Merge branch 'nf' of git://1984.lsi.us.es/net
[linux-2.6.git] / net / ipv4 / tcp_input.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:     Ross Biro
9  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *              Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *              Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *              Florian La Roche, <flla@stud.uni-sb.de>
13  *              Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *              Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *              Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *              Matthew Dillon, <dillon@apollo.west.oic.com>
17  *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *              Jorge Cwik, <jorge@laser.satlink.net>
19  */
20
21 /*
22  * Changes:
23  *              Pedro Roque     :       Fast Retransmit/Recovery.
24  *                                      Two receive queues.
25  *                                      Retransmit queue handled by TCP.
26  *                                      Better retransmit timer handling.
27  *                                      New congestion avoidance.
28  *                                      Header prediction.
29  *                                      Variable renaming.
30  *
31  *              Eric            :       Fast Retransmit.
32  *              Randy Scott     :       MSS option defines.
33  *              Eric Schenk     :       Fixes to slow start algorithm.
34  *              Eric Schenk     :       Yet another double ACK bug.
35  *              Eric Schenk     :       Delayed ACK bug fixes.
36  *              Eric Schenk     :       Floyd style fast retrans war avoidance.
37  *              David S. Miller :       Don't allow zero congestion window.
38  *              Eric Schenk     :       Fix retransmitter so that it sends
39  *                                      next packet on ack of previous packet.
40  *              Andi Kleen      :       Moved open_request checking here
41  *                                      and process RSTs for open_requests.
42  *              Andi Kleen      :       Better prune_queue, and other fixes.
43  *              Andrey Savochkin:       Fix RTT measurements in the presence of
44  *                                      timestamps.
45  *              Andrey Savochkin:       Check sequence numbers correctly when
46  *                                      removing SACKs due to in sequence incoming
47  *                                      data segments.
48  *              Andi Kleen:             Make sure we never ack data there is not
49  *                                      enough room for. Also make this condition
50  *                                      a fatal error if it might still happen.
51  *              Andi Kleen:             Add tcp_measure_rcv_mss to make
52  *                                      connections with MSS<min(MTU,ann. MSS)
53  *                                      work without delayed acks.
54  *              Andi Kleen:             Process packets with PSH set in the
55  *                                      fast path.
56  *              J Hadi Salim:           ECN support
57  *              Andrei Gurtov,
58  *              Pasi Sarolahti,
59  *              Panu Kuhlberg:          Experimental audit of TCP (re)transmission
60  *                                      engine. Lots of bugs are found.
61  *              Pasi Sarolahti:         F-RTO for dealing with spurious RTOs
62  */
63
64 #include <linux/mm.h>
65 #include <linux/slab.h>
66 #include <linux/module.h>
67 #include <linux/sysctl.h>
68 #include <linux/kernel.h>
69 #include <net/dst.h>
70 #include <net/tcp.h>
71 #include <net/inet_common.h>
72 #include <linux/ipsec.h>
73 #include <asm/unaligned.h>
74 #include <net/netdma.h>
75
76 int sysctl_tcp_timestamps __read_mostly = 1;
77 int sysctl_tcp_window_scaling __read_mostly = 1;
78 int sysctl_tcp_sack __read_mostly = 1;
79 int sysctl_tcp_fack __read_mostly = 1;
80 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
81 EXPORT_SYMBOL(sysctl_tcp_reordering);
82 int sysctl_tcp_ecn __read_mostly = 2;
83 EXPORT_SYMBOL(sysctl_tcp_ecn);
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 2;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
88
89 int sysctl_tcp_stdurg __read_mostly;
90 int sysctl_tcp_rfc1337 __read_mostly;
91 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
92 int sysctl_tcp_frto __read_mostly = 2;
93 int sysctl_tcp_frto_response __read_mostly;
94 int sysctl_tcp_nometrics_save __read_mostly;
95
96 int sysctl_tcp_thin_dupack __read_mostly;
97
98 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
99 int sysctl_tcp_abc __read_mostly;
100
101 #define FLAG_DATA               0x01 /* Incoming frame contained data.          */
102 #define FLAG_WIN_UPDATE         0x02 /* Incoming ACK was a window update.       */
103 #define FLAG_DATA_ACKED         0x04 /* This ACK acknowledged new data.         */
104 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted.  */
105 #define FLAG_SYN_ACKED          0x10 /* This ACK acknowledged SYN.              */
106 #define FLAG_DATA_SACKED        0x20 /* New SACK.                               */
107 #define FLAG_ECE                0x40 /* ECE in this ACK                         */
108 #define FLAG_DATA_LOST          0x80 /* SACK detected data lossage.             */
109 #define FLAG_SLOWPATH           0x100 /* Do not skip RFC checks for window update.*/
110 #define FLAG_ONLY_ORIG_SACKED   0x200 /* SACKs only non-rexmit sent before RTO */
111 #define FLAG_SND_UNA_ADVANCED   0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
112 #define FLAG_DSACKING_ACK       0x800 /* SACK blocks contained D-SACK info */
113 #define FLAG_NONHEAD_RETRANS_ACKED      0x1000 /* Non-head rexmitted data was ACKed */
114 #define FLAG_SACK_RENEGING      0x2000 /* snd_una advanced to a sacked seq */
115
116 #define FLAG_ACKED              (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
117 #define FLAG_NOT_DUP            (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
118 #define FLAG_CA_ALERT           (FLAG_DATA_SACKED|FLAG_ECE)
119 #define FLAG_FORWARD_PROGRESS   (FLAG_ACKED|FLAG_DATA_SACKED)
120 #define FLAG_ANY_PROGRESS       (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
121
122 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
123 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
124
125 /* Adapt the MSS value used to make delayed ack decision to the
126  * real world.
127  */
128 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
129 {
130         struct inet_connection_sock *icsk = inet_csk(sk);
131         const unsigned int lss = icsk->icsk_ack.last_seg_size;
132         unsigned int len;
133
134         icsk->icsk_ack.last_seg_size = 0;
135
136         /* skb->len may jitter because of SACKs, even if peer
137          * sends good full-sized frames.
138          */
139         len = skb_shinfo(skb)->gso_size ? : skb->len;
140         if (len >= icsk->icsk_ack.rcv_mss) {
141                 icsk->icsk_ack.rcv_mss = len;
142         } else {
143                 /* Otherwise, we make more careful check taking into account,
144                  * that SACKs block is variable.
145                  *
146                  * "len" is invariant segment length, including TCP header.
147                  */
148                 len += skb->data - skb_transport_header(skb);
149                 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
150                     /* If PSH is not set, packet should be
151                      * full sized, provided peer TCP is not badly broken.
152                      * This observation (if it is correct 8)) allows
153                      * to handle super-low mtu links fairly.
154                      */
155                     (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
156                      !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
157                         /* Subtract also invariant (if peer is RFC compliant),
158                          * tcp header plus fixed timestamp option length.
159                          * Resulting "len" is MSS free of SACK jitter.
160                          */
161                         len -= tcp_sk(sk)->tcp_header_len;
162                         icsk->icsk_ack.last_seg_size = len;
163                         if (len == lss) {
164                                 icsk->icsk_ack.rcv_mss = len;
165                                 return;
166                         }
167                 }
168                 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
169                         icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
170                 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
171         }
172 }
173
174 static void tcp_incr_quickack(struct sock *sk)
175 {
176         struct inet_connection_sock *icsk = inet_csk(sk);
177         unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
178
179         if (quickacks == 0)
180                 quickacks = 2;
181         if (quickacks > icsk->icsk_ack.quick)
182                 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
183 }
184
185 static void tcp_enter_quickack_mode(struct sock *sk)
186 {
187         struct inet_connection_sock *icsk = inet_csk(sk);
188         tcp_incr_quickack(sk);
189         icsk->icsk_ack.pingpong = 0;
190         icsk->icsk_ack.ato = TCP_ATO_MIN;
191 }
192
193 /* Send ACKs quickly, if "quick" count is not exhausted
194  * and the session is not interactive.
195  */
196
197 static inline int tcp_in_quickack_mode(const struct sock *sk)
198 {
199         const struct inet_connection_sock *icsk = inet_csk(sk);
200         return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
201 }
202
203 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
204 {
205         if (tp->ecn_flags & TCP_ECN_OK)
206                 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
207 }
208
209 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
210 {
211         if (tcp_hdr(skb)->cwr)
212                 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
213 }
214
215 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
216 {
217         tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
218 }
219
220 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
221 {
222         if (!(tp->ecn_flags & TCP_ECN_OK))
223                 return;
224
225         switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
226         case INET_ECN_NOT_ECT:
227                 /* Funny extension: if ECT is not set on a segment,
228                  * and we already seen ECT on a previous segment,
229                  * it is probably a retransmit.
230                  */
231                 if (tp->ecn_flags & TCP_ECN_SEEN)
232                         tcp_enter_quickack_mode((struct sock *)tp);
233                 break;
234         case INET_ECN_CE:
235                 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
236                 /* fallinto */
237         default:
238                 tp->ecn_flags |= TCP_ECN_SEEN;
239         }
240 }
241
242 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
243 {
244         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
245                 tp->ecn_flags &= ~TCP_ECN_OK;
246 }
247
248 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
249 {
250         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
251                 tp->ecn_flags &= ~TCP_ECN_OK;
252 }
253
254 static inline int TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
255 {
256         if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
257                 return 1;
258         return 0;
259 }
260
261 /* Buffer size and advertised window tuning.
262  *
263  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
264  */
265
266 static void tcp_fixup_sndbuf(struct sock *sk)
267 {
268         int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
269
270         sndmem *= TCP_INIT_CWND;
271         if (sk->sk_sndbuf < sndmem)
272                 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
273 }
274
275 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
276  *
277  * All tcp_full_space() is split to two parts: "network" buffer, allocated
278  * forward and advertised in receiver window (tp->rcv_wnd) and
279  * "application buffer", required to isolate scheduling/application
280  * latencies from network.
281  * window_clamp is maximal advertised window. It can be less than
282  * tcp_full_space(), in this case tcp_full_space() - window_clamp
283  * is reserved for "application" buffer. The less window_clamp is
284  * the smoother our behaviour from viewpoint of network, but the lower
285  * throughput and the higher sensitivity of the connection to losses. 8)
286  *
287  * rcv_ssthresh is more strict window_clamp used at "slow start"
288  * phase to predict further behaviour of this connection.
289  * It is used for two goals:
290  * - to enforce header prediction at sender, even when application
291  *   requires some significant "application buffer". It is check #1.
292  * - to prevent pruning of receive queue because of misprediction
293  *   of receiver window. Check #2.
294  *
295  * The scheme does not work when sender sends good segments opening
296  * window and then starts to feed us spaghetti. But it should work
297  * in common situations. Otherwise, we have to rely on queue collapsing.
298  */
299
300 /* Slow part of check#2. */
301 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
302 {
303         struct tcp_sock *tp = tcp_sk(sk);
304         /* Optimize this! */
305         int truesize = tcp_win_from_space(skb->truesize) >> 1;
306         int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
307
308         while (tp->rcv_ssthresh <= window) {
309                 if (truesize <= skb->len)
310                         return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
311
312                 truesize >>= 1;
313                 window >>= 1;
314         }
315         return 0;
316 }
317
318 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
319 {
320         struct tcp_sock *tp = tcp_sk(sk);
321
322         /* Check #1 */
323         if (tp->rcv_ssthresh < tp->window_clamp &&
324             (int)tp->rcv_ssthresh < tcp_space(sk) &&
325             !tcp_memory_pressure) {
326                 int incr;
327
328                 /* Check #2. Increase window, if skb with such overhead
329                  * will fit to rcvbuf in future.
330                  */
331                 if (tcp_win_from_space(skb->truesize) <= skb->len)
332                         incr = 2 * tp->advmss;
333                 else
334                         incr = __tcp_grow_window(sk, skb);
335
336                 if (incr) {
337                         tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
338                                                tp->window_clamp);
339                         inet_csk(sk)->icsk_ack.quick |= 1;
340                 }
341         }
342 }
343
344 /* 3. Tuning rcvbuf, when connection enters established state. */
345
346 static void tcp_fixup_rcvbuf(struct sock *sk)
347 {
348         u32 mss = tcp_sk(sk)->advmss;
349         u32 icwnd = TCP_DEFAULT_INIT_RCVWND;
350         int rcvmem;
351
352         /* Limit to 10 segments if mss <= 1460,
353          * or 14600/mss segments, with a minimum of two segments.
354          */
355         if (mss > 1460)
356                 icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
357
358         rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER);
359         while (tcp_win_from_space(rcvmem) < mss)
360                 rcvmem += 128;
361
362         rcvmem *= icwnd;
363
364         if (sk->sk_rcvbuf < rcvmem)
365                 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
366 }
367
368 /* 4. Try to fixup all. It is made immediately after connection enters
369  *    established state.
370  */
371 static void tcp_init_buffer_space(struct sock *sk)
372 {
373         struct tcp_sock *tp = tcp_sk(sk);
374         int maxwin;
375
376         if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
377                 tcp_fixup_rcvbuf(sk);
378         if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
379                 tcp_fixup_sndbuf(sk);
380
381         tp->rcvq_space.space = tp->rcv_wnd;
382
383         maxwin = tcp_full_space(sk);
384
385         if (tp->window_clamp >= maxwin) {
386                 tp->window_clamp = maxwin;
387
388                 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
389                         tp->window_clamp = max(maxwin -
390                                                (maxwin >> sysctl_tcp_app_win),
391                                                4 * tp->advmss);
392         }
393
394         /* Force reservation of one segment. */
395         if (sysctl_tcp_app_win &&
396             tp->window_clamp > 2 * tp->advmss &&
397             tp->window_clamp + tp->advmss > maxwin)
398                 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
399
400         tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
401         tp->snd_cwnd_stamp = tcp_time_stamp;
402 }
403
404 /* 5. Recalculate window clamp after socket hit its memory bounds. */
405 static void tcp_clamp_window(struct sock *sk)
406 {
407         struct tcp_sock *tp = tcp_sk(sk);
408         struct inet_connection_sock *icsk = inet_csk(sk);
409
410         icsk->icsk_ack.quick = 0;
411
412         if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
413             !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
414             !tcp_memory_pressure &&
415             atomic_long_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
416                 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
417                                     sysctl_tcp_rmem[2]);
418         }
419         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
420                 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
421 }
422
423 /* Initialize RCV_MSS value.
424  * RCV_MSS is an our guess about MSS used by the peer.
425  * We haven't any direct information about the MSS.
426  * It's better to underestimate the RCV_MSS rather than overestimate.
427  * Overestimations make us ACKing less frequently than needed.
428  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
429  */
430 void tcp_initialize_rcv_mss(struct sock *sk)
431 {
432         const struct tcp_sock *tp = tcp_sk(sk);
433         unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
434
435         hint = min(hint, tp->rcv_wnd / 2);
436         hint = min(hint, TCP_MSS_DEFAULT);
437         hint = max(hint, TCP_MIN_MSS);
438
439         inet_csk(sk)->icsk_ack.rcv_mss = hint;
440 }
441 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
442
443 /* Receiver "autotuning" code.
444  *
445  * The algorithm for RTT estimation w/o timestamps is based on
446  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
447  * <http://public.lanl.gov/radiant/pubs.html#DRS>
448  *
449  * More detail on this code can be found at
450  * <http://staff.psc.edu/jheffner/>,
451  * though this reference is out of date.  A new paper
452  * is pending.
453  */
454 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
455 {
456         u32 new_sample = tp->rcv_rtt_est.rtt;
457         long m = sample;
458
459         if (m == 0)
460                 m = 1;
461
462         if (new_sample != 0) {
463                 /* If we sample in larger samples in the non-timestamp
464                  * case, we could grossly overestimate the RTT especially
465                  * with chatty applications or bulk transfer apps which
466                  * are stalled on filesystem I/O.
467                  *
468                  * Also, since we are only going for a minimum in the
469                  * non-timestamp case, we do not smooth things out
470                  * else with timestamps disabled convergence takes too
471                  * long.
472                  */
473                 if (!win_dep) {
474                         m -= (new_sample >> 3);
475                         new_sample += m;
476                 } else if (m < new_sample)
477                         new_sample = m << 3;
478         } else {
479                 /* No previous measure. */
480                 new_sample = m << 3;
481         }
482
483         if (tp->rcv_rtt_est.rtt != new_sample)
484                 tp->rcv_rtt_est.rtt = new_sample;
485 }
486
487 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
488 {
489         if (tp->rcv_rtt_est.time == 0)
490                 goto new_measure;
491         if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
492                 return;
493         tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
494
495 new_measure:
496         tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
497         tp->rcv_rtt_est.time = tcp_time_stamp;
498 }
499
500 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
501                                           const struct sk_buff *skb)
502 {
503         struct tcp_sock *tp = tcp_sk(sk);
504         if (tp->rx_opt.rcv_tsecr &&
505             (TCP_SKB_CB(skb)->end_seq -
506              TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
507                 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
508 }
509
510 /*
511  * This function should be called every time data is copied to user space.
512  * It calculates the appropriate TCP receive buffer space.
513  */
514 void tcp_rcv_space_adjust(struct sock *sk)
515 {
516         struct tcp_sock *tp = tcp_sk(sk);
517         int time;
518         int space;
519
520         if (tp->rcvq_space.time == 0)
521                 goto new_measure;
522
523         time = tcp_time_stamp - tp->rcvq_space.time;
524         if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
525                 return;
526
527         space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
528
529         space = max(tp->rcvq_space.space, space);
530
531         if (tp->rcvq_space.space != space) {
532                 int rcvmem;
533
534                 tp->rcvq_space.space = space;
535
536                 if (sysctl_tcp_moderate_rcvbuf &&
537                     !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
538                         int new_clamp = space;
539
540                         /* Receive space grows, normalize in order to
541                          * take into account packet headers and sk_buff
542                          * structure overhead.
543                          */
544                         space /= tp->advmss;
545                         if (!space)
546                                 space = 1;
547                         rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
548                         while (tcp_win_from_space(rcvmem) < tp->advmss)
549                                 rcvmem += 128;
550                         space *= rcvmem;
551                         space = min(space, sysctl_tcp_rmem[2]);
552                         if (space > sk->sk_rcvbuf) {
553                                 sk->sk_rcvbuf = space;
554
555                                 /* Make the window clamp follow along.  */
556                                 tp->window_clamp = new_clamp;
557                         }
558                 }
559         }
560
561 new_measure:
562         tp->rcvq_space.seq = tp->copied_seq;
563         tp->rcvq_space.time = tcp_time_stamp;
564 }
565
566 /* There is something which you must keep in mind when you analyze the
567  * behavior of the tp->ato delayed ack timeout interval.  When a
568  * connection starts up, we want to ack as quickly as possible.  The
569  * problem is that "good" TCP's do slow start at the beginning of data
570  * transmission.  The means that until we send the first few ACK's the
571  * sender will sit on his end and only queue most of his data, because
572  * he can only send snd_cwnd unacked packets at any given time.  For
573  * each ACK we send, he increments snd_cwnd and transmits more of his
574  * queue.  -DaveM
575  */
576 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
577 {
578         struct tcp_sock *tp = tcp_sk(sk);
579         struct inet_connection_sock *icsk = inet_csk(sk);
580         u32 now;
581
582         inet_csk_schedule_ack(sk);
583
584         tcp_measure_rcv_mss(sk, skb);
585
586         tcp_rcv_rtt_measure(tp);
587
588         now = tcp_time_stamp;
589
590         if (!icsk->icsk_ack.ato) {
591                 /* The _first_ data packet received, initialize
592                  * delayed ACK engine.
593                  */
594                 tcp_incr_quickack(sk);
595                 icsk->icsk_ack.ato = TCP_ATO_MIN;
596         } else {
597                 int m = now - icsk->icsk_ack.lrcvtime;
598
599                 if (m <= TCP_ATO_MIN / 2) {
600                         /* The fastest case is the first. */
601                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
602                 } else if (m < icsk->icsk_ack.ato) {
603                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
604                         if (icsk->icsk_ack.ato > icsk->icsk_rto)
605                                 icsk->icsk_ack.ato = icsk->icsk_rto;
606                 } else if (m > icsk->icsk_rto) {
607                         /* Too long gap. Apparently sender failed to
608                          * restart window, so that we send ACKs quickly.
609                          */
610                         tcp_incr_quickack(sk);
611                         sk_mem_reclaim(sk);
612                 }
613         }
614         icsk->icsk_ack.lrcvtime = now;
615
616         TCP_ECN_check_ce(tp, skb);
617
618         if (skb->len >= 128)
619                 tcp_grow_window(sk, skb);
620 }
621
622 /* Called to compute a smoothed rtt estimate. The data fed to this
623  * routine either comes from timestamps, or from segments that were
624  * known _not_ to have been retransmitted [see Karn/Partridge
625  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
626  * piece by Van Jacobson.
627  * NOTE: the next three routines used to be one big routine.
628  * To save cycles in the RFC 1323 implementation it was better to break
629  * it up into three procedures. -- erics
630  */
631 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
632 {
633         struct tcp_sock *tp = tcp_sk(sk);
634         long m = mrtt; /* RTT */
635
636         /*      The following amusing code comes from Jacobson's
637          *      article in SIGCOMM '88.  Note that rtt and mdev
638          *      are scaled versions of rtt and mean deviation.
639          *      This is designed to be as fast as possible
640          *      m stands for "measurement".
641          *
642          *      On a 1990 paper the rto value is changed to:
643          *      RTO = rtt + 4 * mdev
644          *
645          * Funny. This algorithm seems to be very broken.
646          * These formulae increase RTO, when it should be decreased, increase
647          * too slowly, when it should be increased quickly, decrease too quickly
648          * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
649          * does not matter how to _calculate_ it. Seems, it was trap
650          * that VJ failed to avoid. 8)
651          */
652         if (m == 0)
653                 m = 1;
654         if (tp->srtt != 0) {
655                 m -= (tp->srtt >> 3);   /* m is now error in rtt est */
656                 tp->srtt += m;          /* rtt = 7/8 rtt + 1/8 new */
657                 if (m < 0) {
658                         m = -m;         /* m is now abs(error) */
659                         m -= (tp->mdev >> 2);   /* similar update on mdev */
660                         /* This is similar to one of Eifel findings.
661                          * Eifel blocks mdev updates when rtt decreases.
662                          * This solution is a bit different: we use finer gain
663                          * for mdev in this case (alpha*beta).
664                          * Like Eifel it also prevents growth of rto,
665                          * but also it limits too fast rto decreases,
666                          * happening in pure Eifel.
667                          */
668                         if (m > 0)
669                                 m >>= 3;
670                 } else {
671                         m -= (tp->mdev >> 2);   /* similar update on mdev */
672                 }
673                 tp->mdev += m;          /* mdev = 3/4 mdev + 1/4 new */
674                 if (tp->mdev > tp->mdev_max) {
675                         tp->mdev_max = tp->mdev;
676                         if (tp->mdev_max > tp->rttvar)
677                                 tp->rttvar = tp->mdev_max;
678                 }
679                 if (after(tp->snd_una, tp->rtt_seq)) {
680                         if (tp->mdev_max < tp->rttvar)
681                                 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
682                         tp->rtt_seq = tp->snd_nxt;
683                         tp->mdev_max = tcp_rto_min(sk);
684                 }
685         } else {
686                 /* no previous measure. */
687                 tp->srtt = m << 3;      /* take the measured time to be rtt */
688                 tp->mdev = m << 1;      /* make sure rto = 3*rtt */
689                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
690                 tp->rtt_seq = tp->snd_nxt;
691         }
692 }
693
694 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
695  * routine referred to above.
