some SACKs should be eaten. */
4275
4276 static void tcp_sack_remove(struct tcp_sock *tp)
4277 {
4278         struct tcp_sack_block *sp = &tp->selective_acks[0];
4279         int num_sacks = tp->rx_opt.num_sacks;
4280         int this_sack;
4281
4282         /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4283         if (skb_queue_empty(&tp->out_of_order_queue)) {
4284                 tp->rx_opt.num_sacks = 0;
4285                 return;
4286         }
4287
4288         for (this_sack = 0; this_sack < num_sacks;) {
4289                 /* Check if the start of the sack is covered by RCV.NXT. */
4290                 if (!before(tp->rcv_nxt, sp->start_seq)) {
4291                         int i;
4292
4293                         /* RCV.NXT must cover all the block! */
4294                         WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4295
4296                         /* Zap this SACK, by moving forward any other SACKS. */
4297                         for (i=this_sack+1; i < num_sacks; i++)
4298                                 tp->selective_acks[i-1] = tp->selective_acks[i];
4299                         num_sacks--;
4300                         continue;
4301                 }
4302                 this_sack++;
4303                 sp++;
4304         }
4305         tp->rx_opt.num_sacks = num_sacks;
4306 }
4307
4308 /* This one checks to see if we can put data from the
4309  * out_of_order queue into the receive_queue.
4310  */
4311 static void tcp_ofo_queue(struct sock *sk)
4312 {
4313         struct tcp_sock *tp = tcp_sk(sk);
4314         __u32 dsack_high = tp->rcv_nxt;
4315         struct sk_buff *skb;
4316
4317         while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4318                 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4319                         break;
4320
4321                 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4322                         __u32 dsack = dsack_high;
4323                         if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4324                                 dsack_high = TCP_SKB_CB(skb)->end_seq;
4325                         tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4326                 }
4327
4328                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4329                         SOCK_DEBUG(sk, "ofo packet was already received\n");
4330                         __skb_unlink(skb, &tp->out_of_order_queue);
4331                         __kfree_skb(skb);
4332                         continue;
4333                 }
4334                 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4335                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4336                            TCP_SKB_CB(skb)->end_seq);
4337
4338                 __skb_unlink(skb, &tp->out_of_order_queue);
4339                 __skb_queue_tail(&sk->sk_receive_queue, skb);
4340                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4341                 if (tcp_hdr(skb)->fin)
4342                         tcp_fin(skb, sk, tcp_hdr(skb));
4343         }
4344 }
4345
4346 static int tcp_prune_ofo_queue(struct sock *sk);
4347 static int tcp_prune_queue(struct sock *sk);
4348
4349 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4350 {
4351         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4352             !sk_rmem_schedule(sk, size)) {
4353
4354                 if (tcp_prune_queue(sk) < 0)
4355                         return -1;
4356
4357                 if (!sk_rmem_schedule(sk, size)) {
4358                         if (!tcp_prune_ofo_queue(sk))
4359                                 return -1;
4360
4361                         if (!sk_rmem_schedule(sk, size))
4362                                 return -1;
4363                 }
4364         }
4365         return 0;
4366 }
4367
4368 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4369 {
4370         struct tcphdr *th = tcp_hdr(skb);
4371         struct tcp_sock *tp = tcp_sk(sk);
4372         int eaten = -1;
4373
4374         if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4375                 goto drop;
4376
4377         skb_dst_drop(skb);
4378         __skb_pull(skb, th->doff * 4);
4379
4380         TCP_ECN_accept_cwr(tp, skb);
4381
4382         tp->rx_opt.dsack = 0;
4383
4384         /*  Queue data for delivery to the user.
4385          *  Packets in sequence go to the receive queue.
4386          *  Out of sequence packets to the out_of_order_queue.
4387          */
4388         if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4389                 if (tcp_receive_window(tp) == 0)
4390                         goto out_of_window;
4391
4392                 /* Ok. In sequence. In window. */
4393                 if (tp->ucopy.task == current &&
4394                     tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4395                     sock_owned_by_user(sk) && !tp->urg_data) {
4396                         int chunk = min_t(unsigned int, skb->len,
4397                                           tp->ucopy.len);
4398
4399                         __set_current_state(TASK_RUNNING);
4400
4401                         local_bh_enable();
4402                         if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4403                                 tp->ucopy.len -= chunk;
4404                                 tp->copied_seq += chunk;
4405                                 eaten = (chunk == skb->len);
4406                                 tcp_rcv_space_adjust(sk);
4407                         }
4408                         local_bh_disable();
4409                 }
4410
4411                 if (eaten <= 0) {
4412 queue_and_out:
4413                         if (eaten < 0 &&
4414                             tcp_try_rmem_schedule(sk, skb->truesize))
4415                                 goto drop;
4416
4417                         skb_set_owner_r(skb, sk);
4418                         __skb_queue_tail(&sk->sk_receive_queue, skb);
4419                 }
4420                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4421                 if (skb->len)
4422                         tcp_event_data_recv(sk, skb);
4423                 if (th->fin)
4424                         tcp_fin(skb, sk, th);
4425
4426                 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4427                         tcp_ofo_queue(sk);
4428
4429                         /* RFC2581. 4.2. SHOULD send immediate ACK, when
4430                          * gap in queue is filled.