696  */
697 static inline void tcp_set_rto(struct sock *sk)
698 {
699         const struct tcp_sock *tp = tcp_sk(sk);
700         /* Old crap is replaced with new one. 8)
701          *
702          * More seriously:
703          * 1. If rtt variance happened to be less 50msec, it is hallucination.
704          *    It cannot be less due to utterly erratic ACK generation made
705          *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
706          *    to do with delayed acks, because at cwnd>2 true delack timeout
707          *    is invisible. Actually, Linux-2.4 also generates erratic
708          *    ACKs in some circumstances.
709          */
710         inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
711
712         /* 2. Fixups made earlier cannot be right.
713          *    If we do not estimate RTO correctly without them,
714          *    all the algo is pure shit and should be replaced
715          *    with correct one. It is exactly, which we pretend to do.
716          */
717
718         /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
719          * guarantees that rto is higher.
720          */
721         tcp_bound_rto(sk);
722 }
723
724 /* Save metrics learned by this TCP session.
725    This function is called only, when TCP finishes successfully
726    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
727  */
728 void tcp_update_metrics(struct sock *sk)
729 {
730         struct tcp_sock *tp = tcp_sk(sk);
731         struct dst_entry *dst = __sk_dst_get(sk);
732
733         if (sysctl_tcp_nometrics_save)
734                 return;
735
736         dst_confirm(dst);
737
738         if (dst && (dst->flags & DST_HOST)) {
739                 const struct inet_connection_sock *icsk = inet_csk(sk);
740                 int m;
741                 unsigned long rtt;
742
743                 if (icsk->icsk_backoff || !tp->srtt) {
744                         /* This session failed to estimate rtt. Why?
745                          * Probably, no packets returned in time.
746                          * Reset our results.
747                          */
748                         if (!(dst_metric_locked(dst, RTAX_RTT)))
749                                 dst_metric_set(dst, RTAX_RTT, 0);
750                         return;
751                 }
752
753                 rtt = dst_metric_rtt(dst, RTAX_RTT);
754                 m = rtt - tp->srtt;
755
756                 /* If newly calculated rtt larger than stored one,
757                  * store new one. Otherwise, use EWMA. Remember,
758                  * rtt overestimation is always better than underestimation.
759                  */
760                 if (!(dst_metric_locked(dst, RTAX_RTT))) {
761                         if (m <= 0)
762                                 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
763                         else
764                                 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
765                 }
766
767                 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
768                         unsigned long var;
769                         if (m < 0)
770                                 m = -m;
771
772                         /* Scale deviation to rttvar fixed point */
773                         m >>= 1;
774                         if (m < tp->mdev)
775                                 m = tp->mdev;
776
777                         var = dst_metric_rtt(dst, RTAX_RTTVAR);
778                         if (m >= var)
779                                 var = m;
780                         else
781                                 var -= (var - m) >> 2;
782
783                         set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
784                 }
785
786                 if (tcp_in_initial_slowstart(tp)) {
787                         /* Slow start still did not finish. */
788                         if (dst_metric(dst, RTAX_SSTHRESH) &&
789                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
790                             (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
791                                 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_cwnd >> 1);
792                         if (!dst_metric_locked(dst, RTAX_CWND) &&
793                             tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
794                                 dst_metric_set(dst, RTAX_CWND, tp->snd_cwnd);
795                 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
796                            icsk->icsk_ca_state == TCP_CA_Open) {
797                         /* Cong. avoidance phase, cwnd is reliable. */
798                         if (!dst_metric_locked(dst, RTAX_SSTHRESH))
799                                 dst_metric_set(dst, RTAX_SSTHRESH,
800                                                max(tp->snd_cwnd >> 1, tp->snd_ssthresh));
801                         if (!dst_metric_locked(dst, RTAX_CWND))
802                                 dst_metric_set(dst, RTAX_CWND,
803                                                (dst_metric(dst, RTAX_CWND) +
804                                                 tp->snd_cwnd) >> 1);
805                 } else {
806                         /* Else slow start did not finish, cwnd is non-sense,
807                            ssthresh may be also invalid.
808                          */
809                         if (!dst_metric_locked(dst, RTAX_CWND))
810                                 dst_metric_set(dst, RTAX_CWND,
811                                                (dst_metric(dst, RTAX_CWND) +
812                                                 tp->snd_ssthresh) >> 1);
813                         if (dst_metric(dst, RTAX_SSTHRESH) &&
814                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
815                             tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
816                                 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_ssthresh);
817                 }
818
819                 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
820                         if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
821                             tp->reordering != sysctl_tcp_reordering)
822                                 dst_metric_set(dst, RTAX_REORDERING, tp->reordering);
823                 }
824         }
825 }
826
827 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
828 {
829         __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
830
831         if (!cwnd)
832                 cwnd = TCP_INIT_CWND;
833         return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
834 }
835
836 /* Set slow start threshold and cwnd not falling to slow start */
837 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
838 {
839         struct tcp_sock *tp = tcp_sk(sk);
840         const struct inet_connection_sock *icsk = inet_csk(sk);
841
842         tp->prior_ssthresh = 0;
843         tp->bytes_acked = 0;
844         if (icsk->icsk_ca_state < TCP_CA_CWR) {
845                 tp->undo_marker = 0;
846                 if (set_ssthresh)
847                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
848                 tp->snd_cwnd = min(tp->snd_cwnd,
849                                    tcp_packets_in_flight(tp) + 1U);
850                 tp->snd_cwnd_cnt = 0;
851                 tp->high_seq = tp->snd_nxt;
852                 tp->snd_cwnd_stamp = tcp_time_stamp;
853                 TCP_ECN_queue_cwr(tp);
854
855                 tcp_set_ca_state(sk, TCP_CA_CWR);
856         }
857 }
858
859 /*
860  * Packet counting of FACK is based on in-order assumptions, therefore TCP
861  * disables it when reordering is detected
862  */
863 static void tcp_disable_fack(struct tcp_sock *tp)
864 {
865         /* RFC3517 uses different metric in lost marker => reset on change */
866         if (tcp_is_fack(tp))
867                 tp->lost_skb_hint = NULL;
868         tp->rx_opt.sack_ok &= ~2;
869 }
870
871 /* Take a notice that peer is sending D-SACKs */
872 static void tcp_dsack_seen(struct tcp_sock *tp)
873 {
874         tp->rx_opt.sack_ok |= 4;
875 }
876
877 /* Initialize metrics on socket. */
878
879 static void tcp_init_metrics(struct sock *sk)
880 {
881         struct tcp_sock *tp = tcp_sk(sk);
882         struct dst_entry *dst = __sk_dst_get(sk);
883
884         if (dst == NULL)
885                 goto reset;
886
887         dst_confirm(dst);
888
889         if (dst_metric_locked(dst, RTAX_CWND))
890                 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
891         if (dst_metric(dst, RTAX_SSTHRESH)) {
892                 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
893                 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
894                         tp->snd_ssthresh = tp->snd_cwnd_clamp;
895         } else {
896                 /* ssthresh may have been reduced unnecessarily during.
897                  * 3WHS. Restore it back to its initial default.
898                  */
899                 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
900         }
901         if (dst_metric(dst, RTAX_REORDERING) &&
902             tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
903                 tcp_disable_fack(tp);
904                 tp->reordering = dst_metric(dst, RTAX_REORDERING);
905         }
906
907         if (dst_metric(dst, RTAX_RTT) == 0 || tp->srtt == 0)
908                 goto reset;
909
910         /* Initial rtt is determined from SYN,SYN-ACK.
911          * The segment is small and rtt may appear much
912          * less than real one. Use per-dst memory
913          * to make it more realistic.
914          *
915          * A bit of theory. RTT is time passed after "normal" sized packet
916          * is sent until it is ACKed. In normal circumstances sending small
917          * packets force peer to delay ACKs and calculation is correct too.
918          * The algorithm is adaptive and, provided we follow specs, it
919          * NEVER underestimate RTT. BUT! If peer tries to make some clever
920          * tricks sort of "quick acks" for time long enough to decrease RTT
921          * to low value, and then abruptly stops to do it and starts to delay
922          * ACKs, wait for troubles.
923          */
924         if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
925                 tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
926                 tp->rtt_seq = tp->snd_nxt;
927         }
928         if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
929                 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
930                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
931         }
932         tcp_set_rto(sk);
933 reset:
934         if (tp->srtt == 0) {
935                 /* RFC2988bis: We've failed to get a valid RTT sample from
936                  * 3WHS. This is most likely due to retransmission,
937                  * including spurious one. Reset the RTO back to 3secs
938                  * from the more aggressive 1sec to avoid more spurious
939                  * retransmission.
940                  */
941                 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_FALLBACK;
942                 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_FALLBACK;
943         }
944         /* Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
945          * retransmitted. In light of RFC2988bis' more aggressive 1sec
946          * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
947          * retransmission has occurred.
948          */
949         if (tp->total_retrans > 1)
950                 tp->snd_cwnd = 1;
951         else
952                 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
953         tp->snd_cwnd_stamp = tcp_time_stamp;
954 }
955
956 static void tcp_update_reordering(struct sock *sk, const int metric,
957                                   const int ts)
958 {
959         struct tcp_sock *tp = tcp_sk(sk);
960         if (metric > tp->reordering) {
961                 int mib_idx;
962
963                 tp->reordering = min(TCP_MAX_REORDERING, metric);
964
965                 /* This exciting event is worth to be remembered. 8) */
966                 if (ts)
967                         mib_idx = LINUX_MIB_TCPTSREORDER;
968                 else if (tcp_is_reno(tp))
969                         mib_idx = LINUX_MIB_TCPRENOREORDER;
970                 else if (tcp_is_fack(tp))
971                         mib_idx = LINUX_MIB_TCPFACKREORDER;
972                 else
973                         mib_idx = LINUX_MIB_TCPSACKREORDER;
974
975                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
976 #if FASTRETRANS_DEBUG > 1
977                 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
978                        tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
979                        tp->reordering,
980                        tp->fackets_out,
981                        tp->sacked_out,
982                        tp->undo_marker ? tp->undo_retrans : 0);
983 #endif
984                 tcp_disable_fack(tp);
985         }
986 }
987
988 /* This must be called before lost_out is incremented */
989 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
990 {
991         if ((tp->retransmit_skb_hint == NULL) ||
992             before(TCP_SKB_CB(skb)->seq,
993                    TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
994                 tp->retransmit_skb_hint = skb;
995
996         if (!tp->lost_out ||
997             after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
998                 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
999 }
1000
1001 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
1002 {
1003         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1004                 tcp_verify_retransmit_hint(tp, skb);
1005
1006                 tp->lost_out += tcp_skb_pcount(skb);
1007                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1008         }
1009 }
1010
1011 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
1012                                             struct sk_buff *skb)
1013 {
1014         tcp_verify_retransmit_hint(tp, skb);
1015
1016         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1017                 tp->lost_out += tcp_skb_pcount(skb);
1018                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1019         }
1020 }
1021
1022 /* This procedure tags the retransmission queue when SACKs arrive.
1023  *
1024  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1025  * Packets in queue with these bits set are counted in variables
1026  * sacked_out, retrans_out and lost_out, correspondingly.
1027  *
1028  * Valid combinations are:
1029  * Tag  InFlight        Description
1030  * 0    1               - orig segment is in flight.
1031  * S    0               - nothing flies, orig reached receiver.
1032  * L    0               - nothing flies, orig lost by net.
1033  * R    2               - both orig and retransmit are in flight.
1034  * L|R  1               - orig is lost, retransmit is in flight.
1035  * S|R  1               - orig reached receiver, retrans is still in flight.
1036  * (L|S|R is logically valid, it could occur when L|R is sacked,
1037  *  but it is equivalent to plain S and code short-curcuits it to S.
1038  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1039  *
1040  * These 6 states form finite state machine, controlled by the following events:
1041  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1042  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1043  * 3. Loss detection event of one of three flavors:
1044  *      A. Scoreboard estimator decided the packet is lost.
1045  *         A'. Reno "three dupacks" marks head of queue lost.
1046  *         A''. Its FACK modfication, head until snd.fack is lost.
1047  *      B. SACK arrives sacking data transmitted after never retransmitted
1048  *         hole was sent out.
1049  *      C. SACK arrives sacking SND.NXT at the moment, when the
1050  *         segment was retransmitted.
1051  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1052  *
1053  * It is pleasant to note, that state diagram turns out to be commutative,
1054  * so that we are allowed not to be bothered by order of our actions,
1055  * when multiple events arrive simultaneously. (see the function below).
1056  *
1057  * Reordering detection.
1058  * --------------------
1059  * Reordering metric is maximal distance, which a packet can be displaced
1060  * in packet stream. With SACKs we can estimate it:
1061  *
1062  * 1. SACK fills old hole and the corresponding segment was not
1063  *    ever retransmitted -> reordering. Alas, we cannot use it
1064  *    when segment was retransmitted.
1065  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1066  *    for retransmitted and already SACKed segment -> reordering..
1067  * Both of these heuristics are not used in Loss state, when we cannot
1068  * account for retransmits accurately.
1069  *
1070  * SACK block validation.
1071  * ----------------------
1072  *
1073  * SACK block range validation checks that the received SACK block fits to
1074  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1075  * Note that SND.UNA is not included to the range though being valid because
1076  * it means that the receiver is rather inconsistent with itself reporting
1077  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1078  * perfectly valid, however, in light of RFC2018 which explicitly states
1079  * that "SACK block MUST reflect the newest segment.  Even if the newest
1080  * segment is going to be discarded ...", not that it looks very clever
1081  * in case of head skb. Due to potentional receiver driven attacks, we
1082  * choose to avoid immediate execution of a walk in write queue due to
1083  * reneging and defer head skb's loss recovery to standard loss recovery
1084  * procedure that will eventually trigger (nothing forbids us doing this).
1085  *
1086  * Implements also blockage to start_seq wrap-around. Problem lies in the
1087  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1088  * there's no guarantee that it will be before snd_nxt (n). The problem
1089  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1090  * wrap (s_w):
1091  *
1092  *         <- outs wnd ->                          <- wrapzone ->
1093  *         u     e      n                         u_w   e_w  s n_w
1094  *         |     |      |                          |     |   |  |
1095  * |<------------+------+----- TCP seqno space --------------+---------->|
1096  * ...-- <2^31 ->|                                           |<--------...
1097  * ...---- >2^31 ------>|                                    |<--------...
1098  *
1099  * Current code wouldn't be vulnerable but it's better still to discard such
1100  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1101  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1102  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1103  * equal to the ideal case (infinite seqno space without wrap caused issues).
1104  *
1105  * With D-SACK the lower bound is extended to cover sequence space below
1106  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1107  * again, D-SACK block must not to go across snd_una (for the same reason as
1108  * for the normal SACK blocks, explained above). But there all simplicity
1109  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1110  * fully below undo_marker they do not affect behavior in anyway and can
1111  * therefore be safely ignored. In rare cases (which are more or less
1112  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1113  * fragmentation and packet reordering past skb's retransmission. To consider
1114  * them correctly, the acceptable range must be extended even more though
1115  * the exact amount is rather hard to quantify. However, tp->max_window can
1116  * be used as an exaggerated estimate.
1117  */
1118 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1119                                   u32 start_seq, u32 end_seq)
1120 {
1121         /* Too far in future, or reversed (interpretation is ambiguous) */
1122         if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1123                 return 0;
1124
1125         /* Nasty start_seq wrap-around check (see comments above) */
1126         if (!before(start_seq, tp->snd_nxt))
1127                 return 0;
1128
1129         /* In outstanding window? ...This is valid exit for D-SACKs too.
1130          * start_seq == snd_una is non-sensical (see comments above)
1131          */
1132         if (after(start_seq, tp->snd_una))
1133                 return 1;
1134
1135         if (!is_dsack || !tp->undo_marker)
1136                 return 0;
1137
1138         /* ...Then it's D-SACK, and must reside below snd_una completely */
1139         if (after(end_seq, tp->snd_una))
1140                 return 0;
1141
1142         if (!before(start_seq, tp->undo_marker))
1143                 return 1;
1144
1145         /* Too old */
1146         if (!after(end_seq, tp->undo_marker))
1147                 return 0;
1148
1149         /* Undo_marker boundary crossing (overestimates a lot). Known already:
1150          *   start_seq < undo_marker and end_seq >= undo_marker.
1151          */
1152         return !before(start_seq, end_seq - tp->max_window);
1153 }
1154
1155 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1156  * Event "C". Later note: FACK people cheated me again 8), we have to account
1157  * for reordering! Ugly, but should help.
1158  *
1159  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1160  * less than what is now known to be received by the other end (derived from
1161  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1162  * retransmitted skbs to avoid some costly processing per ACKs.
1163  */
1164 static void tcp_mark_lost_retrans(struct sock *sk)
1165 {
1166         const struct inet_connection_sock *icsk = inet_csk(sk);
1167         struct tcp_sock *tp = tcp_sk(sk);
1168         struct sk_buff *skb;
1169         int cnt = 0;
1170         u32 new_low_seq = tp->snd_nxt;
1171         u32 received_upto = tcp_highest_sack_seq(tp);
1172
1173         if (!tcp_is_fack(tp) || !tp->retrans_out ||
1174             !after(received_upto, tp->lost_retrans_low) ||
1175             icsk->icsk_ca_state != TCP_CA_Recovery)
1176                 return;
1177
1178         tcp_for_write_queue(skb, sk) {
1179                 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1180
1181                 if (skb == tcp_send_head(sk))
1182                         break;
1183                 if (cnt == tp->retrans_out)
1184                         break;
1185                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1186                         continue;
1187
1188                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1189                         continue;
1190
1191                 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1192                  * constraint here (see above) but figuring out that at
1193                  * least tp->reordering SACK blocks reside between ack_seq
1194                  * and received_upto is not easy task to do cheaply with
1195                  * the available datastructures.
1196                  *
1197                  * Whether FACK should check here for tp->reordering segs
1198                  * in-between one could argue for either way (it would be
1199                  * rather simple to implement as we could count fack_count
1200                  * during the walk and do tp->fackets_out - fack_count).
1201                  */
1202                 if (after(received_upto, ack_seq)) {
1203                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1204                         tp->retrans_out -= tcp_skb_pcount(skb);
1205
1206                         tcp_skb_mark_lost_uncond_verify(tp, skb);
1207                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1208                 } else {
1209                         if (before(ack_seq, new_low_seq))
1210                                 new_low_seq = ack_seq;
1211                         cnt += tcp_skb_pcount(skb);
1212                 }
1213         }
1214
1215         if (tp->retrans_out)
1216                 tp->lost_retrans_low = new_low_seq;
1217 }
1218
1219 static int tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1220                            struct tcp_sack_block_wire *sp, int num_sacks,
1221                            u32 prior_snd_una)
1222 {
1223         struct tcp_sock *tp = tcp_sk(sk);
1224         u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1225         u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1226         int dup_sack = 0;
1227
1228         if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1229                 dup_sack = 1;
1230                 tcp_dsack_seen(tp);
1231                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1232         } else if (num_sacks > 1) {
1233                 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1234                 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1235
1236                 if (!after(end_seq_0, end_seq_1) &&
1237                     !before(start_seq_0, start_seq_1)) {
1238                         dup_sack = 1;
1239                         tcp_dsack_seen(tp);
1240                         NET_INC_STATS_BH(sock_net(sk),
1241                                         LINUX_MIB_TCPDSACKOFORECV);
1242                 }
1243         }
1244
1245         /* D-SACK for already forgotten data... Do dumb counting. */
1246         if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1247             !after(end_seq_0, prior_snd_una) &&
1248             after(end_seq_0, tp->undo_marker))
1249                 tp->undo_retrans--;
1250
1251         return dup_sack;
1252 }
1253
1254 struct tcp_sacktag_state {
1255         int reord;
1256         int fack_count;
1257         int flag;
1258 };
1259
1260 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1261  * the incoming SACK may not exactly match but we can find smaller MSS
1262  * aligned portion of it that matches. Therefore we might need to fragment
1263  * which may fail and creates some hassle (caller must handle error case
1264  * returns).
1265  *
1266  * FIXME: this could be merged to shift decision code
1267  */
1268 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1269                                  u32 start_seq, u32 end_seq)
1270 {
1271         int in_sack, err;
1272         unsigned int pkt_len;
1273         unsigned int mss;
1274
1275         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1276                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1277
1278         if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1279             after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1280                 mss = tcp_skb_mss(skb);
1281                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1282
1283                 if (!in_sack) {
1284                         pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1285                         if (pkt_len < mss)
1286                                 pkt_len = mss;
1287                 } else {
1288                         pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1289                         if (pkt_len < mss)
1290                                 return -EINVAL;
1291                 }
1292
1293                 /* Round if necessary so that SACKs cover only full MSSes
1294                  * and/or the remaining small portion (if present)
1295                  */
1296                 if (pkt_len > mss) {
1297                         unsigned int new_len = (pkt_len / mss) * mss;
1298                         if (!in_sack && new_len < pkt_len) {
1299                                 new_len += mss;
1300                                 if (new_len > skb->len)
1301                                         return 0;
1302                         }
1303                         pkt_len = new_len;
1304                 }
1305                 err = tcp_fragment(sk, skb, pkt_len, mss);
1306                 if (err < 0)
1307                         return err;
1308         }
1309
1310         return in_sack;
1311 }
1312
1313 static u8 tcp_sacktag_one(const struct sk_buff *skb, struct sock *sk,
1314                           struct tcp_sacktag_state *state,
1315                           int dup_sack, int pcount)
1316 {
1317         struct tcp_sock *tp = tcp_sk(sk);
1318         u8 sacked = TCP_SKB_CB(skb)->sacked;
1319         int fack_count = state->fack_count;
1320
1321         /* Account D-SACK for retransmitted packet. */
1322         if (dup_sack && (sacked & TCPCB_RETRANS)) {
1323                 if (tp->undo_marker && tp->undo_retrans &&
1324                     after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1325                         tp->undo_retrans--;
1326                 if (sacked & TCPCB_SACKED_ACKED)
1327                         state->reord = min(fack_count, state->reord);
1328         }
1329
1330         /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1331         if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1332                 return sacked;
1333
1334         if (!(sacked & TCPCB_SACKED_ACKED)) {
1335                 if (sacked & TCPCB_SACKED_RETRANS) {
1336                         /* If the segment is not tagged as lost,
1337                          * we do not clear RETRANS, believing
1338                          * that retransmission is still in flight.
1339                          */
1340                         if (sacked & TCPCB_LOST) {
1341                                 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1342                                 tp->lost_out -= pcount;
1343                                 tp->retrans_out -= pcount;
1344                         }
1345                 } else {
1346                         if (!(sacked & TCPCB_RETRANS)) {
1347                                 /* New sack for not retransmitted frame,
1348                                  * which was in hole. It is reordering.
1349                                  */
1350                                 if (before(TCP_SKB_CB(skb)->seq,
1351                                            tcp_highest_sack_seq(tp)))
1352                                         state->reord = min(fack_count,
1353                                                            state->reord);
1354
1355                                 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1356                                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1357                                         state->flag |= FLAG_ONLY_ORIG_SACKED;
1358                         }
1359
1360                         if (sacked & TCPCB_LOST) {
1361                                 sacked &= ~TCPCB_LOST;
1362                                 tp->lost_out -= pcount;
1363                         }
1364                 }
1365
1366                 sacked |= TCPCB_SACKED_ACKED;
1367                 state->flag |= FLAG_DATA_SACKED;
1368                 tp->sacked_out += pcount;
1369
1370                 fack_count += pcount;
1371
1372                 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1373                 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1374                     before(TCP_SKB_CB(skb)->seq,
1375                            TCP_SKB_CB(tp->lost_skb_hint)->seq))
1376                         tp->lost_cnt_hint += pcount;
1377
1378                 if (fack_count > tp->fackets_out)
1379                         tp->fackets_out = fack_count;
1380         }
1381
1382         /* D-SACK. We can detect redundant retransmission in S|R and plain R
1383          * frames and clear it. undo_retrans is decreased above, L|R frames
1384          * are accounted above as well.
1385          */
1386         if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1387                 sacked &= ~TCPCB_SACKED_RETRANS;
1388                 tp->retrans_out -= pcount;
1389         }
1390
1391         return sacked;
1392 }
1393
1394 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1395                            struct tcp_sacktag_state *state,
1396                            unsigned int pcount, int shifted, int mss,
1397                            int dup_sack)
1398 {
1399         struct tcp_sock *tp = tcp_sk(sk);
1400         struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1401
1402         BUG_ON(!pcount);
1403
1404         if (skb == tp->lost_skb_hint)
1405                 tp->lost_cnt_hint += pcount;
1406
1407         TCP_SKB_CB(prev)->end_seq += shifted;
1408         TCP_SKB_CB(skb)->seq += shifted;
1409
1410         skb_shinfo(prev)->gso_segs += pcount;
1411         BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1412         skb_shinfo(skb)->gso_segs -= pcount;
1413
1414         /* When we're adding to gso_segs == 1, gso_size will be zero,
1415          * in theory this shouldn't be necessary but as long as DSACK
1416          * code can come after this skb later on it's better to keep
1417          * setting gso_size to something.
1418          */
1419         if (!skb_shinfo(prev)->gso_size) {
1420                 skb_shinfo(prev)->gso_size = mss;
1421                 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1422         }
1423
1424         /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1425         if (skb_shinfo(skb)->gso_segs <= 1) {
1426                 skb_shinfo(skb)->gso_size = 0;
1427                 skb_shinfo(skb)->gso_type = 0;
1428         }
1429
1430         /* We discard results */
1431         tcp_sacktag_one(skb, sk, state, dup_sack, pcount);
1432
1433         /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1434         TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1435
1436         if (skb->len > 0) {
1437                 BUG_ON(!tcp_skb_pcount(skb));
1438                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1439                 return 0;
1440         }
1441
1442         /* Whole SKB was eaten :-) */
1443
1444         if (skb == tp->retransmit_skb_hint)
1445                 tp->retransmit_skb_hint = prev;
1446         if (skb == tp->scoreboard_skb_hint)
1447                 tp->scoreboard_skb_hint = prev;
1448         if (skb == tp->lost_skb_hint) {
1449                 tp->lost_skb_hint = prev;
1450                 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1451         }
1452
1453         TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
1454         if (skb == tcp_highest_sack(sk))
1455                 tcp_advance_highest_sack(sk, skb);
1456
1457         tcp_unlink_write_queue(skb, sk);
1458         sk_wmem_free_skb(sk, skb);
1459
1460         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1461
1462         return 1;
1463 }
1464
1465 /* I wish gso_size would have a bit more sane initialization than
1466  * something-or-zero which complicates things
1467  */
1468 static int tcp_skb_seglen(const struct sk_buff *skb)
1469 {
1470         return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1471 }
1472
1473 /* Shifting pages past head area doesn't work */
1474 static int skb_can_shift(const struct sk_buff *skb)
1475 {
1476         return !skb_headlen(skb) && skb_is_nonlinear(skb);
1477 }
1478
1479 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1480  * skb.
1481  */
1482 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1483                                           struct tcp_sacktag_state *state,
1484                                           u32 start_seq, u32 end_seq,
1485                                           int dup_sack)
1486 {
1487         struct tcp_sock *tp = tcp_sk(sk);
1488         struct sk_buff *prev;
1489         int mss;
1490         int pcount = 0;
1491         int len;
1492         int in_sack;
1493
1494         if (!sk_can_gso(sk))
1495                 goto fallback;
1496
1497         /* Normally R but no L won't result in plain S */
1498         if (!dup_sack &&
1499             (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1500                 goto fallback;
1501         if (!skb_can_shift(skb))
1502                 goto fallback;
1503         /* This frame is about to be dropped (was ACKed). */
1504         if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1505                 goto fallback;
1506
1507         /* Can only happen with delayed DSACK + discard craziness */
1508         if (unlikely(skb == tcp_write_queue_head(sk)))
1509                 goto fallback;
1510         prev = tcp_write_queue_prev(sk, skb);
1511
1512         if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1513                 goto fallback;
1514
1515         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1516                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1517
1518         if (in_sack) {
1519                 len = skb->len;
1520                 pcount = tcp_skb_pcount(skb);
1521                 mss = tcp_skb_seglen(skb);
1522
1523                 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1524                  * drop this restriction as unnecessary
1525                  */
1526                 if (mss != tcp_skb_seglen(prev))
1527                         goto fallback;
1528         } else {
1529                 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1530                         goto noop;
1531                 /* CHECKME: This is non-MSS split case only?, this will
1532                  * cause skipped skbs due to advancing loop btw, original
1533                  * has that feature too
1534                  */
1535                 if (tcp_skb_pcount(skb) <= 1)
1536                         goto noop;
1537
1538                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1539                 if (!in_sack) {
1540                         /* TODO: head merge to next could be attempted here
1541                          * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1542                          * though it might not be worth of the additional hassle
1543                          *
1544                          * ...we can probably just fallback to what was done
1545                          * previously. We could try merging non-SACKed ones
1546                          * as well but it probably isn't going to buy off
1547                          * because later SACKs might again split them, and
1548                          * it would make skb timestamp tracking considerably
1549                          * harder problem.
1550                          */
1551                         goto fallback;
1552                 }
1553
1554                 len = end_seq - TCP_SKB_CB(skb)->seq;
1555                 BUG_ON(len < 0);
1556                 BUG_ON(len > skb->len);
1557
1558                 /* MSS boundaries should be honoured or else pcount will
1559                  * severely break even though it makes things bit trickier.
1560                  * Optimize common case to avoid most of the divides
1561                  */
1562                 mss = tcp_skb_mss(skb);
1563
1564                 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1565                  * drop this restriction as unnecessary
1566                  */
1567                 if (mss != tcp_skb_seglen(prev))
1568                         goto fallback;
1569
1570                 if (len == mss) {
1571                         pcount = 1;
1572                 } else if (len < mss) {
1573                         goto noop;
1574                 } else {
1575                         pcount = len / mss;
1576                         len = pcount * mss;
1577                 }
1578         }
1579
1580         if (!skb_shift(prev, skb, len))
1581                 goto fallback;
1582         if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1583                 goto out;
1584
1585         /* Hole filled allows collapsing with the next as well, this is very
1586          * useful when hole on every nth skb pattern happens
1587          */
1588         if (prev == tcp_write_queue_tail(sk))
1589                 goto out;
1590         skb = tcp_write_queue_next(sk, prev);
1591
1592         if (!skb_can_shift(skb) ||
1593             (skb == tcp_send_head(sk)) ||
1594             ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1595             (mss != tcp_skb_seglen(skb)))
1596                 goto out;
1597
1598         len = skb->len;
1599         if (skb_shift(prev, skb, len)) {
1600                 pcount += tcp_skb_pcount(skb);
1601                 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1602         }
1603
1604 out:
1605         state->fack_count += pcount;
1606         return prev;
1607
1608 noop:
1609         return skb;
1610
1611 fallback:
1612         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1613         return NULL;
1614 }
1615
1616 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1617                                         struct tcp_sack_block *next_dup,
1618                                         struct tcp_sacktag_state *state,
1619                                         u32 start_seq, u32 end_seq,
1620                                         int dup_sack_in)
1621 {
1622         struct tcp_sock *tp = tcp_sk(sk);
1623         struct sk_buff *tmp;
1624
1625         tcp_for_write_queue_from(skb, sk) {
1626                 int in_sack = 0;
1627                 int dup_sack = dup_sack_in;
1628
1629                 if (skb == tcp_send_head(sk))
1630                         break;
1631
1632                 /* queue is in-order => we can short-circuit the walk early */
1633                 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1634                         break;
1635
1636                 if ((next_dup != NULL) &&
1637                     before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1638                         in_sack = tcp_match_skb_to_sack(sk, skb,
1639                                                         next_dup->start_seq,
1640                                                         next_dup->end_seq);
1641                         if (in_sack > 0)
1642                                 dup_sack = 1;
1643                 }
1644
1645                 /* skb reference here is a bit tricky to get right, since
1646                  * shifting can eat and free both this skb and the next,
1647                  * so not even _safe variant of the loop is enough.
1648                  */
1649                 if (in_sack <= 0) {
1650                         tmp = tcp_shift_skb_data(sk, skb, state,
1651                                                  start_seq, end_seq, dup_sack);
1652                         if (tmp != NULL) {
1653                                 if (tmp != skb) {
1654                                         skb = tmp;
1655                                         continue;
1656                                 }
1657
1658                                 in_sack = 0;
1659                         } else {
1660                                 in_sack = tcp_match_skb_to_sack(sk, skb,
1661                                                                 start_seq,
1662                                                                 end_seq);
1663                         }
1664                 }
1665
1666                 if (unlikely(in_sack < 0))
1667                         break;
1668
1669                 if (in_sack) {
1670                         TCP_SKB_CB(skb)->sacked = tcp_sacktag_one(skb, sk,
1671                                                                   state,
1672                                                                   dup_sack,
1673                                                                   tcp_skb_pcount(skb));
1674
1675                         if (!before(TCP_SKB_CB(skb)->seq,
1676                                     tcp_highest_sack_seq(tp)))
1677                                 tcp_advance_highest_sack(sk, skb);
1678                 }
1679
1680                 state->fack_count += tcp_skb_pcount(skb);
1681         }
1682         return skb;
1683 }
1684
1685 /* Avoid all extra work that is being done by sacktag while walking in
1686  * a normal way
1687  */
1688 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1689                                         struct tcp_sacktag_state *state,
1690                                         u32 skip_to_seq)
1691 {
1692         tcp_for_write_queue_from(skb, sk) {
1693                 if (skb == tcp_send_head(sk))
1694                         break;
1695
1696                 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1697                         break;
1698
1699                 state->fack_count += tcp_skb_pcount(skb);
1700         }
1701         return skb;
1702 }
1703
1704 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1705                                                 struct sock *sk,
1706                                                 struct tcp_sack_block *next_dup,
1707                                                 struct tcp_sacktag_state *state,
1708                                                 u32 skip_to_seq)
1709 {
1710         if (next_dup == NULL)
1711                 return skb;
1712
1713         if (before(next_dup->start_seq, skip_to_seq)) {
1714                 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1715                 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1716                                        next_dup->start_seq, next_dup->end_seq,
1717                                        1);
1718         }
1719
1720         return skb;
1721 }
1722
1723 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1724 {
1725         return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1726 }
1727
1728 static int
1729 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1730                         u32 prior_snd_una)
1731 {
1732         const struct inet_connection_sock *icsk = inet_csk(sk);
1733         struct tcp_sock *tp = tcp_sk(sk);
1734         const unsigned char *ptr = (skb_transport_header(ack_skb) +
1735                                     TCP_SKB_CB(ack_skb)->sacked);
1736         struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1737         struct tcp_sack_block sp[TCP_NUM_SACKS];
1738         struct tcp_sack_block *cache;
1739         struct tcp_sacktag_state state;
1740         struct sk_buff *skb;
1741         int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1742         int used_sacks;
1743         int found_dup_sack = 0;
1744         int i, j;
1745         int first_sack_index;
1746
1747         state.flag = 0;
1748         state.reord = tp->packets_out;
1749
1750         if (!tp->sacked_out) {
1751                 if (WARN_ON(tp->fackets_out))
1752                         tp->fackets_out = 0;
1753                 tcp_highest_sack_reset(sk);
1754         }
1755
1756         found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1757                                          num_sacks, prior_snd_una);
1758         if (found_dup_sack)
1759                 state.flag |= FLAG_DSACKING_ACK;
1760
1761         /* Eliminate too old ACKs, but take into
1762          * account more or less fresh ones, they can
1763          * contain valid SACK info.
1764          */
1765         if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1766                 return 0;
1767
1768         if (!tp->packets_out)
1769                 goto out;
1770
1771         used_sacks = 0;
1772         first_sack_index = 0;
1773         for (i = 0; i < num_sacks; i++) {
1774                 int dup_sack = !i && found_dup_sack;
1775
1776                 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1777                 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1778
1779                 if (!tcp_is_sackblock_valid(tp, dup_sack,
1780                                             sp[used_sacks].start_seq,
1781                                             sp[used_sacks].end_seq)) {
1782                         int mib_idx;
1783
1784                         if (dup_sack) {
1785                                 if (!tp->undo_marker)
1786                                         mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1787                                 else
1788                                         mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1789                         } else {
1790                                 /* Don't count olds caused by ACK reordering */
1791                                 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1792                                     !after(sp[used_sacks].end_seq, tp->snd_una))
1793                                         continue;
1794                                 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1795                         }
1796
1797                         NET_INC_STATS_BH(sock_net(sk), mib_idx);
1798                         if (i == 0)
1799                                 first_sack_index = -1;
1800                         continue;
1801                 }
1802
1803                 /* Ignore very old stuff early */
1804                 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1805                         continue;
1806
1807                 used_sacks++;
1808         }
1809
1810         /* order SACK blocks to allow in order walk of the retrans queue */
1811         for (i = used_sacks - 1; i > 0; i--) {
1812                 for (j = 0; j < i; j++) {
1813                         if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1814                                 swap(sp[j], sp[j + 1]);
1815
1816                                 /* Track where the first SACK block goes to */
1817                                 if (j == first_sack_index)
1818                                         first_sack_index = j + 1;
1819                         }
1820                 }
1821         }
1822
1823         skb = tcp_write_queue_head(sk);
1824         state.fack_count = 0;
1825         i = 0;
1826
1827         if (!tp->sacked_out) {
1828                 /* It's already past, so skip checking against it */
1829                 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1830         } else {
1831                 cache = tp->recv_sack_cache;
1832                 /* Skip empty blocks in at head of the cache */
1833                 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1834                        !cache->end_seq)
1835                         cache++;
1836         }
1837
1838         while (i < used_sacks) {
1839                 u32 start_seq = sp[i].start_seq;
1840                 u32 end_seq = sp[i].end_seq;
1841                 int dup_sack = (found_dup_sack && (i == first_sack_index));
1842                 struct tcp_sack_block *next_dup = NULL;
1843
1844                 if (found_dup_sack && ((i + 1) == first_sack_index))
1845                         next_dup = &sp[i + 1];
1846
1847                 /* Event "B" in the comment above. */
1848                 if (after(end_seq, tp->high_seq))
1849                         state.flag |= FLAG_DATA_LOST;
1850
1851                 /* Skip too early cached blocks */
1852                 while (tcp_sack_cache_ok(tp, cache) &&
1853                        !before(start_seq, cache->end_seq))
1854                         cache++;
1855
1856                 /* Can skip some work by looking recv_sack_cache? */
1857                 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1858                     after(end_seq, cache->start_seq)) {
1859
1860                         /* Head todo? */
1861                         if (before(start_seq, cache->start_seq)) {
1862                                 skb = tcp_sacktag_skip(skb, sk, &state,
1863                                                        start_seq);
1864                                 skb = tcp_sacktag_walk(skb, sk, next_dup,
1865                                                        &state,
1866                                                        start_seq,
1867                                                        cache->start_seq,
1868                                                        dup_sack);
1869                         }
1870
1871                         /* Rest of the block already fully processed? */
1872                         if (!after(end_seq, cache->end_seq))
1873                                 goto advance_sp;
1874
1875                         skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1876                                                        &state,
1877                                                        cache->end_seq);
1878
1879                         /* ...tail remains todo... */
1880                         if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1881                                 /* ...but better entrypoint exists! */
1882                                 skb = tcp_highest_sack(sk);
1883                                 if (skb == NULL)
1884                                         break;
1885                                 state.fack_count = tp->fackets_out;
1886                                 cache++;
1887                                 goto walk;
1888                         }
1889
1890                         skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1891                         /* Check overlap against next cached too (past this one already) */
1892                         cache++;
1893                         continue;
1894                 }
1895
1896                 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1897                         skb = tcp_highest_sack(sk);
1898                         if (skb == NULL)
1899                                 break;
1900                         state.fack_count = tp->fackets_out;
1901                 }
1902                 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1903
1904 walk:
1905                 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1906                                        start_seq, end_seq, dup_sack);
1907
1908 advance_sp:
1909                 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1910                  * due to in-order walk
1911                  */
1912                 if (after(end_seq, tp->frto_highmark))
1913                         state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1914
1915                 i++;
1916         }
1917
1918         /* Clear the head of the cache sack blocks so we can skip it next time */
1919         for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1920                 tp->recv_sack_cache[i].start_seq = 0;
1921                 tp->recv_sack_cache[i].end_seq = 0;
1922         }
1923         for (j = 0; j < used_sacks; j++)
1924                 tp->recv_sack_cache[i++] = sp[j];
1925
1926         tcp_mark_lost_retrans(sk);
1927
1928         tcp_verify_left_out(tp);
1929
1930         if ((state.reord < tp->fackets_out) &&
1931             ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1932             (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1933                 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1934
1935 out:
1936
1937 #if FASTRETRANS_DEBUG > 0
1938         WARN_ON((int)tp->sacked_out < 0);
1939         WARN_ON((int)tp->lost_out < 0);
1940         WARN_ON((int)tp->retrans_out < 0);
1941         WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1942 #endif
1943         return state.flag;
1944 }
1945
1946 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1947  * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1948  */
1949 static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1950 {
1951         u32 holes;
1952
1953         holes = max(tp->lost_out, 1U);
1954         holes = min(holes, tp->packets_out);
1955
1956         if ((tp->sacked_out + holes) > tp->packets_out) {
1957                 tp->sacked_out = tp->packets_out - holes;
1958                 return 1;
1959         }
1960         return 0;
1961 }
1962
1963 /* If we receive more dupacks than we expected counting segments
1964  * in assumption of absent reordering, interpret this as reordering.
1965  * The only another reason could be bug in receiver TCP.
1966  */
1967 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1968 {
1969         struct tcp_sock *tp = tcp_sk(sk);
1970         if (tcp_limit_reno_sacked(tp))
1971                 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1972 }
1973
1974 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1975
1976 static void tcp_add_reno_sack(struct sock *sk)
1977 {
1978         struct tcp_sock *tp = tcp_sk(sk);
1979         tp->sacked_out++;
1980         tcp_check_reno_reordering(sk, 0);
1981         tcp_verify_left_out(tp);
1982 }
1983
1984 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1985
1986 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1987 {
1988         struct tcp_sock *tp = tcp_sk(sk);
1989
1990         if (acked > 0) {
1991                 /* One ACK acked hole. The rest eat duplicate ACKs. */
1992                 if (acked - 1 >= tp->sacked_out)
1993                         tp->sacked_out = 0;
1994                 else
1995                         tp->sacked_out -= acked - 1;
1996         }
1997         tcp_check_reno_reordering(sk, acked);
1998         tcp_verify_left_out(tp);
1999 }
2000
2001 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2002 {
2003         tp->sacked_out = 0;
2004 }
2005
2006 static int tcp_is_sackfrto(const struct tcp_sock *tp)
2007 {
2008         return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
2009 }
2010
2011 /* F-RTO can only be used if TCP has never retransmitted anything other than
2012  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
2013  */
2014 int tcp_use_frto(struct sock *sk)
2015 {
2016         const struct tcp_sock *tp = tcp_sk(sk);
2017         const struct inet_connection_sock *icsk = inet_csk(sk);
2018         struct sk_buff *skb;
2019
2020         if (!sysctl_tcp_frto)
2021                 return 0;
2022
2023         /* MTU probe and F-RTO won't really play nicely along currently */
2024         if (icsk->icsk_mtup.probe_size)
2025                 return 0;
2026
2027         if (tcp_is_sackfrto(tp))
2028                 return 1;
2029
2030         /* Avoid expensive walking of rexmit queue if possible */
2031         if (tp->retrans_out > 1)
2032                 return 0;
2033
2034         skb = tcp_write_queue_head(sk);
2035         if (tcp_skb_is_last(sk, skb))
2036                 return 1;
2037         skb = tcp_write_queue_next(sk, skb);    /* Skips head */
2038         tcp_for_write_queue_from(skb, sk) {
2039                 if (skb == tcp_send_head(sk))
2040                         break;
2041                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2042                         return 0;
2043                 /* Short-circuit when first non-SACKed skb has been checked */
2044                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2045                         break;
2046         }
2047         return 1;
2048 }
2049
2050 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2051  * recovery a bit and use heuristics in tcp_process_frto() to detect if
2052  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2053  * keep retrans_out counting accurate (with SACK F-RTO, other than head
2054  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2055  * bits are handled if the Loss state is really to be entered (in
2056  * tcp_enter_frto_loss).
2057  *
2058  * Do like tcp_enter_loss() would; when RTO expires the second time it
2059  * does:
2060  *  "Reduce ssthresh if it has not yet been made inside this window."
2061  */
2062 void tcp_enter_frto(struct sock *sk)
2063 {
2064         const struct inet_connection_sock *icsk = inet_csk(sk);
2065         struct tcp_sock *tp = tcp_sk(sk);
2066         struct sk_buff *skb;
2067
2068         if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2069             tp->snd_una == tp->high_seq ||
2070             ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2071              !icsk->icsk_retransmits)) {
2072                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2073                 /* Our state is too optimistic in ssthresh() call because cwnd
2074                  * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2075                  * recovery has not yet completed. Pattern would be this: RTO,
2076                  * Cumulative ACK, RTO (2xRTO for the same segment does not end
2077                  * up here twice).
2078                  * RFC4138 should be more specific on what to do, even though
2079                  * RTO is quite unlikely to occur after the first Cumulative ACK
2080                  * due to back-off and complexity of triggering events ...