4431                          */
4432                         if (skb_queue_empty(&tp->out_of_order_queue))
4433                                 inet_csk(sk)->icsk_ack.pingpong = 0;
4434                 }
4435
4436                 if (tp->rx_opt.num_sacks)
4437                         tcp_sack_remove(tp);
4438
4439                 tcp_fast_path_check(sk);
4440
4441                 if (eaten > 0)
4442                         __kfree_skb(skb);
4443                 else if (!sock_flag(sk, SOCK_DEAD))
4444                         sk->sk_data_ready(sk, 0);
4445                 return;
4446         }
4447
4448         if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4449                 /* A retransmit, 2nd most common case.  Force an immediate ack. */
4450                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4451                 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4452
4453 out_of_window:
4454                 tcp_enter_quickack_mode(sk);
4455                 inet_csk_schedule_ack(sk);
4456 drop:
4457                 __kfree_skb(skb);
4458                 return;
4459         }
4460
4461         /* Out of window. F.e. zero window probe. */
4462         if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4463                 goto out_of_window;
4464
4465         tcp_enter_quickack_mode(sk);
4466
4467         if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4468                 /* Partial packet, seq < rcv_next < end_seq */
4469                 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4470                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4471                            TCP_SKB_CB(skb)->end_seq);
4472
4473                 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4474
4475                 /* If window is closed, drop tail of packet. But after
4476                  * remembering D-SACK for its head made in previous line.
4477                  */
4478                 if (!tcp_receive_window(tp))
4479                         goto out_of_window;
4480                 goto queue_and_out;
4481         }
4482
4483         TCP_ECN_check_ce(tp, skb);
4484
4485         if (tcp_try_rmem_schedule(sk, skb->truesize))
4486                 goto drop;
4487
4488         /* Disable header prediction. */
4489         tp->pred_flags = 0;
4490         inet_csk_schedule_ack(sk);
4491
4492         SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4493                    tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4494
4495         skb_set_owner_r(skb, sk);
4496
4497         if (!skb_peek(&tp->out_of_order_queue)) {
4498                 /* Initial out of order segment, build 1 SACK. */
4499                 if (tcp_is_sack(tp)) {
4500                         tp->rx_opt.num_sacks = 1;
4501                         tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4502                         tp->selective_acks[0].end_seq =
4503                                                 TCP_SKB_CB(skb)->end_seq;
4504                 }
4505                 __skb_queue_head(&tp->out_of_order_queue, skb);
4506         } else {
4507                 struct sk_buff *skb1 = skb_peek_tail(&tp->out_of_order_queue);
4508                 u32 seq = TCP_SKB_CB(skb)->seq;
4509                 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4510
4511                 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4512                         __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4513
4514                         if (!tp->rx_opt.num_sacks ||
4515                             tp->selective_acks[0].end_seq != seq)
4516                                 goto add_sack;
4517
4518                         /* Common case: data arrive in order after hole. */
4519                         tp->selective_acks[0].end_seq = end_seq;
4520                         return;
4521                 }
4522
4523                 /* Find place to insert this segment. */
4524                 while (1) {
4525                         if (!after(TCP_SKB_CB(skb1)->seq, seq))
4526                                 break;
4527                         if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4528                                 skb1 = NULL;
4529                                 break;
4530                         }
4531                         skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4532                 }
4533
4534                 /* Do skb overlap to previous one? */
4535                 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4536                         if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4537                                 /* All the bits are present. Drop. */
4538                                 __kfree_skb(skb);
4539                                 tcp_dsack_set(sk, seq, end_seq);
4540                                 goto add_sack;
4541                         }
4542                         if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4543                                 /* Partial overlap. */
4544                                 tcp_dsack_set(sk, seq,
4545                                               TCP_SKB_CB(skb1)->end_seq);
4546                         } else {
4547                                 if (skb_queue_is_first(&tp->out_of_order_queue,
4548                                                        skb1))
4549                                         skb1 = NULL;
4550                                 else
4551                                         skb1 = skb_queue_prev(
4552                                                 &tp->out_of_order_queue,
4553                                                 skb1);
4554                         }
4555                 }
4556                 if (!skb1)
4557                         __skb_queue_head(&tp->out_of_order_queue, skb);
4558                 else
4559                         __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4560
4561                 /* And clean segments covered by new one as whole. */
4562                 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4563                         skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4564
4565                         if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4566                                 break;
4567                         if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4568                                 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4569                                                  end_seq);
4570                                 break;
4571                         }
4572                         __skb_unlink(skb1, &tp->out_of_order_queue);
4573                         tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4574                                          TCP_SKB_CB(skb1)->end_seq);
4575                         __kfree_skb(skb1);
4576                 }
4577
4578 add_sack:
4579                 if (tcp_is_sack(tp))
4580                         tcp_sack_new_ofo_skb(sk, seq, end_seq);
4581         }
4582 }
4583
4584 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4585                                         struct sk_buff_head *list)
4586 {
4587         struct sk_buff *next = NULL;
4588
4589         if (!skb_queue_is_last(list, skb))
4590                 next = skb_queue_next(list, skb);
4591
4592         __skb_unlink(skb, list);
4593         __kfree_skb(skb);
4594         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4595
4596         return next;
4597 }
4598
4599 /* Collapse contiguous sequence of skbs head..tail with
4600  * sequence numbers start..end.
4601  *
4602  * If tail is NULL, this means until the end of the list.