2081                  */
2082                 if (tp->frto_counter) {
2083                         u32 stored_cwnd;
2084                         stored_cwnd = tp->snd_cwnd;
2085                         tp->snd_cwnd = 2;
2086                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2087                         tp->snd_cwnd = stored_cwnd;
2088                 } else {
2089                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2090                 }
2091                 /* ... in theory, cong.control module could do "any tricks" in
2092                  * ssthresh(), which means that ca_state, lost bits and lost_out
2093                  * counter would have to be faked before the call occurs. We
2094                  * consider that too expensive, unlikely and hacky, so modules
2095                  * using these in ssthresh() must deal these incompatibility
2096                  * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2097                  */
2098                 tcp_ca_event(sk, CA_EVENT_FRTO);
2099         }
2100
2101         tp->undo_marker = tp->snd_una;
2102         tp->undo_retrans = 0;
2103
2104         skb = tcp_write_queue_head(sk);
2105         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2106                 tp->undo_marker = 0;
2107         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2108                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2109                 tp->retrans_out -= tcp_skb_pcount(skb);
2110         }
2111         tcp_verify_left_out(tp);
2112
2113         /* Too bad if TCP was application limited */
2114         tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2115
2116         /* Earlier loss recovery underway (see RFC4138; Appendix B).
2117          * The last condition is necessary at least in tp->frto_counter case.
2118          */
2119         if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2120             ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2121             after(tp->high_seq, tp->snd_una)) {
2122                 tp->frto_highmark = tp->high_seq;
2123         } else {
2124                 tp->frto_highmark = tp->snd_nxt;
2125         }
2126         tcp_set_ca_state(sk, TCP_CA_Disorder);
2127         tp->high_seq = tp->snd_nxt;
2128         tp->frto_counter = 1;
2129 }
2130
2131 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2132  * which indicates that we should follow the traditional RTO recovery,
2133  * i.e. mark everything lost and do go-back-N retransmission.
2134  */
2135 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2136 {
2137         struct tcp_sock *tp = tcp_sk(sk);
2138         struct sk_buff *skb;
2139
2140         tp->lost_out = 0;
2141         tp->retrans_out = 0;
2142         if (tcp_is_reno(tp))
2143                 tcp_reset_reno_sack(tp);
2144
2145         tcp_for_write_queue(skb, sk) {
2146                 if (skb == tcp_send_head(sk))
2147                         break;
2148
2149                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2150                 /*
2151                  * Count the retransmission made on RTO correctly (only when
2152                  * waiting for the first ACK and did not get it)...
2153                  */
2154                 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2155                         /* For some reason this R-bit might get cleared? */
2156                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2157                                 tp->retrans_out += tcp_skb_pcount(skb);
2158                         /* ...enter this if branch just for the first segment */
2159                         flag |= FLAG_DATA_ACKED;
2160                 } else {
2161                         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2162                                 tp->undo_marker = 0;
2163                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2164                 }
2165
2166                 /* Marking forward transmissions that were made after RTO lost
2167                  * can cause unnecessary retransmissions in some scenarios,
2168                  * SACK blocks will mitigate that in some but not in all cases.
2169                  * We used to not mark them but it was causing break-ups with
2170                  * receivers that do only in-order receival.
2171                  *
2172                  * TODO: we could detect presence of such receiver and select
2173                  * different behavior per flow.
2174                  */
2175                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2176                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2177                         tp->lost_out += tcp_skb_pcount(skb);
2178                         tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2179                 }
2180         }
2181         tcp_verify_left_out(tp);
2182
2183         tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2184         tp->snd_cwnd_cnt = 0;
2185         tp->snd_cwnd_stamp = tcp_time_stamp;
2186         tp->frto_counter = 0;
2187         tp->bytes_acked = 0;
2188
2189         tp->reordering = min_t(unsigned int, tp->reordering,
2190                                sysctl_tcp_reordering);
2191         tcp_set_ca_state(sk, TCP_CA_Loss);
2192         tp->high_seq = tp->snd_nxt;
2193         TCP_ECN_queue_cwr(tp);
2194
2195         tcp_clear_all_retrans_hints(tp);
2196 }
2197
2198 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2199 {
2200         tp->retrans_out = 0;
2201         tp->lost_out = 0;
2202
2203         tp->undo_marker = 0;
2204         tp->undo_retrans = 0;
2205 }
2206
2207 void tcp_clear_retrans(struct tcp_sock *tp)
2208 {
2209         tcp_clear_retrans_partial(tp);
2210
2211         tp->fackets_out = 0;
2212         tp->sacked_out = 0;
2213 }
2214
2215 /* Enter Loss state. If "how" is not zero, forget all SACK information
2216  * and reset tags completely, otherwise preserve SACKs. If receiver
2217  * dropped its ofo queue, we will know this due to reneging detection.
2218  */
2219 void tcp_enter_loss(struct sock *sk, int how)
2220 {
2221         const struct inet_connection_sock *icsk = inet_csk(sk);
2222         struct tcp_sock *tp = tcp_sk(sk);
2223         struct sk_buff *skb;
2224
2225         /* Reduce ssthresh if it has not yet been made inside this window. */
2226         if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2227             (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2228                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2229                 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2230                 tcp_ca_event(sk, CA_EVENT_LOSS);
2231         }
2232         tp->snd_cwnd       = 1;
2233         tp->snd_cwnd_cnt   = 0;
2234         tp->snd_cwnd_stamp = tcp_time_stamp;
2235
2236         tp->bytes_acked = 0;
2237         tcp_clear_retrans_partial(tp);
2238
2239         if (tcp_is_reno(tp))
2240                 tcp_reset_reno_sack(tp);
2241
2242         if (!how) {
2243                 /* Push undo marker, if it was plain RTO and nothing
2244                  * was retransmitted. */
2245                 tp->undo_marker = tp->snd_una;
2246         } else {
2247                 tp->sacked_out = 0;
2248                 tp->fackets_out = 0;
2249         }
2250         tcp_clear_all_retrans_hints(tp);
2251
2252         tcp_for_write_queue(skb, sk) {
2253                 if (skb == tcp_send_head(sk))
2254                         break;
2255
2256                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2257                         tp->undo_marker = 0;
2258                 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2259                 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2260                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2261                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2262                         tp->lost_out += tcp_skb_pcount(skb);
2263                         tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2264                 }
2265         }
2266         tcp_verify_left_out(tp);
2267
2268         tp->reordering = min_t(unsigned int, tp->reordering,
2269                                sysctl_tcp_reordering);
2270         tcp_set_ca_state(sk, TCP_CA_Loss);
2271         tp->high_seq = tp->snd_nxt;
2272         TCP_ECN_queue_cwr(tp);
2273         /* Abort F-RTO algorithm if one is in progress */
2274         tp->frto_counter = 0;
2275 }
2276
2277 /* If ACK arrived pointing to a remembered SACK, it means that our
2278  * remembered SACKs do not reflect real state of receiver i.e.
2279  * receiver _host_ is heavily congested (or buggy).
2280  *
2281  * Do processing similar to RTO timeout.
2282  */
2283 static int tcp_check_sack_reneging(struct sock *sk, int flag)
2284 {
2285         if (flag & FLAG_SACK_RENEGING) {
2286                 struct inet_connection_sock *icsk = inet_csk(sk);
2287                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2288
2289                 tcp_enter_loss(sk, 1);
2290                 icsk->icsk_retransmits++;
2291                 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2292                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2293                                           icsk->icsk_rto, TCP_RTO_MAX);
2294                 return 1;
2295         }
2296         return 0;
2297 }
2298
2299 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2300 {
2301         return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2302 }
2303
2304 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2305  * counter when SACK is enabled (without SACK, sacked_out is used for
2306  * that purpose).
2307  *
2308  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2309  * segments up to the highest received SACK block so far and holes in
2310  * between them.
2311  *
2312  * With reordering, holes may still be in flight, so RFC3517 recovery
2313  * uses pure sacked_out (total number of SACKed segments) even though
2314  * it violates the RFC that uses duplicate ACKs, often these are equal
2315  * but when e.g. out-of-window ACKs or packet duplication occurs,
2316  * they differ. Since neither occurs due to loss, TCP should really
2317  * ignore them.
2318  */
2319 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2320 {
2321         return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2322 }
2323
2324 static inline int tcp_skb_timedout(const struct sock *sk,
2325                                    const struct sk_buff *skb)
2326 {
2327         return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
2328 }
2329
2330 static inline int tcp_head_timedout(const struct sock *sk)
2331 {
2332         const struct tcp_sock *tp = tcp_sk(sk);
2333
2334         return tp->packets_out &&
2335                tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2336 }
2337
2338 /* Linux NewReno/SACK/FACK/ECN state machine.
2339  * --------------------------------------
2340  *
2341  * "Open"       Normal state, no dubious events, fast path.
2342  * "Disorder"   In all the respects it is "Open",
2343  *              but requires a bit more attention. It is entered when
2344  *              we see some SACKs or dupacks. It is split of "Open"
2345  *              mainly to move some processing from fast path to slow one.
2346  * "CWR"        CWND was reduced due to some Congestion Notification event.
2347  *              It can be ECN, ICMP source quench, local device congestion.
2348  * "Recovery"   CWND was reduced, we are fast-retransmitting.
2349  * "Loss"       CWND was reduced due to RTO timeout or SACK reneging.
2350  *
2351  * tcp_fastretrans_alert() is entered:
2352  * - each incoming ACK, if state is not "Open"
2353  * - when arrived ACK is unusual, namely:
2354  *      * SACK
2355  *      * Duplicate ACK.
2356  *      * ECN ECE.
2357  *
2358  * Counting packets in flight is pretty simple.
2359  *
2360  *      in_flight = packets_out - left_out + retrans_out
2361  *
2362  *      packets_out is SND.NXT-SND.UNA counted in packets.
2363  *
2364  *      retrans_out is number of retransmitted segments.
2365  *
2366  *      left_out is number of segments left network, but not ACKed yet.
2367  *
2368  *              left_out = sacked_out + lost_out
2369  *
2370  *     sacked_out: Packets, which arrived to receiver out of order
2371  *                 and hence not ACKed. With SACKs this number is simply
2372  *                 amount of SACKed data. Even without SACKs
2373  *                 it is easy to give pretty reliable estimate of this number,
2374  *                 counting duplicate ACKs.
2375  *
2376  *       lost_out: Packets lost by network. TCP has no explicit
2377  *                 "loss notification" feedback from network (for now).
2378  *                 It means that this number can be only _guessed_.
2379  *                 Actually, it is the heuristics to predict lossage that
2380  *                 distinguishes different algorithms.
2381  *
2382  *      F.e. after RTO, when all the queue is considered as lost,
2383  *      lost_out = packets_out and in_flight = retrans_out.
2384  *
2385  *              Essentially, we have now two algorithms counting
2386  *              lost packets.
2387  *
2388  *              FACK: It is the simplest heuristics. As soon as we decided
2389  *              that something is lost, we decide that _all_ not SACKed
2390  *              packets until the most forward SACK are lost. I.e.
2391  *              lost_out = fackets_out - sacked_out and left_out = fackets_out.
2392  *              It is absolutely correct estimate, if network does not reorder
2393  *              packets. And it loses any connection to reality when reordering
2394  *              takes place. We use FACK by default until reordering
2395  *              is suspected on the path to this destination.
2396  *
2397  *              NewReno: when Recovery is entered, we assume that one segment
2398  *              is lost (classic Reno). While we are in Recovery and
2399  *              a partial ACK arrives, we assume that one more packet
2400  *              is lost (NewReno). This heuristics are the same in NewReno
2401  *              and SACK.
2402  *
2403  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2404  *  deflation etc. CWND is real congestion window, never inflated, changes
2405  *  only according to classic VJ rules.
2406  *
2407  * Really tricky (and requiring careful tuning) part of algorithm
2408  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2409  * The first determines the moment _when_ we should reduce CWND and,
2410  * hence, slow down forward transmission. In fact, it determines the moment
2411  * when we decide that hole is caused by loss, rather than by a reorder.
2412  *
2413  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2414  * holes, caused by lost packets.
2415  *
2416  * And the most logically complicated part of algorithm is undo
2417  * heuristics. We detect false retransmits due to both too early
2418  * fast retransmit (reordering) and underestimated RTO, analyzing
2419  * timestamps and D-SACKs. When we detect that some segments were
2420  * retransmitted by mistake and CWND reduction was wrong, we undo
2421  * window reduction and abort recovery phase. This logic is hidden
2422  * inside several functions named tcp_try_undo_<something>.
2423  */
2424
2425 /* This function decides, when we should leave Disordered state
2426  * and enter Recovery phase, reducing congestion window.
2427  *
2428  * Main question: may we further continue forward transmission
2429  * with the same cwnd?
2430  */
2431 static int tcp_time_to_recover(struct sock *sk)
2432 {
2433         struct tcp_sock *tp = tcp_sk(sk);
2434         __u32 packets_out;
2435
2436         /* Do not perform any recovery during F-RTO algorithm */
2437         if (tp->frto_counter)
2438                 return 0;
2439
2440         /* Trick#1: The loss is proven. */
2441         if (tp->lost_out)
2442                 return 1;
2443
2444         /* Not-A-Trick#2 : Classic rule... */
2445         if (tcp_dupack_heuristics(tp) > tp->reordering)
2446                 return 1;
2447
2448         /* Trick#3 : when we use RFC2988 timer restart, fast
2449          * retransmit can be triggered by timeout of queue head.
2450          */
2451         if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2452                 return 1;
2453
2454         /* Trick#4: It is still not OK... But will it be useful to delay
2455          * recovery more?
2456          */
2457         packets_out = tp->packets_out;
2458         if (packets_out <= tp->reordering &&
2459             tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2460             !tcp_may_send_now(sk)) {
2461                 /* We have nothing to send. This connection is limited
2462                  * either by receiver window or by application.
2463                  */
2464                 return 1;
2465         }
2466
2467         /* If a thin stream is detected, retransmit after first
2468          * received dupack. Employ only if SACK is supported in order
2469          * to avoid possible corner-case series of spurious retransmissions
2470          * Use only if there are no unsent data.
2471          */
2472         if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2473             tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2474             tcp_is_sack(tp) && !tcp_send_head(sk))
2475                 return 1;
2476
2477         return 0;
2478 }
2479
2480 /* New heuristics: it is possible only after we switched to restart timer
2481  * each time when something is ACKed. Hence, we can detect timed out packets
2482  * during fast retransmit without falling to slow start.
2483  *
2484  * Usefulness of this as is very questionable, since we should know which of
2485  * the segments is the next to timeout which is relatively expensive to find
2486  * in general case unless we add some data structure just for that. The
2487  * current approach certainly won't find the right one too often and when it
2488  * finally does find _something_ it usually marks large part of the window
2489  * right away (because a retransmission with a larger timestamp blocks the
2490  * loop from advancing). -ij
2491  */
2492 static void tcp_timeout_skbs(struct sock *sk)
2493 {
2494         struct tcp_sock *tp = tcp_sk(sk);
2495         struct sk_buff *skb;
2496
2497         if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2498                 return;
2499
2500         skb = tp->scoreboard_skb_hint;
2501         if (tp->scoreboard_skb_hint == NULL)
2502                 skb = tcp_write_queue_head(sk);
2503
2504         tcp_for_write_queue_from(skb, sk) {
2505                 if (skb == tcp_send_head(sk))
2506                         break;
2507                 if (!tcp_skb_timedout(sk, skb))
2508                         break;
2509
2510                 tcp_skb_mark_lost(tp, skb);
2511         }
2512
2513         tp->scoreboard_skb_hint = skb;
2514
2515         tcp_verify_left_out(tp);
2516 }
2517
2518 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2519  * is against sacked "cnt", otherwise it's against facked "cnt"
2520  */
2521 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2522 {
2523         struct tcp_sock *tp = tcp_sk(sk);
2524         struct sk_buff *skb;
2525         int cnt, oldcnt;
2526         int err;
2527         unsigned int mss;
2528
2529         WARN_ON(packets > tp->packets_out);
2530         if (tp->lost_skb_hint) {
2531                 skb = tp->lost_skb_hint;
2532                 cnt = tp->lost_cnt_hint;
2533                 /* Head already handled? */
2534                 if (mark_head && skb != tcp_write_queue_head(sk))
2535                         return;
2536         } else {
2537                 skb = tcp_write_queue_head(sk);
2538                 cnt = 0;
2539         }
2540
2541         tcp_for_write_queue_from(skb, sk) {
2542                 if (skb == tcp_send_head(sk))
2543                         break;
2544                 /* TODO: do this better */
2545                 /* this is not the most efficient way to do this... */
2546                 tp->lost_skb_hint = skb;
2547                 tp->lost_cnt_hint = cnt;
2548
2549                 if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2550                         break;
2551
2552                 oldcnt = cnt;
2553                 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2554                     (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2555                         cnt += tcp_skb_pcount(skb);
2556
2557                 if (cnt > packets) {
2558                         if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2559                             (oldcnt >= packets))
2560                                 break;
2561
2562                         mss = skb_shinfo(skb)->gso_size;
2563                         err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2564                         if (err < 0)
2565                                 break;
2566                         cnt = packets;
2567                 }
2568
2569                 tcp_skb_mark_lost(tp, skb);
2570
2571                 if (mark_head)
2572                         break;
2573         }
2574         tcp_verify_left_out(tp);
2575 }
2576
2577 /* Account newly detected lost packet(s) */
2578
2579 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2580 {
2581         struct tcp_sock *tp = tcp_sk(sk);
2582
2583         if (tcp_is_reno(tp)) {
2584                 tcp_mark_head_lost(sk, 1, 1);
2585         } else if (tcp_is_fack(tp)) {
2586                 int lost = tp->fackets_out - tp->reordering;
2587                 if (lost <= 0)
2588                         lost = 1;
2589                 tcp_mark_head_lost(sk, lost, 0);
2590         } else {
2591                 int sacked_upto = tp->sacked_out - tp->reordering;
2592                 if (sacked_upto >= 0)
2593                         tcp_mark_head_lost(sk, sacked_upto, 0);
2594                 else if (fast_rexmit)
2595                         tcp_mark_head_lost(sk, 1, 1);
2596         }
2597
2598         tcp_timeout_skbs(sk);
2599 }
2600
2601 /* CWND moderation, preventing bursts due to too big ACKs
2602  * in dubious situations.
2603  */
2604 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2605 {
2606         tp->snd_cwnd = min(tp->snd_cwnd,
2607                            tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2608         tp->snd_cwnd_stamp = tcp_time_stamp;
2609 }
2610
2611 /* Lower bound on congestion window is slow start threshold
2612  * unless congestion avoidance choice decides to overide it.
2613  */
2614 static inline u32 tcp_cwnd_min(const struct sock *sk)
2615 {
2616         const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2617
2618         return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2619 }
2620
2621 /* Decrease cwnd each second ack. */
2622 static void tcp_cwnd_down(struct sock *sk, int flag)
2623 {
2624         struct tcp_sock *tp = tcp_sk(sk);
2625         int decr = tp->snd_cwnd_cnt + 1;
2626
2627         if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2628             (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2629                 tp->snd_cwnd_cnt = decr & 1;
2630                 decr >>= 1;
2631
2632                 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2633                         tp->snd_cwnd -= decr;
2634
2635                 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2636                 tp->snd_cwnd_stamp = tcp_time_stamp;
2637         }
2638 }
2639
2640 /* Nothing was retransmitted or returned timestamp is less
2641  * than timestamp of the first retransmission.
2642  */
2643 static inline int tcp_packet_delayed(const struct tcp_sock *tp)
2644 {
2645         return !tp->retrans_stamp ||
2646                 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2647                  before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2648 }
2649
2650 /* Undo procedures. */
2651
2652 #if FASTRETRANS_DEBUG > 1
2653 static void DBGUNDO(struct sock *sk, const char *msg)
2654 {
2655         struct tcp_sock *tp = tcp_sk(sk);
2656         struct inet_sock *inet = inet_sk(sk);
2657
2658         if (sk->sk_family == AF_INET) {
2659                 printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2660                        msg,
2661                        &inet->inet_daddr, ntohs(inet->inet_dport),
2662                        tp->snd_cwnd, tcp_left_out(tp),
2663                        tp->snd_ssthresh, tp->prior_ssthresh,
2664                        tp->packets_out);
2665         }
2666 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2667         else if (sk->sk_family == AF_INET6) {
2668                 struct ipv6_pinfo *np = inet6_sk(sk);
2669                 printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2670                        msg,
2671                        &np->daddr, ntohs(inet->inet_dport),
2672                        tp->snd_cwnd, tcp_left_out(tp),
2673                        tp->snd_ssthresh, tp->prior_ssthresh,
2674                        tp->packets_out);
2675         }
2676 #endif
2677 }
2678 #else
2679 #define DBGUNDO(x...) do { } while (0)
2680 #endif
2681
2682 static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
2683 {
2684         struct tcp_sock *tp = tcp_sk(sk);
2685
2686         if (tp->prior_ssthresh) {
2687                 const struct inet_connection_sock *icsk = inet_csk(sk);
2688
2689                 if (icsk->icsk_ca_ops->undo_cwnd)
2690                         tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2691                 else
2692                         tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2693
2694                 if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
2695                         tp->snd_ssthresh = tp->prior_ssthresh;
2696                         TCP_ECN_withdraw_cwr(tp);
2697                 }
2698         } else {
2699                 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2700         }
2701         tp->snd_cwnd_stamp = tcp_time_stamp;
2702 }
2703
2704 static inline int tcp_may_undo(const struct tcp_sock *tp)
2705 {
2706         return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2707 }
2708
2709 /* People celebrate: "We love our President!" */
2710 static int tcp_try_undo_recovery(struct sock *sk)
2711 {
2712         struct tcp_sock *tp = tcp_sk(sk);
2713
2714         if (tcp_may_undo(tp)) {
2715                 int mib_idx;
2716
2717                 /* Happy end! We did not retransmit anything
2718                  * or our original transmission succeeded.
2719                  */
2720                 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2721                 tcp_undo_cwr(sk, true);
2722                 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2723                         mib_idx = LINUX_MIB_TCPLOSSUNDO;
2724                 else
2725                         mib_idx = LINUX_MIB_TCPFULLUNDO;
2726
2727                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2728                 tp->undo_marker = 0;
2729         }
2730         if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2731                 /* Hold old state until something *above* high_seq
2732                  * is ACKed. For Reno it is MUST to prevent false
2733                  * fast retransmits (RFC2582). SACK TCP is safe. */
2734                 tcp_moderate_cwnd(tp);
2735                 return 1;
2736         }
2737         tcp_set_ca_state(sk, TCP_CA_Open);
2738         return 0;
2739 }
2740
2741 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2742 static void tcp_try_undo_dsack(struct sock *sk)
2743 {
2744         struct tcp_sock *tp = tcp_sk(sk);
2745
2746         if (tp->undo_marker && !tp->undo_retrans) {
2747                 DBGUNDO(sk, "D-SACK");
2748                 tcp_undo_cwr(sk, true);
2749                 tp->undo_marker = 0;
2750                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2751         }
2752 }
2753
2754 /* We can clear retrans_stamp when there are no retransmissions in the
2755  * window. It would seem that it is trivially available for us in
2756  * tp->retrans_out, however, that kind of assumptions doesn't consider
2757  * what will happen if errors occur when sending retransmission for the
2758  * second time. ...It could the that such segment has only
2759  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2760  * the head skb is enough except for some reneging corner cases that
2761  * are not worth the effort.
2762  *
2763  * Main reason for all this complexity is the fact that connection dying
2764  * time now depends on the validity of the retrans_stamp, in particular,
2765  * that successive retransmissions of a segment must not advance
2766  * retrans_stamp under any conditions.
2767  */
2768 static int tcp_any_retrans_done(const struct sock *sk)
2769 {
2770         const struct tcp_sock *tp = tcp_sk(sk);
2771         struct sk_buff *skb;
2772
2773         if (tp->retrans_out)
2774                 return 1;
2775
2776         skb = tcp_write_queue_head(sk);
2777         if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2778                 return 1;
2779
2780         return 0;
2781 }
2782
2783 /* Undo during fast recovery after partial ACK. */
2784
2785 static int tcp_try_undo_partial(struct sock *sk, int acked)
2786 {
2787         struct tcp_sock *tp = tcp_sk(sk);
2788         /* Partial ACK arrived. Force Hoe's retransmit. */
2789         int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2790
2791         if (tcp_may_undo(tp)) {
2792                 /* Plain luck! Hole if filled with delayed
2793                  * packet, rather than with a retransmit.
2794                  */
2795                 if (!tcp_any_retrans_done(sk))
2796                         tp->retrans_stamp = 0;
2797
2798                 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2799
2800                 DBGUNDO(sk, "Hoe");
2801                 tcp_undo_cwr(sk, false);
2802                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2803
2804                 /* So... Do not make Hoe's retransmit yet.
2805                  * If the first packet was delayed, the rest
2806                  * ones are most probably delayed as well.
2807                  */
2808                 failed = 0;
2809         }
2810         return failed;
2811 }
2812
2813 /* Undo during loss recovery after partial ACK. */
2814 static int tcp_try_undo_loss(struct sock *sk)
2815 {
2816         struct tcp_sock *tp = tcp_sk(sk);
2817
2818         if (tcp_may_undo(tp)) {
2819                 struct sk_buff *skb;
2820                 tcp_for_write_queue(skb, sk) {
2821                         if (skb == tcp_send_head(sk))
2822                                 break;
2823                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2824                 }
2825
2826                 tcp_clear_all_retrans_hints(tp);
2827
2828                 DBGUNDO(sk, "partial loss");
2829                 tp->lost_out = 0;
2830                 tcp_undo_cwr(sk, true);
2831                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2832                 inet_csk(sk)->icsk_retransmits = 0;
2833                 tp->undo_marker = 0;
2834                 if (tcp_is_sack(tp))
2835                         tcp_set_ca_state(sk, TCP_CA_Open);
2836                 return 1;
2837         }
2838         return 0;
2839 }
2840
2841 static inline void tcp_complete_cwr(struct sock *sk)
2842 {
2843         struct tcp_sock *tp = tcp_sk(sk);
2844
2845         /* Do not moderate cwnd if it's already undone in cwr or recovery. */
2846         if (tp->undo_marker) {
2847                 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR)
2848                         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2849                 else /* PRR */
2850                         tp->snd_cwnd = tp->snd_ssthresh;
2851                 tp->snd_cwnd_stamp = tcp_time_stamp;
2852         }
2853         tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2854 }
2855
2856 static void tcp_try_keep_open(struct sock *sk)
2857 {
2858         struct tcp_sock *tp = tcp_sk(sk);
2859         int state = TCP_CA_Open;
2860
2861         if (tcp_left_out(tp) || tcp_any_retrans_done(sk) || tp->undo_marker)
2862                 state = TCP_CA_Disorder;
2863
2864         if (inet_csk(sk)->icsk_ca_state != state) {
2865                 tcp_set_ca_state(sk, state);
2866                 tp->high_seq = tp->snd_nxt;
2867         }
2868 }
2869
2870 static void tcp_try_to_open(struct sock *sk, int flag)
2871 {
2872         struct tcp_sock *tp = tcp_sk(sk);
2873
2874         tcp_verify_left_out(tp);
2875
2876         if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2877                 tp->retrans_stamp = 0;
2878
2879         if (flag & FLAG_ECE)
2880                 tcp_enter_cwr(sk, 1);
2881
2882         if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2883                 tcp_try_keep_open(sk);
2884                 tcp_moderate_cwnd(tp);
2885         } else {
2886                 tcp_cwnd_down(sk, flag);
2887         }
2888 }
2889
2890 static void tcp_mtup_probe_failed(struct sock *sk)
2891 {
2892         struct inet_connection_sock *icsk = inet_csk(sk);
2893
2894         icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2895         icsk->icsk_mtup.probe_size = 0;
2896 }
2897
2898 static void tcp_mtup_probe_success(struct sock *sk)
2899 {
2900         struct tcp_sock *tp = tcp_sk(sk);
2901         struct inet_connection_sock *icsk = inet_csk(sk);
2902
2903         /* FIXME: breaks with very large cwnd */
2904         tp->prior_ssthresh = tcp_current_ssthresh(sk);
2905         tp->snd_cwnd = tp->snd_cwnd *
2906                        tcp_mss_to_mtu(sk, tp->mss_cache) /
2907                        icsk->icsk_mtup.probe_size;
2908         tp->snd_cwnd_cnt = 0;
2909         tp->snd_cwnd_stamp = tcp_time_stamp;
2910         tp->snd_ssthresh = tcp_current_ssthresh(sk);
2911
2912         icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2913         icsk->icsk_mtup.probe_size = 0;
2914         tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2915 }
2916
2917 /* Do a simple retransmit without using the backoff mechanisms in
2918  * tcp_timer. This is used for path mtu discovery.
2919  * The socket is already locked here.
2920  */
2921 void tcp_simple_retransmit(struct sock *sk)
2922 {
2923         const struct inet_connection_sock *icsk = inet_csk(sk);
2924         struct tcp_sock *tp = tcp_sk(sk);
2925         struct sk_buff *skb;
2926         unsigned int mss = tcp_current_mss(sk);
2927         u32 prior_lost = tp->lost_out;
2928
2929         tcp_for_write_queue(skb, sk) {
2930                 if (skb == tcp_send_head(sk))
2931                         break;
2932                 if (tcp_skb_seglen(skb) > mss &&
2933                     !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2934                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2935                                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2936                                 tp->retrans_out -= tcp_skb_pcount(skb);
2937                         }
2938                         tcp_skb_mark_lost_uncond_verify(tp, skb);
2939                 }
2940         }
2941
2942         tcp_clear_retrans_hints_partial(tp);
2943
2944         if (prior_lost == tp->lost_out)
2945                 return;
2946
2947         if (tcp_is_reno(tp))
2948                 tcp_limit_reno_sacked(tp);
2949
2950         tcp_verify_left_out(tp);
2951
2952         /* Don't muck with the congestion window here.
2953          * Reason is that we do not increase amount of _data_
2954          * in network, but units changed and effective
2955          * cwnd/ssthresh really reduced now.
2956          */
2957         if (icsk->icsk_ca_state != TCP_CA_Loss) {
2958                 tp->high_seq = tp->snd_nxt;
2959                 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2960                 tp->prior_ssthresh = 0;
2961                 tp->undo_marker = 0;
2962                 tcp_set_ca_state(sk, TCP_CA_Loss);
2963         }
2964         tcp_xmit_retransmit_queue(sk);
2965 }
2966 EXPORT_SYMBOL(tcp_simple_retransmit);
2967
2968 /* This function implements the PRR algorithm, specifcally the PRR-SSRB
2969  * (proportional rate reduction with slow start reduction bound) as described in
2970  * http://www.ietf.org/id/draft-mathis-tcpm-proportional-rate-reduction-01.txt.
2971  * It computes the number of packets to send (sndcnt) based on packets newly
2972  * delivered:
2973  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2974  *      cwnd reductions across a full RTT.
2975  *   2) If packets in flight is lower than ssthresh (such as due to excess
2976  *      losses and/or application stalls), do not perform any further cwnd
2977  *      reductions, but instead slow start up to ssthresh.
2978  */
2979 static void tcp_update_cwnd_in_recovery(struct sock *sk, int newly_acked_sacked,
2980                                         int fast_rexmit, int flag)
2981 {
2982         struct tcp_sock *tp = tcp_sk(sk);
2983         int sndcnt = 0;
2984         int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2985
2986         if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
2987                 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2988                                tp->prior_cwnd - 1;
2989                 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2990         } else {
2991                 sndcnt = min_t(int, delta,
2992                                max_t(int, tp->prr_delivered - tp->prr_out,
2993                                      newly_acked_sacked) + 1);
2994         }
2995
2996         sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
2997         tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2998 }
2999
3000 /* Process an event, which can update packets-in-flight not trivially.
3001  * Main goal of this function is to calculate new estimate for left_out,
3002  * taking into account both packets sitting in receiver's buffer and
3003  * packets lost by network.
3004  *
3005  * Besides that it does CWND reduction, when packet loss is detected
3006  * and changes state of machine.
3007  *
3008  * It does _not_ decide what to send, it is made in function
3009  * tcp_xmit_retransmit_queue().
3010  */
3011 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked,
3012                                   int newly_acked_sacked, int flag)
3013 {
3014         struct inet_connection_sock *icsk = inet_csk(sk);
3015         struct tcp_sock *tp = tcp_sk(sk);
3016         int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3017         int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
3018                                     (tcp_fackets_out(tp) > tp->reordering));
3019         int fast_rexmit = 0, mib_idx;
3020
3021         if (WARN_ON(!tp->packets_out && tp->sacked_out))
3022                 tp->sacked_out = 0;
3023         if (WARN_ON(!tp->sacked_out && tp->fackets_out))
3024                 tp->fackets_out = 0;
3025
3026         /* Now state machine starts.
3027          * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
3028         if (flag & FLAG_ECE)
3029                 tp->prior_ssthresh = 0;
3030
3031         /* B. In all the states check for reneging SACKs. */
3032         if (tcp_check_sack_reneging(sk, flag))
3033                 return;
3034
3035         /* C. Process data loss notification, provided it is valid. */
3036         if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
3037             before(tp->snd_una, tp->high_seq) &&
3038             icsk->icsk_ca_state != TCP_CA_Open &&
3039             tp->fackets_out > tp->reordering) {
3040                 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering, 0);
3041                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS);
3042         }
3043
3044         /* D. Check consistency of the current state. */
3045         tcp_verify_left_out(tp);
3046
3047         /* E. Check state exit conditions. State can be terminated
3048          *    when high_seq is ACKed. */
3049         if (icsk->icsk_ca_state == TCP_CA_Open) {
3050                 WARN_ON(tp->retrans_out != 0);
3051                 tp->retrans_stamp = 0;
3052         } else if (!before(tp->snd_una, tp->high_seq)) {
3053                 switch (icsk->icsk_ca_state) {
3054                 case TCP_CA_Loss:
3055                         icsk->icsk_retransmits = 0;
3056                         if (tcp_try_undo_recovery(sk))
3057                                 return;
3058                         break;
3059
3060                 case TCP_CA_CWR:
3061                         /* CWR is to be held something *above* high_seq
3062                          * is ACKed for CWR bit to reach receiver. */
3063                         if (tp->snd_una != tp->high_seq) {
3064                                 tcp_complete_cwr(sk);
3065                                 tcp_set_ca_state(sk, TCP_CA_Open);
3066                         }
3067                         break;
3068
3069                 case TCP_CA_Disorder:
3070                         tcp_try_undo_dsack(sk);
3071                         if (!tp->undo_marker ||
3072                             /* For SACK case do not Open to allow to undo
3073                              * catching for all duplicate ACKs. */
3074                             tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
3075                                 tp->undo_marker = 0;
3076                                 tcp_set_ca_state(sk, TCP_CA_Open);
3077                         }
3078                         break;
3079
3080                 case TCP_CA_Recovery:
3081                         if (tcp_is_reno(tp))
3082                                 tcp_reset_reno_sack(tp);
3083                         if (tcp_try_undo_recovery(sk))
3084                                 return;
3085                         tcp_complete_cwr(sk);
3086                         break;
3087                 }
3088         }
3089
3090         /* F. Process state. */
3091         switch (icsk->icsk_ca_state) {
3092         case TCP_CA_Recovery:
3093                 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3094                         if (tcp_is_reno(tp) && is_dupack)
3095                                 tcp_add_reno_sack(sk);
3096                 } else
3097                         do_lost = tcp_try_undo_partial(sk, pkts_acked);
3098                 break;
3099         case TCP_CA_Loss:
3100                 if (flag & FLAG_DATA_ACKED)
3101                         icsk->icsk_retransmits = 0;
3102                 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
3103                         tcp_reset_reno_sack(tp);
3104                 if (!tcp_try_undo_loss(sk)) {
3105                         tcp_moderate_cwnd(tp);
3106                         tcp_xmit_retransmit_queue(sk);
3107                         return;
3108                 }
3109                 if (icsk->icsk_ca_state != TCP_CA_Open)
3110                         return;
3111                 /* Loss is undone; fall through to processing in Open state. */
3112         default:
3113                 if (tcp_is_reno(tp)) {
3114                         if (flag & FLAG_SND_UNA_ADVANCED)
3115                                 tcp_reset_reno_sack(tp);
3116                         if (is_dupack)
3117                                 tcp_add_reno_sack(sk);
3118                 }
3119
3120                 if (icsk->icsk_ca_state == TCP_CA_Disorder)
3121                         tcp_try_undo_dsack(sk);
3122
3123                 if (!tcp_time_to_recover(sk)) {
3124                         tcp_try_to_open(sk, flag);
3125                         return;
3126                 }
3127
3128                 /* MTU probe failure: don't reduce cwnd */
3129                 if (icsk->icsk_ca_state < TCP_CA_CWR &&
3130                     icsk->icsk_mtup.probe_size &&
3131                     tp->snd_una == tp->mtu_probe.probe_seq_start) {
3132                         tcp_mtup_probe_failed(sk);
3133                         /* Restores the reduction we did in tcp_mtup_probe() */
3134                         tp->snd_cwnd++;
3135                         tcp_simple_retransmit(sk);
3136                         return;
3137                 }
3138
3139                 /* Otherwise enter Recovery state */
3140
3141                 if (tcp_is_reno(tp))
3142                         mib_idx = LINUX_MIB_TCPRENORECOVERY;
3143                 else
3144                         mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3145
3146                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3147
3148                 tp->high_seq = tp->snd_nxt;
3149                 tp->prior_ssthresh = 0;
3150                 tp->undo_marker = tp->snd_una;
3151                 tp->undo_retrans = tp->retrans_out;
3152
3153                 if (icsk->icsk_ca_state < TCP_CA_CWR) {
3154                         if (!(flag & FLAG_ECE))
3155                                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
3156                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
3157                         TCP_ECN_queue_cwr(tp);
3158                 }
3159
3160                 tp->bytes_acked = 0;
3161                 tp->snd_cwnd_cnt = 0;
3162                 tp->prior_cwnd = tp->snd_cwnd;
3163                 tp->prr_delivered = 0;
3164                 tp->prr_out = 0;
3165                 tcp_set_ca_state(sk, TCP_CA_Recovery);
3166                 fast_rexmit = 1;
3167         }
3168
3169         if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3170                 tcp_update_scoreboard(sk, fast_rexmit);
3171         tp->prr_delivered += newly_acked_sacked;
3172         tcp_update_cwnd_in_recovery(sk, newly_acked_sacked, fast_rexmit, flag);
3173         tcp_xmit_retransmit_queue(sk);
3174 }
3175
3176 void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3177 {
3178         tcp_rtt_estimator(sk, seq_rtt);
3179         tcp_set_rto(sk);
3180         inet_csk(sk)->icsk_backoff = 0;
3181 }
3182 EXPORT_SYMBOL(tcp_valid_rtt_meas);
3183
3184 /* Read draft-ietf-tcplw-high-performance before mucking
3185  * with this code. (Supersedes RFC1323)
3186  */
3187 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3188 {
3189         /* RTTM Rule: A TSecr value received in a segment is used to
3190          * update the averaged RTT measurement only if the segment
3191          * acknowledges some new data, i.e., only if it advances the
3192          * left edge of the send window.
3193          *
3194          * See draft-ietf-tcplw-high-performance-00, section 3.3.
3195          * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3196          *
3197          * Changed: reset backoff as soon as we see the first valid sample.
3198          * If we do not, we get strongly overestimated rto. With timestamps
3199          * samples are accepted even from very old segments: f.e., when rtt=1
3200          * increases to 8, we retransmit 5 times and after 8 seconds delayed
3201          * answer arrives rto becomes 120 seconds! If at least one of segments
3202          * in window is lost... Voila.                          --ANK (010210)
3203          */
3204         struct tcp_sock *tp = tcp_sk(sk);
3205
3206         tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3207 }
3208
3209 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3210 {
3211         /* We don't have a timestamp. Can only use
3212          * packets that are not retransmitted to determine
3213          * rtt estimates. Also, we must not reset the
3214          * backoff for rto until we get a non-retransmitted
3215          * packet. This allows us to deal with a situation
3216          * where the network delay has increased suddenly.
3217          * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3218          */
3219
3220         if (flag & FLAG_RETRANS_DATA_ACKED)
3221                 return;
3222
3223         tcp_valid_rtt_meas(sk, seq_rtt);
3224 }
3225
3226 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3227                                       const s32 seq_rtt)
3228 {
3229         const struct tcp_sock *tp = tcp_sk(sk);
3230         /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3231         if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3232                 tcp_ack_saw_tstamp(sk, flag);
3233         else if (seq_rtt >= 0)
3234                 tcp_ack_no_tstamp(sk, seq_rtt, flag);
3235 }
3236
3237 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3238 {
3239         const struct inet_connection_sock *icsk = inet_csk(sk);
3240         icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3241         tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3242 }
3243
3244 /* Restart timer after forward progress on connection.
3245  * RFC2988 recommends to restart timer to now+rto.
3246  */
3247 static void tcp_rearm_rto(struct sock *sk)
3248 {
3249         const struct tcp_sock *tp = tcp_sk(sk);
3250
3251         if (!tp->packets_out) {
3252                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3253         } else {
3254                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3255                                           inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3256         }
3257 }
3258
3259 /* If we get here, the whole TSO packet has not been acked. */
3260 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3261 {
3262         struct tcp_sock *tp = tcp_sk(sk);
3263         u32 packets_acked;
3264
3265         BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3266
3267         packets_acked = tcp_skb_pcount(skb);
3268         if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3269                 return 0;
3270         packets_acked -= tcp_skb_pcount(skb);
3271
3272         if (packets_acked) {
3273                 BUG_ON(tcp_skb_pcount(skb) == 0);
3274                 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3275         }
3276
3277         return packets_acked;
3278 }
3279
3280 /* Remove acknowledged frames from the retransmission queue. If our packet
3281  * is before the ack sequence we can discard it as it's confirmed to have
3282  * arrived at the other end.
3283  */
3284 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3285                                u32 prior_snd_una)
3286 {
3287         struct tcp_sock *tp = tcp_sk(sk);
3288         const struct inet_connection_sock *icsk = inet_csk(sk);
3289         struct sk_buff *skb;
3290         u32 now = tcp_time_stamp;
3291         int fully_acked = 1;
3292         int flag = 0;
3293         u32 pkts_acked = 0;
3294         u32 reord = tp->packets_out;
3295         u32 prior_sacked = tp->sacked_out;
3296         s32 seq_rtt = -1;
3297         s32 ca_seq_rtt = -1;
3298         ktime_t last_ackt = net_invalid_timestamp();
3299
3300         while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3301                 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3302                 u32 acked_pcount;
3303                 u8 sacked = scb->sacked;
3304
3305                 /* Determine how many packets and what bytes were acked, tso and else */
3306                 if (after(scb->end_seq, tp->snd_una)) {
3307                         if (tcp_skb_pcount(skb) == 1 ||
3308                             !after(tp->snd_una, scb->seq))
3309                                 break;
3310
3311                         acked_pcount = tcp_tso_acked(sk, skb);
3312                         if (!acked_pcount)
3313                                 break;
3314
3315                         fully_acked = 0;
3316                 } else {
3317                         acked_pcount = tcp_skb_pcount(skb);
3318                 }
3319
3320                 if (sacked & TCPCB_RETRANS) {
3321                         if (sacked & TCPCB_SACKED_RETRANS)
3322                                 tp->retrans_out -= acked_pcount;
3323                         flag |= FLAG_RETRANS_DATA_ACKED;
3324                         ca_seq_rtt = -1;
3325                         seq_rtt = -1;
3326                         if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3327                                 flag |= FLAG_NONHEAD_RETRANS_ACKED;
3328                 } else {
3329                         ca_seq_rtt = now - scb->when;
3330                         last_ackt = skb->tstamp;
3331                         if (seq_rtt < 0) {
3332                                 seq_rtt = ca_seq_rtt;
3333                         }
3334                         if (!(sacked & TCPCB_SACKED_ACKED))
3335                                 reord = min(pkts_acked, reord);
3336                 }
3337
3338                 if (sacked & TCPCB_SACKED_ACKED)
3339                         tp->sacked_out -= acked_pcount;
3340                 if (sacked & TCPCB_LOST)
3341                         tp->lost_out -= acked_pcount;
3342
3343                 tp->packets_out -= acked_pcount;
3344                 pkts_acked += acked_pcount;
3345
3346                 /* Initial outgoing SYN's get put onto the write_queue
3347                  * just like anything else we transmit.  It is not
3348                  * true data, and if we misinform our callers that
3349                  * this ACK acks real data, we will erroneously exit
3350                  * connection startup slow start one packet too
3351                  * quickly.  This is severely frowned upon behavior.
3352                  */
3353                 if (!(scb->tcp_flags & TCPHDR_SYN)) {
3354                         flag |= FLAG_DATA_ACKED;
3355                 } else {
3356                         flag |= FLAG_SYN_ACKED;
3357                         tp->retrans_stamp = 0;
3358                 }
3359
3360                 if (!fully_acked)
3361                         break;
3362
3363                 tcp_unlink_write_queue(skb, sk);
3364                 sk_wmem_free_skb(sk, skb);
3365                 tp->scoreboard_skb_hint = NULL;
3366                 if (skb == tp->retransmit_skb_hint)
3367                         tp->retransmit_skb_hint = NULL;
3368                 if (skb == tp->lost_skb_hint)
3369                         tp->lost_skb_hint = NULL;
3370         }
3371
3372         if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3373                 tp->snd_up = tp->snd_una;
3374
3375         if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3376                 flag |= FLAG_SACK_RENEGING;
3377
3378         if (flag & FLAG_ACKED) {
3379                 const struct tcp_congestion_ops *ca_ops
3380                         = inet_csk(sk)->icsk_ca_ops;
3381
3382                 if (unlikely(icsk->icsk_mtup.probe_size &&
3383                              !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3384                         tcp_mtup_probe_success(sk);
3385                 }
3386
3387                 tcp_ack_update_rtt(sk, flag, seq_rtt);
3388                 tcp_rearm_rto(sk);
3389
3390                 if (tcp_is_reno(tp)) {
3391                         tcp_remove_reno_sacks(sk, pkts_acked);
3392                 } else {
3393                         int delta;
3394
3395                         /* Non-retransmitted hole got filled? That's reordering */
3396                         if (reord < prior_fackets)
3397                                 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3398
3399                         delta = tcp_is_fack(tp) ? pkts_acked :
3400                                                   prior_sacked - tp->sacked_out;
3401                         tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3402                 }
3403
3404                 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3405
3406                 if (ca_ops->pkts_acked) {
3407                         s32 rtt_us = -1;
3408
3409                         /* Is the ACK triggering packet unambiguous? */
3410                         if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3411                                 /* High resolution needed and available? */
3412                                 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3413                                     !ktime_equal(last_ackt,
3414                                                  net_invalid_timestamp()))
3415                                         rtt_us = ktime_us_delta(ktime_get_real(),
3416                                                                 last_ackt);
3417                                 else if (ca_seq_rtt >= 0)
3418                                         rtt_us = jiffies_to_usecs(ca_seq_rtt);
3419                         }
3420
3421                         ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3422                 }
3423         }
3424
3425 #if FASTRETRANS_DEBUG > 0
3426         WARN_ON((int)tp->sacked_out < 0);
3427         WARN_ON((int)tp->lost_out < 0);
3428         WARN_ON((int)tp->retrans_out < 0);
3429         if (!tp->packets_out && tcp_is_sack(tp)) {
3430                 icsk = inet_csk(sk);
3431                 if (tp->lost_out) {
3432                         printk(KERN_DEBUG "Leak l=%u %d\n",
3433                                tp->lost_out, icsk->icsk_ca_state);
3434                         tp->lost_out = 0;
3435                 }
3436                 if (tp->sacked_out) {
3437                         printk(KERN_DEBUG "Leak s=%u %d\n",
3438                                tp->sacked_out, icsk->icsk_ca_state);
3439                         tp->sacked_out = 0;
3440                 }
3441                 if (tp->retrans_out) {
3442                         printk(KERN_DEBUG "Leak r=%u %d\n",
3443                                tp->retrans_out, icsk->icsk_ca_state);
3444                         tp->retrans_out = 0;
3445                 }
3446         }
3447 #endif
3448         return flag;
3449 }
3450
3451 static void tcp_ack_probe(struct sock *sk)
3452 {
3453         const struct tcp_sock *tp = tcp_sk(sk);
3454         struct inet_connection_sock *icsk = inet_csk(sk);
3455
3456         /* Was it a usable window open? */
3457
3458         if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3459                 icsk->icsk_backoff = 0;
3460                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3461                 /* Socket must be waked up by subsequent tcp_data_snd_check().