4603  *
4604  * Segments with FIN/SYN are not collapsed (only because this
4605  * simplifies code)
4606  */
4607 static void
4608 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4609              struct sk_buff *head, struct sk_buff *tail,
4610              u32 start, u32 end)
4611 {
4612         struct sk_buff *skb, *n;
4613         bool end_of_skbs;
4614
4615         /* First, check that queue is collapsible and find
4616          * the point where collapsing can be useful. */
4617         skb = head;
4618 restart:
4619         end_of_skbs = true;
4620         skb_queue_walk_from_safe(list, skb, n) {
4621                 if (skb == tail)
4622                         break;
4623                 /* No new bits? It is possible on ofo queue. */
4624                 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4625                         skb = tcp_collapse_one(sk, skb, list);
4626                         if (!skb)
4627                                 break;
4628                         goto restart;
4629                 }
4630
4631                 /* The first skb to collapse is:
4632                  * - not SYN/FIN and
4633                  * - bloated or contains data before "start" or
4634                  *   overlaps to the next one.
4635                  */
4636                 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4637                     (tcp_win_from_space(skb->truesize) > skb->len ||
4638                      before(TCP_SKB_CB(skb)->seq, start))) {
4639                         end_of_skbs = false;
4640                         break;
4641                 }
4642
4643                 if (!skb_queue_is_last(list, skb)) {
4644                         struct sk_buff *next = skb_queue_next(list, skb);
4645                         if (next != tail &&
4646                             TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4647                                 end_of_skbs = false;
4648                                 break;
4649                         }
4650                 }
4651
4652                 /* Decided to skip this, advance start seq. */
4653                 start = TCP_SKB_CB(skb)->end_seq;
4654         }
4655         if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4656                 return;
4657
4658         while (before(start, end)) {
4659                 struct sk_buff *nskb;
4660                 unsigned int header = skb_headroom(skb);
4661                 int copy = SKB_MAX_ORDER(header, 0);
4662
4663                 /* Too big header? This can happen with IPv6. */
4664                 if (copy < 0)
4665                         return;
4666                 if (end - start < copy)
4667                         copy = end - start;
4668                 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4669                 if (!nskb)
4670                         return;
4671
4672                 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4673                 skb_set_network_header(nskb, (skb_network_header(skb) -
4674                                               skb->head));
4675                 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4676                                                 skb->head));
4677                 skb_reserve(nskb, header);
4678                 memcpy(nskb->head, skb->head, header);
4679                 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4680                 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4681                 __skb_queue_before(list, skb, nskb);
4682                 skb_set_owner_r(nskb, sk);
4683
4684                 /* Copy data, releasing collapsed skbs. */
4685                 while (copy > 0) {
4686                         int offset = start - TCP_SKB_CB(skb)->seq;
4687                         int size = TCP_SKB_CB(skb)->end_seq - start;
4688
4689                         BUG_ON(offset < 0);
4690                         if (size > 0) {
4691                                 size = min(copy, size);
4692                                 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4693                                         BUG();
4694                                 TCP_SKB_CB(nskb)->end_seq += size;
4695                                 copy -= size;
4696                                 start += size;
4697                         }
4698                         if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4699                                 skb = tcp_collapse_one(sk, skb, list);
4700                                 if (!skb ||
4701                                     skb == tail ||
4702                                     tcp_hdr(skb)->syn ||
4703                                     tcp_hdr(skb)->fin)
4704                                         return;
4705                         }
4706                 }
4707         }
4708 }
4709
4710 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4711  * and tcp_collapse() them until all the queue is collapsed.
4712  */
4713 static void tcp_collapse_ofo_queue(struct sock *sk)
4714 {
4715         struct tcp_sock *tp = tcp_sk(sk);
4716         struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4717         struct sk_buff *head;
4718         u32 start, end;
4719
4720         if (skb == NULL)
4721                 return;
4722
4723         start = TCP_SKB_CB(skb)->seq;
4724         end = TCP_SKB_CB(skb)->end_seq;
4725         head = skb;
4726
4727         for (;;) {
4728                 struct sk_buff *next = NULL;
4729
4730                 if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4731                         next = skb_queue_next(&tp->out_of_order_queue, skb);
4732                 skb = next;
4733
4734                 /* Segment is terminated when we see gap or when
4735                  * we are at the end of all the queue. */
4736                 if (!skb ||
4737                     after(TCP_SKB_CB(skb)->seq, end) ||
4738                     before(TCP_SKB_CB(skb)->end_seq, start)) {
4739                         tcp_collapse(sk, &tp->out_of_order_queue,
4740                                      head, skb, start, end);
4741                         head = skb;
4742                         if (!skb)
4743                                 break;
4744                         /* Start new segment */
4745                         start = TCP_SKB_CB(skb)->seq;
4746                         end = TCP_SKB_CB(skb)->end_seq;
4747                 } else {
4748                         if (before(TCP_SKB_CB(skb)->seq, start))
4749                                 start = TCP_SKB_CB(skb)->seq;
4750                         if (after(TCP_SKB_CB(skb)->end_seq, end))
4751                                 end = TCP_SKB_CB(skb)->end_seq;
4752                 }
4753         }
4754 }
4755
4756 /*
4757  * Purge the out-of-order queue.
4758  * Return true if queue was pruned.