3462                  * This function is not for random using!
3463                  */
3464         } else {
3465                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3466                                           min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3467                                           TCP_RTO_MAX);
3468         }
3469 }
3470
3471 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3472 {
3473         return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3474                 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3475 }
3476
3477 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3478 {
3479         const struct tcp_sock *tp = tcp_sk(sk);
3480         return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3481                 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3482 }
3483
3484 /* Check that window update is acceptable.
3485  * The function assumes that snd_una<=ack<=snd_next.
3486  */
3487 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3488                                         const u32 ack, const u32 ack_seq,
3489                                         const u32 nwin)
3490 {
3491         return  after(ack, tp->snd_una) ||
3492                 after(ack_seq, tp->snd_wl1) ||
3493                 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3494 }
3495
3496 /* Update our send window.
3497  *
3498  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3499  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3500  */
3501 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3502                                  u32 ack_seq)
3503 {
3504         struct tcp_sock *tp = tcp_sk(sk);
3505         int flag = 0;
3506         u32 nwin = ntohs(tcp_hdr(skb)->window);
3507
3508         if (likely(!tcp_hdr(skb)->syn))
3509                 nwin <<= tp->rx_opt.snd_wscale;
3510
3511         if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3512                 flag |= FLAG_WIN_UPDATE;
3513                 tcp_update_wl(tp, ack_seq);
3514
3515                 if (tp->snd_wnd != nwin) {
3516                         tp->snd_wnd = nwin;
3517
3518                         /* Note, it is the only place, where
3519                          * fast path is recovered for sending TCP.
3520                          */
3521                         tp->pred_flags = 0;
3522                         tcp_fast_path_check(sk);
3523
3524                         if (nwin > tp->max_window) {
3525                                 tp->max_window = nwin;
3526                                 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3527                         }
3528                 }
3529         }
3530
3531         tp->snd_una = ack;
3532
3533         return flag;
3534 }
3535
3536 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3537  * continue in congestion avoidance.
3538  */
3539 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3540 {
3541         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3542         tp->snd_cwnd_cnt = 0;
3543         tp->bytes_acked = 0;
3544         TCP_ECN_queue_cwr(tp);
3545         tcp_moderate_cwnd(tp);
3546 }
3547
3548 /* A conservative spurious RTO response algorithm: reduce cwnd using
3549  * rate halving and continue in congestion avoidance.
3550  */
3551 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3552 {
3553         tcp_enter_cwr(sk, 0);
3554 }
3555
3556 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3557 {
3558         if (flag & FLAG_ECE)
3559                 tcp_ratehalving_spur_to_response(sk);
3560         else
3561                 tcp_undo_cwr(sk, true);
3562 }
3563
3564 /* F-RTO spurious RTO detection algorithm (RFC4138)
3565  *
3566  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3567  * comments). State (ACK number) is kept in frto_counter. When ACK advances
3568  * window (but not to or beyond highest sequence sent before RTO):
3569  *   On First ACK,  send two new segments out.
3570  *   On Second ACK, RTO was likely spurious. Do spurious response (response
3571  *                  algorithm is not part of the F-RTO detection algorithm
3572  *                  given in RFC4138 but can be selected separately).
3573  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3574  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3575  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3576  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3577  *
3578  * Rationale: if the RTO was spurious, new ACKs should arrive from the
3579  * original window even after we transmit two new data segments.
3580  *
3581  * SACK version:
3582  *   on first step, wait until first cumulative ACK arrives, then move to
3583  *   the second step. In second step, the next ACK decides.
3584  *
3585  * F-RTO is implemented (mainly) in four functions:
3586  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3587  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3588  *     called when tcp_use_frto() showed green light
3589  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3590  *   - tcp_enter_frto_loss() is called if there is not enough evidence
3591  *     to prove that the RTO is indeed spurious. It transfers the control
3592  *     from F-RTO to the conventional RTO recovery
3593  */
3594 static int tcp_process_frto(struct sock *sk, int flag)
3595 {
3596         struct tcp_sock *tp = tcp_sk(sk);
3597
3598         tcp_verify_left_out(tp);
3599
3600         /* Duplicate the behavior from Loss state (fastretrans_alert) */
3601         if (flag & FLAG_DATA_ACKED)
3602                 inet_csk(sk)->icsk_retransmits = 0;
3603
3604         if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3605             ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3606                 tp->undo_marker = 0;
3607
3608         if (!before(tp->snd_una, tp->frto_highmark)) {
3609                 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3610                 return 1;
3611         }
3612
3613         if (!tcp_is_sackfrto(tp)) {
3614                 /* RFC4138 shortcoming in step 2; should also have case c):
3615                  * ACK isn't duplicate nor advances window, e.g., opposite dir
3616                  * data, winupdate
3617                  */
3618                 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3619                         return 1;
3620
3621                 if (!(flag & FLAG_DATA_ACKED)) {
3622                         tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3623                                             flag);
3624                         return 1;
3625                 }
3626         } else {
3627                 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3628                         /* Prevent sending of new data. */
3629                         tp->snd_cwnd = min(tp->snd_cwnd,
3630                                            tcp_packets_in_flight(tp));
3631                         return 1;
3632                 }
3633
3634                 if ((tp->frto_counter >= 2) &&
3635                     (!(flag & FLAG_FORWARD_PROGRESS) ||
3636                      ((flag & FLAG_DATA_SACKED) &&
3637                       !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3638                         /* RFC4138 shortcoming (see comment above) */
3639                         if (!(flag & FLAG_FORWARD_PROGRESS) &&
3640                             (flag & FLAG_NOT_DUP))
3641                                 return 1;
3642
3643                         tcp_enter_frto_loss(sk, 3, flag);
3644                         return 1;
3645                 }
3646         }
3647
3648         if (tp->frto_counter == 1) {
3649                 /* tcp_may_send_now needs to see updated state */
3650                 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3651                 tp->frto_counter = 2;
3652
3653                 if (!tcp_may_send_now(sk))
3654                         tcp_enter_frto_loss(sk, 2, flag);
3655
3656                 return 1;
3657         } else {
3658                 switch (sysctl_tcp_frto_response) {
3659                 case 2:
3660                         tcp_undo_spur_to_response(sk, flag);
3661                         break;
3662                 case 1:
3663                         tcp_conservative_spur_to_response(tp);
3664                         break;
3665                 default:
3666                         tcp_ratehalving_spur_to_response(sk);
3667                         break;
3668                 }
3669                 tp->frto_counter = 0;
3670                 tp->undo_marker = 0;
3671                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3672         }
3673         return 0;
3674 }
3675
3676 /* This routine deals with incoming acks, but not outgoing ones. */
3677 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3678 {
3679         struct inet_connection_sock *icsk = inet_csk(sk);
3680         struct tcp_sock *tp = tcp_sk(sk);
3681         u32 prior_snd_una = tp->snd_una;
3682         u32 ack_seq = TCP_SKB_CB(skb)->seq;
3683         u32 ack = TCP_SKB_CB(skb)->ack_seq;
3684         u32 prior_in_flight;
3685         u32 prior_fackets;
3686         int prior_packets;
3687         int prior_sacked = tp->sacked_out;
3688         int newly_acked_sacked = 0;
3689         int frto_cwnd = 0;
3690
3691         /* If the ack is older than previous acks
3692          * then we can probably ignore it.
3693          */
3694         if (before(ack, prior_snd_una))
3695                 goto old_ack;
3696
3697         /* If the ack includes data we haven't sent yet, discard
3698          * this segment (RFC793 Section 3.9).
3699          */
3700         if (after(ack, tp->snd_nxt))
3701                 goto invalid_ack;
3702
3703         if (after(ack, prior_snd_una))
3704                 flag |= FLAG_SND_UNA_ADVANCED;
3705
3706         if (sysctl_tcp_abc) {
3707                 if (icsk->icsk_ca_state < TCP_CA_CWR)
3708                         tp->bytes_acked += ack - prior_snd_una;
3709                 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3710                         /* we assume just one segment left network */
3711                         tp->bytes_acked += min(ack - prior_snd_una,
3712                                                tp->mss_cache);
3713         }
3714
3715         prior_fackets = tp->fackets_out;
3716         prior_in_flight = tcp_packets_in_flight(tp);
3717
3718         if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3719                 /* Window is constant, pure forward advance.
3720                  * No more checks are required.
3721                  * Note, we use the fact that SND.UNA>=SND.WL2.
3722                  */
3723                 tcp_update_wl(tp, ack_seq);
3724                 tp->snd_una = ack;
3725                 flag |= FLAG_WIN_UPDATE;
3726
3727                 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3728
3729                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3730         } else {
3731                 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3732                         flag |= FLAG_DATA;
3733                 else
3734                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3735
3736                 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3737
3738                 if (TCP_SKB_CB(skb)->sacked)
3739                         flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3740
3741                 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3742                         flag |= FLAG_ECE;
3743
3744                 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3745         }
3746
3747         /* We passed data and got it acked, remove any soft error
3748          * log. Something worked...
3749          */
3750         sk->sk_err_soft = 0;
3751         icsk->icsk_probes_out = 0;
3752         tp->rcv_tstamp = tcp_time_stamp;
3753         prior_packets = tp->packets_out;
3754         if (!prior_packets)
3755                 goto no_queue;
3756
3757         /* See if we can take anything off of the retransmit queue. */
3758         flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3759
3760         newly_acked_sacked = (prior_packets - prior_sacked) -
3761                              (tp->packets_out - tp->sacked_out);
3762
3763         if (tp->frto_counter)
3764                 frto_cwnd = tcp_process_frto(sk, flag);
3765         /* Guarantee sacktag reordering detection against wrap-arounds */
3766         if (before(tp->frto_highmark, tp->snd_una))
3767                 tp->frto_highmark = 0;
3768
3769         if (tcp_ack_is_dubious(sk, flag)) {
3770                 /* Advance CWND, if state allows this. */
3771                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3772                     tcp_may_raise_cwnd(sk, flag))
3773                         tcp_cong_avoid(sk, ack, prior_in_flight);
3774                 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3775                                       newly_acked_sacked, flag);
3776         } else {
3777                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3778                         tcp_cong_avoid(sk, ack, prior_in_flight);
3779         }
3780
3781         if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3782                 dst_confirm(__sk_dst_get(sk));
3783
3784         return 1;
3785
3786 no_queue:
3787         /* If this ack opens up a zero window, clear backoff.  It was
3788          * being used to time the probes, and is probably far higher than
3789          * it needs to be for normal retransmission.
3790          */
3791         if (tcp_send_head(sk))
3792                 tcp_ack_probe(sk);
3793         return 1;
3794
3795 invalid_ack:
3796         SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3797         return -1;
3798
3799 old_ack:
3800         if (TCP_SKB_CB(skb)->sacked) {
3801                 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3802                 if (icsk->icsk_ca_state == TCP_CA_Open)
3803                         tcp_try_keep_open(sk);
3804         }
3805
3806         SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3807         return 0;
3808 }
3809
3810 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3811  * But, this can also be called on packets in the established flow when
3812  * the fast version below fails.
3813  */
3814 void tcp_parse_options(const struct sk_buff *skb, struct tcp_options_received *opt_rx,
3815                        const u8 **hvpp, int estab)
3816 {
3817         const unsigned char *ptr;
3818         const struct tcphdr *th = tcp_hdr(skb);
3819         int length = (th->doff * 4) - sizeof(struct tcphdr);
3820
3821         ptr = (const unsigned char *)(th + 1);
3822         opt_rx->saw_tstamp = 0;
3823
3824         while (length > 0) {
3825                 int opcode = *ptr++;
3826                 int opsize;
3827
3828                 switch (opcode) {
3829                 case TCPOPT_EOL:
3830                         return;
3831                 case TCPOPT_NOP:        /* Ref: RFC 793 section 3.1 */
3832                         length--;
3833                         continue;
3834                 default:
3835                         opsize = *ptr++;
3836                         if (opsize < 2) /* "silly options" */
3837                                 return;
3838                         if (opsize > length)
3839                                 return; /* don't parse partial options */
3840                         switch (opcode) {
3841                         case TCPOPT_MSS:
3842                                 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3843                                         u16 in_mss = get_unaligned_be16(ptr);
3844                                         if (in_mss) {
3845                                                 if (opt_rx->user_mss &&
3846                                                     opt_rx->user_mss < in_mss)
3847                                                         in_mss = opt_rx->user_mss;
3848                                                 opt_rx->mss_clamp = in_mss;
3849                                         }
3850                                 }
3851                                 break;
3852                         case TCPOPT_WINDOW:
3853                                 if (opsize == TCPOLEN_WINDOW && th->syn &&
3854                                     !estab && sysctl_tcp_window_scaling) {
3855                                         __u8 snd_wscale = *(__u8 *)ptr;
3856                                         opt_rx->wscale_ok = 1;
3857                                         if (snd_wscale > 14) {
3858                                                 if (net_ratelimit())
3859                                                         printk(KERN_INFO "tcp_parse_options: Illegal window "
3860                                                                "scaling value %d >14 received.\n",
3861                                                                snd_wscale);
3862                                                 snd_wscale = 14;
3863                                         }
3864                                         opt_rx->snd_wscale = snd_wscale;
3865                                 }
3866                                 break;
3867                         case TCPOPT_TIMESTAMP:
3868                                 if ((opsize == TCPOLEN_TIMESTAMP) &&
3869                                     ((estab && opt_rx->tstamp_ok) ||
3870                                      (!estab && sysctl_tcp_timestamps))) {
3871                                         opt_rx->saw_tstamp = 1;
3872                                         opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3873                                         opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3874                                 }
3875                                 break;
3876                         case TCPOPT_SACK_PERM:
3877                                 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3878                                     !estab && sysctl_tcp_sack) {
3879                                         opt_rx->sack_ok = 1;
3880                                         tcp_sack_reset(opt_rx);
3881                                 }
3882                                 break;
3883
3884                         case TCPOPT_SACK:
3885                                 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3886                                    !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3887                                    opt_rx->sack_ok) {
3888                                         TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3889                                 }
3890                                 break;
3891 #ifdef CONFIG_TCP_MD5SIG
3892                         case TCPOPT_MD5SIG:
3893                                 /*
3894                                  * The MD5 Hash has already been
3895                                  * checked (see tcp_v{4,6}_do_rcv()).
3896                                  */
3897                                 break;
3898 #endif
3899                         case TCPOPT_COOKIE:
3900                                 /* This option is variable length.
3901                                  */
3902                                 switch (opsize) {
3903                                 case TCPOLEN_COOKIE_BASE:
3904                                         /* not yet implemented */
3905                                         break;
3906                                 case TCPOLEN_COOKIE_PAIR:
3907                                         /* not yet implemented */
3908                                         break;
3909                                 case TCPOLEN_COOKIE_MIN+0:
3910                                 case TCPOLEN_COOKIE_MIN+2:
3911                                 case TCPOLEN_COOKIE_MIN+4:
3912                                 case TCPOLEN_COOKIE_MIN+6:
3913                                 case TCPOLEN_COOKIE_MAX:
3914                                         /* 16-bit multiple */
3915                                         opt_rx->cookie_plus = opsize;
3916                                         *hvpp = ptr;
3917                                         break;
3918                                 default:
3919                                         /* ignore option */
3920                                         break;
3921                                 }
3922                                 break;
3923                         }
3924
3925                         ptr += opsize-2;
3926                         length -= opsize;
3927                 }
3928         }
3929 }
3930 EXPORT_SYMBOL(tcp_parse_options);
3931
3932 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3933 {
3934         const __be32 *ptr = (const __be32 *)(th + 1);
3935
3936         if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3937                           | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3938                 tp->rx_opt.saw_tstamp = 1;
3939                 ++ptr;
3940                 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3941                 ++ptr;
3942                 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3943                 return 1;
3944         }
3945         return 0;
3946 }
3947
3948 /* Fast parse options. This hopes to only see timestamps.
3949  * If it is wrong it falls back on tcp_parse_options().
3950  */
3951 static int tcp_fast_parse_options(const struct sk_buff *skb,
3952                                   const struct tcphdr *th,
3953                                   struct tcp_sock *tp, const u8 **hvpp)
3954 {
3955         /* In the spirit of fast parsing, compare doff directly to constant
3956          * values.  Because equality is used, short doff can be ignored here.
3957          */
3958         if (th->doff == (sizeof(*th) / 4)) {
3959                 tp->rx_opt.saw_tstamp = 0;
3960                 return 0;
3961         } else if (tp->rx_opt.tstamp_ok &&
3962                    th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3963                 if (tcp_parse_aligned_timestamp(tp, th))
3964                         return 1;
3965         }
3966         tcp_parse_options(skb, &tp->rx_opt, hvpp, 1);
3967         return 1;
3968 }
3969
3970 #ifdef CONFIG_TCP_MD5SIG
3971 /*
3972  * Parse MD5 Signature option
3973  */
3974 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3975 {
3976         int length = (th->doff << 2) - sizeof(*th);
3977         const u8 *ptr = (const u8 *)(th + 1);
3978
3979         /* If the TCP option is too short, we can short cut */
3980         if (length < TCPOLEN_MD5SIG)
3981                 return NULL;
3982
3983         while (length > 0) {
3984                 int opcode = *ptr++;
3985                 int opsize;
3986
3987                 switch(opcode) {
3988                 case TCPOPT_EOL:
3989                         return NULL;
3990                 case TCPOPT_NOP:
3991                         length--;
3992                         continue;
3993                 default:
3994                         opsize = *ptr++;
3995                         if (opsize < 2 || opsize > length)
3996                                 return NULL;
3997                         if (opcode == TCPOPT_MD5SIG)
3998                                 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3999                 }
4000                 ptr += opsize - 2;
4001                 length -= opsize;
4002         }
4003         return NULL;
4004 }
4005 EXPORT_SYMBOL(tcp_parse_md5sig_option);
4006 #endif
4007
4008 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
4009 {
4010         tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
4011         tp->rx_opt.ts_recent_stamp = get_seconds();
4012 }
4013
4014 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
4015 {
4016         if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
4017                 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
4018                  * extra check below makes sure this can only happen
4019                  * for pure ACK frames.  -DaveM
4020                  *
4021                  * Not only, also it occurs for expired timestamps.
4022                  */
4023
4024                 if (tcp_paws_check(&tp->rx_opt, 0))
4025                         tcp_store_ts_recent(tp);
4026         }
4027 }
4028
4029 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4030  *
4031  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4032  * it can pass through stack. So, the following predicate verifies that
4033  * this segment is not used for anything but congestion avoidance or
4034  * fast retransmit. Moreover, we even are able to eliminate most of such
4035  * second order effects, if we apply some small "replay" window (~RTO)
4036  * to timestamp space.
4037  *
4038  * All these measures still do not guarantee that we reject wrapped ACKs
4039  * on networks with high bandwidth, when sequence space is recycled fastly,
4040  * but it guarantees that such events will be very rare and do not affect
4041  * connection seriously. This doesn't look nice, but alas, PAWS is really
4042  * buggy extension.
4043  *
4044  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4045  * states that events when retransmit arrives after original data are rare.
4046  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4047  * the biggest problem on large power networks even with minor reordering.
4048  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4049  * up to bandwidth of 18Gigabit/sec. 8) ]
4050  */
4051
4052 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4053 {
4054         const struct tcp_sock *tp = tcp_sk(sk);
4055         const struct tcphdr *th = tcp_hdr(skb);
4056         u32 seq = TCP_SKB_CB(skb)->seq;
4057         u32 ack = TCP_SKB_CB(skb)->ack_seq;
4058
4059         return (/* 1. Pure ACK with correct sequence number. */
4060                 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4061
4062                 /* 2. ... and duplicate ACK. */
4063                 ack == tp->snd_una &&
4064
4065                 /* 3. ... and does not update window. */
4066                 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4067
4068                 /* 4. ... and sits in replay window. */
4069                 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4070 }
4071
4072 static inline int tcp_paws_discard(const struct sock *sk,
4073                                    const struct sk_buff *skb)
4074 {
4075         const struct tcp_sock *tp = tcp_sk(sk);
4076
4077         return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4078                !tcp_disordered_ack(sk, skb);
4079 }
4080
4081 /* Check segment sequence number for validity.
4082  *
4083  * Segment controls are considered valid, if the segment
4084  * fits to the window after truncation to the window. Acceptability
4085  * of data (and SYN, FIN, of course) is checked separately.
4086  * See tcp_data_queue(), for example.
4087  *
4088  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4089  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4090  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4091  * (borrowed from freebsd)
4092  */
4093
4094 static inline int tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4095 {
4096         return  !before(end_seq, tp->rcv_wup) &&
4097                 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4098 }
4099
4100 /* When we get a reset we do this. */
4101 static void tcp_reset(struct sock *sk)
4102 {
4103         /* We want the right error as BSD sees it (and indeed as we do). */
4104         switch (sk->sk_state) {
4105         case TCP_SYN_SENT:
4106                 sk->sk_err = ECONNREFUSED;
4107                 break;
4108         case TCP_CLOSE_WAIT:
4109                 sk->sk_err = EPIPE;
4110                 break;
4111         case TCP_CLOSE:
4112                 return;
4113         default:
4114                 sk->sk_err = ECONNRESET;
4115         }
4116         /* This barrier is coupled with smp_rmb() in tcp_poll() */
4117         smp_wmb();
4118
4119         if (!sock_flag(sk, SOCK_DEAD))
4120                 sk->sk_error_report(sk);
4121
4122         tcp_done(sk);
4123 }
4124
4125 /*
4126  *      Process the FIN bit. This now behaves as it is supposed to work
4127  *      and the FIN takes effect when it is validly part of sequence
4128  *      space. Not before when we get holes.
4129  *
4130  *      If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4131  *      (and thence onto LAST-ACK and finally, CLOSE, we never enter
4132  *      TIME-WAIT)
4133  *
4134  *      If we are in FINWAIT-1, a received FIN indicates simultaneous
4135  *      close and we go into CLOSING (and later onto TIME-WAIT)
4136  *
4137  *      If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4138  */
4139 static void tcp_fin(struct sock *sk)
4140 {
4141         struct tcp_sock *tp = tcp_sk(sk);
4142
4143         inet_csk_schedule_ack(sk);
4144
4145         sk->sk_shutdown |= RCV_SHUTDOWN;
4146         sock_set_flag(sk, SOCK_DONE);
4147
4148         switch (sk->sk_state) {
4149         case TCP_SYN_RECV:
4150         case TCP_ESTABLISHED:
4151                 /* Move to CLOSE_WAIT */
4152                 tcp_set_state(sk, TCP_CLOSE_WAIT);
4153                 inet_csk(sk)->icsk_ack.pingpong = 1;
4154                 break;
4155
4156         case TCP_CLOSE_WAIT:
4157         case TCP_CLOSING:
4158                 /* Received a retransmission of the FIN, do
4159                  * nothing.
4160                  */
4161                 break;
4162         case TCP_LAST_ACK:
4163                 /* RFC793: Remain in the LAST-ACK state. */
4164                 break;
4165
4166         case TCP_FIN_WAIT1:
4167                 /* This case occurs when a simultaneous close
4168                  * happens, we must ack the received FIN and
4169                  * enter the CLOSING state.
4170                  */
4171                 tcp_send_ack(sk);
4172                 tcp_set_state(sk, TCP_CLOSING);
4173                 break;
4174         case TCP_FIN_WAIT2:
4175                 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4176                 tcp_send_ack(sk);
4177                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4178                 break;
4179         default:
4180                 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4181                  * cases we should never reach this piece of code.
4182                  */
4183                 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
4184                        __func__, sk->sk_state);
4185                 break;
4186         }
4187
4188         /* It _is_ possible, that we have something out-of-order _after_ FIN.
4189          * Probably, we should reset in this case. For now drop them.
4190          */
4191         __skb_queue_purge(&tp->out_of_order_queue);
4192         if (tcp_is_sack(tp))
4193                 tcp_sack_reset(&tp->rx_opt);
4194         sk_mem_reclaim(sk);
4195
4196         if (!sock_flag(sk, SOCK_DEAD)) {
4197                 sk->sk_state_change(sk);
4198
4199                 /* Do not send POLL_HUP for half duplex close. */
4200                 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4201                     sk->sk_state == TCP_CLOSE)
4202                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4203                 else
4204                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4205         }
4206 }
4207
4208 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4209                                   u32 end_seq)
4210 {
4211         if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4212                 if (before(seq, sp->start_seq))
4213                         sp->start_seq = seq;
4214                 if (after(end_seq, sp->end_seq))
4215                         sp->end_seq = end_seq;
4216                 return 1;
4217         }
4218         return 0;
4219 }
4220
4221 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4222 {
4223         struct tcp_sock *tp = tcp_sk(sk);
4224
4225         if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4226                 int mib_idx;
4227
4228                 if (before(seq, tp->rcv_nxt))
4229                         mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4230                 else
4231                         mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4232
4233                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
4234
4235                 tp->rx_opt.dsack = 1;
4236                 tp->duplicate_sack[0].start_seq = seq;
4237                 tp->duplicate_sack[0].end_seq = end_seq;
4238         }
4239 }
4240
4241 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4242 {
4243         struct tcp_sock *tp = tcp_sk(sk);
4244
4245         if (!tp->rx_opt.dsack)
4246                 tcp_dsack_set(sk, seq, end_seq);
4247         else
4248                 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4249 }
4250
4251 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4252 {
4253         struct tcp_sock *tp = tcp_sk(sk);
4254
4255         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4256             before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4257                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4258                 tcp_enter_quickack_mode(sk);
4259
4260                 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4261                         u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4262
4263                         if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4264                                 end_seq = tp->rcv_nxt;
4265                         tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4266                 }
4267         }
4268
4269         tcp_send_ack(sk);
4270 }
4271
4272 /* These routines update the SACK block as out-of-order packets arrive or
4273  * in-order packets close up the sequence space.
4274  */
4275 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4276 {
4277         int this_sack;
4278         struct tcp_sack_block *sp = &tp->selective_acks[0];
4279         struct tcp_sack_block *swalk = sp + 1;
4280
4281         /* See if the recent change to the first SACK eats into
4282          * or hits the sequence space of other SACK blocks, if so coalesce.
4283          */
4284         for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4285                 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4286                         int i;
4287
4288                         /* Zap SWALK, by moving every further SACK up by one slot.
4289                          * Decrease num_sacks.
4290                          */
4291                         tp->rx_opt.num_sacks--;
4292                         for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4293                                 sp[i] = sp[i + 1];
4294                         continue;
4295                 }
4296                 this_sack++, swalk++;
4297         }
4298 }
4299
4300 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4301 {
4302         struct tcp_sock *tp = tcp_sk(sk);
4303         struct tcp_sack_block *sp = &tp->selective_acks[0];
4304         int cur_sacks = tp->rx_opt.num_sacks;
4305         int this_sack;
4306
4307         if (!cur_sacks)
4308                 goto new_sack;
4309
4310         for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4311                 if (tcp_sack_extend(sp, seq, end_seq)) {
4312                         /* Rotate this_sack to the first one. */
4313                         for (; this_sack > 0; this_sack--, sp--)
4314                                 swap(*sp, *(sp - 1));
4315                         if (cur_sacks > 1)
4316                                 tcp_sack_maybe_coalesce(tp);
4317                         return;
4318                 }
4319         }
4320
4321         /* Could not find an adjacent existing SACK, build a new one,
4322          * put it at the front, and shift everyone else down.  We
4323          * always know there is at least one SACK present already here.
4324          *
4325          * If the sack array is full, forget about the last one.
4326          */
4327         if (this_sack >= TCP_NUM_SACKS) {
4328                 this_sack--;
4329                 tp->rx_opt.num_sacks--;
4330                 sp--;
4331         }
4332         for (; this_sack > 0; this_sack--, sp--)
4333                 *sp = *(sp - 1);
4334
4335 new_sack:
4336         /* Build the new head SACK, and we're done. */
4337         sp->start_seq = seq;
4338         sp->end_seq = end_seq;
4339         tp->rx_opt.num_sacks++;
4340 }
4341
4342 /* RCV.NXT advances, some SACKs should be eaten. */
4343
4344 static void tcp_sack_remove(struct tcp_sock *tp)
4345 {
4346         struct tcp_sack_block *sp = &tp->selective_acks[0];
4347         int num_sacks = tp->rx_opt.num_sacks;
4348         int this_sack;
4349
4350         /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4351         if (skb_queue_empty(&tp->out_of_order_queue)) {
4352                 tp->rx_opt.num_sacks = 0;
4353                 return;
4354         }
4355
4356         for (this_sack = 0; this_sack < num_sacks;) {
4357                 /* Check if the start of the sack is covered by RCV.NXT. */
4358                 if (!before(tp->rcv_nxt, sp->start_seq)) {
4359                         int i;
4360
4361                         /* RCV.NXT must cover all the block! */
4362                         WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4363
4364                         /* Zap this SACK, by moving forward any other SACKS. */
4365                         for (i=this_sack+1; i < num_sacks; i++)
4366                                 tp->selective_acks[i-1] = tp->selective_acks[i];
4367                         num_sacks--;
4368                         continue;
4369                 }
4370                 this_sack++;
4371                 sp++;
4372         }
4373         tp->rx_opt.num_sacks = num_sacks;
4374 }
4375
4376 /* This one checks to see if we can put data from the
4377  * out_of_order queue into the receive_queue.
4378  */
4379 static void tcp_ofo_queue(struct sock *sk)
4380 {
4381         struct tcp_sock *tp = tcp_sk(sk);
4382         __u32 dsack_high = tp->rcv_nxt;
4383         struct sk_buff *skb;
4384
4385         while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4386                 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4387                         break;
4388
4389                 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4390                         __u32 dsack = dsack_high;
4391                         if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4392                                 dsack_high = TCP_SKB_CB(skb)->end_seq;
4393                         tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4394                 }
4395
4396                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4397                         SOCK_DEBUG(sk, "ofo packet was already received\n");
4398                         __skb_unlink(skb, &tp->out_of_order_queue);
4399                         __kfree_skb(skb);
4400                         continue;
4401                 }
4402                 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4403                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4404                            TCP_SKB_CB(skb)->end_seq);
4405
4406                 __skb_unlink(skb, &tp->out_of_order_queue);
4407                 __skb_queue_tail(&sk->sk_receive_queue, skb);
4408                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4409                 if (tcp_hdr(skb)->fin)
4410                         tcp_fin(sk);
4411         }
4412 }
4413
4414 static int tcp_prune_ofo_queue(struct sock *sk);
4415 static int tcp_prune_queue(struct sock *sk);
4416
4417 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4418 {
4419         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4420             !sk_rmem_schedule(sk, size)) {
4421
4422                 if (tcp_prune_queue(sk) < 0)
4423                         return -1;
4424
4425                 if (!sk_rmem_schedule(sk, size)) {
4426                         if (!tcp_prune_ofo_queue(sk))
4427                                 return -1;
4428
4429                         if (!sk_rmem_schedule(sk, size))
4430                                 return -1;
4431                 }
4432         }
4433         return 0;
4434 }
4435
4436 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4437 {
4438         const struct tcphdr *th = tcp_hdr(skb);
4439         struct tcp_sock *tp = tcp_sk(sk);
4440         int eaten = -1;
4441
4442         if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4443                 goto drop;
4444
4445         skb_dst_drop(skb);
4446         __skb_pull(skb, th->doff * 4);
4447
4448         TCP_ECN_accept_cwr(tp, skb);
4449
4450         tp->rx_opt.dsack = 0;
4451
4452         /*  Queue data for delivery to the user.
4453          *  Packets in sequence go to the receive queue.
4454          *  Out of sequence packets to the out_of_order_queue.
4455          */
4456         if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4457                 if (tcp_receive_window(tp) == 0)
4458                         goto out_of_window;
4459
4460                 /* Ok. In sequence. In window. */
4461                 if (tp->ucopy.task == current &&
4462                     tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4463                     sock_owned_by_user(sk) && !tp->urg_data) {
4464                         int chunk = min_t(unsigned int, skb->len,
4465                                           tp->ucopy.len);
4466
4467                         __set_current_state(TASK_RUNNING);
4468
4469                         local_bh_enable();
4470                         if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4471                                 tp->ucopy.len -= chunk;
4472                                 tp->copied_seq += chunk;
4473                                 eaten = (chunk == skb->len);
4474                                 tcp_rcv_space_adjust(sk);
4475                         }
4476                         local_bh_disable();
4477                 }
4478
4479                 if (eaten <= 0) {
4480 queue_and_out:
4481                         if (eaten < 0 &&
4482                             tcp_try_rmem_schedule(sk, skb->truesize))
4483                                 goto drop;
4484
4485                         skb_set_owner_r(skb, sk);
4486                         __skb_queue_tail(&sk->sk_receive_queue, skb);
4487                 }
4488                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4489                 if (skb->len)
4490                         tcp_event_data_recv(sk, skb);
4491                 if (th->fin)
4492                         tcp_fin(sk);
4493
4494                 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4495                         tcp_ofo_queue(sk);
4496
4497                         /* RFC2581. 4.2. SHOULD send immediate ACK, when
4498                          * gap in queue is filled.
4499                          */
4500                         if (skb_queue_empty(&tp->out_of_order_queue))
4501                                 inet_csk(sk)->icsk_ack.pingpong = 0;
4502                 }
4503
4504                 if (tp->rx_opt.num_sacks)
4505                         tcp_sack_remove(tp);
4506
4507                 tcp_fast_path_check(sk);
4508
4509                 if (eaten > 0)
4510                         __kfree_skb(skb);
4511                 else if (!sock_flag(sk, SOCK_DEAD))
4512                         sk->sk_data_ready(sk, 0);
4513                 return;
4514         }
4515
4516         if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4517                 /* A retransmit, 2nd most common case.  Force an immediate ack. */
4518                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4519                 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4520
4521 out_of_window:
4522                 tcp_enter_quickack_mode(sk);
4523                 inet_csk_schedule_ack(sk);
4524 drop:
4525                 __kfree_skb(skb);
4526                 return;
4527         }
4528
4529         /* Out of window. F.e. zero window probe. */
4530         if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4531                 goto out_of_window;
4532
4533         tcp_enter_quickack_mode(sk);
4534
4535         if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4536                 /* Partial packet, seq < rcv_next < end_seq */
4537                 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4538                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4539                            TCP_SKB_CB(skb)->end_seq);
4540
4541                 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4542
4543                 /* If window is closed, drop tail of packet. But after
4544                  * remembering D-SACK for its head made in previous line.
4545                  */
4546                 if (!tcp_receive_window(tp))
4547                         goto out_of_window;
4548                 goto queue_and_out;
4549         }
4550
4551         TCP_ECN_check_ce(tp, skb);
4552
4553         if (tcp_try_rmem_schedule(sk, skb->truesize))
4554                 goto drop;
4555
4556         /* Disable header prediction. */
4557         tp->pred_flags = 0;
4558         inet_csk_schedule_ack(sk);
4559
4560         SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4561                    tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4562
4563         skb_set_owner_r(skb, sk);
4564
4565         if (!skb_peek(&tp->out_of_order_queue)) {
4566                 /* Initial out of order segment, build 1 SACK. */
4567                 if (tcp_is_sack(tp)) {
4568                         tp->rx_opt.num_sacks = 1;
4569                         tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4570                         tp->selective_acks[0].end_seq =
4571                                                 TCP_SKB_CB(skb)->end_seq;
4572                 }
4573                 __skb_queue_head(&tp->out_of_order_queue, skb);
4574         } else {
4575                 struct sk_buff *skb1 = skb_peek_tail(&tp->out_of_order_queue);
4576                 u32 seq = TCP_SKB_CB(skb)->seq;
4577                 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4578
4579                 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4580                         __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4581
4582                         if (!tp->rx_opt.num_sacks ||
4583                             tp->selective_acks[0].end_seq != seq)
4584                                 goto add_sack;
4585
4586                         /* Common case: data arrive in order after hole. */
4587                         tp->selective_acks[0].end_seq = end_seq;
4588                         return;
4589                 }
4590
4591                 /* Find place to insert this segment. */
4592                 while (1) {
4593                         if (!after(TCP_SKB_CB(skb1)->seq, seq))
4594                                 break;
4595                         if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4596                                 skb1 = NULL;
4597                                 break;
4598                         }
4599                         skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4600                 }
4601
4602                 /* Do skb overlap to previous one? */
4603                 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4604                         if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4605                                 /* All the bits are present. Drop. */
4606                                 __kfree_skb(skb);
4607                                 tcp_dsack_set(sk, seq, end_seq);
4608                                 goto add_sack;
4609                         }
4610                         if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4611                                 /* Partial overlap. */
4612                                 tcp_dsack_set(sk, seq,
4613                                               TCP_SKB_CB(skb1)->end_seq);
4614                         } else {
4615                                 if (skb_queue_is_first(&tp->out_of_order_queue,
4616                                                        skb1))
4617                                         skb1 = NULL;
4618                                 else
4619                                         skb1 = skb_queue_prev(
4620                                                 &tp->out_of_order_queue,
4621                                                 skb1);
4622                         }
4623                 }
4624                 if (!skb1)
4625                         __skb_queue_head(&tp->out_of_order_queue, skb);
4626                 else
4627                         __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4628
4629                 /* And clean segments covered by new one as whole. */
4630                 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4631                         skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4632
4633                         if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4634                                 break;
4635                         if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4636                                 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4637                                                  end_seq);
4638                                 break;
4639                         }
4640                         __skb_unlink(skb1, &tp->out_of_order_queue);
4641                         tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4642                                          TCP_SKB_CB(skb1)->end_seq);
4643                         __kfree_skb(skb1);
4644                 }
4645
4646 add_sack:
4647                 if (tcp_is_sack(tp))
4648                         tcp_sack_new_ofo_skb(sk, seq, end_seq);
4649         }
4650 }
4651
4652 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4653                                         struct sk_buff_head *list)
4654 {
4655         struct sk_buff *next = NULL;
4656
4657         if (!skb_queue_is_last(list, skb))
4658                 next = skb_queue_next(list, skb);
4659
4660         __skb_unlink(skb, list);
4661         __kfree_skb(skb);
4662         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4663
4664         return next;
4665 }
4666
4667 /* Collapse contiguous sequence of skbs head..tail with
4668  * sequence numbers start..end.
4669  *
4670  * If tail is NULL, this means until the end of the list.
4671  *
4672  * Segments with FIN/SYN are not collapsed (only because this
4673  * simplifies code)
4674  */
4675 static void
4676 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4677              struct sk_buff *head, struct sk_buff *tail,
4678              u32 start, u32 end)
4679 {
4680         struct sk_buff *skb, *n;
4681         bool end_of_skbs;
4682
4683         /* First, check that queue is collapsible and find
4684          * the point where collapsing can be useful. */
4685         skb = head;
4686 restart:
4687         end_of_skbs = true;
4688         skb_queue_walk_from_safe(list, skb, n) {
4689                 if (skb == tail)
4690                         break;
4691                 /* No new bits? It is possible on ofo queue. */
4692                 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4693                         skb = tcp_collapse_one(sk, skb, list);
4694                         if (!skb)
4695                                 break;
4696                         goto restart;
4697                 }
4698
4699                 /* The first skb to collapse is:
4700                  * - not SYN/FIN and
4701                  * - bloated or contains data before "start" or
4702                  *   overlaps to the next one.
4703                  */
4704                 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4705                     (tcp_win_from_space(skb->truesize) > skb->len ||
4706                      before(TCP_SKB_CB(skb)->seq, start))) {
4707                         end_of_skbs = false;
4708                         break;
4709                 }
4710
4711                 if (!skb_queue_is_last(list, skb)) {
4712                         struct sk_buff *next = skb_queue_next(list, skb);
4713                         if (next != tail &&
4714                             TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4715                                 end_of_skbs = false;
4716                                 break;
4717                         }
4718                 }
4719
4720                 /* Decided to skip this, advance start seq. */
4721                 start = TCP_SKB_CB(skb)->end_seq;
4722         }
4723         if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4724                 return;
4725
4726         while (before(start, end)) {
4727                 struct sk_buff *nskb;
4728                 unsigned int header = skb_headroom(skb);
4729                 int copy = SKB_MAX_ORDER(header, 0);
4730
4731                 /* Too big header? This can happen with IPv6. */
4732                 if (copy < 0)
4733                         return;
4734                 if (end - start < copy)
4735                         copy = end - start;
4736                 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4737                 if (!nskb)
4738                         return;
4739
4740                 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4741                 skb_set_network_header(nskb, (skb_network_header(skb) -
4742                                               skb->head));
4743                 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4744                                                 skb->head));
4745                 skb_reserve(nskb, header);
4746                 memcpy(nskb->head, skb->head, header);
4747                 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4748                 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4749                 __skb_queue_before(list, skb, nskb);
4750                 skb_set_owner_r(nskb, sk);
4751
4752                 /* Copy data, releasing collapsed skbs. */
4753                 while (copy > 0) {
4754                         int offset = start - TCP_SKB_CB(skb)->seq;
4755                         int size = TCP_SKB_CB(skb)->end_seq - start;
4756
4757                         BUG_ON(offset < 0);
4758                         if (size > 0) {
4759                                 size = min(copy, size);
4760                                 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4761                                         BUG();
4762                                 TCP_SKB_CB(nskb)->end_seq += size;
4763                                 copy -= size;
4764                                 start += size;
4765                         }
4766                         if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4767                                 skb = tcp_collapse_one(sk, skb, list);
4768                                 if (!skb ||
4769                                     skb == tail ||
4770                                     tcp_hdr(skb)->syn ||
4771                                     tcp_hdr(skb)->fin)
4772                                         return;
4773                         }
4774                 }
4775         }
4776 }
4777
4778 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4779  * and tcp_collapse() them until all the queue is collapsed.
4780  */
4781 static void tcp_collapse_ofo_queue(struct sock *sk)
4782 {
4783         struct tcp_sock *tp = tcp_sk(sk);
4784         struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4785         struct sk_buff *head;
4786         u32 start, end;
4787
4788         if (skb == NULL)
4789                 return;
4790
4791         start = TCP_SKB_CB(skb)->seq;
4792         end = TCP_SKB_CB(skb)->end_seq;
4793         head = skb;
4794
4795         for (;;) {
4796                 struct sk_buff *next = NULL;
4797
4798                 if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4799                         next = skb_queue_next(&tp->out_of_order_queue, skb);
4800                 skb = next;
4801
4802                 /* Segment is terminated when we see gap or when
4803                  * we are at the end of all the queue. */
4804                 if (!skb ||
4805                     after(TCP_SKB_CB(skb)->seq, end) ||
4806                     before(TCP_SKB_CB(skb)->end_seq, start)) {
4807                         tcp_collapse(sk, &tp->out_of_order_queue,
4808                                      head, skb, start, end);
4809                         head = skb;
4810                         if (!skb)
4811                                 break;
4812                         /* Start new segment */
4813                         start = TCP_SKB_CB(skb)->seq;
4814                         end = TCP_SKB_CB(skb)->end_seq;
4815                 } else {
4816                         if (before(TCP_SKB_CB(skb)->seq, start))
4817                                 start = TCP_SKB_CB(skb)->seq;
4818                         if (after(TCP_SKB_CB(skb)->end_seq, end))
4819                                 end = TCP_SKB_CB(skb)->end_seq;
4820                 }
4821         }
4822 }
4823
4824 /*
4825  * Purge the out-of-order queue.
4826  * Return true if queue was pruned.
4827  */
4828 static int tcp_prune_ofo_queue(struct sock *sk)
4829 {
4830         struct tcp_sock *tp = tcp_sk(sk);
4831         int res = 0;
4832
4833         if (!skb_queue_empty(&tp->out_of_order_queue)) {
4834                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4835                 __skb_queue_purge(&tp->out_of_order_queue);
4836
4837                 /* Reset SACK state.  A conforming SACK implementation will
4838                  * do the same at a timeout based retransmit.  When a connection
4839                  * is in a sad state like this, we care only about integrity
4840                  * of the connection not performance.
4841                  */
4842                 if (tp->rx_opt.sack_ok)
4843                         tcp_sack_reset(&tp->rx_opt);
4844                 sk_mem_reclaim(sk);
4845                 res = 1;
4846         }
4847         return res;
4848 }
4849
4850 /* Reduce allocated memory if we can, trying to get
4851  * the socket within its memory limits again.