4759  */
4760 static int tcp_prune_ofo_queue(struct sock *sk)
4761 {
4762         struct tcp_sock *tp = tcp_sk(sk);
4763         int res = 0;
4764
4765         if (!skb_queue_empty(&tp->out_of_order_queue)) {
4766                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4767                 __skb_queue_purge(&tp->out_of_order_queue);
4768
4769                 /* Reset SACK state.  A conforming SACK implementation will
4770                  * do the same at a timeout based retransmit.  When a connection
4771                  * is in a sad state like this, we care only about integrity
4772                  * of the connection not performance.
4773                  */
4774                 if (tp->rx_opt.sack_ok)
4775                         tcp_sack_reset(&tp->rx_opt);
4776                 sk_mem_reclaim(sk);
4777                 res = 1;
4778         }
4779         return res;
4780 }
4781
4782 /* Reduce allocated memory if we can, trying to get
4783  * the socket within its memory limits again.
4784  *
4785  * Return less than zero if we should start dropping frames
4786  * until the socket owning process reads some of the data
4787  * to stabilize the situation.
4788  */
4789 static int tcp_prune_queue(struct sock *sk)
4790 {
4791         struct tcp_sock *tp = tcp_sk(sk);
4792
4793         SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4794
4795         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4796
4797         if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4798                 tcp_clamp_window(sk);
4799         else if (tcp_memory_pressure)
4800                 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4801
4802         tcp_collapse_ofo_queue(sk);
4803         if (!skb_queue_empty(&sk->sk_receive_queue))
4804                 tcp_collapse(sk, &sk->sk_receive_queue,
4805                              skb_peek(&sk->sk_receive_queue),
4806                              NULL,
4807                              tp->copied_seq, tp->rcv_nxt);
4808         sk_mem_reclaim(sk);
4809
4810         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4811                 return 0;
4812
4813         /* Collapsing did not help, destructive actions follow.
4814          * This must not ever occur. */
4815
4816         tcp_prune_ofo_queue(sk);
4817
4818         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4819                 return 0;
4820
4821         /* If we are really being abused, tell the caller to silently
4822          * drop receive data on the floor.  It will get retransmitted
4823          * and hopefully then we'll have sufficient space.
4824          */
4825         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4826
4827         /* Massive buffer overcommit. */
4828         tp->pred_flags = 0;
4829         return -1;
4830 }
4831
4832 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4833  * As additional protections, we do not touch cwnd in retransmission phases,
4834  * and if application hit its sndbuf limit recently.
4835  */
4836 void tcp_cwnd_application_limited(struct sock *sk)
4837 {
4838         struct tcp_sock *tp = tcp_sk(sk);
4839
4840         if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4841             sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4842                 /* Limited by application or receiver window. */
4843                 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4844                 u32 win_used = max(tp->snd_cwnd_used, init_win);
4845                 if (win_used < tp->snd_cwnd) {
4846                         tp->snd_ssthresh = tcp_current_ssthresh(sk);
4847                         tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4848                 }
4849                 tp->snd_cwnd_used = 0;
4850         }
4851         tp->snd_cwnd_stamp = tcp_time_stamp;
4852 }
4853
4854 static int tcp_should_expand_sndbuf(struct sock *sk)
4855 {
4856         struct tcp_sock *tp = tcp_sk(sk);
4857
4858         /* If the user specified a specific send buffer setting, do
4859          * not modify it.
4860          */
4861         if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4862                 return 0;
4863
4864         /* If we are under global TCP memory pressure, do not expand.  */
4865         if (tcp_memory_pressure)
4866                 return 0;
4867
4868         /* If we are under soft global TCP memory pressure, do not expand.  */
4869         if (atomic_long_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4870                 return 0;
4871
4872         /* If we filled the congestion window, do not expand.  */
4873         if (tp->packets_out >= tp->snd_cwnd)
4874                 return 0;
4875
4876         return 1;
4877 }
4878
4879 /* When incoming ACK allowed to free some skb from write_queue,
4880  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4881  * on the exit from tcp input handler.
4882  *
4883  * PROBLEM: sndbuf expansion does not work well with largesend.
4884  */
4885 static void tcp_new_space(struct sock *sk)
4886 {
4887         struct tcp_sock *tp = tcp_sk(sk);
4888
4889         if (tcp_should_expand_sndbuf(sk)) {
4890                 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4891                         MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
4892                 int demanded = max_t(unsigned int, tp->snd_cwnd,
4893                                      tp->reordering + 1);
4894                 sndmem *= 2 * demanded;
4895                 if (sndmem > sk->sk_sndbuf)
4896                         sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4897                 tp->snd_cwnd_stamp = tcp_time_stamp;
4898         }
4899
4900         sk->sk_write_space(sk);
4901 }
4902
4903 static void tcp_check_space(struct sock *sk)
4904 {
4905         if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4906                 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4907                 if (sk->sk_socket &&
4908                     test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4909                         tcp_new_space(sk);
4910         }
4911 }
4912
4913 static inline void tcp_data_snd_check(struct sock *sk)
4914 {
4915         tcp_push_pending_frames(sk);
4916         tcp_check_space(sk);
4917 }
4918
4919 /*
4920  * Check if sending an ack is needed.
4921  */
4922 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4923 {
4924         struct tcp_sock *tp = tcp_sk(sk);
4925
4926             /* More than one full frame received... */
4927         if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4928              /* ... and right edge of window advances far enough.
4929               * (tcp_recvmsg() will send ACK otherwise). Or...
4930               */
4931              __tcp_select_window(sk) >= tp->rcv_wnd) ||
4932             /* We ACK each frame or... */
4933             tcp_in_quickack_mode(sk) ||
4934             /* We have out of order data. */
4935             (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4936                 /* Then ack it now */
4937                 tcp_send_ack(sk);
4938         } else {
4939                 /* Else, send delayed ack. */
4940                 tcp_send_delayed_ack(sk);
4941         }
4942 }
4943
4944 static inline void tcp_ack_snd_check(struct sock *sk)
4945 {
4946         if (!inet_csk_ack_scheduled(sk)) {
4947                 /* We sent a data segment already. */
4948                 return;
4949         }
4950         __tcp_ack_snd_check(sk, 1);
4951 }
4952
4953 /*
4954  *      This routine is only called when we have urgent data
4955  *      signaled. Its the 'slow' part of tcp_urg. It could be
4956  *      moved inline now as tcp_urg is only called from one
4957  *      place. We handle URGent data wrong. We have to - as
4958  *      BSD still doesn't use the correction from RFC961.
4959  *      For 1003.1g we should support a new option TCP_STDURG to permit
4960  *      either form (or just set the sysctl tcp_stdurg).
4961  */
4962
4963 static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
4964 {
4965         struct tcp_sock *tp = tcp_sk(sk);
4966         u32 ptr = ntohs(th->urg_ptr);
4967
4968         if (ptr && !sysctl_tcp_stdurg)
4969                 ptr--;
4970         ptr += ntohl(th->seq);
4971
4972         /* Ignore urgent data that we've already seen and read. */
4973         if (after(tp->copied_seq, ptr))
4974                 return;
4975
4976         /* Do not replay urg ptr.
4977          *
4978          * NOTE: interesting situation not covered by specs.
4979          * Misbehaving sender may send urg ptr, pointing to segment,
4980          * which we already have in ofo queue. We are not able to fetch
4981          * such data and will stay in TCP_URG_NOTYET until will be eaten
4982          * by recvmsg(). Seems, we are not obliged to handle such wicked
4983          * situations. But it is worth to think about possibility of some
4984          * DoSes using some hypothetical application level deadlock.
4985          */
4986         if (before(ptr, tp->rcv_nxt))
4987                 return;
4988
4989         /* Do we already have a newer (or duplicate) urgent pointer? */
4990         if (tp->urg_data && !after(ptr, tp->urg_seq))
4991                 return;
4992
4993         /* Tell the world about our new urgent pointer. */
4994         sk_send_sigurg(sk);
4995
4996         /* We may be adding urgent data when the last byte read was
4997          * urgent. To do this requires some care. We cannot just ignore
4998          * tp->copied_seq since we would read the last urgent byte again
4999          * as data, nor can we alter copied_seq until this data arrives
5000          * or we break the semantics of SIOCATMARK (and thus sockatmark())
5001          *
5002          * NOTE. Double Dutch. Rendering to plain English: author of comment
5003          * above did something sort of  send("A", MSG_OOB); send("B", MSG_OOB);
5004          * and expect that both A and B disappear from stream. This is _wrong_.
5005          * Though this happens in BSD with high probability, this is occasional.
5006          * Any application relying on this is buggy. Note also, that fix "works"
5007          * only in this artificial test. Insert some normal data between A and B and we will
5008          * decline of BSD again. Verdict: it is better to remove to trap
5009          * buggy users.
5010          */
5011         if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5012             !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5013                 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5014                 tp->copied_seq++;
5015                 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5016                         __skb_unlink(skb, &sk->sk_receive_queue);
5017                         __kfree_skb(skb);
5018                 }
5019         }
5020
5021         tp->urg_data = TCP_URG_NOTYET;
5022         tp->urg_seq = ptr;
5023
5024         /* Disable header prediction. */
5025         tp->pred_flags = 0;
5026 }
5027
5028 /* This is the 'fast' part of urgent handling. */
5029 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
5030 {
5031         struct tcp_sock *tp = tcp_sk(sk);
5032
5033         /* Check if we get a new urgent pointer - normally not. */
5034         if (th->urg)
5035                 tcp_check_urg(sk, th);
5036
5037         /* Do we wait for any urgent data? - normally not... */
5038         if (tp->urg_data == TCP_URG_NOTYET) {
5039                 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5040                           th->syn;
5041
5042                 /* Is the urgent pointer pointing into this packet? */
5043                 if (ptr < skb->len) {
5044                         u8 tmp;
5045                         if (skb_copy_bits(skb, ptr, &tmp, 1))
5046                                 BUG();
5047                         tp->urg_data = TCP_URG_VALID | tmp;
5048                         if (!sock_flag(sk, SOCK_DEAD))
5049                                 sk->sk_data_ready(sk, 0);
5050                 }
5051         }
5052 }
5053
5054 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5055 {
5056         struct tcp_sock *tp = tcp_sk(sk);
5057         int chunk = skb->len - hlen;
5058         int err;
5059
5060         local_bh_enable();
5061         if (skb_csum_unnecessary(skb))
5062                 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
5063         else
5064                 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
5065                                                        tp->ucopy.iov);
5066
5067         if (!err) {
5068                 tp->ucopy.len -= chunk;
5069                 tp->copied_seq += chunk;
5070                 tcp_rcv_space_adjust(sk);
5071         }
5072
5073         local_bh_disable();
5074         return err;
5075 }
5076
5077 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5078                                             struct sk_buff *skb)
5079 {
5080         __sum16 result;
5081
5082         if (sock_owned_by_user(sk)) {
5083                 local_bh_enable();
5084                 result = __tcp_checksum_complete(skb);
5085                 local_bh_disable();
5086         } else {
5087                 result = __tcp_checksum_complete(skb);
5088         }
5089         return result;
5090 }
5091
5092 static inline int tcp_checksum_complete_user(struct sock *sk,
5093                                              struct sk_buff *skb)
5094 {
5095         return !skb_csum_unnecessary(skb) &&
5096                __tcp_checksum_complete_user(sk, skb);
5097 }
5098
5099 #ifdef CONFIG_NET_DMA
5100 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5101                                   int hlen)
5102 {
5103         struct tcp_sock *tp = tcp_sk(sk);
5104         int chunk = skb->len - hlen;
5105         int dma_cookie;
5106         int copied_early = 0;
5107
5108         if (tp->ucopy.wakeup)
5109                 return 0;
5110
5111         if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5112                 tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
5113
5114         if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5115
5116                 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5117                                                          skb, hlen,
5118                                                          tp->ucopy.iov, chunk,
5119                                                          tp->ucopy.pinned_list);
5120
5121                 if (dma_cookie < 0)
5122                         goto out;
5123
5124                 tp->ucopy.dma_cookie = dma_cookie;
5125                 copied_early = 1;
5126
5127                 tp->ucopy.len -= chunk;
5128                 tp->copied_seq += chunk;
5129                 tcp_rcv_space_adjust(sk);
5130
5131                 if ((tp->ucopy.len == 0) ||
5132                     (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5133                     (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5134                         tp->ucopy.wakeup = 1;
5135                         sk->sk_data_ready(sk, 0);
5136                 }
5137         } else if (chunk > 0) {
5138                 tp->ucopy.wakeup = 1;
5139                 sk->sk_data_ready(sk, 0);
5140         }
5141 out:
5142         return copied_early;
5143 }
5144 #endif /* CONFIG_NET_DMA */
5145
5146 /* Does PAWS and seqno based validation of an incoming segment, flags will
5147  * play significant role here.
5148  */
5149 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5150                               struct tcphdr *th, int syn_inerr)
5151 {
5152         u8 *hash_location;
5153         struct tcp_sock *tp = tcp_sk(sk);
5154
5155         /* RFC1323: H1. Apply PAWS check first. */
5156         if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
5157             tp->rx_opt.saw_tstamp &&
5158             tcp_paws_discard(sk, skb)) {
5159                 if (!th->rst) {
5160                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5161                         tcp_send_dupack(sk, skb);
5162                         goto discard;
5163                 }
5164                 /* Reset is accepted even if it did not pass PAWS. */
5165         }
5166
5167         /* Step 1: check sequence number */
5168         if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5169                 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5170                  * (RST) segments are validated by checking their SEQ-fields."
5171                  * And page 69: "If an incoming segment is not acceptable,
5172                  * an acknowledgment should be sent in reply (unless the RST
5173                  * bit is set, if so drop the segment and return)".
5174                  */
5175                 if (!th->rst)
5176                         tcp_send_dupack(sk, skb);
5177                 goto discard;
5178         }
5179
5180         /* Step 2: check RST bit */
5181         if (th->rst) {
5182                 tcp_reset(sk);
5183                 goto discard;
5184         }
5185
5186         /* ts_recent update must be made after we are sure that the packet
5187          * is in window.
5188          */
5189         tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5190
5191         /* step 3: check security and precedence [ignored] */
5192
5193         /* step 4: Check for a SYN in window. */
5194         if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5195                 if (syn_inerr)
5196                         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5197                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5198                 tcp_reset(sk);
5199                 return -1;
5200         }
5201
5202         return 1;
5203
5204 discard:
5205         __kfree_skb(skb);
5206         return 0;
5207 }
5208
5209 /*
5210  *      TCP receive function for the ESTABLISHED state.
5211  *
5212  *      It is split into a fast path and a slow path. The fast path is
5213  *      disabled when:
5214  *      - A zero window was announced from us - zero window probing
5215  *        is only handled properly in the slow path.
5216  *      - Out of order segments arrived.
5217  *      - Urgent data is expected.
5218  *      - There is no buffer space left
5219  *      - Unexpected TCP flags/window values/header lengths are received
5220  *        (detected by checking the TCP header against pred_flags)
5221  *      - Data is sent in both directions. Fast path only supports pure senders
5222  *        or pure receivers (this means either the sequence number or the ack
5223  *        value must stay constant)
5224  *      - Unexpected TCP option.
5225  *
5226  *      When these conditions are not satisfied it drops into a standard
5227  *      receive procedure patterned after RFC793 to handle all cases.
5228  *      The first three cases are guaranteed by proper pred_flags setting,
5229  *      the rest is checked inline. Fast processing is turned on in
5230  *      tcp_data_queue when everything is OK.
5231  */
5232 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5233                         struct tcphdr *th, unsigned len)
5234 {
5235         struct tcp_sock *tp = tcp_sk(sk);
5236         int res;
5237
5238         /*
5239          *      Header prediction.
5240          *      The code loosely follows the one in the famous
5241          *      "30 instruction TCP receive" Van Jacobson mail.
5242          *
5243          *      Van's trick is to deposit buffers into socket queue
5244          *      on a device interrupt, to call tcp_recv function
5245          *      on the receive process context and checksum and copy
5246          *      the buffer to user space. smart...
5247          *
5248          *      Our current scheme is not silly either but we take the
5249          *      extra cost of the net_bh soft interrupt processing...
5250          *      We do checksum and copy also but from device to kernel.
5251          */
5252
5253         tp->rx_opt.saw_tstamp = 0;
5254
5255         /*      pred_flags is 0xS?10 << 16 + snd_wnd
5256          *      if header_prediction is to be made
5257          *      'S' will always be tp->tcp_header_len >> 2
5258          *      '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5259          *  turn it off (when there are holes in the receive
5260          *       space for instance)
5261          *      PSH flag is ignored.
5262          */
5263
5264         if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5265             TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5266             !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5267                 int tcp_header_len = tp->tcp_header_len;
5268
5269                 /* Timestamp header prediction: tcp_header_len
5270                  * is automatically equal to th->doff*4 due to pred_flags
5271                  * match.
5272                  */
5273
5274                 /* Check timestamp */
5275                 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5276                         /* No? Slow path! */
5277                         if (!tcp_parse_aligned_timestamp(tp, th))
5278                                 goto slow_path;
5279
5280                         /* If PAWS failed, check it more carefully in slow path */
5281                         if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5282                                 goto slow_path;
5283
5284                         /* DO NOT update ts_recent here, if checksum fails
5285                          * and timestamp was corrupted part, it will result
5286                          * in a hung connection since we will drop all
5287                          * future packets due to the PAWS test.
5288                          */
5289                 }
5290
5291                 if (len <= tcp_header_len) {
5292                         /* Bulk data transfer: sender */
5293                         if (len == tcp_header_len) {
5294                                 /* Predicted packet is in window by definition.
5295                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5296                                  * Hence, check seq<=rcv_wup reduces to:
5297                                  */
5298                                 if (tcp_header_len ==
5299                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5300                                     tp->rcv_nxt == tp->rcv_wup)
5301                                         tcp_store_ts_recent(tp);
5302
5303                                 /* We know that such packets are checksummed
5304                                  * on entry.
5305                                  */
5306                                 tcp_ack(sk, skb, 0);
5307                                 __kfree_skb(skb);
5308                                 tcp_data_snd_check(sk);
5309                                 return 0;
5310                         } else { /* Header too small */
5311                                 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5312                                 goto discard;
5313                         }
5314                 } else {
5315                         int eaten = 0;
5316                         int copied_early = 0;
5317
5318                         if (tp->copied_seq == tp->rcv_nxt &&
5319                             len - tcp_header_len <= tp->ucopy.len) {
5320 #ifdef CONFIG_NET_DMA
5321                                 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5322                                         copied_early = 1;
5323                                         eaten = 1;
5324                                 }
5325 #endif
5326                                 if (tp->ucopy.task == current &&
5327                                     sock_owned_by_user(sk) && !copied_early) {
5328                                         __set_current_state(TASK_RUNNING);
5329
5330                                         if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5331                                                 eaten = 1;
5332                                 }
5333                                 if (eaten) {
5334                                         /* Predicted packet is in window by definition.
5335                                          * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5336                                          * Hence, check seq<=rcv_wup reduces to:
5337                                          */
5338                                         if (tcp_header_len ==
5339                                             (sizeof(struct tcphdr) +
5340                                              TCPOLEN_TSTAMP_ALIGNED) &&
5341                                             tp->rcv_nxt == tp->rcv_wup)
5342                                                 tcp_store_ts_recent(tp);
5343
5344                                         tcp_rcv_rtt_measure_ts(sk, skb);
5345
5346                                         __skb_pull(skb, tcp_header_len);
5347                                         tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5348                                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5349                                 }
5350                                 if (copied_early)
5351                                         tcp_cleanup_rbuf(sk, skb->len);
5352                         }
5353                         if (!eaten) {
5354                                 if (tcp_checksum_complete_user(sk, skb))
5355                                         goto csum_error;
5356
5357                                 /* Predicted packet is in window by definition.
5358                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5359                                  * Hence, check seq<=rcv_wup reduces to:
5360                                  */
5361                                 if (tcp_header_len ==
5362                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5363                                     tp->rcv_nxt == tp->rcv_wup)
5364                                         tcp_store_ts_recent(tp);
5365
5366                                 tcp_rcv_rtt_measure_ts(sk, skb);
5367
5368                                 if ((int)skb->truesize > sk->sk_forward_alloc)
5369                                         goto step5;
5370
5371                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5372
5373                                 /* Bulk data transfer: receiver */
5374                                 __skb_pull(skb, tcp_header_len);
5375                                 __skb_queue_tail(&sk->sk_receive_queue, skb);
5376                                 skb_set_owner_r(skb, sk);
5377                                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5378                         }
5379
5380                         tcp_event_data_recv(sk, skb);
5381
5382                         if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5383                                 /* Well, only one small jumplet in fast path... */
5384                                 tcp_ack(sk, skb, FLAG_DATA);
5385                                 tcp_data_snd_check(sk);
5386                                 if (!inet_csk_ack_scheduled(sk))
5387                                         goto no_ack;
5388                         }
5389
5390                         if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5391                                 __tcp_ack_snd_check(sk, 0);
5392 no_ack:
5393 #ifdef CONFIG_NET_DMA
5394                         if (copied_early)
5395                                 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5396                         else
5397 #endif
5398                         if (eaten)
5399                                 __kfree_skb(skb);
5400                         else
5401                                 sk->sk_data_ready(sk, 0);
5402                         return 0;
5403                 }
5404         }
5405
5406 slow_path:
5407         if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5408                 goto csum_error;
5409
5410         /*
5411          *      Standard slow path.
5412          */
5413
5414         res = tcp_validate_incoming(sk, skb, th, 1);
5415         if (res <= 0)
5416                 return -res;
5417
5418 step5:
5419         if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
5420                 goto discard;
5421
5422         tcp_rcv_rtt_measure_ts(sk, skb);
5423
5424         /* Process urgent data. */
5425         tcp_urg(sk, skb, th);
5426
5427         /* step 7: process the segment text */
5428         tcp_data_queue(sk, skb);
5429
5430         tcp_data_snd_check(sk);
5431         tcp_ack_snd_check(sk);
5432         return 0;
5433
5434 csum_error:
5435         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5436
5437 discard:
5438         __kfree_skb(skb);
5439         return 0;
5440 }
5441 EXPORT_SYMBOL(tcp_rcv_established);
5442
5443 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5444                                          struct tcphdr *th, unsigned len)
5445 {
5446         u8 *hash_location;
5447         struct inet_connection_sock *icsk = inet_csk(sk);
5448         struct tcp_sock *tp = tcp_sk(sk);
5449         struct tcp_cookie_values *cvp = tp->cookie_values;
5450         int saved_clamp = tp->rx_opt.mss_clamp;
5451
5452         tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0);
5453
5454         if (th->ack) {
5455                 /* rfc793:
5456                  * "If the state is SYN-SENT then
5457                  *    first check the ACK bit
5458                  *      If the ACK bit is set
5459                  *        If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5460                  *        a reset (unless the RST bit is set, if so drop
5461                  *        the segment and return)"
5462                  *
5463                  *  We do not send data with SYN, so that RFC-correct
5464                  *  test reduces to:
5465                  */
5466                 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5467                         goto reset_and_undo;
5468
5469                 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5470                     !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5471                              tcp_time_stamp)) {
5472                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5473                         goto reset_and_undo;
5474                 }
5475
5476                 /* Now ACK is acceptable.
5477                  *
5478                  * "If the RST bit is set
5479                  *    If the ACK was acceptable then signal the user "error:
5480                  *    connection reset", drop the segment, enter CLOSED state,
5481                  *    delete TCB, and return."
5482                  */
5483
5484                 if (th->rst) {
5485                         tcp_reset(sk);
5486                         goto discard;
5487                 }
5488
5489                 /* rfc793:
5490                  *   "fifth, if neither of the SYN or RST bits is set then
5491                  *    drop the segment and return."
5492                  *
5493                  *    See note below!
5494                  *                                        --ANK(990513)
5495                  */
5496                 if (!th->syn)
5497                         goto discard_and_undo;
5498
5499                 /* rfc793:
5500                  *   "If the SYN bit is on ...
5501                  *    are acceptable then ...
5502                  *    (our SYN has been ACKed), change the connection
5503                  *    state to ESTABLISHED..."
5504                  */
5505
5506                 TCP_ECN_rcv_synack(tp, th);
5507
5508                 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5509                 tcp_ack(sk, skb, FLAG_SLOWPATH);
5510
5511                 /* Ok.. it's good. Set up sequence numbers and
5512                  * move to established.
5513                  */
5514                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5515                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5516
5517                 /* RFC1323: The window in SYN & SYN/ACK segments is
5518                  * never scaled.
5519                  */
5520                 tp->snd_wnd = ntohs(th->window);
5521                 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5522
5523                 if (!tp->rx_opt.wscale_ok) {
5524                         tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5525                         tp->window_clamp = min(tp->window_clamp, 65535U);
5526                 }
5527
5528                 if (tp->rx_opt.saw_tstamp) {
5529                         tp->rx_opt.tstamp_ok       = 1;
5530                         tp->tcp_header_len =
5531                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5532                         tp->advmss          -= TCPOLEN_TSTAMP_ALIGNED;
5533                         tcp_store_ts_recent(tp);
5534                 } else {
5535                         tp->tcp_header_len = sizeof(struct tcphdr);
5536                 }
5537
5538                 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5539                         tcp_enable_fack(tp);
5540
5541                 tcp_mtup_init(sk);
5542                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5543                 tcp_initialize_rcv_mss(sk);
5544
5545                 /* Remember, tcp_poll() does not lock socket!
5546                  * Change state from SYN-SENT only after copied_seq
5547                  * is initialized. */
5548                 tp->copied_seq = tp->rcv_nxt;
5549
5550                 if (cvp != NULL &&
5551                     cvp->cookie_pair_size > 0 &&
5552                     tp->rx_opt.cookie_plus > 0) {
5553                         int cookie_size = tp->rx_opt.cookie_plus
5554                                         - TCPOLEN_COOKIE_BASE;
5555                         int cookie_pair_size = cookie_size
5556                                              + cvp->cookie_desired;
5557
5558                         /* A cookie extension option was sent and returned.
5559                          * Note that each incoming SYNACK replaces the
5560                          * Responder cookie.  The initial exchange is most
5561                          * fragile, as protection against spoofing relies
5562    &n