4852  *
4853  * Return less than zero if we should start dropping frames
4854  * until the socket owning process reads some of the data
4855  * to stabilize the situation.
4856  */
4857 static int tcp_prune_queue(struct sock *sk)
4858 {
4859         struct tcp_sock *tp = tcp_sk(sk);
4860
4861         SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4862
4863         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4864
4865         if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4866                 tcp_clamp_window(sk);
4867         else if (tcp_memory_pressure)
4868                 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4869
4870         tcp_collapse_ofo_queue(sk);
4871         if (!skb_queue_empty(&sk->sk_receive_queue))
4872                 tcp_collapse(sk, &sk->sk_receive_queue,
4873                              skb_peek(&sk->sk_receive_queue),
4874                              NULL,
4875                              tp->copied_seq, tp->rcv_nxt);
4876         sk_mem_reclaim(sk);
4877
4878         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4879                 return 0;
4880
4881         /* Collapsing did not help, destructive actions follow.
4882          * This must not ever occur. */
4883
4884         tcp_prune_ofo_queue(sk);
4885
4886         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4887                 return 0;
4888
4889         /* If we are really being abused, tell the caller to silently
4890          * drop receive data on the floor.  It will get retransmitted
4891          * and hopefully then we'll have sufficient space.
4892          */
4893         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4894
4895         /* Massive buffer overcommit. */
4896         tp->pred_flags = 0;
4897         return -1;
4898 }
4899
4900 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4901  * As additional protections, we do not touch cwnd in retransmission phases,
4902  * and if application hit its sndbuf limit recently.
4903  */
4904 void tcp_cwnd_application_limited(struct sock *sk)
4905 {
4906         struct tcp_sock *tp = tcp_sk(sk);
4907
4908         if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4909             sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4910                 /* Limited by application or receiver window. */
4911                 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4912                 u32 win_used = max(tp->snd_cwnd_used, init_win);
4913                 if (win_used < tp->snd_cwnd) {
4914                         tp->snd_ssthresh = tcp_current_ssthresh(sk);
4915                         tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4916                 }
4917                 tp->snd_cwnd_used = 0;
4918         }
4919         tp->snd_cwnd_stamp = tcp_time_stamp;
4920 }
4921
4922 static int tcp_should_expand_sndbuf(const struct sock *sk)
4923 {
4924         const struct tcp_sock *tp = tcp_sk(sk);
4925
4926         /* If the user specified a specific send buffer setting, do
4927          * not modify it.
4928          */
4929         if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4930                 return 0;
4931
4932         /* If we are under global TCP memory pressure, do not expand.  */
4933         if (tcp_memory_pressure)
4934                 return 0;
4935
4936         /* If we are under soft global TCP memory pressure, do not expand.  */
4937         if (atomic_long_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4938                 return 0;
4939
4940         /* If we filled the congestion window, do not expand.  */
4941         if (tp->packets_out >= tp->snd_cwnd)
4942                 return 0;
4943
4944         return 1;
4945 }
4946
4947 /* When incoming ACK allowed to free some skb from write_queue,
4948  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4949  * on the exit from tcp input handler.
4950  *
4951  * PROBLEM: sndbuf expansion does not work well with largesend.
4952  */
4953 static void tcp_new_space(struct sock *sk)
4954 {
4955         struct tcp_sock *tp = tcp_sk(sk);
4956
4957         if (tcp_should_expand_sndbuf(sk)) {
4958                 int sndmem = SKB_TRUESIZE(max_t(u32,
4959                                                 tp->rx_opt.mss_clamp,
4960                                                 tp->mss_cache) +
4961                                           MAX_TCP_HEADER);
4962                 int demanded = max_t(unsigned int, tp->snd_cwnd,
4963                                      tp->reordering + 1);
4964                 sndmem *= 2 * demanded;
4965                 if (sndmem > sk->sk_sndbuf)
4966                         sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4967                 tp->snd_cwnd_stamp = tcp_time_stamp;
4968         }
4969
4970         sk->sk_write_space(sk);
4971 }
4972
4973 static void tcp_check_space(struct sock *sk)
4974 {
4975         if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4976                 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4977                 if (sk->sk_socket &&
4978                     test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4979                         tcp_new_space(sk);
4980         }
4981 }
4982
4983 static inline void tcp_data_snd_check(struct sock *sk)
4984 {
4985         tcp_push_pending_frames(sk);
4986         tcp_check_space(sk);
4987 }
4988
4989 /*
4990  * Check if sending an ack is needed.
4991  */
4992 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4993 {
4994         struct tcp_sock *tp = tcp_sk(sk);
4995
4996             /* More than one full frame received... */
4997         if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4998              /* ... and right edge of window advances far enough.
4999               * (tcp_recvmsg() will send ACK otherwise). Or...
5000               */
5001              __tcp_select_window(sk) >= tp->rcv_wnd) ||
5002             /* We ACK each frame or... */
5003             tcp_in_quickack_mode(sk) ||
5004             /* We have out of order data. */
5005             (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
5006                 /* Then ack it now */
5007                 tcp_send_ack(sk);
5008         } else {
5009                 /* Else, send delayed ack. */
5010                 tcp_send_delayed_ack(sk);
5011         }
5012 }
5013
5014 static inline void tcp_ack_snd_check(struct sock *sk)
5015 {
5016         if (!inet_csk_ack_scheduled(sk)) {
5017                 /* We sent a data segment already. */
5018                 return;
5019         }
5020         __tcp_ack_snd_check(sk, 1);
5021 }
5022
5023 /*
5024  *      This routine is only called when we have urgent data
5025  *      signaled. Its the 'slow' part of tcp_urg. It could be
5026  *      moved inline now as tcp_urg is only called from one
5027  *      place. We handle URGent data wrong. We have to - as
5028  *      BSD still doesn't use the correction from RFC961.
5029  *      For 1003.1g we should support a new option TCP_STDURG to permit
5030  *      either form (or just set the sysctl tcp_stdurg).
5031  */
5032
5033 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5034 {
5035         struct tcp_sock *tp = tcp_sk(sk);
5036         u32 ptr = ntohs(th->urg_ptr);
5037
5038         if (ptr && !sysctl_tcp_stdurg)
5039                 ptr--;
5040         ptr += ntohl(th->seq);
5041
5042         /* Ignore urgent data that we've already seen and read. */
5043         if (after(tp->copied_seq, ptr))
5044                 return;
5045
5046         /* Do not replay urg ptr.
5047          *
5048          * NOTE: interesting situation not covered by specs.
5049          * Misbehaving sender may send urg ptr, pointing to segment,
5050          * which we already have in ofo queue. We are not able to fetch
5051          * such data and will stay in TCP_URG_NOTYET until will be eaten
5052          * by recvmsg(). Seems, we are not obliged to handle such wicked
5053          * situations. But it is worth to think about possibility of some
5054          * DoSes using some hypothetical application level deadlock.
5055          */
5056         if (before(ptr, tp->rcv_nxt))
5057                 return;
5058
5059         /* Do we already have a newer (or duplicate) urgent pointer? */
5060         if (tp->urg_data && !after(ptr, tp->urg_seq))
5061                 return;
5062
5063         /* Tell the world about our new urgent pointer. */
5064         sk_send_sigurg(sk);
5065
5066         /* We may be adding urgent data when the last byte read was
5067          * urgent. To do this requires some care. We cannot just ignore
5068          * tp->copied_seq since we would read the last urgent byte again
5069          * as data, nor can we alter copied_seq until this data arrives
5070          * or we break the semantics of SIOCATMARK (and thus sockatmark())
5071          *
5072          * NOTE. Double Dutch. Rendering to plain English: author of comment
5073          * above did something sort of  send("A", MSG_OOB); send("B", MSG_OOB);
5074          * and expect that both A and B disappear from stream. This is _wrong_.
5075          * Though this happens in BSD with high probability, this is occasional.
5076          * Any application relying on this is buggy. Note also, that fix "works"
5077          * only in this artificial test. Insert some normal data between A and B and we will
5078          * decline of BSD again. Verdict: it is better to remove to trap
5079          * buggy users.
5080          */
5081         if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5082             !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5083                 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5084                 tp->copied_seq++;
5085                 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5086                         __skb_unlink(skb, &sk->sk_receive_queue);
5087                         __kfree_skb(skb);
5088                 }
5089         }
5090
5091         tp->urg_data = TCP_URG_NOTYET;
5092         tp->urg_seq = ptr;
5093
5094         /* Disable header prediction. */
5095         tp->pred_flags = 0;
5096 }
5097
5098 /* This is the 'fast' part of urgent handling. */
5099 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5100 {
5101         struct tcp_sock *tp = tcp_sk(sk);
5102
5103         /* Check if we get a new urgent pointer - normally not. */
5104         if (th->urg)
5105                 tcp_check_urg(sk, th);
5106
5107         /* Do we wait for any urgent data? - normally not... */
5108         if (tp->urg_data == TCP_URG_NOTYET) {
5109                 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5110                           th->syn;
5111
5112                 /* Is the urgent pointer pointing into this packet? */
5113                 if (ptr < skb->len) {
5114                         u8 tmp;
5115                         if (skb_copy_bits(skb, ptr, &tmp, 1))
5116                                 BUG();
5117                         tp->urg_data = TCP_URG_VALID | tmp;
5118                         if (!sock_flag(sk, SOCK_DEAD))
5119                                 sk->sk_data_ready(sk, 0);
5120                 }
5121         }
5122 }
5123
5124 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5125 {
5126         struct tcp_sock *tp = tcp_sk(sk);
5127         int chunk = skb->len - hlen;
5128         int err;
5129
5130         local_bh_enable();
5131         if (skb_csum_unnecessary(skb))
5132                 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
5133         else
5134                 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
5135                                                        tp->ucopy.iov);
5136
5137         if (!err) {
5138                 tp->ucopy.len -= chunk;
5139                 tp->copied_seq += chunk;
5140                 tcp_rcv_space_adjust(sk);
5141         }
5142
5143         local_bh_disable();
5144         return err;
5145 }
5146
5147 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5148                                             struct sk_buff *skb)
5149 {
5150         __sum16 result;
5151
5152         if (sock_owned_by_user(sk)) {
5153                 local_bh_enable();
5154                 result = __tcp_checksum_complete(skb);
5155                 local_bh_disable();
5156         } else {
5157                 result = __tcp_checksum_complete(skb);
5158         }
5159         return result;
5160 }
5161
5162 static inline int tcp_checksum_complete_user(struct sock *sk,
5163                                              struct sk_buff *skb)
5164 {
5165         return !skb_csum_unnecessary(skb) &&
5166                __tcp_checksum_complete_user(sk, skb);
5167 }
5168
5169 #ifdef CONFIG_NET_DMA
5170 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5171                                   int hlen)
5172 {
5173         struct tcp_sock *tp = tcp_sk(sk);
5174         int chunk = skb->len - hlen;
5175         int dma_cookie;
5176         int copied_early = 0;
5177
5178         if (tp->ucopy.wakeup)
5179                 return 0;
5180
5181         if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5182                 tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
5183
5184         if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5185
5186                 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5187                                                          skb, hlen,
5188                                                          tp->ucopy.iov, chunk,
5189                                                          tp->ucopy.pinned_list);
5190
5191                 if (dma_cookie < 0)
5192                         goto out;
5193
5194                 tp->ucopy.dma_cookie = dma_cookie;
5195                 copied_early = 1;
5196
5197                 tp->ucopy.len -= chunk;
5198                 tp->copied_seq += chunk;
5199                 tcp_rcv_space_adjust(sk);
5200
5201                 if ((tp->ucopy.len == 0) ||
5202                     (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5203                     (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5204                         tp->ucopy.wakeup = 1;
5205                         sk->sk_data_ready(sk, 0);
5206                 }
5207         } else if (chunk > 0) {
5208                 tp->ucopy.wakeup = 1;
5209                 sk->sk_data_ready(sk, 0);
5210         }
5211 out:
5212         return copied_early;
5213 }
5214 #endif /* CONFIG_NET_DMA */
5215
5216 /* Does PAWS and seqno based validation of an incoming segment, flags will
5217  * play significant role here.
5218  */
5219 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5220                               const struct tcphdr *th, int syn_inerr)
5221 {
5222         const u8 *hash_location;
5223         struct tcp_sock *tp = tcp_sk(sk);
5224
5225         /* RFC1323: H1. Apply PAWS check first. */
5226         if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
5227             tp->rx_opt.saw_tstamp &&
5228             tcp_paws_discard(sk, skb)) {
5229                 if (!th->rst) {
5230                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5231                         tcp_send_dupack(sk, skb);
5232                         goto discard;
5233                 }
5234                 /* Reset is accepted even if it did not pass PAWS. */
5235         }
5236
5237         /* Step 1: check sequence number */
5238         if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5239                 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5240                  * (RST) segments are validated by checking their SEQ-fields."
5241                  * And page 69: "If an incoming segment is not acceptable,
5242                  * an acknowledgment should be sent in reply (unless the RST
5243                  * bit is set, if so drop the segment and return)".
5244                  */
5245                 if (!th->rst)
5246                         tcp_send_dupack(sk, skb);
5247                 goto discard;
5248         }
5249
5250         /* Step 2: check RST bit */
5251         if (th->rst) {
5252                 tcp_reset(sk);
5253                 goto discard;
5254         }
5255
5256         /* ts_recent update must be made after we are sure that the packet
5257          * is in window.
5258          */
5259         tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5260
5261         /* step 3: check security and precedence [ignored] */
5262
5263         /* step 4: Check for a SYN in window. */
5264         if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5265                 if (syn_inerr)
5266                         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5267                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5268                 tcp_reset(sk);
5269                 return -1;
5270         }
5271
5272         return 1;
5273
5274 discard:
5275         __kfree_skb(skb);
5276         return 0;
5277 }
5278
5279 /*
5280  *      TCP receive function for the ESTABLISHED state.
5281  *
5282  *      It is split into a fast path and a slow path. The fast path is
5283  *      disabled when:
5284  *      - A zero window was announced from us - zero window probing
5285  *        is only handled properly in the slow path.
5286  *      - Out of order segments arrived.
5287  *      - Urgent data is expected.
5288  *      - There is no buffer space left
5289  *      - Unexpected TCP flags/window values/header lengths are received
5290  *        (detected by checking the TCP header against pred_flags)
5291  *      - Data is sent in both directions. Fast path only supports pure senders
5292  *        or pure receivers (this means either the sequence number or the ack
5293  *        value must stay constant)
5294  *      - Unexpected TCP option.
5295  *
5296  *      When these conditions are not satisfied it drops into a standard
5297  *      receive procedure patterned after RFC793 to handle all cases.
5298  *      The first three cases are guaranteed by proper pred_flags setting,
5299  *      the rest is checked inline. Fast processing is turned on in
5300  *      tcp_data_queue when everything is OK.
5301  */
5302 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5303                         const struct tcphdr *th, unsigned int len)
5304 {
5305         struct tcp_sock *tp = tcp_sk(sk);
5306         int res;
5307
5308         /*
5309          *      Header prediction.
5310          *      The code loosely follows the one in the famous
5311          *      "30 instruction TCP receive" Van Jacobson mail.
5312          *
5313          *      Van's trick is to deposit buffers into socket queue
5314          *      on a device interrupt, to call tcp_recv function
5315          *      on the receive process context and checksum and copy
5316          *      the buffer to user space. smart...
5317          *
5318          *      Our current scheme is not silly either but we take the
5319          *      extra cost of the net_bh soft interrupt processing...
5320          *      We do checksum and copy also but from device to kernel.
5321          */
5322
5323         tp->rx_opt.saw_tstamp = 0;
5324
5325         /*      pred_flags is 0xS?10 << 16 + snd_wnd
5326          *      if header_prediction is to be made
5327          *      'S' will always be tp->tcp_header_len >> 2
5328          *      '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5329          *  turn it off (when there are holes in the receive
5330          *       space for instance)
5331          *      PSH flag is ignored.
5332          */
5333
5334         if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5335             TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5336             !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5337                 int tcp_header_len = tp->tcp_header_len;
5338
5339                 /* Timestamp header prediction: tcp_header_len
5340                  * is automatically equal to th->doff*4 due to pred_flags
5341                  * match.
5342                  */
5343
5344                 /* Check timestamp */
5345                 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5346                         /* No? Slow path! */
5347                         if (!tcp_parse_aligned_timestamp(tp, th))
5348                                 goto slow_path;
5349
5350                         /* If PAWS failed, check it more carefully in slow path */
5351                         if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5352                                 goto slow_path;
5353
5354                         /* DO NOT update ts_recent here, if checksum fails
5355                          * and timestamp was corrupted part, it will result
5356                          * in a hung connection since we will drop all
5357                          * future packets due to the PAWS test.
5358                          */
5359                 }
5360
5361                 if (len <= tcp_header_len) {
5362                         /* Bulk data transfer: sender */
5363                         if (len == tcp_header_len) {
5364                                 /* Predicted packet is in window by definition.
5365                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5366                                  * Hence, check seq<=rcv_wup reduces to:
5367                                  */
5368                                 if (tcp_header_len ==
5369                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5370                                     tp->rcv_nxt == tp->rcv_wup)
5371                                         tcp_store_ts_recent(tp);
5372
5373                                 /* We know that such packets are checksummed
5374                                  * on entry.
5375                                  */
5376                                 tcp_ack(sk, skb, 0);
5377                                 __kfree_skb(skb);
5378                                 tcp_data_snd_check(sk);
5379                                 return 0;
5380                         } else { /* Header too small */
5381                                 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5382                                 goto discard;
5383                         }
5384                 } else {
5385                         int eaten = 0;
5386                         int copied_early = 0;
5387
5388                         if (tp->copied_seq == tp->rcv_nxt &&
5389                             len - tcp_header_len <= tp->ucopy.len) {
5390 #ifdef CONFIG_NET_DMA
5391                                 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5392                                         copied_early = 1;
5393                                         eaten = 1;
5394                                 }
5395 #endif
5396                                 if (tp->ucopy.task == current &&
5397                                     sock_owned_by_user(sk) && !copied_early) {
5398                                         __set_current_state(TASK_RUNNING);
5399
5400                                         if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5401                                                 eaten = 1;
5402                                 }
5403                                 if (eaten) {
5404                                         /* Predicted packet is in window by definition.
5405                                          * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5406                                          * Hence, check seq<=rcv_wup reduces to:
5407                                          */
5408                                         if (tcp_header_len ==
5409                                             (sizeof(struct tcphdr) +
5410                                              TCPOLEN_TSTAMP_ALIGNED) &&
5411                                             tp->rcv_nxt == tp->rcv_wup)
5412                                                 tcp_store_ts_recent(tp);
5413
5414                                         tcp_rcv_rtt_measure_ts(sk, skb);
5415
5416                                         __skb_pull(skb, tcp_header_len);
5417                                         tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5418                                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5419                                 }
5420                                 if (copied_early)
5421                                         tcp_cleanup_rbuf(sk, skb->len);
5422                         }
5423                         if (!eaten) {
5424                                 if (tcp_checksum_complete_user(sk, skb))
5425                                         goto csum_error;
5426
5427                                 /* Predicted packet is in window by definition.
5428                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5429                                  * Hence, check seq<=rcv_wup reduces to:
5430                                  */
5431                                 if (tcp_header_len ==
5432                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5433                                     tp->rcv_nxt == tp->rcv_wup)
5434                                         tcp_store_ts_recent(tp);
5435
5436                                 tcp_rcv_rtt_measure_ts(sk, skb);
5437
5438                                 if ((int)skb->truesize > sk->sk_forward_alloc)
5439                                         goto step5;
5440
5441                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5442
5443                                 /* Bulk data transfer: receiver */
5444                                 __skb_pull(skb, tcp_header_len);
5445                                 __skb_queue_tail(&sk->sk_receive_queue, skb);
5446                                 skb_set_owner_r(skb, sk);
5447                                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5448                         }
5449
5450                         tcp_event_data_recv(sk, skb);
5451
5452                         if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5453                                 /* Well, only one small jumplet in fast path... */
5454                                 tcp_ack(sk, skb, FLAG_DATA);
5455                                 tcp_data_snd_check(sk);
5456                                 if (!inet_csk_ack_scheduled(sk))
5457                                         goto no_ack;
5458                         }
5459
5460                         if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5461                                 __tcp_ack_snd_check(sk, 0);
5462 no_ack:
5463 #ifdef CONFIG_NET_DMA
5464                         if (copied_early)
5465                                 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5466                         else
5467 #endif
5468                         if (eaten)
5469                                 __kfree_skb(skb);
5470                         else
5471                                 sk->sk_data_ready(sk, 0);
5472                         return 0;
5473                 }
5474         }
5475
5476 slow_path:
5477         if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5478                 goto csum_error;
5479
5480         /*
5481          *      Standard slow path.
5482          */
5483
5484         res = tcp_validate_incoming(sk, skb, th, 1);
5485         if (res <= 0)
5486                 return -res;
5487
5488 step5:
5489         if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
5490                 goto discard;
5491
5492         tcp_rcv_rtt_measure_ts(sk, skb);
5493
5494         /* Process urgent data. */
5495         tcp_urg(sk, skb, th);
5496
5497         /* step 7: process the segment text */
5498         tcp_data_queue(sk, skb);
5499
5500         tcp_data_snd_check(sk);
5501         tcp_ack_snd_check(sk);
5502         return 0;
5503
5504 csum_error:
5505         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5506
5507 discard:
5508         __kfree_skb(skb);
5509         return 0;
5510 }
5511 EXPORT_SYMBOL(tcp_rcv_established);
5512
5513 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5514                                          const struct tcphdr *th, unsigned int len)
5515 {
5516         const u8 *hash_location;
5517         struct inet_connection_sock *icsk = inet_csk(sk);
5518         struct tcp_sock *tp = tcp_sk(sk);
5519         struct tcp_cookie_values *cvp = tp->cookie_values;
5520         int saved_clamp = tp->rx_opt.mss_clamp;
5521
5522         tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0);
5523
5524         if (th->ack) {
5525                 /* rfc793:
5526                  * "If the state is SYN-SENT then
5527                  *    first check the ACK bit
5528                  *      If the ACK bit is set
5529                  *        If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5530                  *        a reset (unless the RST bit is set, if so drop
5531                  *        the segment and return)"
5532                  *
5533                  *  We do not send data with SYN, so that RFC-correct
5534                  *  test reduces to:
5535                  */
5536                 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5537                         goto reset_and_undo;
5538
5539                 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5540                     !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5541                              tcp_time_stamp)) {
5542                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5543                         goto reset_and_undo;
5544                 }
5545
5546                 /* Now ACK is acceptable.
5547                  *
5548                  * "If the RST bit is set
5549                  *    If the ACK was acceptable then signal the user "error:
5550                  *    connection reset", drop the segment, enter CLOSED state,
5551                  *    delete TCB, and return."
5552                  */
5553
5554                 if (th->rst) {
5555                         tcp_reset(sk);
5556                         goto discard;
5557                 }
5558
5559                 /* rfc793:
5560                  *   "fifth, if neither of the SYN or RST bits is set then
5561                  *    drop the segment and return."
5562                  *
5563                  *    See note below!
5564                  *                                        --ANK(990513)
5565                  */
5566                 if (!th->syn)
5567                         goto discard_and_undo;
5568
5569                 /* rfc793: