Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[linux-2.6.git] / net / ipv4 / tcp_input.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:     Ross Biro
9  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *              Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *              Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *              Florian La Roche, <flla@stud.uni-sb.de>
13  *              Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *              Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *              Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *              Matthew Dillon, <dillon@apollo.west.oic.com>
17  *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *              Jorge Cwik, <jorge@laser.satlink.net>
19  */
20
21 /*
22  * Changes:
23  *              Pedro Roque     :       Fast Retransmit/Recovery.
24  *                                      Two receive queues.
25  *                                      Retransmit queue handled by TCP.
26  *                                      Better retransmit timer handling.
27  *                                      New congestion avoidance.
28  *                                      Header prediction.
29  *                                      Variable renaming.
30  *
31  *              Eric            :       Fast Retransmit.
32  *              Randy Scott     :       MSS option defines.
33  *              Eric Schenk     :       Fixes to slow start algorithm.
34  *              Eric Schenk     :       Yet another double ACK bug.
35  *              Eric Schenk     :       Delayed ACK bug fixes.
36  *              Eric Schenk     :       Floyd style fast retrans war avoidance.
37  *              David S. Miller :       Don't allow zero congestion window.
38  *              Eric Schenk     :       Fix retransmitter so that it sends
39  *                                      next packet on ack of previous packet.
40  *              Andi Kleen      :       Moved open_request checking here
41  *                                      and process RSTs for open_requests.
42  *              Andi Kleen      :       Better prune_queue, and other fixes.
43  *              Andrey Savochkin:       Fix RTT measurements in the presence of
44  *                                      timestamps.
45  *              Andrey Savochkin:       Check sequence numbers correctly when
46  *                                      removing SACKs due to in sequence incoming
47  *                                      data segments.
48  *              Andi Kleen:             Make sure we never ack data there is not
49  *                                      enough room for. Also make this condition
50  *                                      a fatal error if it might still happen.
51  *              Andi Kleen:             Add tcp_measure_rcv_mss to make
52  *                                      connections with MSS<min(MTU,ann. MSS)
53  *                                      work without delayed acks.
54  *              Andi Kleen:             Process packets with PSH set in the
55  *                                      fast path.
56  *              J Hadi Salim:           ECN support
57  *              Andrei Gurtov,
58  *              Pasi Sarolahti,
59  *              Panu Kuhlberg:          Experimental audit of TCP (re)transmission
60  *                                      engine. Lots of bugs are found.
61  *              Pasi Sarolahti:         F-RTO for dealing with spurious RTOs
62  */
63
64 #include <linux/mm.h>
65 #include <linux/slab.h>
66 #include <linux/module.h>
67 #include <linux/sysctl.h>
68 #include <linux/kernel.h>
69 #include <net/dst.h>
70 #include <net/tcp.h>
71 #include <net/inet_common.h>
72 #include <linux/ipsec.h>
73 #include <asm/unaligned.h>
74 #include <net/netdma.h>
75
76 int sysctl_tcp_timestamps __read_mostly = 1;
77 int sysctl_tcp_window_scaling __read_mostly = 1;
78 int sysctl_tcp_sack __read_mostly = 1;
79 int sysctl_tcp_fack __read_mostly = 1;
80 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
81 int sysctl_tcp_ecn __read_mostly = 2;
82 int sysctl_tcp_dsack __read_mostly = 1;
83 int sysctl_tcp_app_win __read_mostly = 31;
84 int sysctl_tcp_adv_win_scale __read_mostly = 2;
85
86 int sysctl_tcp_stdurg __read_mostly;
87 int sysctl_tcp_rfc1337 __read_mostly;
88 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
89 int sysctl_tcp_frto __read_mostly = 2;
90 int sysctl_tcp_frto_response __read_mostly;
91 int sysctl_tcp_nometrics_save __read_mostly;
92
93 int sysctl_tcp_thin_dupack __read_mostly;
94
95 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
96 int sysctl_tcp_abc __read_mostly;
97
98 #define FLAG_DATA               0x01 /* Incoming frame contained data.          */
99 #define FLAG_WIN_UPDATE         0x02 /* Incoming ACK was a window update.       */
100 #define FLAG_DATA_ACKED         0x04 /* This ACK acknowledged new data.         */
101 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted.  */
102 #define FLAG_SYN_ACKED          0x10 /* This ACK acknowledged SYN.              */
103 #define FLAG_DATA_SACKED        0x20 /* New SACK.                               */
104 #define FLAG_ECE                0x40 /* ECE in this ACK                         */
105 #define FLAG_DATA_LOST          0x80 /* SACK detected data lossage.             */
106 #define FLAG_SLOWPATH           0x100 /* Do not skip RFC checks for window update.*/
107 #define FLAG_ONLY_ORIG_SACKED   0x200 /* SACKs only non-rexmit sent before RTO */
108 #define FLAG_SND_UNA_ADVANCED   0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
109 #define FLAG_DSACKING_ACK       0x800 /* SACK blocks contained D-SACK info */
110 #define FLAG_NONHEAD_RETRANS_ACKED      0x1000 /* Non-head rexmitted data was ACKed */
111 #define FLAG_SACK_RENEGING      0x2000 /* snd_una advanced to a sacked seq */
112
113 #define FLAG_ACKED              (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
114 #define FLAG_NOT_DUP            (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
115 #define FLAG_CA_ALERT           (FLAG_DATA_SACKED|FLAG_ECE)
116 #define FLAG_FORWARD_PROGRESS   (FLAG_ACKED|FLAG_DATA_SACKED)
117 #define FLAG_ANY_PROGRESS       (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
118
119 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
120 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
121
122 /* Adapt the MSS value used to make delayed ack decision to the
123  * real world.
124  */
125 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
126 {
127         struct inet_connection_sock *icsk = inet_csk(sk);
128         const unsigned int lss = icsk->icsk_ack.last_seg_size;
129         unsigned int len;
130
131         icsk->icsk_ack.last_seg_size = 0;
132
133         /* skb->len may jitter because of SACKs, even if peer
134          * sends good full-sized frames.
135          */
136         len = skb_shinfo(skb)->gso_size ? : skb->len;
137         if (len >= icsk->icsk_ack.rcv_mss) {
138                 icsk->icsk_ack.rcv_mss = len;
139         } else {
140                 /* Otherwise, we make more careful check taking into account,
141                  * that SACKs block is variable.
142                  *
143                  * "len" is invariant segment length, including TCP header.
144                  */
145                 len += skb->data - skb_transport_header(skb);
146                 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
147                     /* If PSH is not set, packet should be
148                      * full sized, provided peer TCP is not badly broken.
149                      * This observation (if it is correct 8)) allows
150                      * to handle super-low mtu links fairly.
151                      */
152                     (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
153                      !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
154                         /* Subtract also invariant (if peer is RFC compliant),
155                          * tcp header plus fixed timestamp option length.
156                          * Resulting "len" is MSS free of SACK jitter.
157                          */
158                         len -= tcp_sk(sk)->tcp_header_len;
159                         icsk->icsk_ack.last_seg_size = len;
160                         if (len == lss) {
161                                 icsk->icsk_ack.rcv_mss = len;
162                                 return;
163                         }
164                 }
165                 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
166                         icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
167                 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
168         }
169 }
170
171 static void tcp_incr_quickack(struct sock *sk)
172 {
173         struct inet_connection_sock *icsk = inet_csk(sk);
174         unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
175
176         if (quickacks == 0)
177                 quickacks = 2;
178         if (quickacks > icsk->icsk_ack.quick)
179                 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
180 }
181
182 void tcp_enter_quickack_mode(struct sock *sk)
183 {
184         struct inet_connection_sock *icsk = inet_csk(sk);
185         tcp_incr_quickack(sk);
186         icsk->icsk_ack.pingpong = 0;
187         icsk->icsk_ack.ato = TCP_ATO_MIN;
188 }
189
190 /* Send ACKs quickly, if "quick" count is not exhausted
191  * and the session is not interactive.
192  */
193
194 static inline int tcp_in_quickack_mode(const struct sock *sk)
195 {
196         const struct inet_connection_sock *icsk = inet_csk(sk);
197         return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
198 }
199
200 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
201 {
202         if (tp->ecn_flags & TCP_ECN_OK)
203                 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
204 }
205
206 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
207 {
208         if (tcp_hdr(skb)->cwr)
209                 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
210 }
211
212 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
213 {
214         tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
215 }
216
217 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
218 {
219         if (tp->ecn_flags & TCP_ECN_OK) {
220                 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
221                         tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
222                 /* Funny extension: if ECT is not set on a segment,
223                  * it is surely retransmit. It is not in ECN RFC,
224                  * but Linux follows this rule. */
225                 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
226                         tcp_enter_quickack_mode((struct sock *)tp);
227         }
228 }
229
230 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
231 {
232         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
233                 tp->ecn_flags &= ~TCP_ECN_OK;
234 }
235
236 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
237 {
238         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
239                 tp->ecn_flags &= ~TCP_ECN_OK;
240 }
241
242 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
243 {
244         if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
245                 return 1;
246         return 0;
247 }
248
249 /* Buffer size and advertised window tuning.
250  *
251  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
252  */
253
254 static void tcp_fixup_sndbuf(struct sock *sk)
255 {
256         int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
257                      sizeof(struct sk_buff);
258
259         if (sk->sk_sndbuf < 3 * sndmem)
260                 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
261 }
262
263 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
264  *
265  * All tcp_full_space() is split to two parts: "network" buffer, allocated
266  * forward and advertised in receiver window (tp->rcv_wnd) and
267  * "application buffer", required to isolate scheduling/application
268  * latencies from network.
269  * window_clamp is maximal advertised window. It can be less than
270  * tcp_full_space(), in this case tcp_full_space() - window_clamp
271  * is reserved for "application" buffer. The less window_clamp is
272  * the smoother our behaviour from viewpoint of network, but the lower
273  * throughput and the higher sensitivity of the connection to losses. 8)
274  *
275  * rcv_ssthresh is more strict window_clamp used at "slow start"
276  * phase to predict further behaviour of this connection.
277  * It is used for two goals:
278  * - to enforce header prediction at sender, even when application
279  *   requires some significant "application buffer". It is check #1.
280  * - to prevent pruning of receive queue because of misprediction
281  *   of receiver window. Check #2.
282  *
283  * The scheme does not work when sender sends good segments opening
284  * window and then starts to feed us spaghetti. But it should work
285  * in common situations. Otherwise, we have to rely on queue collapsing.
286  */
287
288 /* Slow part of check#2. */
289 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
290 {
291         struct tcp_sock *tp = tcp_sk(sk);
292         /* Optimize this! */
293         int truesize = tcp_win_from_space(skb->truesize) >> 1;
294         int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
295
296         while (tp->rcv_ssthresh <= window) {
297                 if (truesize <= skb->len)
298                         return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
299
300                 truesize >>= 1;
301                 window >>= 1;
302         }
303         return 0;
304 }
305
306 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
307 {
308         struct tcp_sock *tp = tcp_sk(sk);
309
310         /* Check #1 */
311         if (tp->rcv_ssthresh < tp->window_clamp &&
312             (int)tp->rcv_ssthresh < tcp_space(sk) &&
313             !tcp_memory_pressure) {
314                 int incr;
315
316                 /* Check #2. Increase window, if skb with such overhead
317                  * will fit to rcvbuf in future.
318                  */
319                 if (tcp_win_from_space(skb->truesize) <= skb->len)
320                         incr = 2 * tp->advmss;
321                 else
322                         incr = __tcp_grow_window(sk, skb);
323
324                 if (incr) {
325                         tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
326                                                tp->window_clamp);
327                         inet_csk(sk)->icsk_ack.quick |= 1;
328                 }
329         }
330 }
331
332 /* 3. Tuning rcvbuf, when connection enters established state. */
333
334 static void tcp_fixup_rcvbuf(struct sock *sk)
335 {
336         struct tcp_sock *tp = tcp_sk(sk);
337         int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
338
339         /* Try to select rcvbuf so that 4 mss-sized segments
340          * will fit to window and corresponding skbs will fit to our rcvbuf.
341          * (was 3; 4 is minimum to allow fast retransmit to work.)
342          */
343         while (tcp_win_from_space(rcvmem) < tp->advmss)
344                 rcvmem += 128;
345         if (sk->sk_rcvbuf < 4 * rcvmem)
346                 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
347 }
348
349 /* 4. Try to fixup all. It is made immediately after connection enters
350  *    established state.
351  */
352 static void tcp_init_buffer_space(struct sock *sk)
353 {
354         struct tcp_sock *tp = tcp_sk(sk);
355         int maxwin;
356
357         if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
358                 tcp_fixup_rcvbuf(sk);
359         if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
360                 tcp_fixup_sndbuf(sk);
361
362         tp->rcvq_space.space = tp->rcv_wnd;
363
364         maxwin = tcp_full_space(sk);
365
366         if (tp->window_clamp >= maxwin) {
367                 tp->window_clamp = maxwin;
368
369                 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
370                         tp->window_clamp = max(maxwin -
371                                                (maxwin >> sysctl_tcp_app_win),
372                                                4 * tp->advmss);
373         }
374
375         /* Force reservation of one segment. */
376         if (sysctl_tcp_app_win &&
377             tp->window_clamp > 2 * tp->advmss &&
378             tp->window_clamp + tp->advmss > maxwin)
379                 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
380
381         tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
382         tp->snd_cwnd_stamp = tcp_time_stamp;
383 }
384
385 /* 5. Recalculate window clamp after socket hit its memory bounds. */
386 static void tcp_clamp_window(struct sock *sk)
387 {
388         struct tcp_sock *tp = tcp_sk(sk);
389         struct inet_connection_sock *icsk = inet_csk(sk);
390
391         icsk->icsk_ack.quick = 0;
392
393         if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
394             !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
395             !tcp_memory_pressure &&
396             atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
397                 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
398                                     sysctl_tcp_rmem[2]);
399         }
400         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
401                 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
402 }
403
404 /* Initialize RCV_MSS value.
405  * RCV_MSS is an our guess about MSS used by the peer.
406  * We haven't any direct information about the MSS.
407  * It's better to underestimate the RCV_MSS rather than overestimate.
408  * Overestimations make us ACKing less frequently than needed.
409  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
410  */
411 void tcp_initialize_rcv_mss(struct sock *sk)
412 {
413         struct tcp_sock *tp = tcp_sk(sk);
414         unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
415
416         hint = min(hint, tp->rcv_wnd / 2);
417         hint = min(hint, TCP_MSS_DEFAULT);
418         hint = max(hint, TCP_MIN_MSS);
419
420         inet_csk(sk)->icsk_ack.rcv_mss = hint;
421 }
422
423 /* Receiver "autotuning" code.
424  *
425  * The algorithm for RTT estimation w/o timestamps is based on
426  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
427  * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
428  *
429  * More detail on this code can be found at
430  * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
431  * though this reference is out of date.  A new paper
432  * is pending.
433  */
434 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
435 {
436         u32 new_sample = tp->rcv_rtt_est.rtt;
437         long m = sample;
438
439         if (m == 0)
440                 m = 1;
441
442         if (new_sample != 0) {
443                 /* If we sample in larger samples in the non-timestamp
444                  * case, we could grossly overestimate the RTT especially
445                  * with chatty applications or bulk transfer apps which
446                  * are stalled on filesystem I/O.
447                  *
448                  * Also, since we are only going for a minimum in the
449                  * non-timestamp case, we do not smooth things out
450                  * else with timestamps disabled convergence takes too
451                  * long.
452                  */
453                 if (!win_dep) {
454                         m -= (new_sample >> 3);
455                         new_sample += m;
456                 } else if (m < new_sample)
457                         new_sample = m << 3;
458         } else {
459                 /* No previous measure. */
460                 new_sample = m << 3;
461         }
462
463         if (tp->rcv_rtt_est.rtt != new_sample)
464                 tp->rcv_rtt_est.rtt = new_sample;
465 }
466
467 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
468 {
469         if (tp->rcv_rtt_est.time == 0)
470                 goto new_measure;
471         if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
472                 return;
473         tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
474
475 new_measure:
476         tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
477         tp->rcv_rtt_est.time = tcp_time_stamp;
478 }
479
480 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
481                                           const struct sk_buff *skb)
482 {
483         struct tcp_sock *tp = tcp_sk(sk);
484         if (tp->rx_opt.rcv_tsecr &&
485             (TCP_SKB_CB(skb)->end_seq -
486              TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
487                 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
488 }
489
490 /*
491  * This function should be called every time data is copied to user space.
492  * It calculates the appropriate TCP receive buffer space.
493  */
494 void tcp_rcv_space_adjust(struct sock *sk)
495 {
496         struct tcp_sock *tp = tcp_sk(sk);
497         int time;
498         int space;
499
500         if (tp->rcvq_space.time == 0)
501                 goto new_measure;
502
503         time = tcp_time_stamp - tp->rcvq_space.time;
504         if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
505                 return;
506
507         space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
508
509         space = max(tp->rcvq_space.space, space);
510
511         if (tp->rcvq_space.space != space) {
512                 int rcvmem;
513
514                 tp->rcvq_space.space = space;
515
516                 if (sysctl_tcp_moderate_rcvbuf &&
517                     !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
518                         int new_clamp = space;
519
520                         /* Receive space grows, normalize in order to
521                          * take into account packet headers and sk_buff
522                          * structure overhead.
523                          */
524                         space /= tp->advmss;
525                         if (!space)
526                                 space = 1;
527                         rcvmem = (tp->advmss + MAX_TCP_HEADER +
528                                   16 + sizeof(struct sk_buff));
529                         while (tcp_win_from_space(rcvmem) < tp->advmss)
530                                 rcvmem += 128;
531                         space *= rcvmem;
532                         space = min(space, sysctl_tcp_rmem[2]);
533                         if (space > sk->sk_rcvbuf) {
534                                 sk->sk_rcvbuf = space;
535
536                                 /* Make the window clamp follow along.  */
537                                 tp->window_clamp = new_clamp;
538                         }
539                 }
540         }
541
542 new_measure:
543         tp->rcvq_space.seq = tp->copied_seq;
544         tp->rcvq_space.time = tcp_time_stamp;
545 }
546
547 /* There is something which you must keep in mind when you analyze the
548  * behavior of the tp->ato delayed ack timeout interval.  When a
549  * connection starts up, we want to ack as quickly as possible.  The
550  * problem is that "good" TCP's do slow start at the beginning of data
551  * transmission.  The means that until we send the first few ACK's the
552  * sender will sit on his end and only queue most of his data, because
553  * he can only send snd_cwnd unacked packets at any given time.  For
554  * each ACK we send, he increments snd_cwnd and transmits more of his
555  * queue.  -DaveM
556  */
557 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
558 {
559         struct tcp_sock *tp = tcp_sk(sk);
560         struct inet_connection_sock *icsk = inet_csk(sk);
561         u32 now;
562
563         inet_csk_schedule_ack(sk);
564
565         tcp_measure_rcv_mss(sk, skb);
566
567         tcp_rcv_rtt_measure(tp);
568
569         now = tcp_time_stamp;
570
571         if (!icsk->icsk_ack.ato) {
572                 /* The _first_ data packet received, initialize
573                  * delayed ACK engine.
574                  */
575                 tcp_incr_quickack(sk);
576                 icsk->icsk_ack.ato = TCP_ATO_MIN;
577         } else {
578                 int m = now - icsk->icsk_ack.lrcvtime;
579
580                 if (m <= TCP_ATO_MIN / 2) {
581                         /* The fastest case is the first. */
582                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
583                 } else if (m < icsk->icsk_ack.ato) {
584                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
585                         if (icsk->icsk_ack.ato > icsk->icsk_rto)
586                                 icsk->icsk_ack.ato = icsk->icsk_rto;
587                 } else if (m > icsk->icsk_rto) {
588                         /* Too long gap. Apparently sender failed to
589                          * restart window, so that we send ACKs quickly.
590                          */
591                         tcp_incr_quickack(sk);
592                         sk_mem_reclaim(sk);
593                 }
594         }
595         icsk->icsk_ack.lrcvtime = now;
596
597         TCP_ECN_check_ce(tp, skb);
598
599         if (skb->len >= 128)
600                 tcp_grow_window(sk, skb);
601 }
602
603 /* Called to compute a smoothed rtt estimate. The data fed to this
604  * routine either comes from timestamps, or from segments that were
605  * known _not_ to have been retransmitted [see Karn/Partridge
606  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
607  * piece by Van Jacobson.
608  * NOTE: the next three routines used to be one big routine.
609  * To save cycles in the RFC 1323 implementation it was better to break
610  * it up into three procedures. -- erics
611  */
612 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
613 {
614         struct tcp_sock *tp = tcp_sk(sk);
615         long m = mrtt; /* RTT */
616
617         /*      The following amusing code comes from Jacobson's
618          *      article in SIGCOMM '88.  Note that rtt and mdev
619          *      are scaled versions of rtt and mean deviation.
620          *      This is designed to be as fast as possible
621          *      m stands for "measurement".
622          *
623          *      On a 1990 paper the rto value is changed to:
624          *      RTO = rtt + 4 * mdev
625          *
626          * Funny. This algorithm seems to be very broken.
627          * These formulae increase RTO, when it should be decreased, increase
628          * too slowly, when it should be increased quickly, decrease too quickly
629          * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
630          * does not matter how to _calculate_ it. Seems, it was trap
631          * that VJ failed to avoid. 8)
632          */
633         if (m == 0)
634                 m = 1;
635         if (tp->srtt != 0) {
636                 m -= (tp->srtt >> 3);   /* m is now error in rtt est */
637                 tp->srtt += m;          /* rtt = 7/8 rtt + 1/8 new */
638                 if (m < 0) {
639                         m = -m;         /* m is now abs(error) */
640                         m -= (tp->mdev >> 2);   /* similar update on mdev */
641                         /* This is similar to one of Eifel findings.
642                          * Eifel blocks mdev updates when rtt decreases.
643                          * This solution is a bit different: we use finer gain
644                          * for mdev in this case (alpha*beta).
645                          * Like Eifel it also prevents growth of rto,
646                          * but also it limits too fast rto decreases,
647                          * happening in pure Eifel.
648                          */
649                         if (m > 0)
650                                 m >>= 3;
651                 } else {
652                         m -= (tp->mdev >> 2);   /* similar update on mdev */
653                 }
654                 tp->mdev += m;          /* mdev = 3/4 mdev + 1/4 new */
655                 if (tp->mdev > tp->mdev_max) {
656                         tp->mdev_max = tp->mdev;
657                         if (tp->mdev_max > tp->rttvar)
658                                 tp->rttvar = tp->mdev_max;
659                 }
660                 if (after(tp->snd_una, tp->rtt_seq)) {
661                         if (tp->mdev_max < tp->rttvar)
662                                 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
663                         tp->rtt_seq = tp->snd_nxt;
664                         tp->mdev_max = tcp_rto_min(sk);
665                 }
666         } else {
667                 /* no previous measure. */
668                 tp->srtt = m << 3;      /* take the measured time to be rtt */
669                 tp->mdev = m << 1;      /* make sure rto = 3*rtt */
670                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
671                 tp->rtt_seq = tp->snd_nxt;
672         }
673 }
674
675 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
676  * routine referred to above.
677  */
678 static inline void tcp_set_rto(struct sock *sk)
679 {
680         const struct tcp_sock *tp = tcp_sk(sk);
681         /* Old crap is replaced with new one. 8)
682          *
683          * More seriously:
684          * 1. If rtt variance happened to be less 50msec, it is hallucination.
685          *    It cannot be less due to utterly erratic ACK generation made
686          *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
687          *    to do with delayed acks, because at cwnd>2 true delack timeout
688          *    is invisible. Actually, Linux-2.4 also generates erratic
689          *    ACKs in some circumstances.
690          */
691         inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
692
693         /* 2. Fixups made earlier cannot be right.
694          *    If we do not estimate RTO correctly without them,
695          *    all the algo is pure shit and should be replaced
696          *    with correct one. It is exactly, which we pretend to do.
697          */
698
699         /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
700          * guarantees that rto is higher.
701          */
702         tcp_bound_rto(sk);
703 }
704
705 /* Save metrics learned by this TCP session.
706    This function is called only, when TCP finishes successfully
707    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
708  */
709 void tcp_update_metrics(struct sock *sk)
710 {
711         struct tcp_sock *tp = tcp_sk(sk);
712         struct dst_entry *dst = __sk_dst_get(sk);
713
714         if (sysctl_tcp_nometrics_save)
715                 return;
716
717         dst_confirm(dst);
718
719         if (dst && (dst->flags & DST_HOST)) {
720                 const struct inet_connection_sock *icsk = inet_csk(sk);
721                 int m;
722                 unsigned long rtt;
723
724                 if (icsk->icsk_backoff || !tp->srtt) {
725                         /* This session failed to estimate rtt. Why?
726                          * Probably, no packets returned in time.
727                          * Reset our results.
728                          */
729                         if (!(dst_metric_locked(dst, RTAX_RTT)))
730                                 dst->metrics[RTAX_RTT - 1] = 0;
731                         return;
732                 }
733
734                 rtt = dst_metric_rtt(dst, RTAX_RTT);
735                 m = rtt - tp->srtt;
736
737                 /* If newly calculated rtt larger than stored one,
738                  * store new one. Otherwise, use EWMA. Remember,
739                  * rtt overestimation is always better than underestimation.
740                  */
741                 if (!(dst_metric_locked(dst, RTAX_RTT))) {
742                         if (m <= 0)
743                                 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
744                         else
745                                 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
746                 }
747
748                 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
749                         unsigned long var;
750                         if (m < 0)
751                                 m = -m;
752
753                         /* Scale deviation to rttvar fixed point */
754                         m >>= 1;
755                         if (m < tp->mdev)
756                                 m = tp->mdev;
757
758                         var = dst_metric_rtt(dst, RTAX_RTTVAR);
759                         if (m >= var)
760                                 var = m;
761                         else
762                                 var -= (var - m) >> 2;
763
764                         set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
765                 }
766
767                 if (tcp_in_initial_slowstart(tp)) {
768                         /* Slow start still did not finish. */
769                         if (dst_metric(dst, RTAX_SSTHRESH) &&
770                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
771                             (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
772                                 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
773                         if (!dst_metric_locked(dst, RTAX_CWND) &&
774                             tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
775                                 dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd;
776                 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
777                            icsk->icsk_ca_state == TCP_CA_Open) {
778                         /* Cong. avoidance phase, cwnd is reliable. */
779                         if (!dst_metric_locked(dst, RTAX_SSTHRESH))
780                                 dst->metrics[RTAX_SSTHRESH-1] =
781                                         max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
782                         if (!dst_metric_locked(dst, RTAX_CWND))
783                                 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_cwnd) >> 1;
784                 } else {
785                         /* Else slow start did not finish, cwnd is non-sense,
786                            ssthresh may be also invalid.
787                          */
788                         if (!dst_metric_locked(dst, RTAX_CWND))
789                                 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_ssthresh) >> 1;
790                         if (dst_metric(dst, RTAX_SSTHRESH) &&
791                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
792                             tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
793                                 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
794                 }
795
796                 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
797                         if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
798                             tp->reordering != sysctl_tcp_reordering)
799                                 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
800                 }
801         }
802 }
803
804 /* Numbers are taken from RFC3390.
805  *
806  * John Heffner states:
807  *
808  *      The RFC specifies a window of no more than 4380 bytes
809  *      unless 2*MSS > 4380.  Reading the pseudocode in the RFC
810  *      is a bit misleading because they use a clamp at 4380 bytes
811  *      rather than use a multiplier in the relevant range.
812  */
813 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
814 {
815         __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
816
817         if (!cwnd) {
818                 if (tp->mss_cache > 1460)
819                         cwnd = 2;
820                 else
821                         cwnd = (tp->mss_cache > 1095) ? 3 : 4;
822         }
823         return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
824 }
825
826 /* Set slow start threshold and cwnd not falling to slow start */
827 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
828 {
829         struct tcp_sock *tp = tcp_sk(sk);
830         const struct inet_connection_sock *icsk = inet_csk(sk);
831
832         tp->prior_ssthresh = 0;
833         tp->bytes_acked = 0;
834         if (icsk->icsk_ca_state < TCP_CA_CWR) {
835                 tp->undo_marker = 0;
836                 if (set_ssthresh)
837                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
838                 tp->snd_cwnd = min(tp->snd_cwnd,
839                                    tcp_packets_in_flight(tp) + 1U);
840                 tp->snd_cwnd_cnt = 0;
841                 tp->high_seq = tp->snd_nxt;
842                 tp->snd_cwnd_stamp = tcp_time_stamp;
843                 TCP_ECN_queue_cwr(tp);
844
845                 tcp_set_ca_state(sk, TCP_CA_CWR);
846         }
847 }
848
849 /*
850  * Packet counting of FACK is based on in-order assumptions, therefore TCP
851  * disables it when reordering is detected
852  */
853 static void tcp_disable_fack(struct tcp_sock *tp)
854 {
855         /* RFC3517 uses different metric in lost marker => reset on change */
856         if (tcp_is_fack(tp))
857                 tp->lost_skb_hint = NULL;
858         tp->rx_opt.sack_ok &= ~2;
859 }
860
861 /* Take a notice that peer is sending D-SACKs */
862 static void tcp_dsack_seen(struct tcp_sock *tp)
863 {
864         tp->rx_opt.sack_ok |= 4;
865 }
866
867 /* Initialize metrics on socket. */
868
869 static void tcp_init_metrics(struct sock *sk)
870 {
871         struct tcp_sock *tp = tcp_sk(sk);
872         struct dst_entry *dst = __sk_dst_get(sk);
873
874         if (dst == NULL)
875                 goto reset;
876
877         dst_confirm(dst);
878
879         if (dst_metric_locked(dst, RTAX_CWND))
880                 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
881         if (dst_metric(dst, RTAX_SSTHRESH)) {
882                 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
883                 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
884                         tp->snd_ssthresh = tp->snd_cwnd_clamp;
885         }
886         if (dst_metric(dst, RTAX_REORDERING) &&
887             tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
888                 tcp_disable_fack(tp);
889                 tp->reordering = dst_metric(dst, RTAX_REORDERING);
890         }
891
892         if (dst_metric(dst, RTAX_RTT) == 0)
893                 goto reset;
894
895         if (!tp->srtt && dst_metric_rtt(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
896                 goto reset;
897
898         /* Initial rtt is determined from SYN,SYN-ACK.
899          * The segment is small and rtt may appear much
900          * less than real one. Use per-dst memory
901          * to make it more realistic.
902          *
903          * A bit of theory. RTT is time passed after "normal" sized packet
904          * is sent until it is ACKed. In normal circumstances sending small
905          * packets force peer to delay ACKs and calculation is correct too.
906          * The algorithm is adaptive and, provided we follow specs, it
907          * NEVER underestimate RTT. BUT! If peer tries to make some clever
908          * tricks sort of "quick acks" for time long enough to decrease RTT
909          * to low value, and then abruptly stops to do it and starts to delay
910          * ACKs, wait for troubles.
911          */
912         if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
913                 tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
914                 tp->rtt_seq = tp->snd_nxt;
915         }
916         if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
917                 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
918                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
919         }
920         tcp_set_rto(sk);
921         if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
922                 goto reset;
923
924 cwnd:
925         tp->snd_cwnd = tcp_init_cwnd(tp, dst);
926         tp->snd_cwnd_stamp = tcp_time_stamp;
927         return;
928
929 reset:
930         /* Play conservative. If timestamps are not
931          * supported, TCP will fail to recalculate correct
932          * rtt, if initial rto is too small. FORGET ALL AND RESET!
933          */
934         if (!tp->rx_opt.saw_tstamp && tp->srtt) {
935                 tp->srtt = 0;
936                 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
937                 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
938         }
939         goto cwnd;
940 }
941
942 static void tcp_update_reordering(struct sock *sk, const int metric,
943                                   const int ts)
944 {
945         struct tcp_sock *tp = tcp_sk(sk);
946         if (metric > tp->reordering) {
947                 int mib_idx;
948
949                 tp->reordering = min(TCP_MAX_REORDERING, metric);
950
951                 /* This exciting event is worth to be remembered. 8) */
952                 if (ts)
953                         mib_idx = LINUX_MIB_TCPTSREORDER;
954                 else if (tcp_is_reno(tp))
955                         mib_idx = LINUX_MIB_TCPRENOREORDER;
956                 else if (tcp_is_fack(tp))
957                         mib_idx = LINUX_MIB_TCPFACKREORDER;
958                 else
959                         mib_idx = LINUX_MIB_TCPSACKREORDER;
960
961                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
962 #if FASTRETRANS_DEBUG > 1
963                 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
964                        tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
965                        tp->reordering,
966                        tp->fackets_out,
967                        tp->sacked_out,
968                        tp->undo_marker ? tp->undo_retrans : 0);
969 #endif
970                 tcp_disable_fack(tp);
971         }
972 }
973
974 /* This must be called before lost_out is incremented */
975 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
976 {
977         if ((tp->retransmit_skb_hint == NULL) ||
978             before(TCP_SKB_CB(skb)->seq,
979                    TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
980                 tp->retransmit_skb_hint = skb;
981
982         if (!tp->lost_out ||
983             after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
984                 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
985 }
986
987 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
988 {
989         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
990                 tcp_verify_retransmit_hint(tp, skb);
991
992                 tp->lost_out += tcp_skb_pcount(skb);
993                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
994         }
995 }
996
997 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
998                                             struct sk_buff *skb)
999 {
1000         tcp_verify_retransmit_hint(tp, skb);
1001
1002         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1003                 tp->lost_out += tcp_skb_pcount(skb);
1004                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1005         }
1006 }
1007
1008 /* This procedure tags the retransmission queue when SACKs arrive.
1009  *
1010  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1011  * Packets in queue with these bits set are counted in variables
1012  * sacked_out, retrans_out and lost_out, correspondingly.
1013  *
1014  * Valid combinations are:
1015  * Tag  InFlight        Description
1016  * 0    1               - orig segment is in flight.
1017  * S    0               - nothing flies, orig reached receiver.
1018  * L    0               - nothing flies, orig lost by net.
1019  * R    2               - both orig and retransmit are in flight.
1020  * L|R  1               - orig is lost, retransmit is in flight.
1021  * S|R  1               - orig reached receiver, retrans is still in flight.
1022  * (L|S|R is logically valid, it could occur when L|R is sacked,
1023  *  but it is equivalent to plain S and code short-curcuits it to S.
1024  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1025  *
1026  * These 6 states form finite state machine, controlled by the following events:
1027  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1028  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1029  * 3. Loss detection event of one of three flavors:
1030  *      A. Scoreboard estimator decided the packet is lost.
1031  *         A'. Reno "three dupacks" marks head of queue lost.
1032  *         A''. Its FACK modfication, head until snd.fack is lost.
1033  *      B. SACK arrives sacking data transmitted after never retransmitted
1034  *         hole was sent out.
1035  *      C. SACK arrives sacking SND.NXT at the moment, when the
1036  *         segment was retransmitted.
1037  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1038  *
1039  * It is pleasant to note, that state diagram turns out to be commutative,
1040  * so that we are allowed not to be bothered by order of our actions,
1041  * when multiple events arrive simultaneously. (see the function below).
1042  *
1043  * Reordering detection.
1044  * --------------------
1045  * Reordering metric is maximal distance, which a packet can be displaced
1046  * in packet stream. With SACKs we can estimate it:
1047  *
1048  * 1. SACK fills old hole and the corresponding segment was not
1049  *    ever retransmitted -> reordering. Alas, we cannot use it
1050  *    when segment was retransmitted.
1051  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1052  *    for retransmitted and already SACKed segment -> reordering..
1053  * Both of these heuristics are not used in Loss state, when we cannot
1054  * account for retransmits accurately.
1055  *
1056  * SACK block validation.
1057  * ----------------------
1058  *
1059  * SACK block range validation checks that the received SACK block fits to
1060  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1061  * Note that SND.UNA is not included to the range though being valid because
1062  * it means that the receiver is rather inconsistent with itself reporting
1063  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1064  * perfectly valid, however, in light of RFC2018 which explicitly states
1065  * that "SACK block MUST reflect the newest segment.  Even if the newest
1066  * segment is going to be discarded ...", not that it looks very clever
1067  * in case of head skb. Due to potentional receiver driven attacks, we
1068  * choose to avoid immediate execution of a walk in write queue due to
1069  * reneging and defer head skb's loss recovery to standard loss recovery
1070  * procedure that will eventually trigger (nothing forbids us doing this).
1071  *
1072  * Implements also blockage to start_seq wrap-around. Problem lies in the
1073  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1074  * there's no guarantee that it will be before snd_nxt (n). The problem
1075  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1076  * wrap (s_w):
1077  *
1078  *         <- outs wnd ->                          <- wrapzone ->
1079  *         u     e      n                         u_w   e_w  s n_w
1080  *         |     |      |                          |     |   |  |
1081  * |<------------+------+----- TCP seqno space --------------+---------->|
1082  * ...-- <2^31 ->|                                           |<--------...
1083  * ...---- >2^31 ------>|                                    |<--------...
1084  *
1085  * Current code wouldn't be vulnerable but it's better still to discard such
1086  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1087  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1088  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1089  * equal to the ideal case (infinite seqno space without wrap caused issues).
1090  *
1091  * With D-SACK the lower bound is extended to cover sequence space below
1092  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1093  * again, D-SACK block must not to go across snd_una (for the same reason as
1094  * for the normal SACK blocks, explained above). But there all simplicity
1095  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1096  * fully below undo_marker they do not affect behavior in anyway and can
1097  * therefore be safely ignored. In rare cases (which are more or less
1098  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1099  * fragmentation and packet reordering past skb's retransmission. To consider
1100  * them correctly, the acceptable range must be extended even more though
1101  * the exact amount is rather hard to quantify. However, tp->max_window can
1102  * be used as an exaggerated estimate.
1103  */
1104 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1105                                   u32 start_seq, u32 end_seq)
1106 {
1107         /* Too far in future, or reversed (interpretation is ambiguous) */
1108         if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1109                 return 0;
1110
1111         /* Nasty start_seq wrap-around check (see comments above) */
1112         if (!before(start_seq, tp->snd_nxt))
1113                 return 0;
1114
1115         /* In outstanding window? ...This is valid exit for D-SACKs too.
1116          * start_seq == snd_una is non-sensical (see comments above)
1117          */
1118         if (after(start_seq, tp->snd_una))
1119                 return 1;
1120
1121         if (!is_dsack || !tp->undo_marker)
1122                 return 0;
1123
1124         /* ...Then it's D-SACK, and must reside below snd_una completely */
1125         if (!after(end_seq, tp->snd_una))
1126                 return 0;
1127
1128         if (!before(start_seq, tp->undo_marker))
1129                 return 1;
1130
1131         /* Too old */
1132         if (!after(end_seq, tp->undo_marker))
1133                 return 0;
1134
1135         /* Undo_marker boundary crossing (overestimates a lot). Known already:
1136          *   start_seq < undo_marker and end_seq >= undo_marker.
1137          */
1138         return !before(start_seq, end_seq - tp->max_window);
1139 }
1140
1141 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1142  * Event "C". Later note: FACK people cheated me again 8), we have to account
1143  * for reordering! Ugly, but should help.
1144  *
1145  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1146  * less than what is now known to be received by the other end (derived from
1147  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1148  * retransmitted skbs to avoid some costly processing per ACKs.
1149  */
1150 static void tcp_mark_lost_retrans(struct sock *sk)
1151 {
1152         const struct inet_connection_sock *icsk = inet_csk(sk);
1153         struct tcp_sock *tp = tcp_sk(sk);
1154         struct sk_buff *skb;
1155         int cnt = 0;
1156         u32 new_low_seq = tp->snd_nxt;
1157         u32 received_upto = tcp_highest_sack_seq(tp);
1158
1159         if (!tcp_is_fack(tp) || !tp->retrans_out ||
1160             !after(received_upto, tp->lost_retrans_low) ||
1161             icsk->icsk_ca_state != TCP_CA_Recovery)
1162                 return;
1163
1164         tcp_for_write_queue(skb, sk) {
1165                 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1166
1167                 if (skb == tcp_send_head(sk))
1168                         break;
1169                 if (cnt == tp->retrans_out)
1170                         break;
1171                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1172                         continue;
1173
1174                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1175                         continue;
1176
1177                 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1178                  * constraint here (see above) but figuring out that at
1179                  * least tp->reordering SACK blocks reside between ack_seq
1180                  * and received_upto is not easy task to do cheaply with
1181                  * the available datastructures.
1182                  *
1183                  * Whether FACK should check here for tp->reordering segs
1184                  * in-between one could argue for either way (it would be
1185                  * rather simple to implement as we could count fack_count
1186                  * during the walk and do tp->fackets_out - fack_count).
1187                  */
1188                 if (after(received_upto, ack_seq)) {
1189                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1190                         tp->retrans_out -= tcp_skb_pcount(skb);
1191
1192                         tcp_skb_mark_lost_uncond_verify(tp, skb);
1193                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1194                 } else {
1195                         if (before(ack_seq, new_low_seq))
1196                                 new_low_seq = ack_seq;
1197                         cnt += tcp_skb_pcount(skb);
1198                 }
1199         }
1200
1201         if (tp->retrans_out)
1202                 tp->lost_retrans_low = new_low_seq;
1203 }
1204
1205 static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb,
1206                            struct tcp_sack_block_wire *sp, int num_sacks,
1207                            u32 prior_snd_una)
1208 {
1209         struct tcp_sock *tp = tcp_sk(sk);
1210         u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1211         u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1212         int dup_sack = 0;
1213
1214         if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1215                 dup_sack = 1;
1216                 tcp_dsack_seen(tp);
1217                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1218         } else if (num_sacks > 1) {
1219                 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1220                 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1221
1222                 if (!after(end_seq_0, end_seq_1) &&
1223                     !before(start_seq_0, start_seq_1)) {
1224                         dup_sack = 1;
1225                         tcp_dsack_seen(tp);
1226                         NET_INC_STATS_BH(sock_net(sk),
1227                                         LINUX_MIB_TCPDSACKOFORECV);
1228                 }
1229         }
1230
1231         /* D-SACK for already forgotten data... Do dumb counting. */
1232         if (dup_sack &&
1233             !after(end_seq_0, prior_snd_una) &&
1234             after(end_seq_0, tp->undo_marker))
1235                 tp->undo_retrans--;
1236
1237         return dup_sack;
1238 }
1239
1240 struct tcp_sacktag_state {
1241         int reord;
1242         int fack_count;
1243         int flag;
1244 };
1245
1246 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1247  * the incoming SACK may not exactly match but we can find smaller MSS
1248  * aligned portion of it that matches. Therefore we might need to fragment
1249  * which may fail and creates some hassle (caller must handle error case
1250  * returns).
1251  *
1252  * FIXME: this could be merged to shift decision code
1253  */
1254 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1255                                  u32 start_seq, u32 end_seq)
1256 {
1257         int in_sack, err;
1258         unsigned int pkt_len;
1259         unsigned int mss;
1260
1261         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1262                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1263
1264         if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1265             after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1266                 mss = tcp_skb_mss(skb);
1267                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1268
1269                 if (!in_sack) {
1270                         pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1271                         if (pkt_len < mss)
1272                                 pkt_len = mss;
1273                 } else {
1274                         pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1275                         if (pkt_len < mss)
1276                                 return -EINVAL;
1277                 }
1278
1279                 /* Round if necessary so that SACKs cover only full MSSes
1280                  * and/or the remaining small portion (if present)
1281                  */
1282                 if (pkt_len > mss) {
1283                         unsigned int new_len = (pkt_len / mss) * mss;
1284                         if (!in_sack && new_len < pkt_len) {
1285                                 new_len += mss;
1286                                 if (new_len > skb->len)
1287                                         return 0;
1288                         }
1289                         pkt_len = new_len;
1290                 }
1291                 err = tcp_fragment(sk, skb, pkt_len, mss);
1292                 if (err < 0)
1293                         return err;
1294         }
1295
1296         return in_sack;
1297 }
1298
1299 static u8 tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1300                           struct tcp_sacktag_state *state,
1301                           int dup_sack, int pcount)
1302 {
1303         struct tcp_sock *tp = tcp_sk(sk);
1304         u8 sacked = TCP_SKB_CB(skb)->sacked;
1305         int fack_count = state->fack_count;
1306
1307         /* Account D-SACK for retransmitted packet. */
1308         if (dup_sack && (sacked & TCPCB_RETRANS)) {
1309                 if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1310                         tp->undo_retrans--;
1311                 if (sacked & TCPCB_SACKED_ACKED)
1312                         state->reord = min(fack_count, state->reord);
1313         }
1314
1315         /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1316         if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1317                 return sacked;
1318
1319         if (!(sacked & TCPCB_SACKED_ACKED)) {
1320                 if (sacked & TCPCB_SACKED_RETRANS) {
1321                         /* If the segment is not tagged as lost,
1322                          * we do not clear RETRANS, believing
1323                          * that retransmission is still in flight.
1324                          */
1325                         if (sacked & TCPCB_LOST) {
1326                                 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1327                                 tp->lost_out -= pcount;
1328                                 tp->retrans_out -= pcount;
1329                         }
1330                 } else {
1331                         if (!(sacked & TCPCB_RETRANS)) {
1332                                 /* New sack for not retransmitted frame,
1333                                  * which was in hole. It is reordering.
1334                                  */
1335                                 if (before(TCP_SKB_CB(skb)->seq,
1336                                            tcp_highest_sack_seq(tp)))
1337                                         state->reord = min(fack_count,
1338                                                            state->reord);
1339
1340                                 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1341                                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1342                                         state->flag |= FLAG_ONLY_ORIG_SACKED;
1343                         }
1344
1345                         if (sacked & TCPCB_LOST) {
1346                                 sacked &= ~TCPCB_LOST;
1347                                 tp->lost_out -= pcount;
1348                         }
1349                 }
1350
1351                 sacked |= TCPCB_SACKED_ACKED;
1352                 state->flag |= FLAG_DATA_SACKED;
1353                 tp->sacked_out += pcount;
1354
1355                 fack_count += pcount;
1356
1357                 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1358                 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1359                     before(TCP_SKB_CB(skb)->seq,
1360                            TCP_SKB_CB(tp->lost_skb_hint)->seq))
1361                         tp->lost_cnt_hint += pcount;
1362
1363                 if (fack_count > tp->fackets_out)
1364                         tp->fackets_out = fack_count;
1365         }
1366
1367         /* D-SACK. We can detect redundant retransmission in S|R and plain R
1368          * frames and clear it. undo_retrans is decreased above, L|R frames
1369          * are accounted above as well.
1370          */
1371         if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1372                 sacked &= ~TCPCB_SACKED_RETRANS;
1373                 tp->retrans_out -= pcount;
1374         }
1375
1376         return sacked;
1377 }
1378
1379 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1380                            struct tcp_sacktag_state *state,
1381                            unsigned int pcount, int shifted, int mss,
1382                            int dup_sack)
1383 {
1384         struct tcp_sock *tp = tcp_sk(sk);
1385         struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1386
1387         BUG_ON(!pcount);
1388
1389         /* Tweak before seqno plays */
1390         if (!tcp_is_fack(tp) && tcp_is_sack(tp) && tp->lost_skb_hint &&
1391             !before(TCP_SKB_CB(tp->lost_skb_hint)->seq, TCP_SKB_CB(skb)->seq))
1392                 tp->lost_cnt_hint += pcount;
1393
1394         TCP_SKB_CB(prev)->end_seq += shifted;
1395         TCP_SKB_CB(skb)->seq += shifted;
1396
1397         skb_shinfo(prev)->gso_segs += pcount;
1398         BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1399         skb_shinfo(skb)->gso_segs -= pcount;
1400
1401         /* When we're adding to gso_segs == 1, gso_size will be zero,
1402          * in theory this shouldn't be necessary but as long as DSACK
1403          * code can come after this skb later on it's better to keep
1404          * setting gso_size to something.
1405          */
1406         if (!skb_shinfo(prev)->gso_size) {
1407                 skb_shinfo(prev)->gso_size = mss;
1408                 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1409         }
1410
1411         /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1412         if (skb_shinfo(skb)->gso_segs <= 1) {
1413                 skb_shinfo(skb)->gso_size = 0;
1414                 skb_shinfo(skb)->gso_type = 0;
1415         }
1416
1417         /* We discard results */
1418         tcp_sacktag_one(skb, sk, state, dup_sack, pcount);
1419
1420         /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1421         TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1422
1423         if (skb->len > 0) {
1424                 BUG_ON(!tcp_skb_pcount(skb));
1425                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1426                 return 0;
1427         }
1428
1429         /* Whole SKB was eaten :-) */
1430
1431         if (skb == tp->retransmit_skb_hint)
1432                 tp->retransmit_skb_hint = prev;
1433         if (skb == tp->scoreboard_skb_hint)
1434                 tp->scoreboard_skb_hint = prev;
1435         if (skb == tp->lost_skb_hint) {
1436                 tp->lost_skb_hint = prev;
1437                 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1438         }
1439
1440         TCP_SKB_CB(skb)->flags |= TCP_SKB_CB(prev)->flags;
1441         if (skb == tcp_highest_sack(sk))
1442                 tcp_advance_highest_sack(sk, skb);
1443
1444         tcp_unlink_write_queue(skb, sk);
1445         sk_wmem_free_skb(sk, skb);
1446
1447         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1448
1449         return 1;
1450 }
1451
1452 /* I wish gso_size would have a bit more sane initialization than
1453  * something-or-zero which complicates things
1454  */
1455 static int tcp_skb_seglen(struct sk_buff *skb)
1456 {
1457         return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1458 }
1459
1460 /* Shifting pages past head area doesn't work */
1461 static int skb_can_shift(struct sk_buff *skb)
1462 {
1463         return !skb_headlen(skb) && skb_is_nonlinear(skb);
1464 }
1465
1466 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1467  * skb.
1468  */
1469 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1470                                           struct tcp_sacktag_state *state,
1471                                           u32 start_seq, u32 end_seq,
1472                                           int dup_sack)
1473 {
1474         struct tcp_sock *tp = tcp_sk(sk);
1475         struct sk_buff *prev;
1476         int mss;
1477         int pcount = 0;
1478         int len;
1479         int in_sack;
1480
1481         if (!sk_can_gso(sk))
1482                 goto fallback;
1483
1484         /* Normally R but no L won't result in plain S */
1485         if (!dup_sack &&
1486             (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1487                 goto fallback;
1488         if (!skb_can_shift(skb))
1489                 goto fallback;
1490         /* This frame is about to be dropped (was ACKed). */
1491         if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1492                 goto fallback;
1493
1494         /* Can only happen with delayed DSACK + discard craziness */
1495         if (unlikely(skb == tcp_write_queue_head(sk)))
1496                 goto fallback;
1497         prev = tcp_write_queue_prev(sk, skb);
1498
1499         if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1500                 goto fallback;
1501
1502         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1503                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1504
1505         if (in_sack) {
1506                 len = skb->len;
1507                 pcount = tcp_skb_pcount(skb);
1508                 mss = tcp_skb_seglen(skb);
1509
1510                 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1511                  * drop this restriction as unnecessary
1512                  */
1513                 if (mss != tcp_skb_seglen(prev))
1514                         goto fallback;
1515         } else {
1516                 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1517                         goto noop;
1518                 /* CHECKME: This is non-MSS split case only?, this will
1519                  * cause skipped skbs due to advancing loop btw, original
1520                  * has that feature too
1521                  */
1522                 if (tcp_skb_pcount(skb) <= 1)
1523                         goto noop;
1524
1525                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1526                 if (!in_sack) {
1527                         /* TODO: head merge to next could be attempted here
1528                          * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1529                          * though it might not be worth of the additional hassle
1530                          *
1531                          * ...we can probably just fallback to what was done
1532                          * previously. We could try merging non-SACKed ones
1533                          * as well but it probably isn't going to buy off
1534                          * because later SACKs might again split them, and
1535                          * it would make skb timestamp tracking considerably
1536                          * harder problem.
1537                          */
1538                         goto fallback;
1539                 }
1540
1541                 len = end_seq - TCP_SKB_CB(skb)->seq;
1542                 BUG_ON(len < 0);
1543                 BUG_ON(len > skb->len);
1544
1545                 /* MSS boundaries should be honoured or else pcount will
1546                  * severely break even though it makes things bit trickier.
1547                  * Optimize common case to avoid most of the divides
1548                  */
1549                 mss = tcp_skb_mss(skb);
1550
1551                 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1552                  * drop this restriction as unnecessary
1553                  */
1554                 if (mss != tcp_skb_seglen(prev))
1555                         goto fallback;
1556
1557                 if (len == mss) {
1558                         pcount = 1;
1559                 } else if (len < mss) {
1560                         goto noop;
1561                 } else {
1562                         pcount = len / mss;
1563                         len = pcount * mss;
1564                 }
1565         }
1566
1567         if (!skb_shift(prev, skb, len))
1568                 goto fallback;
1569         if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1570                 goto out;
1571
1572         /* Hole filled allows collapsing with the next as well, this is very
1573          * useful when hole on every nth skb pattern happens
1574          */
1575         if (prev == tcp_write_queue_tail(sk))
1576                 goto out;
1577         skb = tcp_write_queue_next(sk, prev);
1578
1579         if (!skb_can_shift(skb) ||
1580             (skb == tcp_send_head(sk)) ||
1581             ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1582             (mss != tcp_skb_seglen(skb)))
1583                 goto out;
1584
1585         len = skb->len;
1586         if (skb_shift(prev, skb, len)) {
1587                 pcount += tcp_skb_pcount(skb);
1588                 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1589         }
1590
1591 out:
1592         state->fack_count += pcount;
1593         return prev;
1594
1595 noop:
1596         return skb;
1597
1598 fallback:
1599         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1600         return NULL;
1601 }
1602
1603 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1604                                         struct tcp_sack_block *next_dup,
1605                                         struct tcp_sacktag_state *state,
1606                                         u32 start_seq, u32 end_seq,
1607                                         int dup_sack_in)
1608 {
1609         struct tcp_sock *tp = tcp_sk(sk);
1610         struct sk_buff *tmp;
1611
1612         tcp_for_write_queue_from(skb, sk) {
1613                 int in_sack = 0;
1614                 int dup_sack = dup_sack_in;
1615
1616                 if (skb == tcp_send_head(sk))
1617                         break;
1618
1619                 /* queue is in-order => we can short-circuit the walk early */
1620                 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1621                         break;
1622
1623                 if ((next_dup != NULL) &&
1624                     before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1625                         in_sack = tcp_match_skb_to_sack(sk, skb,
1626                                                         next_dup->start_seq,
1627                                                         next_dup->end_seq);
1628                         if (in_sack > 0)
1629                                 dup_sack = 1;
1630                 }
1631
1632                 /* skb reference here is a bit tricky to get right, since
1633                  * shifting can eat and free both this skb and the next,
1634                  * so not even _safe variant of the loop is enough.
1635                  */
1636                 if (in_sack <= 0) {
1637                         tmp = tcp_shift_skb_data(sk, skb, state,
1638                                                  start_seq, end_seq, dup_sack);
1639                         if (tmp != NULL) {
1640                                 if (tmp != skb) {
1641                                         skb = tmp;
1642                                         continue;
1643                                 }
1644
1645                                 in_sack = 0;
1646                         } else {
1647                                 in_sack = tcp_match_skb_to_sack(sk, skb,
1648                                                                 start_seq,
1649                                                                 end_seq);
1650                         }
1651                 }
1652
1653                 if (unlikely(in_sack < 0))
1654                         break;
1655
1656                 if (in_sack) {
1657                         TCP_SKB_CB(skb)->sacked = tcp_sacktag_one(skb, sk,
1658                                                                   state,
1659                                                                   dup_sack,
1660                                                                   tcp_skb_pcount(skb));
1661
1662                         if (!before(TCP_SKB_CB(skb)->seq,
1663                                     tcp_highest_sack_seq(tp)))
1664                                 tcp_advance_highest_sack(sk, skb);
1665                 }
1666
1667                 state->fack_count += tcp_skb_pcount(skb);
1668         }
1669         return skb;
1670 }
1671
1672 /* Avoid all extra work that is being done by sacktag while walking in
1673  * a normal way
1674  */
1675 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1676                                         struct tcp_sacktag_state *state,
1677                                         u32 skip_to_seq)
1678 {
1679         tcp_for_write_queue_from(skb, sk) {
1680                 if (skb == tcp_send_head(sk))
1681                         break;
1682
1683                 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1684                         break;
1685
1686                 state->fack_count += tcp_skb_pcount(skb);
1687         }
1688         return skb;
1689 }
1690
1691 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1692                                                 struct sock *sk,
1693                                                 struct tcp_sack_block *next_dup,
1694                                                 struct tcp_sacktag_state *state,
1695                                                 u32 skip_to_seq)
1696 {
1697         if (next_dup == NULL)
1698                 return skb;
1699
1700         if (before(next_dup->start_seq, skip_to_seq)) {
1701                 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1702                 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1703                                        next_dup->start_seq, next_dup->end_seq,
1704                                        1);
1705         }
1706
1707         return skb;
1708 }
1709
1710 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1711 {
1712         return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1713 }
1714
1715 static int
1716 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1717                         u32 prior_snd_una)
1718 {
1719         const struct inet_connection_sock *icsk = inet_csk(sk);
1720         struct tcp_sock *tp = tcp_sk(sk);
1721         unsigned char *ptr = (skb_transport_header(ack_skb) +
1722                               TCP_SKB_CB(ack_skb)->sacked);
1723         struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1724         struct tcp_sack_block sp[TCP_NUM_SACKS];
1725         struct tcp_sack_block *cache;
1726         struct tcp_sacktag_state state;
1727         struct sk_buff *skb;
1728         int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1729         int used_sacks;
1730         int found_dup_sack = 0;
1731         int i, j;
1732         int first_sack_index;
1733
1734         state.flag = 0;
1735         state.reord = tp->packets_out;
1736
1737         if (!tp->sacked_out) {
1738                 if (WARN_ON(tp->fackets_out))
1739                         tp->fackets_out = 0;
1740                 tcp_highest_sack_reset(sk);
1741         }
1742
1743         found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1744                                          num_sacks, prior_snd_una);
1745         if (found_dup_sack)
1746                 state.flag |= FLAG_DSACKING_ACK;
1747
1748         /* Eliminate too old ACKs, but take into
1749          * account more or less fresh ones, they can
1750          * contain valid SACK info.
1751          */
1752         if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1753                 return 0;
1754
1755         if (!tp->packets_out)
1756                 goto out;
1757
1758         used_sacks = 0;
1759         first_sack_index = 0;
1760         for (i = 0; i < num_sacks; i++) {
1761                 int dup_sack = !i && found_dup_sack;
1762
1763                 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1764                 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1765
1766                 if (!tcp_is_sackblock_valid(tp, dup_sack,
1767                                             sp[used_sacks].start_seq,
1768                                             sp[used_sacks].end_seq)) {
1769                         int mib_idx;
1770
1771                         if (dup_sack) {
1772                                 if (!tp->undo_marker)
1773                                         mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1774                                 else
1775                                         mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1776                         } else {
1777                                 /* Don't count olds caused by ACK reordering */
1778                                 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1779                                     !after(sp[used_sacks].end_seq, tp->snd_una))
1780                                         continue;
1781                                 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1782                         }
1783
1784                         NET_INC_STATS_BH(sock_net(sk), mib_idx);
1785                         if (i == 0)
1786                                 first_sack_index = -1;
1787                         continue;
1788                 }
1789
1790                 /* Ignore very old stuff early */
1791                 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1792                         continue;
1793
1794                 used_sacks++;
1795         }
1796
1797         /* order SACK blocks to allow in order walk of the retrans queue */
1798         for (i = used_sacks - 1; i > 0; i--) {
1799                 for (j = 0; j < i; j++) {
1800                         if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1801                                 swap(sp[j], sp[j + 1]);
1802
1803                                 /* Track where the first SACK block goes to */
1804                                 if (j == first_sack_index)
1805                                         first_sack_index = j + 1;
1806                         }
1807                 }
1808         }
1809
1810         skb = tcp_write_queue_head(sk);
1811         state.fack_count = 0;
1812         i = 0;
1813
1814         if (!tp->sacked_out) {
1815                 /* It's already past, so skip checking against it */
1816                 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1817         } else {
1818                 cache = tp->recv_sack_cache;
1819                 /* Skip empty blocks in at head of the cache */
1820                 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1821                        !cache->end_seq)
1822                         cache++;
1823         }
1824
1825         while (i < used_sacks) {
1826                 u32 start_seq = sp[i].start_seq;
1827                 u32 end_seq = sp[i].end_seq;
1828                 int dup_sack = (found_dup_sack && (i == first_sack_index));
1829                 struct tcp_sack_block *next_dup = NULL;
1830
1831                 if (found_dup_sack && ((i + 1) == first_sack_index))
1832                         next_dup = &sp[i + 1];
1833
1834                 /* Event "B" in the comment above. */
1835                 if (after(end_seq, tp->high_seq))
1836                         state.flag |= FLAG_DATA_LOST;
1837
1838                 /* Skip too early cached blocks */
1839                 while (tcp_sack_cache_ok(tp, cache) &&
1840                        !before(start_seq, cache->end_seq))
1841                         cache++;
1842
1843                 /* Can skip some work by looking recv_sack_cache? */
1844                 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1845                     after(end_seq, cache->start_seq)) {
1846
1847                         /* Head todo? */
1848                         if (before(start_seq, cache->start_seq)) {
1849                                 skb = tcp_sacktag_skip(skb, sk, &state,
1850                                                        start_seq);
1851                                 skb = tcp_sacktag_walk(skb, sk, next_dup,
1852                                                        &state,
1853                                                        start_seq,
1854                                                        cache->start_seq,
1855                                                        dup_sack);
1856                         }
1857
1858                         /* Rest of the block already fully processed? */
1859                         if (!after(end_seq, cache->end_seq))
1860                                 goto advance_sp;
1861
1862                         skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1863                                                        &state,
1864                                                        cache->end_seq);
1865
1866                         /* ...tail remains todo... */
1867                         if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1868                                 /* ...but better entrypoint exists! */
1869                                 skb = tcp_highest_sack(sk);
1870                                 if (skb == NULL)
1871                                         break;
1872                                 state.fack_count = tp->fackets_out;
1873                                 cache++;
1874                                 goto walk;
1875                         }
1876
1877                         skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1878                         /* Check overlap against next cached too (past this one already) */
1879                         cache++;
1880                         continue;
1881                 }
1882
1883                 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1884                         skb = tcp_highest_sack(sk);
1885                         if (skb == NULL)
1886                                 break;
1887                         state.fack_count = tp->fackets_out;
1888                 }
1889                 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1890
1891 walk:
1892                 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1893                                        start_seq, end_seq, dup_sack);
1894
1895 advance_sp:
1896                 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1897                  * due to in-order walk
1898                  */
1899                 if (after(end_seq, tp->frto_highmark))
1900                         state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1901
1902                 i++;
1903         }
1904
1905         /* Clear the head of the cache sack blocks so we can skip it next time */
1906         for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1907                 tp->recv_sack_cache[i].start_seq = 0;
1908                 tp->recv_sack_cache[i].end_seq = 0;
1909         }
1910         for (j = 0; j < used_sacks; j++)
1911                 tp->recv_sack_cache[i++] = sp[j];
1912
1913         tcp_mark_lost_retrans(sk);
1914
1915         tcp_verify_left_out(tp);
1916
1917         if ((state.reord < tp->fackets_out) &&
1918             ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1919             (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1920                 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1921
1922 out:
1923
1924 #if FASTRETRANS_DEBUG > 0
1925         WARN_ON((int)tp->sacked_out < 0);
1926         WARN_ON((int)tp->lost_out < 0);
1927         WARN_ON((int)tp->retrans_out < 0);
1928         WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1929 #endif
1930         return state.flag;
1931 }
1932
1933 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1934  * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1935  */
1936 static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1937 {
1938         u32 holes;
1939
1940         holes = max(tp->lost_out, 1U);
1941         holes = min(holes, tp->packets_out);
1942
1943         if ((tp->sacked_out + holes) > tp->packets_out) {
1944                 tp->sacked_out = tp->packets_out - holes;
1945                 return 1;
1946         }
1947         return 0;
1948 }
1949
1950 /* If we receive more dupacks than we expected counting segments
1951  * in assumption of absent reordering, interpret this as reordering.
1952  * The only another reason could be bug in receiver TCP.
1953  */
1954 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1955 {
1956         struct tcp_sock *tp = tcp_sk(sk);
1957         if (tcp_limit_reno_sacked(tp))
1958                 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1959 }
1960
1961 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1962
1963 static void tcp_add_reno_sack(struct sock *sk)
1964 {
1965         struct tcp_sock *tp = tcp_sk(sk);
1966         tp->sacked_out++;
1967         tcp_check_reno_reordering(sk, 0);
1968         tcp_verify_left_out(tp);
1969 }
1970
1971 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1972
1973 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1974 {
1975         struct tcp_sock *tp = tcp_sk(sk);
1976
1977         if (acked > 0) {
1978                 /* One ACK acked hole. The rest eat duplicate ACKs. */
1979                 if (acked - 1 >= tp->sacked_out)
1980                         tp->sacked_out = 0;
1981                 else
1982                         tp->sacked_out -= acked - 1;
1983         }
1984         tcp_check_reno_reordering(sk, acked);
1985         tcp_verify_left_out(tp);
1986 }
1987
1988 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1989 {
1990         tp->sacked_out = 0;
1991 }
1992
1993 static int tcp_is_sackfrto(const struct tcp_sock *tp)
1994 {
1995         return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
1996 }
1997
1998 /* F-RTO can only be used if TCP has never retransmitted anything other than
1999  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
2000  */
2001 int tcp_use_frto(struct sock *sk)
2002 {
2003         const struct tcp_sock *tp = tcp_sk(sk);
2004         const struct inet_connection_sock *icsk = inet_csk(sk);
2005         struct sk_buff *skb;
2006
2007         if (!sysctl_tcp_frto)
2008                 return 0;
2009
2010         /* MTU probe and F-RTO won't really play nicely along currently */
2011         if (icsk->icsk_mtup.probe_size)
2012                 return 0;
2013
2014         if (tcp_is_sackfrto(tp))
2015                 return 1;
2016
2017         /* Avoid expensive walking of rexmit queue if possible */
2018         if (tp->retrans_out > 1)
2019                 return 0;
2020
2021         skb = tcp_write_queue_head(sk);
2022         if (tcp_skb_is_last(sk, skb))
2023                 return 1;
2024         skb = tcp_write_queue_next(sk, skb);    /* Skips head */
2025         tcp_for_write_queue_from(skb, sk) {
2026                 if (skb == tcp_send_head(sk))
2027                         break;
2028                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2029                         return 0;
2030                 /* Short-circuit when first non-SACKed skb has been checked */
2031                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2032                         break;
2033         }
2034         return 1;
2035 }
2036
2037 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2038  * recovery a bit and use heuristics in tcp_process_frto() to detect if
2039  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2040  * keep retrans_out counting accurate (with SACK F-RTO, other than head
2041  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2042  * bits are handled if the Loss state is really to be entered (in
2043  * tcp_enter_frto_loss).
2044  *
2045  * Do like tcp_enter_loss() would; when RTO expires the second time it
2046  * does:
2047  *  "Reduce ssthresh if it has not yet been made inside this window."
2048  */
2049 void tcp_enter_frto(struct sock *sk)
2050 {
2051         const struct inet_connection_sock *icsk = inet_csk(sk);
2052         struct tcp_sock *tp = tcp_sk(sk);
2053         struct sk_buff *skb;
2054
2055         if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2056             tp->snd_una == tp->high_seq ||
2057             ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2058              !icsk->icsk_retransmits)) {
2059                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2060                 /* Our state is too optimistic in ssthresh() call because cwnd
2061                  * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2062                  * recovery has not yet completed. Pattern would be this: RTO,
2063                  * Cumulative ACK, RTO (2xRTO for the same segment does not end
2064                  * up here twice).
2065                  * RFC4138 should be more specific on what to do, even though
2066                  * RTO is quite unlikely to occur after the first Cumulative ACK
2067                  * due to back-off and complexity of triggering events ...
2068                  */
2069                 if (tp->frto_counter) {
2070                         u32 stored_cwnd;
2071                         stored_cwnd = tp->snd_cwnd;
2072                         tp->snd_cwnd = 2;
2073                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2074                         tp->snd_cwnd = stored_cwnd;
2075                 } else {
2076                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2077                 }
2078                 /* ... in theory, cong.control module could do "any tricks" in
2079                  * ssthresh(), which means that ca_state, lost bits and lost_out
2080                  * counter would have to be faked before the call occurs. We
2081                  * consider that too expensive, unlikely and hacky, so modules
2082                  * using these in ssthresh() must deal these incompatibility
2083                  * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2084                  */
2085                 tcp_ca_event(sk, CA_EVENT_FRTO);
2086         }
2087
2088         tp->undo_marker = tp->snd_una;
2089         tp->undo_retrans = 0;
2090
2091         skb = tcp_write_queue_head(sk);
2092         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2093                 tp->undo_marker = 0;
2094         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2095                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2096                 tp->retrans_out -= tcp_skb_pcount(skb);
2097         }
2098         tcp_verify_left_out(tp);
2099
2100         /* Too bad if TCP was application limited */
2101         tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2102
2103         /* Earlier loss recovery underway (see RFC4138; Appendix B).
2104          * The last condition is necessary at least in tp->frto_counter case.
2105          */
2106         if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2107             ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2108             after(tp->high_seq, tp->snd_una)) {
2109                 tp->frto_highmark = tp->high_seq;
2110         } else {
2111                 tp->frto_highmark = tp->snd_nxt;
2112         }
2113         tcp_set_ca_state(sk, TCP_CA_Disorder);
2114         tp->high_seq = tp->snd_nxt;
2115         tp->frto_counter = 1;
2116 }
2117
2118 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2119  * which indicates that we should follow the traditional RTO recovery,
2120  * i.e. mark everything lost and do go-back-N retransmission.
2121  */
2122 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2123 {
2124         struct tcp_sock *tp = tcp_sk(sk);
2125         struct sk_buff *skb;
2126
2127         tp->lost_out = 0;
2128         tp->retrans_out = 0;
2129         if (tcp_is_reno(tp))
2130                 tcp_reset_reno_sack(tp);
2131
2132         tcp_for_write_queue(skb, sk) {
2133                 if (skb == tcp_send_head(sk))
2134                         break;
2135
2136                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2137                 /*
2138                  * Count the retransmission made on RTO correctly (only when
2139                  * waiting for the first ACK and did not get it)...
2140                  */
2141                 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2142                         /* For some reason this R-bit might get cleared? */
2143                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2144                                 tp->retrans_out += tcp_skb_pcount(skb);
2145                         /* ...enter this if branch just for the first segment */
2146                         flag |= FLAG_DATA_ACKED;
2147                 } else {
2148                         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2149                                 tp->undo_marker = 0;
2150                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2151                 }
2152
2153                 /* Marking forward transmissions that were made after RTO lost
2154                  * can cause unnecessary retransmissions in some scenarios,
2155                  * SACK blocks will mitigate that in some but not in all cases.
2156                  * We used to not mark them but it was causing break-ups with
2157                  * receivers that do only in-order receival.
2158                  *
2159                  * TODO: we could detect presence of such receiver and select
2160                  * different behavior per flow.
2161                  */
2162                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2163                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2164                         tp->lost_out += tcp_skb_pcount(skb);
2165                         tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2166                 }
2167         }
2168         tcp_verify_left_out(tp);
2169
2170         tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2171         tp->snd_cwnd_cnt = 0;
2172         tp->snd_cwnd_stamp = tcp_time_stamp;
2173         tp->frto_counter = 0;
2174         tp->bytes_acked = 0;
2175
2176         tp->reordering = min_t(unsigned int, tp->reordering,
2177                                sysctl_tcp_reordering);
2178         tcp_set_ca_state(sk, TCP_CA_Loss);
2179         tp->high_seq = tp->snd_nxt;
2180         TCP_ECN_queue_cwr(tp);
2181
2182         tcp_clear_all_retrans_hints(tp);
2183 }
2184
2185 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2186 {
2187         tp->retrans_out = 0;
2188         tp->lost_out = 0;
2189
2190         tp->undo_marker = 0;
2191         tp->undo_retrans = 0;
2192 }
2193
2194 void tcp_clear_retrans(struct tcp_sock *tp)
2195 {
2196         tcp_clear_retrans_partial(tp);
2197
2198         tp->fackets_out = 0;
2199         tp->sacked_out = 0;
2200 }
2201
2202 /* Enter Loss state. If "how" is not zero, forget all SACK information
2203  * and reset tags completely, otherwise preserve SACKs. If receiver
2204  * dropped its ofo queue, we will know this due to reneging detection.
2205  */
2206 void tcp_enter_loss(struct sock *sk, int how)
2207 {
2208         const struct inet_connection_sock *icsk = inet_csk(sk);
2209         struct tcp_sock *tp = tcp_sk(sk);
2210         struct sk_buff *skb;
2211
2212         /* Reduce ssthresh if it has not yet been made inside this window. */
2213         if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2214             (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2215                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2216                 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2217                 tcp_ca_event(sk, CA_EVENT_LOSS);
2218         }
2219         tp->snd_cwnd       = 1;
2220         tp->snd_cwnd_cnt   = 0;
2221         tp->snd_cwnd_stamp = tcp_time_stamp;
2222
2223         tp->bytes_acked = 0;
2224         tcp_clear_retrans_partial(tp);
2225
2226         if (tcp_is_reno(tp))
2227                 tcp_reset_reno_sack(tp);
2228
2229         if (!how) {
2230                 /* Push undo marker, if it was plain RTO and nothing
2231                  * was retransmitted. */
2232                 tp->undo_marker = tp->snd_una;
2233         } else {
2234                 tp->sacked_out = 0;
2235                 tp->fackets_out = 0;
2236         }
2237         tcp_clear_all_retrans_hints(tp);
2238
2239         tcp_for_write_queue(skb, sk) {
2240                 if (skb == tcp_send_head(sk))
2241                         break;
2242
2243                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2244                         tp->undo_marker = 0;
2245                 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2246                 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2247                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2248                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2249                         tp->lost_out += tcp_skb_pcount(skb);
2250                         tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2251                 }
2252         }
2253         tcp_verify_left_out(tp);
2254
2255         tp->reordering = min_t(unsigned int, tp->reordering,
2256                                sysctl_tcp_reordering);
2257         tcp_set_ca_state(sk, TCP_CA_Loss);
2258         tp->high_seq = tp->snd_nxt;
2259         TCP_ECN_queue_cwr(tp);
2260         /* Abort F-RTO algorithm if one is in progress */
2261         tp->frto_counter = 0;
2262 }
2263
2264 /* If ACK arrived pointing to a remembered SACK, it means that our
2265  * remembered SACKs do not reflect real state of receiver i.e.
2266  * receiver _host_ is heavily congested (or buggy).
2267  *
2268  * Do processing similar to RTO timeout.
2269  */
2270 static int tcp_check_sack_reneging(struct sock *sk, int flag)
2271 {
2272         if (flag & FLAG_SACK_RENEGING) {
2273                 struct inet_connection_sock *icsk = inet_csk(sk);
2274                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2275
2276                 tcp_enter_loss(sk, 1);
2277                 icsk->icsk_retransmits++;
2278                 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2279                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2280                                           icsk->icsk_rto, TCP_RTO_MAX);
2281                 return 1;
2282         }
2283         return 0;
2284 }
2285
2286 static inline int tcp_fackets_out(struct tcp_sock *tp)
2287 {
2288         return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2289 }
2290
2291 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2292  * counter when SACK is enabled (without SACK, sacked_out is used for
2293  * that purpose).
2294  *
2295  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2296  * segments up to the highest received SACK block so far and holes in
2297  * between them.
2298  *
2299  * With reordering, holes may still be in flight, so RFC3517 recovery
2300  * uses pure sacked_out (total number of SACKed segments) even though
2301  * it violates the RFC that uses duplicate ACKs, often these are equal
2302  * but when e.g. out-of-window ACKs or packet duplication occurs,
2303  * they differ. Since neither occurs due to loss, TCP should really
2304  * ignore them.
2305  */
2306 static inline int tcp_dupack_heuristics(struct tcp_sock *tp)
2307 {
2308         return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2309 }
2310
2311 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
2312 {
2313         return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
2314 }
2315
2316 static inline int tcp_head_timedout(struct sock *sk)
2317 {
2318         struct tcp_sock *tp = tcp_sk(sk);
2319
2320         return tp->packets_out &&
2321                tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2322 }
2323
2324 /* Linux NewReno/SACK/FACK/ECN state machine.
2325  * --------------------------------------
2326  *
2327  * "Open"       Normal state, no dubious events, fast path.
2328  * "Disorder"   In all the respects it is "Open",
2329  *              but requires a bit more attention. It is entered when
2330  *              we see some SACKs or dupacks. It is split of "Open"
2331  *              mainly to move some processing from fast path to slow one.
2332  * "CWR"        CWND was reduced due to some Congestion Notification event.
2333  *              It can be ECN, ICMP source quench, local device congestion.
2334  * "Recovery"   CWND was reduced, we are fast-retransmitting.
2335  * "Loss"       CWND was reduced due to RTO timeout or SACK reneging.
2336  *
2337  * tcp_fastretrans_alert() is entered:
2338  * - each incoming ACK, if state is not "Open"
2339  * - when arrived ACK is unusual, namely:
2340  *      * SACK
2341  *      * Duplicate ACK.
2342  *      * ECN ECE.
2343  *
2344  * Counting packets in flight is pretty simple.
2345  *
2346  *      in_flight = packets_out - left_out + retrans_out
2347  *
2348  *      packets_out is SND.NXT-SND.UNA counted in packets.
2349  *
2350  *      retrans_out is number of retransmitted segments.
2351  *
2352  *      left_out is number of segments left network, but not ACKed yet.
2353  *
2354  *              left_out = sacked_out + lost_out
2355  *
2356  *     sacked_out: Packets, which arrived to receiver out of order
2357  *                 and hence not ACKed. With SACKs this number is simply
2358  *                 amount of SACKed data. Even without SACKs
2359  *                 it is easy to give pretty reliable estimate of this number,
2360  *                 counting duplicate ACKs.
2361  *
2362  *       lost_out: Packets lost by network. TCP has no explicit
2363  *                 "loss notification" feedback from network (for now).
2364  *                 It means that this number can be only _guessed_.
2365  *                 Actually, it is the heuristics to predict lossage that
2366  *                 distinguishes different algorithms.
2367  *
2368  *      F.e. after RTO, when all the queue is considered as lost,
2369  *      lost_out = packets_out and in_flight = retrans_out.
2370  *
2371  *              Essentially, we have now two algorithms counting
2372  *              lost packets.
2373  *
2374  *              FACK: It is the simplest heuristics. As soon as we decided
2375  *              that something is lost, we decide that _all_ not SACKed
2376  *              packets until the most forward SACK are lost. I.e.
2377  *              lost_out = fackets_out - sacked_out and left_out = fackets_out.
2378  *              It is absolutely correct estimate, if network does not reorder
2379  *              packets. And it loses any connection to reality when reordering
2380  *              takes place. We use FACK by default until reordering
2381  *              is suspected on the path to this destination.
2382  *
2383  *              NewReno: when Recovery is entered, we assume that one segment
2384  *              is lost (classic Reno). While we are in Recovery and
2385  *              a partial ACK arrives, we assume that one more packet
2386  *              is lost (NewReno). This heuristics are the same in NewReno
2387  *              and SACK.
2388  *
2389  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2390  *  deflation etc. CWND is real congestion window, never inflated, changes
2391  *  only according to classic VJ rules.
2392  *
2393  * Really tricky (and requiring careful tuning) part of algorithm
2394  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2395  * The first determines the moment _when_ we should reduce CWND and,
2396  * hence, slow down forward transmission. In fact, it determines the moment
2397  * when we decide that hole is caused by loss, rather than by a reorder.
2398  *
2399  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2400  * holes, caused by lost packets.
2401  *
2402  * And the most logically complicated part of algorithm is undo
2403  * heuristics. We detect false retransmits due to both too early
2404  * fast retransmit (reordering) and underestimated RTO, analyzing
2405  * timestamps and D-SACKs. When we detect that some segments were
2406  * retransmitted by mistake and CWND reduction was wrong, we undo
2407  * window reduction and abort recovery phase. This logic is hidden
2408  * inside several functions named tcp_try_undo_<something>.
2409  */
2410
2411 /* This function decides, when we should leave Disordered state
2412  * and enter Recovery phase, reducing congestion window.
2413  *
2414  * Main question: may we further continue forward transmission
2415  * with the same cwnd?
2416  */
2417 static int tcp_time_to_recover(struct sock *sk)
2418 {
2419         struct tcp_sock *tp = tcp_sk(sk);
2420         __u32 packets_out;
2421
2422         /* Do not perform any recovery during F-RTO algorithm */
2423         if (tp->frto_counter)
2424                 return 0;
2425
2426         /* Trick#1: The loss is proven. */
2427         if (tp->lost_out)
2428                 return 1;
2429
2430         /* Not-A-Trick#2 : Classic rule... */
2431         if (tcp_dupack_heuristics(tp) > tp->reordering)
2432                 return 1;
2433
2434         /* Trick#3 : when we use RFC2988 timer restart, fast
2435          * retransmit can be triggered by timeout of queue head.
2436          */
2437         if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2438                 return 1;
2439
2440         /* Trick#4: It is still not OK... But will it be useful to delay
2441          * recovery more?
2442          */
2443         packets_out = tp->packets_out;
2444         if (packets_out <= tp->reordering &&
2445             tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2446             !tcp_may_send_now(sk)) {
2447                 /* We have nothing to send. This connection is limited
2448                  * either by receiver window or by application.
2449                  */
2450                 return 1;
2451         }
2452
2453         /* If a thin stream is detected, retransmit after first
2454          * received dupack. Employ only if SACK is supported in order
2455          * to avoid possible corner-case series of spurious retransmissions
2456          * Use only if there are no unsent data.
2457          */
2458         if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2459             tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2460             tcp_is_sack(tp) && !tcp_send_head(sk))
2461                 return 1;
2462
2463         return 0;
2464 }
2465
2466 /* New heuristics: it is possible only after we switched to restart timer
2467  * each time when something is ACKed. Hence, we can detect timed out packets
2468  * during fast retransmit without falling to slow start.
2469  *
2470  * Usefulness of this as is very questionable, since we should know which of
2471  * the segments is the next to timeout which is relatively expensive to find
2472  * in general case unless we add some data structure just for that. The
2473  * current approach certainly won't find the right one too often and when it
2474  * finally does find _something_ it usually marks large part of the window
2475  * right away (because a retransmission with a larger timestamp blocks the
2476  * loop from advancing). -ij
2477  */
2478 static void tcp_timeout_skbs(struct sock *sk)
2479 {
2480         struct tcp_sock *tp = tcp_sk(sk);
2481         struct sk_buff *skb;
2482
2483         if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2484                 return;
2485
2486         skb = tp->scoreboard_skb_hint;
2487         if (tp->scoreboard_skb_hint == NULL)
2488                 skb = tcp_write_queue_head(sk);
2489
2490         tcp_for_write_queue_from(skb, sk) {
2491                 if (skb == tcp_send_head(sk))
2492                         break;
2493                 if (!tcp_skb_timedout(sk, skb))
2494                         break;
2495
2496                 tcp_skb_mark_lost(tp, skb);
2497         }
2498
2499         tp->scoreboard_skb_hint = skb;
2500
2501         tcp_verify_left_out(tp);
2502 }
2503
2504 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2505  * is against sacked "cnt", otherwise it's against facked "cnt"
2506  */
2507 static void tcp_mark_head_lost(struct sock *sk, int packets)
2508 {
2509         struct tcp_sock *tp = tcp_sk(sk);
2510         struct sk_buff *skb;
2511         int cnt, oldcnt;
2512         int err;
2513         unsigned int mss;
2514
2515         if (packets == 0)
2516                 return;
2517
2518         WARN_ON(packets > tp->packets_out);
2519         if (tp->lost_skb_hint) {
2520                 skb = tp->lost_skb_hint;
2521                 cnt = tp->lost_cnt_hint;
2522         } else {
2523                 skb = tcp_write_queue_head(sk);
2524                 cnt = 0;
2525         }
2526
2527         tcp_for_write_queue_from(skb, sk) {
2528                 if (skb == tcp_send_head(sk))
2529                         break;
2530                 /* TODO: do this better */
2531                 /* this is not the most efficient way to do this... */
2532                 tp->lost_skb_hint = skb;
2533                 tp->lost_cnt_hint = cnt;
2534
2535                 if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2536                         break;
2537
2538                 oldcnt = cnt;
2539                 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2540                     (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2541                         cnt += tcp_skb_pcount(skb);
2542
2543                 if (cnt > packets) {
2544                         if (tcp_is_sack(tp) || (oldcnt >= packets))
2545                                 break;
2546
2547                         mss = skb_shinfo(skb)->gso_size;
2548                         err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2549                         if (err < 0)
2550                                 break;
2551                         cnt = packets;
2552                 }
2553
2554                 tcp_skb_mark_lost(tp, skb);
2555         }
2556         tcp_verify_left_out(tp);
2557 }
2558
2559 /* Account newly detected lost packet(s) */
2560
2561 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2562 {
2563         struct tcp_sock *tp = tcp_sk(sk);
2564
2565         if (tcp_is_reno(tp)) {
2566                 tcp_mark_head_lost(sk, 1);
2567         } else if (tcp_is_fack(tp)) {
2568                 int lost = tp->fackets_out - tp->reordering;
2569                 if (lost <= 0)
2570                         lost = 1;
2571                 tcp_mark_head_lost(sk, lost);
2572         } else {
2573                 int sacked_upto = tp->sacked_out - tp->reordering;
2574                 if (sacked_upto < fast_rexmit)
2575                         sacked_upto = fast_rexmit;
2576                 tcp_mark_head_lost(sk, sacked_upto);
2577         }
2578
2579         tcp_timeout_skbs(sk);
2580 }
2581
2582 /* CWND moderation, preventing bursts due to too big ACKs
2583  * in dubious situations.
2584  */
2585 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2586 {
2587         tp->snd_cwnd = min(tp->snd_cwnd,
2588                            tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2589         tp->snd_cwnd_stamp = tcp_time_stamp;
2590 }
2591
2592 /* Lower bound on congestion window is slow start threshold
2593  * unless congestion avoidance choice decides to overide it.
2594  */
2595 static inline u32 tcp_cwnd_min(const struct sock *sk)
2596 {
2597         const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2598
2599         return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2600 }
2601
2602 /* Decrease cwnd each second ack. */
2603 static void tcp_cwnd_down(struct sock *sk, int flag)
2604 {
2605         struct tcp_sock *tp = tcp_sk(sk);
2606         int decr = tp->snd_cwnd_cnt + 1;
2607
2608         if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2609             (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2610                 tp->snd_cwnd_cnt = decr & 1;
2611                 decr >>= 1;
2612
2613                 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2614                         tp->snd_cwnd -= decr;
2615
2616                 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2617                 tp->snd_cwnd_stamp = tcp_time_stamp;
2618         }
2619 }
2620
2621 /* Nothing was retransmitted or returned timestamp is less
2622  * than timestamp of the first retransmission.
2623  */
2624 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2625 {
2626         return !tp->retrans_stamp ||
2627                 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2628                  before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2629 }
2630
2631 /* Undo procedures. */
2632
2633 #if FASTRETRANS_DEBUG > 1
2634 static void DBGUNDO(struct sock *sk, const char *msg)
2635 {
2636         struct tcp_sock *tp = tcp_sk(sk);
2637         struct inet_sock *inet = inet_sk(sk);
2638
2639         if (sk->sk_family == AF_INET) {
2640                 printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2641                        msg,
2642                        &inet->daddr, ntohs(inet->dport),
2643                        tp->snd_cwnd, tcp_left_out(tp),
2644                        tp->snd_ssthresh, tp->prior_ssthresh,
2645                        tp->packets_out);
2646         }
2647 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2648         else if (sk->sk_family == AF_INET6) {
2649                 struct ipv6_pinfo *np = inet6_sk(sk);
2650                 printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2651                        msg,
2652                        &np->daddr, ntohs(inet->dport),
2653                        tp->snd_cwnd, tcp_left_out(tp),
2654                        tp->snd_ssthresh, tp->prior_ssthresh,
2655                        tp->packets_out);
2656         }
2657 #endif
2658 }
2659 #else
2660 #define DBGUNDO(x...) do { } while (0)
2661 #endif
2662
2663 static void tcp_undo_cwr(struct sock *sk, const int undo)
2664 {
2665         struct tcp_sock *tp = tcp_sk(sk);
2666
2667         if (tp->prior_ssthresh) {
2668                 const struct inet_connection_sock *icsk = inet_csk(sk);
2669
2670                 if (icsk->icsk_ca_ops->undo_cwnd)
2671                         tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2672                 else
2673                         tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2674
2675                 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2676                         tp->snd_ssthresh = tp->prior_ssthresh;
2677                         TCP_ECN_withdraw_cwr(tp);
2678                 }
2679         } else {
2680                 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2681         }
2682         tcp_moderate_cwnd(tp);
2683         tp->snd_cwnd_stamp = tcp_time_stamp;
2684 }
2685
2686 static inline int tcp_may_undo(struct tcp_sock *tp)
2687 {
2688         return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2689 }
2690
2691 /* People celebrate: "We love our President!" */
2692 static int tcp_try_undo_recovery(struct sock *sk)
2693 {
2694         struct tcp_sock *tp = tcp_sk(sk);
2695
2696         if (tcp_may_undo(tp)) {
2697                 int mib_idx;
2698
2699                 /* Happy end! We did not retransmit anything
2700                  * or our original transmission succeeded.
2701                  */
2702                 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2703                 tcp_undo_cwr(sk, 1);
2704                 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2705                         mib_idx = LINUX_MIB_TCPLOSSUNDO;
2706                 else
2707                         mib_idx = LINUX_MIB_TCPFULLUNDO;
2708
2709                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2710                 tp->undo_marker = 0;
2711         }
2712         if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2713                 /* Hold old state until something *above* high_seq
2714                  * is ACKed. For Reno it is MUST to prevent false
2715                  * fast retransmits (RFC2582). SACK TCP is safe. */
2716                 tcp_moderate_cwnd(tp);
2717                 return 1;
2718         }
2719         tcp_set_ca_state(sk, TCP_CA_Open);
2720         return 0;
2721 }
2722
2723 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2724 static void tcp_try_undo_dsack(struct sock *sk)
2725 {
2726         struct tcp_sock *tp = tcp_sk(sk);
2727
2728         if (tp->undo_marker && !tp->undo_retrans) {
2729                 DBGUNDO(sk, "D-SACK");
2730                 tcp_undo_cwr(sk, 1);
2731                 tp->undo_marker = 0;
2732                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2733         }
2734 }
2735
2736 /* We can clear retrans_stamp when there are no retransmissions in the
2737  * window. It would seem that it is trivially available for us in
2738  * tp->retrans_out, however, that kind of assumptions doesn't consider
2739  * what will happen if errors occur when sending retransmission for the
2740  * second time. ...It could the that such segment has only
2741  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2742  * the head skb is enough except for some reneging corner cases that
2743  * are not worth the effort.
2744  *
2745  * Main reason for all this complexity is the fact that connection dying
2746  * time now depends on the validity of the retrans_stamp, in particular,
2747  * that successive retransmissions of a segment must not advance
2748  * retrans_stamp under any conditions.
2749  */
2750 static int tcp_any_retrans_done(struct sock *sk)
2751 {
2752         struct tcp_sock *tp = tcp_sk(sk);
2753         struct sk_buff *skb;
2754
2755         if (tp->retrans_out)
2756                 return 1;
2757
2758         skb = tcp_write_queue_head(sk);
2759         if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2760                 return 1;
2761
2762         return 0;
2763 }
2764
2765 /* Undo during fast recovery after partial ACK. */
2766
2767 static int tcp_try_undo_partial(struct sock *sk, int acked)
2768 {
2769         struct tcp_sock *tp = tcp_sk(sk);
2770         /* Partial ACK arrived. Force Hoe's retransmit. */
2771         int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2772
2773         if (tcp_may_undo(tp)) {
2774                 /* Plain luck! Hole if filled with delayed
2775                  * packet, rather than with a retransmit.
2776                  */
2777                 if (!tcp_any_retrans_done(sk))
2778                         tp->retrans_stamp = 0;
2779
2780                 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2781
2782                 DBGUNDO(sk, "Hoe");
2783                 tcp_undo_cwr(sk, 0);
2784                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2785
2786                 /* So... Do not make Hoe's retransmit yet.
2787                  * If the first packet was delayed, the rest
2788                  * ones are most probably delayed as well.
2789                  */
2790                 failed = 0;
2791         }
2792         return failed;
2793 }
2794
2795 /* Undo during loss recovery after partial ACK. */
2796 static int tcp_try_undo_loss(struct sock *sk)
2797 {
2798         struct tcp_sock *tp = tcp_sk(sk);
2799
2800         if (tcp_may_undo(tp)) {
2801                 struct sk_buff *skb;
2802                 tcp_for_write_queue(skb, sk) {
2803                         if (skb == tcp_send_head(sk))
2804                                 break;
2805                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2806                 }
2807
2808                 tcp_clear_all_retrans_hints(tp);
2809
2810                 DBGUNDO(sk, "partial loss");
2811                 tp->lost_out = 0;
2812                 tcp_undo_cwr(sk, 1);
2813                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2814                 inet_csk(sk)->icsk_retransmits = 0;
2815                 tp->undo_marker = 0;
2816                 if (tcp_is_sack(tp))
2817                         tcp_set_ca_state(sk, TCP_CA_Open);
2818                 return 1;
2819         }
2820         return 0;
2821 }
2822
2823 static inline void tcp_complete_cwr(struct sock *sk)
2824 {
2825         struct tcp_sock *tp = tcp_sk(sk);
2826         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2827         tp->snd_cwnd_stamp = tcp_time_stamp;
2828         tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2829 }
2830
2831 static void tcp_try_keep_open(struct sock *sk)
2832 {
2833         struct tcp_sock *tp = tcp_sk(sk);
2834         int state = TCP_CA_Open;
2835
2836         if (tcp_left_out(tp) || tcp_any_retrans_done(sk) || tp->undo_marker)
2837                 state = TCP_CA_Disorder;
2838
2839         if (inet_csk(sk)->icsk_ca_state != state) {
2840                 tcp_set_ca_state(sk, state);
2841                 tp->high_seq = tp->snd_nxt;
2842         }
2843 }
2844
2845 static void tcp_try_to_open(struct sock *sk, int flag)
2846 {
2847         struct tcp_sock *tp = tcp_sk(sk);
2848
2849         tcp_verify_left_out(tp);
2850
2851         if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2852                 tp->retrans_stamp = 0;
2853
2854         if (flag & FLAG_ECE)
2855                 tcp_enter_cwr(sk, 1);
2856
2857         if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2858                 tcp_try_keep_open(sk);
2859                 tcp_moderate_cwnd(tp);
2860         } else {
2861                 tcp_cwnd_down(sk, flag);
2862         }
2863 }
2864
2865 static void tcp_mtup_probe_failed(struct sock *sk)
2866 {
2867         struct inet_connection_sock *icsk = inet_csk(sk);
2868
2869         icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2870         icsk->icsk_mtup.probe_size = 0;
2871 }
2872
2873 static void tcp_mtup_probe_success(struct sock *sk)
2874 {
2875         struct tcp_sock *tp = tcp_sk(sk);
2876         struct inet_connection_sock *icsk = inet_csk(sk);
2877
2878         /* FIXME: breaks with very large cwnd */
2879         tp->prior_ssthresh = tcp_current_ssthresh(sk);
2880         tp->snd_cwnd = tp->snd_cwnd *
2881                        tcp_mss_to_mtu(sk, tp->mss_cache) /
2882                        icsk->icsk_mtup.probe_size;
2883         tp->snd_cwnd_cnt = 0;
2884         tp->snd_cwnd_stamp = tcp_time_stamp;
2885         tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2886
2887         icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2888         icsk->icsk_mtup.probe_size = 0;
2889         tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2890 }
2891
2892 /* Do a simple retransmit without using the backoff mechanisms in
2893  * tcp_timer. This is used for path mtu discovery.
2894  * The socket is already locked here.
2895  */
2896 void tcp_simple_retransmit(struct sock *sk)
2897 {
2898         const struct inet_connection_sock *icsk = inet_csk(sk);
2899         struct tcp_sock *tp = tcp_sk(sk);
2900         struct sk_buff *skb;
2901         unsigned int mss = tcp_current_mss(sk);
2902         u32 prior_lost = tp->lost_out;
2903
2904         tcp_for_write_queue(skb, sk) {
2905                 if (skb == tcp_send_head(sk))
2906                         break;
2907                 if (tcp_skb_seglen(skb) > mss &&
2908                     !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2909                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2910                                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2911                                 tp->retrans_out -= tcp_skb_pcount(skb);
2912                         }
2913                         tcp_skb_mark_lost_uncond_verify(tp, skb);
2914                 }
2915         }
2916
2917         tcp_clear_retrans_hints_partial(tp);
2918
2919         if (prior_lost == tp->lost_out)
2920                 return;
2921
2922         if (tcp_is_reno(tp))
2923                 tcp_limit_reno_sacked(tp);
2924
2925         tcp_verify_left_out(tp);
2926
2927         /* Don't muck with the congestion window here.
2928          * Reason is that we do not increase amount of _data_
2929          * in network, but units changed and effective
2930          * cwnd/ssthresh really reduced now.
2931          */
2932         if (icsk->icsk_ca_state != TCP_CA_Loss) {
2933                 tp->high_seq = tp->snd_nxt;
2934                 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2935                 tp->prior_ssthresh = 0;
2936                 tp->undo_marker = 0;
2937                 tcp_set_ca_state(sk, TCP_CA_Loss);
2938         }
2939         tcp_xmit_retransmit_queue(sk);
2940 }
2941
2942 /* Process an event, which can update packets-in-flight not trivially.
2943  * Main goal of this function is to calculate new estimate for left_out,
2944  * taking into account both packets sitting in receiver's buffer and
2945  * packets lost by network.
2946  *
2947  * Besides that it does CWND reduction, when packet loss is detected
2948  * and changes state of machine.
2949  *
2950  * It does _not_ decide what to send, it is made in function
2951  * tcp_xmit_retransmit_queue().
2952  */
2953 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2954 {
2955         struct inet_connection_sock *icsk = inet_csk(sk);
2956         struct tcp_sock *tp = tcp_sk(sk);
2957         int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
2958         int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2959                                     (tcp_fackets_out(tp) > tp->reordering));
2960         int fast_rexmit = 0, mib_idx;
2961
2962         if (WARN_ON(!tp->packets_out && tp->sacked_out))
2963                 tp->sacked_out = 0;
2964         if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2965                 tp->fackets_out = 0;
2966
2967         /* Now state machine starts.
2968          * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2969         if (flag & FLAG_ECE)
2970                 tp->prior_ssthresh = 0;
2971
2972         /* B. In all the states check for reneging SACKs. */
2973         if (tcp_check_sack_reneging(sk, flag))
2974                 return;
2975
2976         /* C. Process data loss notification, provided it is valid. */
2977         if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2978             before(tp->snd_una, tp->high_seq) &&
2979             icsk->icsk_ca_state != TCP_CA_Open &&
2980             tp->fackets_out > tp->reordering) {
2981                 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering);
2982                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS);
2983         }
2984
2985         /* D. Check consistency of the current state. */
2986         tcp_verify_left_out(tp);
2987
2988         /* E. Check state exit conditions. State can be terminated
2989          *    when high_seq is ACKed. */
2990         if (icsk->icsk_ca_state == TCP_CA_Open) {
2991                 WARN_ON(tp->retrans_out != 0);
2992                 tp->retrans_stamp = 0;
2993         } else if (!before(tp->snd_una, tp->high_seq)) {
2994                 switch (icsk->icsk_ca_state) {
2995                 case TCP_CA_Loss:
2996                         icsk->icsk_retransmits = 0;
2997                         if (tcp_try_undo_recovery(sk))
2998                                 return;
2999                         break;
3000
3001                 case TCP_CA_CWR:
3002                         /* CWR is to be held something *above* high_seq
3003                          * is ACKed for CWR bit to reach receiver. */
3004                         if (tp->snd_una != tp->high_seq) {
3005                                 tcp_complete_cwr(sk);
3006                                 tcp_set_ca_state(sk, TCP_CA_Open);
3007                         }
3008                         break;
3009
3010                 case TCP_CA_Disorder:
3011                         tcp_try_undo_dsack(sk);
3012                         if (!tp->undo_marker ||
3013                             /* For SACK case do not Open to allow to undo
3014                              * catching for all duplicate ACKs. */
3015                             tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
3016                                 tp->undo_marker = 0;
3017                                 tcp_set_ca_state(sk, TCP_CA_Open);
3018                         }
3019                         break;
3020
3021                 case TCP_CA_Recovery:
3022                         if (tcp_is_reno(tp))
3023                                 tcp_reset_reno_sack(tp);
3024                         if (tcp_try_undo_recovery(sk))
3025                                 return;
3026                         tcp_complete_cwr(sk);
3027                         break;
3028                 }
3029         }
3030
3031         /* F. Process state. */
3032         switch (icsk->icsk_ca_state) {
3033         case TCP_CA_Recovery:
3034                 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3035                         if (tcp_is_reno(tp) && is_dupack)
3036                                 tcp_add_reno_sack(sk);
3037                 } else
3038                         do_lost = tcp_try_undo_partial(sk, pkts_acked);
3039                 break;
3040         case TCP_CA_Loss:
3041                 if (flag & FLAG_DATA_ACKED)
3042                         icsk->icsk_retransmits = 0;
3043                 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
3044                         tcp_reset_reno_sack(tp);
3045                 if (!tcp_try_undo_loss(sk)) {
3046                         tcp_moderate_cwnd(tp);
3047                         tcp_xmit_retransmit_queue(sk);
3048                         return;
3049                 }
3050                 if (icsk->icsk_ca_state != TCP_CA_Open)
3051                         return;
3052                 /* Loss is undone; fall through to processing in Open state. */
3053         default:
3054                 if (tcp_is_reno(tp)) {
3055                         if (flag & FLAG_SND_UNA_ADVANCED)
3056                                 tcp_reset_reno_sack(tp);
3057                         if (is_dupack)
3058                                 tcp_add_reno_sack(sk);
3059                 }
3060
3061                 if (icsk->icsk_ca_state == TCP_CA_Disorder)
3062                         tcp_try_undo_dsack(sk);
3063
3064                 if (!tcp_time_to_recover(sk)) {
3065                         tcp_try_to_open(sk, flag);
3066                         return;
3067                 }
3068
3069                 /* MTU probe failure: don't reduce cwnd */
3070                 if (icsk->icsk_ca_state < TCP_CA_CWR &&
3071                     icsk->icsk_mtup.probe_size &&
3072                     tp->snd_una == tp->mtu_probe.probe_seq_start) {
3073                         tcp_mtup_probe_failed(sk);
3074                         /* Restores the reduction we did in tcp_mtup_probe() */
3075                         tp->snd_cwnd++;
3076                         tcp_simple_retransmit(sk);
3077                         return;
3078                 }
3079
3080                 /* Otherwise enter Recovery state */
3081
3082                 if (tcp_is_reno(tp))
3083                         mib_idx = LINUX_MIB_TCPRENORECOVERY;
3084                 else
3085                         mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3086
3087                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3088
3089                 tp->high_seq = tp->snd_nxt;
3090                 tp->prior_ssthresh = 0;
3091                 tp->undo_marker = tp->snd_una;
3092                 tp->undo_retrans = tp->retrans_out;
3093
3094                 if (icsk->icsk_ca_state < TCP_CA_CWR) {
3095                         if (!(flag & FLAG_ECE))
3096                                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
3097                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
3098                         TCP_ECN_queue_cwr(tp);
3099                 }
3100
3101                 tp->bytes_acked = 0;
3102                 tp->snd_cwnd_cnt = 0;
3103                 tcp_set_ca_state(sk, TCP_CA_Recovery);
3104                 fast_rexmit = 1;
3105         }
3106
3107         if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3108                 tcp_update_scoreboard(sk, fast_rexmit);
3109         tcp_cwnd_down(sk, flag);
3110         tcp_xmit_retransmit_queue(sk);
3111 }
3112
3113 static void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3114 {
3115         tcp_rtt_estimator(sk, seq_rtt);
3116         tcp_set_rto(sk);
3117         inet_csk(sk)->icsk_backoff = 0;
3118 }
3119
3120 /* Read draft-ietf-tcplw-high-performance before mucking
3121  * with this code. (Supersedes RFC1323)
3122  */
3123 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3124 {
3125         /* RTTM Rule: A TSecr value received in a segment is used to
3126          * update the averaged RTT measurement only if the segment
3127          * acknowledges some new data, i.e., only if it advances the
3128          * left edge of the send window.
3129          *
3130          * See draft-ietf-tcplw-high-performance-00, section 3.3.
3131          * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3132          *
3133          * Changed: reset backoff as soon as we see the first valid sample.
3134          * If we do not, we get strongly overestimated rto. With timestamps
3135          * samples are accepted even from very old segments: f.e., when rtt=1
3136          * increases to 8, we retransmit 5 times and after 8 seconds delayed
3137          * answer arrives rto becomes 120 seconds! If at least one of segments
3138          * in window is lost... Voila.                          --ANK (010210)
3139          */
3140         struct tcp_sock *tp = tcp_sk(sk);
3141
3142         tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3143 }
3144
3145 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3146 {
3147         /* We don't have a timestamp. Can only use
3148          * packets that are not retransmitted to determine
3149          * rtt estimates. Also, we must not reset the
3150          * backoff for rto until we get a non-retransmitted
3151          * packet. This allows us to deal with a situation
3152          * where the network delay has increased suddenly.
3153          * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3154          */
3155
3156         if (flag & FLAG_RETRANS_DATA_ACKED)
3157                 return;
3158
3159         tcp_valid_rtt_meas(sk, seq_rtt);
3160 }
3161
3162 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3163                                       const s32 seq_rtt)
3164 {
3165         const struct tcp_sock *tp = tcp_sk(sk);
3166         /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3167         if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3168                 tcp_ack_saw_tstamp(sk, flag);
3169         else if (seq_rtt >= 0)
3170                 tcp_ack_no_tstamp(sk, seq_rtt, flag);
3171 }
3172
3173 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3174 {
3175         const struct inet_connection_sock *icsk = inet_csk(sk);
3176         icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3177         tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3178 }
3179
3180 /* Restart timer after forward progress on connection.
3181  * RFC2988 recommends to restart timer to now+rto.
3182  */
3183 static void tcp_rearm_rto(struct sock *sk)
3184 {
3185         struct tcp_sock *tp = tcp_sk(sk);
3186
3187         if (!tp->packets_out) {
3188                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3189         } else {
3190                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3191                                           inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3192         }
3193 }
3194
3195 /* If we get here, the whole TSO packet has not been acked. */
3196 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3197 {
3198         struct tcp_sock *tp = tcp_sk(sk);
3199         u32 packets_acked;
3200
3201         BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3202
3203         packets_acked = tcp_skb_pcount(skb);
3204         if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3205                 return 0;
3206         packets_acked -= tcp_skb_pcount(skb);
3207
3208         if (packets_acked) {
3209                 BUG_ON(tcp_skb_pcount(skb) == 0);
3210                 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3211         }
3212
3213         return packets_acked;
3214 }
3215
3216 /* Remove acknowledged frames from the retransmission queue. If our packet
3217  * is before the ack sequence we can discard it as it's confirmed to have
3218  * arrived at the other end.
3219  */
3220 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3221                                u32 prior_snd_una)
3222 {
3223         struct tcp_sock *tp = tcp_sk(sk);
3224         const struct inet_connection_sock *icsk = inet_csk(sk);
3225         struct sk_buff *skb;
3226         u32 now = tcp_time_stamp;
3227         int fully_acked = 1;
3228         int flag = 0;
3229         u32 pkts_acked = 0;
3230         u32 reord = tp->packets_out;
3231         u32 prior_sacked = tp->sacked_out;
3232         s32 seq_rtt = -1;
3233         s32 ca_seq_rtt = -1;
3234         ktime_t last_ackt = net_invalid_timestamp();
3235
3236         while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3237                 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3238                 u32 acked_pcount;
3239                 u8 sacked = scb->sacked;
3240
3241                 /* Determine how many packets and what bytes were acked, tso and else */
3242                 if (after(scb->end_seq, tp->snd_una)) {
3243                         if (tcp_skb_pcount(skb) == 1 ||
3244                             !after(tp->snd_una, scb->seq))
3245                                 break;
3246
3247                         acked_pcount = tcp_tso_acked(sk, skb);
3248                         if (!acked_pcount)
3249                                 break;
3250
3251                         fully_acked = 0;
3252                 } else {
3253                         acked_pcount = tcp_skb_pcount(skb);
3254                 }
3255
3256                 if (sacked & TCPCB_RETRANS) {
3257                         if (sacked & TCPCB_SACKED_RETRANS)
3258                                 tp->retrans_out -= acked_pcount;
3259                         flag |= FLAG_RETRANS_DATA_ACKED;
3260                         ca_seq_rtt = -1;
3261                         seq_rtt = -1;
3262                         if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3263                                 flag |= FLAG_NONHEAD_RETRANS_ACKED;
3264                 } else {
3265                         ca_seq_rtt = now - scb->when;
3266                         last_ackt = skb->tstamp;
3267                         if (seq_rtt < 0) {
3268                                 seq_rtt = ca_seq_rtt;
3269                         }
3270                         if (!(sacked & TCPCB_SACKED_ACKED))
3271                                 reord = min(pkts_acked, reord);
3272                 }
3273
3274                 if (sacked & TCPCB_SACKED_ACKED)
3275                         tp->sacked_out -= acked_pcount;
3276                 if (sacked & TCPCB_LOST)
3277                         tp->lost_out -= acked_pcount;
3278
3279                 tp->packets_out -= acked_pcount;
3280                 pkts_acked += acked_pcount;
3281
3282                 /* Initial outgoing SYN's get put onto the write_queue
3283                  * just like anything else we transmit.  It is not
3284                  * true data, and if we misinform our callers that
3285                  * this ACK acks real data, we will erroneously exit
3286                  * connection startup slow start one packet too
3287                  * quickly.  This is severely frowned upon behavior.
3288                  */
3289                 if (!(scb->flags & TCPCB_FLAG_SYN)) {
3290                         flag |= FLAG_DATA_ACKED;
3291                 } else {
3292                         flag |= FLAG_SYN_ACKED;
3293                         tp->retrans_stamp = 0;
3294                 }
3295
3296                 if (!fully_acked)
3297                         break;
3298
3299                 tcp_unlink_write_queue(skb, sk);
3300                 sk_wmem_free_skb(sk, skb);
3301                 tp->scoreboard_skb_hint = NULL;
3302                 if (skb == tp->retransmit_skb_hint)
3303                         tp->retransmit_skb_hint = NULL;
3304                 if (skb == tp->lost_skb_hint)
3305                         tp->lost_skb_hint = NULL;
3306         }
3307
3308         if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3309                 tp->snd_up = tp->snd_una;
3310
3311         if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3312                 flag |= FLAG_SACK_RENEGING;
3313
3314         if (flag & FLAG_ACKED) {
3315                 const struct tcp_congestion_ops *ca_ops
3316                         = inet_csk(sk)->icsk_ca_ops;
3317
3318                 if (unlikely(icsk->icsk_mtup.probe_size &&
3319                              !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3320                         tcp_mtup_probe_success(sk);
3321                 }
3322
3323                 tcp_ack_update_rtt(sk, flag, seq_rtt);
3324                 tcp_rearm_rto(sk);
3325
3326                 if (tcp_is_reno(tp)) {
3327                         tcp_remove_reno_sacks(sk, pkts_acked);
3328                 } else {
3329                         int delta;
3330
3331                         /* Non-retransmitted hole got filled? That's reordering */
3332                         if (reord < prior_fackets)
3333                                 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3334
3335                         delta = tcp_is_fack(tp) ? pkts_acked :
3336                                                   prior_sacked - tp->sacked_out;
3337                         tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3338                 }
3339
3340                 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3341
3342                 if (ca_ops->pkts_acked) {
3343                         s32 rtt_us = -1;
3344
3345                         /* Is the ACK triggering packet unambiguous? */
3346                         if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3347                                 /* High resolution needed and available? */
3348                                 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3349                                     !ktime_equal(last_ackt,
3350                                                  net_invalid_timestamp()))
3351                                         rtt_us = ktime_us_delta(ktime_get_real(),
3352                                                                 last_ackt);
3353                                 else if (ca_seq_rtt > 0)
3354                                         rtt_us = jiffies_to_usecs(ca_seq_rtt);
3355                         }
3356
3357                         ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3358                 }
3359         }
3360
3361 #if FASTRETRANS_DEBUG > 0
3362         WARN_ON((int)tp->sacked_out < 0);
3363         WARN_ON((int)tp->lost_out < 0);
3364         WARN_ON((int)tp->retrans_out < 0);
3365         if (!tp->packets_out && tcp_is_sack(tp)) {
3366                 icsk = inet_csk(sk);
3367                 if (tp->lost_out) {
3368                         printk(KERN_DEBUG "Leak l=%u %d\n",
3369                                tp->lost_out, icsk->icsk_ca_state);
3370                         tp->lost_out = 0;
3371                 }
3372                 if (tp->sacked_out) {
3373                         printk(KERN_DEBUG "Leak s=%u %d\n",
3374                                tp->sacked_out, icsk->icsk_ca_state);
3375                         tp->sacked_out = 0;
3376                 }
3377                 if (tp->retrans_out) {
3378                         printk(KERN_DEBUG "Leak r=%u %d\n",
3379                                tp->retrans_out, icsk->icsk_ca_state);
3380                         tp->retrans_out = 0;
3381                 }
3382         }
3383 #endif
3384         return flag;
3385 }
3386
3387 static void tcp_ack_probe(struct sock *sk)
3388 {
3389         const struct tcp_sock *tp = tcp_sk(sk);
3390         struct inet_connection_sock *icsk = inet_csk(sk);
3391
3392         /* Was it a usable window open? */
3393
3394         if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3395                 icsk->icsk_backoff = 0;
3396                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3397                 /* Socket must be waked up by subsequent tcp_data_snd_check().
3398                  * This function is not for random using!
3399                  */
3400         } else {
3401                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3402                                           min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3403                                           TCP_RTO_MAX);
3404         }
3405 }
3406
3407 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3408 {
3409         return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3410                 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
3411 }
3412
3413 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3414 {
3415         const struct tcp_sock *tp = tcp_sk(sk);
3416         return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3417                 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3418 }
3419
3420 /* Check that window update is acceptable.
3421  * The function assumes that snd_una<=ack<=snd_next.
3422  */
3423 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3424                                         const u32 ack, const u32 ack_seq,
3425                                         const u32 nwin)
3426 {
3427         return (after(ack, tp->snd_una) ||
3428                 after(ack_seq, tp->snd_wl1) ||
3429                 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
3430 }
3431
3432 /* Update our send window.
3433  *
3434  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3435  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3436  */
3437 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
3438                                  u32 ack_seq)
3439 {
3440         struct tcp_sock *tp = tcp_sk(sk);
3441         int flag = 0;
3442         u32 nwin = ntohs(tcp_hdr(skb)->window);
3443
3444         if (likely(!tcp_hdr(skb)->syn))
3445                 nwin <<= tp->rx_opt.snd_wscale;
3446
3447         if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3448                 flag |= FLAG_WIN_UPDATE;
3449                 tcp_update_wl(tp, ack_seq);
3450
3451                 if (tp->snd_wnd != nwin) {
3452                         tp->snd_wnd = nwin;
3453
3454                         /* Note, it is the only place, where
3455                          * fast path is recovered for sending TCP.
3456                          */
3457                         tp->pred_flags = 0;
3458                         tcp_fast_path_check(sk);
3459
3460                         if (nwin > tp->max_window) {
3461                                 tp->max_window = nwin;
3462                                 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3463                         }
3464                 }
3465         }
3466
3467         tp->snd_una = ack;
3468
3469         return flag;
3470 }
3471
3472 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3473  * continue in congestion avoidance.
3474  */
3475 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3476 {
3477         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3478         tp->snd_cwnd_cnt = 0;
3479         tp->bytes_acked = 0;
3480         TCP_ECN_queue_cwr(tp);
3481         tcp_moderate_cwnd(tp);
3482 }
3483
3484 /* A conservative spurious RTO response algorithm: reduce cwnd using
3485  * rate halving and continue in congestion avoidance.
3486  */
3487 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3488 {
3489         tcp_enter_cwr(sk, 0);
3490 }
3491
3492 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3493 {
3494         if (flag & FLAG_ECE)
3495                 tcp_ratehalving_spur_to_response(sk);
3496         else
3497                 tcp_undo_cwr(sk, 1);
3498 }
3499
3500 /* F-RTO spurious RTO detection algorithm (RFC4138)
3501  *
3502  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3503  * comments). State (ACK number) is kept in frto_counter. When ACK advances
3504  * window (but not to or beyond highest sequence sent before RTO):
3505  *   On First ACK,  send two new segments out.
3506  *   On Second ACK, RTO was likely spurious. Do spurious response (response
3507  *                  algorithm is not part of the F-RTO detection algorithm
3508  *                  given in RFC4138 but can be selected separately).
3509  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3510  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3511  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3512  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3513  *
3514  * Rationale: if the RTO was spurious, new ACKs should arrive from the
3515  * original window even after we transmit two new data segments.
3516  *
3517  * SACK version:
3518  *   on first step, wait until first cumulative ACK arrives, then move to
3519  *   the second step. In second step, the next ACK decides.
3520  *
3521  * F-RTO is implemented (mainly) in four functions:
3522  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3523  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3524  *     called when tcp_use_frto() showed green light
3525  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3526  *   - tcp_enter_frto_loss() is called if there is not enough evidence
3527  *     to prove that the RTO is indeed spurious. It transfers the control
3528  *     from F-RTO to the conventional RTO recovery
3529  */
3530 static int tcp_process_frto(struct sock *sk, int flag)
3531 {
3532         struct tcp_sock *tp = tcp_sk(sk);
3533
3534         tcp_verify_left_out(tp);
3535
3536         /* Duplicate the behavior from Loss state (fastretrans_alert) */
3537         if (flag & FLAG_DATA_ACKED)
3538                 inet_csk(sk)->icsk_retransmits = 0;
3539
3540         if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3541             ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3542                 tp->undo_marker = 0;
3543
3544         if (!before(tp->snd_una, tp->frto_highmark)) {
3545                 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3546                 return 1;
3547         }
3548
3549         if (!tcp_is_sackfrto(tp)) {
3550                 /* RFC4138 shortcoming in step 2; should also have case c):
3551                  * ACK isn't duplicate nor advances window, e.g., opposite dir
3552                  * data, winupdate
3553                  */
3554                 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3555                         return 1;
3556
3557                 if (!(flag & FLAG_DATA_ACKED)) {
3558                         tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3559                                             flag);
3560                         return 1;
3561                 }
3562         } else {
3563                 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3564                         /* Prevent sending of new data. */
3565                         tp->snd_cwnd = min(tp->snd_cwnd,
3566                                            tcp_packets_in_flight(tp));
3567                         return 1;
3568                 }
3569
3570                 if ((tp->frto_counter >= 2) &&
3571                     (!(flag & FLAG_FORWARD_PROGRESS) ||
3572                      ((flag & FLAG_DATA_SACKED) &&
3573                       !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3574                         /* RFC4138 shortcoming (see comment above) */
3575                         if (!(flag & FLAG_FORWARD_PROGRESS) &&
3576                             (flag & FLAG_NOT_DUP))
3577                                 return 1;
3578
3579                         tcp_enter_frto_loss(sk, 3, flag);
3580                         return 1;
3581                 }
3582         }
3583
3584         if (tp->frto_counter == 1) {
3585                 /* tcp_may_send_now needs to see updated state */
3586                 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3587                 tp->frto_counter = 2;
3588
3589                 if (!tcp_may_send_now(sk))
3590                         tcp_enter_frto_loss(sk, 2, flag);
3591
3592                 return 1;
3593         } else {
3594                 switch (sysctl_tcp_frto_response) {
3595                 case 2:
3596                         tcp_undo_spur_to_response(sk, flag);
3597                         break;
3598                 case 1:
3599                         tcp_conservative_spur_to_response(tp);
3600                         break;
3601                 default:
3602                         tcp_ratehalving_spur_to_response(sk);
3603                         break;
3604                 }
3605                 tp->frto_counter = 0;
3606                 tp->undo_marker = 0;
3607                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3608         }
3609         return 0;
3610 }
3611
3612 /* This routine deals with incoming acks, but not outgoing ones. */
3613 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3614 {
3615         struct inet_connection_sock *icsk = inet_csk(sk);
3616         struct tcp_sock *tp = tcp_sk(sk);
3617         u32 prior_snd_una = tp->snd_una;
3618         u32 ack_seq = TCP_SKB_CB(skb)->seq;
3619         u32 ack = TCP_SKB_CB(skb)->ack_seq;
3620         u32 prior_in_flight;
3621         u32 prior_fackets;
3622         int prior_packets;
3623         int frto_cwnd = 0;
3624
3625         /* If the ack is older than previous acks
3626          * then we can probably ignore it.
3627          */
3628         if (before(ack, prior_snd_una))
3629                 goto old_ack;
3630
3631         /* If the ack includes data we haven't sent yet, discard
3632          * this segment (RFC793 Section 3.9).
3633          */
3634         if (after(ack, tp->snd_nxt))
3635                 goto invalid_ack;
3636
3637         if (after(ack, prior_snd_una))
3638                 flag |= FLAG_SND_UNA_ADVANCED;
3639
3640         if (sysctl_tcp_abc) {
3641                 if (icsk->icsk_ca_state < TCP_CA_CWR)
3642                         tp->bytes_acked += ack - prior_snd_una;
3643                 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3644                         /* we assume just one segment left network */
3645                         tp->bytes_acked += min(ack - prior_snd_una,
3646                                                tp->mss_cache);
3647         }
3648
3649         prior_fackets = tp->fackets_out;
3650         prior_in_flight = tcp_packets_in_flight(tp);
3651
3652         if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3653                 /* Window is constant, pure forward advance.
3654                  * No more checks are required.
3655                  * Note, we use the fact that SND.UNA>=SND.WL2.
3656                  */
3657                 tcp_update_wl(tp, ack_seq);
3658                 tp->snd_una = ack;
3659                 flag |= FLAG_WIN_UPDATE;
3660
3661                 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3662
3663                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3664         } else {
3665                 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3666                         flag |= FLAG_DATA;
3667                 else
3668                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3669
3670                 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3671
3672                 if (TCP_SKB_CB(skb)->sacked)
3673                         flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3674
3675                 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3676                         flag |= FLAG_ECE;
3677
3678                 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3679         }
3680
3681         /* We passed data and got it acked, remove any soft error
3682          * log. Something worked...
3683          */
3684         sk->sk_err_soft = 0;
3685         icsk->icsk_probes_out = 0;
3686         tp->rcv_tstamp = tcp_time_stamp;
3687         prior_packets = tp->packets_out;
3688         if (!prior_packets)
3689                 goto no_queue;
3690
3691         /* See if we can take anything off of the retransmit queue. */
3692         flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3693
3694         if (tp->frto_counter)
3695                 frto_cwnd = tcp_process_frto(sk, flag);
3696         /* Guarantee sacktag reordering detection against wrap-arounds */
3697         if (before(tp->frto_highmark, tp->snd_una))
3698                 tp->frto_highmark = 0;
3699
3700         if (tcp_ack_is_dubious(sk, flag)) {
3701                 /* Advance CWND, if state allows this. */
3702                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3703                     tcp_may_raise_cwnd(sk, flag))
3704                         tcp_cong_avoid(sk, ack, prior_in_flight);
3705                 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3706                                       flag);
3707         } else {
3708                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3709                         tcp_cong_avoid(sk, ack, prior_in_flight);
3710         }
3711
3712         if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3713                 dst_confirm(sk->sk_dst_cache);
3714
3715         return 1;
3716
3717 no_queue:
3718         /* If this ack opens up a zero window, clear backoff.  It was
3719          * being used to time the probes, and is probably far higher than
3720          * it needs to be for normal retransmission.
3721          */
3722         if (tcp_send_head(sk))
3723                 tcp_ack_probe(sk);
3724         return 1;
3725
3726 invalid_ack:
3727         SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3728         return -1;
3729
3730 old_ack:
3731         if (TCP_SKB_CB(skb)->sacked) {
3732                 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3733                 if (icsk->icsk_ca_state == TCP_CA_Open)
3734                         tcp_try_keep_open(sk);
3735         }
3736
3737         SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3738         return 0;
3739 }
3740
3741 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3742  * But, this can also be called on packets in the established flow when
3743  * the fast version below fails.
3744  */
3745 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
3746                        u8 **hvpp, int estab)
3747 {
3748         unsigned char *ptr;
3749         struct tcphdr *th = tcp_hdr(skb);
3750         int length = (th->doff * 4) - sizeof(struct tcphdr);
3751
3752         ptr = (unsigned char *)(th + 1);
3753         opt_rx->saw_tstamp = 0;
3754
3755         while (length > 0) {
3756                 int opcode = *ptr++;
3757                 int opsize;
3758
3759                 switch (opcode) {
3760                 case TCPOPT_EOL:
3761                         return;
3762                 case TCPOPT_NOP:        /* Ref: RFC 793 section 3.1 */
3763                         length--;
3764                         continue;
3765                 default:
3766                         opsize = *ptr++;
3767                         if (opsize < 2) /* "silly options" */
3768                                 return;
3769                         if (opsize > length)
3770                                 return; /* don't parse partial options */
3771                         switch (opcode) {
3772                         case TCPOPT_MSS:
3773                                 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3774                                         u16 in_mss = get_unaligned_be16(ptr);
3775                                         if (in_mss) {
3776                                                 if (opt_rx->user_mss &&
3777                                                     opt_rx->user_mss < in_mss)
3778                                                         in_mss = opt_rx->user_mss;
3779                                                 opt_rx->mss_clamp = in_mss;
3780                                         }
3781                                 }
3782                                 break;
3783                         case TCPOPT_WINDOW:
3784                                 if (opsize == TCPOLEN_WINDOW && th->syn &&
3785                                     !estab && sysctl_tcp_window_scaling) {
3786                                         __u8 snd_wscale = *(__u8 *)ptr;
3787                                         opt_rx->wscale_ok = 1;
3788                                         if (snd_wscale > 14) {
3789                                                 if (net_ratelimit())
3790                                                         printk(KERN_INFO "tcp_parse_options: Illegal window "
3791                                                                "scaling value %d >14 received.\n",
3792                                                                snd_wscale);
3793                                                 snd_wscale = 14;
3794                                         }
3795                                         opt_rx->snd_wscale = snd_wscale;
3796                                 }
3797                                 break;
3798                         case TCPOPT_TIMESTAMP:
3799                                 if ((opsize == TCPOLEN_TIMESTAMP) &&
3800                                     ((estab && opt_rx->tstamp_ok) ||
3801                                      (!estab && sysctl_tcp_timestamps))) {
3802                                         opt_rx->saw_tstamp = 1;
3803                                         opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3804                                         opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3805                                 }
3806                                 break;
3807                         case TCPOPT_SACK_PERM:
3808                                 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3809                                     !estab && sysctl_tcp_sack) {
3810                                         opt_rx->sack_ok = 1;
3811                                         tcp_sack_reset(opt_rx);
3812                                 }
3813                                 break;
3814
3815                         case TCPOPT_SACK:
3816                                 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3817                                    !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3818                                    opt_rx->sack_ok) {
3819                                         TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3820                                 }
3821                                 break;
3822 #ifdef CONFIG_TCP_MD5SIG
3823                         case TCPOPT_MD5SIG:
3824                                 /*
3825                                  * The MD5 Hash has already been
3826                                  * checked (see tcp_v{4,6}_do_rcv()).
3827                                  */
3828                                 break;
3829 #endif
3830                         case TCPOPT_COOKIE:
3831                                 /* This option is variable length.
3832                                  */
3833                                 switch (opsize) {
3834                                 case TCPOLEN_COOKIE_BASE:
3835                                         /* not yet implemented */
3836                                         break;
3837                                 case TCPOLEN_COOKIE_PAIR:
3838                                         /* not yet implemented */
3839                                         break;
3840                                 case TCPOLEN_COOKIE_MIN+0:
3841                                 case TCPOLEN_COOKIE_MIN+2:
3842                                 case TCPOLEN_COOKIE_MIN+4:
3843                                 case TCPOLEN_COOKIE_MIN+6:
3844                                 case TCPOLEN_COOKIE_MAX:
3845                                         /* 16-bit multiple */
3846                                         opt_rx->cookie_plus = opsize;
3847                                         *hvpp = ptr;
3848                                 default:
3849                                         /* ignore option */
3850                                         break;
3851                                 };
3852                                 break;
3853                         };
3854
3855                         ptr += opsize-2;
3856                         length -= opsize;
3857                 }
3858         }
3859 }
3860
3861 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, struct tcphdr *th)
3862 {
3863         __be32 *ptr = (__be32 *)(th + 1);
3864
3865         if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3866                           | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3867                 tp->rx_opt.saw_tstamp = 1;
3868                 ++ptr;
3869                 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3870                 ++ptr;
3871                 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3872                 return 1;
3873         }
3874         return 0;
3875 }
3876
3877 /* Fast parse options. This hopes to only see timestamps.
3878  * If it is wrong it falls back on tcp_parse_options().
3879  */
3880 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3881                                   struct tcp_sock *tp, u8 **hvpp)
3882 {
3883         /* In the spirit of fast parsing, compare doff directly to constant
3884          * values.  Because equality is used, short doff can be ignored here.
3885          */
3886         if (th->doff == (sizeof(*th) / 4)) {
3887                 tp->rx_opt.saw_tstamp = 0;
3888                 return 0;
3889         } else if (tp->rx_opt.tstamp_ok &&
3890                    th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3891                 if (tcp_parse_aligned_timestamp(tp, th))
3892                         return 1;
3893         }
3894         tcp_parse_options(skb, &tp->rx_opt, hvpp, 1);
3895         return 1;
3896 }
3897
3898 #ifdef CONFIG_TCP_MD5SIG
3899 /*
3900  * Parse MD5 Signature option
3901  */
3902 u8 *tcp_parse_md5sig_option(struct tcphdr *th)
3903 {
3904         int length = (th->doff << 2) - sizeof (*th);
3905         u8 *ptr = (u8*)(th + 1);
3906
3907         /* If the TCP option is too short, we can short cut */
3908         if (length < TCPOLEN_MD5SIG)
3909                 return NULL;
3910
3911         while (length > 0) {
3912                 int opcode = *ptr++;
3913                 int opsize;
3914
3915                 switch(opcode) {
3916                 case TCPOPT_EOL:
3917                         return NULL;
3918                 case TCPOPT_NOP:
3919                         length--;
3920                         continue;
3921                 default:
3922                         opsize = *ptr++;
3923                         if (opsize < 2 || opsize > length)
3924                                 return NULL;
3925                         if (opcode == TCPOPT_MD5SIG)
3926                                 return ptr;
3927                 }
3928                 ptr += opsize - 2;
3929                 length -= opsize;
3930         }
3931         return NULL;
3932 }
3933 #endif
3934
3935 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3936 {
3937         tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3938         tp->rx_opt.ts_recent_stamp = get_seconds();
3939 }
3940
3941 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3942 {
3943         if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3944                 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3945                  * extra check below makes sure this can only happen
3946                  * for pure ACK frames.  -DaveM
3947                  *
3948                  * Not only, also it occurs for expired timestamps.
3949                  */
3950
3951                 if (tcp_paws_check(&tp->rx_opt, 0))
3952                         tcp_store_ts_recent(tp);
3953         }
3954 }
3955
3956 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3957  *
3958  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3959  * it can pass through stack. So, the following predicate verifies that
3960  * this segment is not used for anything but congestion avoidance or
3961  * fast retransmit. Moreover, we even are able to eliminate most of such
3962  * second order effects, if we apply some small "replay" window (~RTO)
3963  * to timestamp space.
3964  *
3965  * All these measures still do not guarantee that we reject wrapped ACKs
3966  * on networks with high bandwidth, when sequence space is recycled fastly,
3967  * but it guarantees that such events will be very rare and do not affect
3968  * connection seriously. This doesn't look nice, but alas, PAWS is really
3969  * buggy extension.
3970  *
3971  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3972  * states that events when retransmit arrives after original data are rare.
3973  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3974  * the biggest problem on large power networks even with minor reordering.
3975  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3976  * up to bandwidth of 18Gigabit/sec. 8) ]
3977  */
3978
3979 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3980 {
3981         struct tcp_sock *tp = tcp_sk(sk);
3982         struct tcphdr *th = tcp_hdr(skb);
3983         u32 seq = TCP_SKB_CB(skb)->seq;
3984         u32 ack = TCP_SKB_CB(skb)->ack_seq;
3985
3986         return (/* 1. Pure ACK with correct sequence number. */
3987                 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3988
3989                 /* 2. ... and duplicate ACK. */
3990                 ack == tp->snd_una &&
3991
3992                 /* 3. ... and does not update window. */
3993                 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3994
3995                 /* 4. ... and sits in replay window. */
3996                 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3997 }
3998
3999 static inline int tcp_paws_discard(const struct sock *sk,
4000                                    const struct sk_buff *skb)
4001 {
4002         const struct tcp_sock *tp = tcp_sk(sk);
4003
4004         return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4005                !tcp_disordered_ack(sk, skb);
4006 }
4007
4008 /* Check segment sequence number for validity.
4009  *
4010  * Segment controls are considered valid, if the segment
4011  * fits to the window after truncation to the window. Acceptability
4012  * of data (and SYN, FIN, of course) is checked separately.
4013  * See tcp_data_queue(), for example.
4014  *
4015  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4016  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4017  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4018  * (borrowed from freebsd)
4019  */
4020
4021 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
4022 {
4023         return  !before(end_seq, tp->rcv_wup) &&
4024                 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4025 }
4026
4027 /* When we get a reset we do this. */
4028 static void tcp_reset(struct sock *sk)
4029 {
4030         /* We want the right error as BSD sees it (and indeed as we do). */
4031         switch (sk->sk_state) {
4032         case TCP_SYN_SENT:
4033                 sk->sk_err = ECONNREFUSED;
4034                 break;
4035         case TCP_CLOSE_WAIT:
4036                 sk->sk_err = EPIPE;
4037                 break;
4038         case TCP_CLOSE:
4039                 return;
4040         default:
4041                 sk->sk_err = ECONNRESET;
4042         }
4043
4044         if (!sock_flag(sk, SOCK_DEAD))
4045                 sk->sk_error_report(sk);
4046
4047         tcp_done(sk);
4048 }
4049
4050 /*
4051  *      Process the FIN bit. This now behaves as it is supposed to work
4052  *      and the FIN takes effect when it is validly part of sequence
4053  *      space. Not before when we get holes.
4054  *
4055  *      If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4056  *      (and thence onto LAST-ACK and finally, CLOSE, we never enter
4057  *      TIME-WAIT)
4058  *
4059  *      If we are in FINWAIT-1, a received FIN indicates simultaneous
4060  *      close and we go into CLOSING (and later onto TIME-WAIT)
4061  *
4062  *      If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4063  */
4064 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
4065 {
4066         struct tcp_sock *tp = tcp_sk(sk);
4067
4068         inet_csk_schedule_ack(sk);
4069
4070         sk->sk_shutdown |= RCV_SHUTDOWN;
4071         sock_set_flag(sk, SOCK_DONE);
4072
4073         switch (sk->sk_state) {
4074         case TCP_SYN_RECV:
4075         case TCP_ESTABLISHED:
4076                 /* Move to CLOSE_WAIT */
4077                 tcp_set_state(sk, TCP_CLOSE_WAIT);
4078                 inet_csk(sk)->icsk_ack.pingpong = 1;
4079                 break;
4080
4081         case TCP_CLOSE_WAIT:
4082         case TCP_CLOSING:
4083                 /* Received a retransmission of the FIN, do
4084                  * nothing.
4085                  */
4086                 break;
4087         case TCP_LAST_ACK:
4088                 /* RFC793: Remain in the LAST-ACK state. */
4089                 break;
4090
4091         case TCP_FIN_WAIT1:
4092                 /* This case occurs when a simultaneous close
4093                  * happens, we must ack the received FIN and
4094                  * enter the CLOSING state.
4095                  */
4096                 tcp_send_ack(sk);
4097                 tcp_set_state(sk, TCP_CLOSING);
4098                 break;
4099         case TCP_FIN_WAIT2:
4100                 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4101                 tcp_send_ack(sk);
4102                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4103                 break;
4104         default:
4105                 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4106                  * cases we should never reach this piece of code.
4107                  */
4108                 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
4109                        __func__, sk->sk_state);
4110                 break;
4111         }
4112
4113         /* It _is_ possible, that we have something out-of-order _after_ FIN.
4114          * Probably, we should reset in this case. For now drop them.
4115          */
4116         __skb_queue_purge(&tp->out_of_order_queue);
4117         if (tcp_is_sack(tp))
4118                 tcp_sack_reset(&tp->rx_opt);
4119         sk_mem_reclaim(sk);
4120
4121         if (!sock_flag(sk, SOCK_DEAD)) {
4122                 sk->sk_state_change(sk);
4123
4124                 /* Do not send POLL_HUP for half duplex close. */
4125                 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4126                     sk->sk_state == TCP_CLOSE)
4127                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4128                 else
4129                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4130         }
4131 }
4132
4133 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4134                                   u32 end_seq)
4135 {
4136         if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4137                 if (before(seq, sp->start_seq))
4138                         sp->start_seq = seq;
4139                 if (after(end_seq, sp->end_seq))
4140                         sp->end_seq = end_seq;
4141                 return 1;
4142         }
4143         return 0;
4144 }
4145
4146 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4147 {
4148         struct tcp_sock *tp = tcp_sk(sk);
4149
4150         if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4151                 int mib_idx;
4152
4153                 if (before(seq, tp->rcv_nxt))
4154                         mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4155                 else
4156                         mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4157
4158                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
4159
4160                 tp->rx_opt.dsack = 1;
4161                 tp->duplicate_sack[0].start_seq = seq;
4162                 tp->duplicate_sack[0].end_seq = end_seq;
4163         }
4164 }
4165
4166 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4167 {
4168         struct tcp_sock *tp = tcp_sk(sk);
4169
4170         if (!tp->rx_opt.dsack)
4171                 tcp_dsack_set(sk, seq, end_seq);
4172         else
4173                 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4174 }
4175
4176 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
4177 {
4178         struct tcp_sock *tp = tcp_sk(sk);
4179
4180         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4181             before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4182                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4183                 tcp_enter_quickack_mode(sk);
4184
4185                 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4186                         u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4187
4188                         if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4189                                 end_seq = tp->rcv_nxt;
4190                         tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4191                 }
4192         }
4193
4194         tcp_send_ack(sk);
4195 }
4196
4197 /* These routines update the SACK block as out-of-order packets arrive or
4198  * in-order packets close up the sequence space.
4199  */
4200 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4201 {
4202         int this_sack;
4203         struct tcp_sack_block *sp = &tp->selective_acks[0];
4204         struct tcp_sack_block *swalk = sp + 1;
4205
4206         /* See if the recent change to the first SACK eats into
4207          * or hits the sequence space of other SACK blocks, if so coalesce.
4208          */
4209         for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4210                 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4211                         int i;
4212
4213                         /* Zap SWALK, by moving every further SACK up by one slot.
4214                          * Decrease num_sacks.
4215                          */
4216                         tp->rx_opt.num_sacks--;
4217                         for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4218                                 sp[i] = sp[i + 1];
4219                         continue;
4220                 }
4221                 this_sack++, swalk++;
4222         }
4223 }
4224
4225 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4226 {
4227         struct tcp_sock *tp = tcp_sk(sk);
4228         struct tcp_sack_block *sp = &tp->selective_acks[0];
4229         int cur_sacks = tp->rx_opt.num_sacks;
4230         int this_sack;
4231
4232         if (!cur_sacks)
4233                 goto new_sack;
4234
4235         for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4236                 if (tcp_sack_extend(sp, seq, end_seq)) {
4237                         /* Rotate this_sack to the first one. */
4238                         for (; this_sack > 0; this_sack--, sp--)
4239                                 swap(*sp, *(sp - 1));
4240                         if (cur_sacks > 1)
4241                                 tcp_sack_maybe_coalesce(tp);
4242                         return;
4243                 }
4244         }
4245
4246         /* Could not find an adjacent existing SACK, build a new one,
4247          * put it at the front, and shift everyone else down.  We
4248          * always know there is at least one SACK present already here.
4249          *
4250          * If the sack array is full, forget about the last one.
4251          */
4252         if (this_sack >= TCP_NUM_SACKS) {
4253                 this_sack--;
4254                 tp->rx_opt.num_sacks--;
4255                 sp--;
4256         }
4257         for (; this_sack > 0; this_sack--, sp--)
4258                 *sp = *(sp - 1);
4259
4260 new_sack:
4261         /* Build the new head SACK, and we're done. */
4262         sp->start_seq = seq;
4263         sp->end_seq = end_seq;
4264         tp->rx_opt.num_sacks++;
4265 }
4266
4267 /* RCV.NXT advances, some SACKs should be eaten. */
4268
4269 static void tcp_sack_remove(struct tcp_sock *tp)
4270 {
4271         struct tcp_sack_block *sp = &tp->selective_acks[0];
4272         int num_sacks = tp->rx_opt.num_sacks;
4273         int this_sack;
4274
4275         /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4276         if (skb_queue_empty(&tp->out_of_order_queue)) {
4277                 tp->rx_opt.num_sacks = 0;
4278                 return;
4279         }
4280
4281         for (this_sack = 0; this_sack < num_sacks;) {
4282                 /* Check if the start of the sack is covered by RCV.NXT. */
4283                 if (!before(tp->rcv_nxt, sp->start_seq)) {
4284                         int i;
4285
4286                         /* RCV.NXT must cover all the block! */
4287                         WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4288
4289                         /* Zap this SACK, by moving forward any other SACKS. */
4290                         for (i=this_sack+1; i < num_sacks; i++)
4291                                 tp->selective_acks[i-1] = tp->selective_acks[i];
4292                         num_sacks--;
4293                         continue;
4294                 }
4295                 this_sack++;
4296                 sp++;
4297         }
4298         tp->rx_opt.num_sacks = num_sacks;
4299 }
4300
4301 /* This one checks to see if we can put data from the
4302  * out_of_order queue into the receive_queue.
4303  */
4304 static void tcp_ofo_queue(struct sock *sk)
4305 {
4306         struct tcp_sock *tp = tcp_sk(sk);
4307         __u32 dsack_high = tp->rcv_nxt;
4308         struct sk_buff *skb;
4309
4310         while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4311                 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4312                         break;
4313
4314                 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4315                         __u32 dsack = dsack_high;
4316                         if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4317                                 dsack_high = TCP_SKB_CB(skb)->end_seq;
4318                         tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4319                 }
4320
4321                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4322                         SOCK_DEBUG(sk, "ofo packet was already received\n");
4323                         __skb_unlink(skb, &tp->out_of_order_queue);
4324                         __kfree_skb(skb);
4325                         continue;
4326                 }
4327                 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4328                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4329                            TCP_SKB_CB(skb)->end_seq);
4330
4331                 __skb_unlink(skb, &tp->out_of_order_queue);
4332                 __skb_queue_tail(&sk->sk_receive_queue, skb);
4333                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4334                 if (tcp_hdr(skb)->fin)
4335                         tcp_fin(skb, sk, tcp_hdr(skb));
4336         }
4337 }
4338
4339 static int tcp_prune_ofo_queue(struct sock *sk);
4340 static int tcp_prune_queue(struct sock *sk);
4341
4342 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4343 {
4344         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4345             !sk_rmem_schedule(sk, size)) {
4346
4347                 if (tcp_prune_queue(sk) < 0)
4348                         return -1;
4349
4350                 if (!sk_rmem_schedule(sk, size)) {
4351                         if (!tcp_prune_ofo_queue(sk))
4352                                 return -1;
4353
4354                         if (!sk_rmem_schedule(sk, size))
4355                                 return -1;
4356                 }
4357         }
4358         return 0;
4359 }
4360
4361 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4362 {
4363         struct tcphdr *th = tcp_hdr(skb);
4364         struct tcp_sock *tp = tcp_sk(sk);
4365         int eaten = -1;
4366
4367         if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4368                 goto drop;
4369
4370         __skb_pull(skb, th->doff * 4);
4371
4372         TCP_ECN_accept_cwr(tp, skb);
4373
4374         tp->rx_opt.dsack = 0;
4375
4376         /*  Queue data for delivery to the user.
4377          *  Packets in sequence go to the receive queue.
4378          *  Out of sequence packets to the out_of_order_queue.
4379          */
4380         if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4381                 if (tcp_receive_window(tp) == 0)
4382                         goto out_of_window;
4383
4384                 /* Ok. In sequence. In window. */
4385                 if (tp->ucopy.task == current &&
4386                     tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4387                     sock_owned_by_user(sk) && !tp->urg_data) {
4388                         int chunk = min_t(unsigned int, skb->len,
4389                                           tp->ucopy.len);
4390
4391                         __set_current_state(TASK_RUNNING);
4392
4393                         local_bh_enable();
4394                         if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4395                                 tp->ucopy.len -= chunk;
4396                                 tp->copied_seq += chunk;
4397                                 eaten = (chunk == skb->len && !th->fin);
4398                                 tcp_rcv_space_adjust(sk);
4399                         }
4400                         local_bh_disable();
4401                 }
4402
4403                 if (eaten <= 0) {
4404 queue_and_out:
4405                         if (eaten < 0 &&
4406                             tcp_try_rmem_schedule(sk, skb->truesize))
4407                                 goto drop;
4408
4409                         skb_set_owner_r(skb, sk);
4410                         __skb_queue_tail(&sk->sk_receive_queue, skb);
4411                 }
4412                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4413                 if (skb->len)
4414                         tcp_event_data_recv(sk, skb);
4415                 if (th->fin)
4416                         tcp_fin(skb, sk, th);
4417
4418                 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4419                         tcp_ofo_queue(sk);
4420
4421                         /* RFC2581. 4.2. SHOULD send immediate ACK, when
4422                          * gap in queue is filled.
4423                          */
4424                         if (skb_queue_empty(&tp->out_of_order_queue))
4425                                 inet_csk(sk)->icsk_ack.pingpong = 0;
4426                 }
4427
4428                 if (tp->rx_opt.num_sacks)
4429                         tcp_sack_remove(tp);
4430
4431                 tcp_fast_path_check(sk);
4432
4433                 if (eaten > 0)
4434                         __kfree_skb(skb);
4435                 else if (!sock_flag(sk, SOCK_DEAD))
4436                         sk->sk_data_ready(sk, 0);
4437                 return;
4438         }
4439
4440         if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4441                 /* A retransmit, 2nd most common case.  Force an immediate ack. */
4442                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4443                 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4444
4445 out_of_window:
4446                 tcp_enter_quickack_mode(sk);
4447                 inet_csk_schedule_ack(sk);
4448 drop:
4449                 __kfree_skb(skb);
4450                 return;
4451         }
4452
4453         /* Out of window. F.e. zero window probe. */
4454         if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4455                 goto out_of_window;
4456
4457         tcp_enter_quickack_mode(sk);
4458
4459         if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4460                 /* Partial packet, seq < rcv_next < end_seq */
4461                 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4462                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4463                            TCP_SKB_CB(skb)->end_seq);
4464
4465                 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4466
4467                 /* If window is closed, drop tail of packet. But after
4468                  * remembering D-SACK for its head made in previous line.
4469                  */
4470                 if (!tcp_receive_window(tp))
4471                         goto out_of_window;
4472                 goto queue_and_out;
4473         }
4474
4475         TCP_ECN_check_ce(tp, skb);
4476
4477         if (tcp_try_rmem_schedule(sk, skb->truesize))
4478                 goto drop;
4479
4480         /* Disable header prediction. */
4481         tp->pred_flags = 0;
4482         inet_csk_schedule_ack(sk);
4483
4484         SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4485                    tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4486
4487         skb_set_owner_r(skb, sk);
4488
4489         if (!skb_peek(&tp->out_of_order_queue)) {
4490                 /* Initial out of order segment, build 1 SACK. */
4491                 if (tcp_is_sack(tp)) {
4492                         tp->rx_opt.num_sacks = 1;
4493                         tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4494                         tp->selective_acks[0].end_seq =
4495                                                 TCP_SKB_CB(skb)->end_seq;
4496                 }
4497                 __skb_queue_head(&tp->out_of_order_queue, skb);
4498         } else {
4499                 struct sk_buff *skb1 = skb_peek_tail(&tp->out_of_order_queue);
4500                 u32 seq = TCP_SKB_CB(skb)->seq;
4501                 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4502
4503                 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4504                         __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4505
4506                         if (!tp->rx_opt.num_sacks ||
4507                             tp->selective_acks[0].end_seq != seq)
4508                                 goto add_sack;
4509
4510                         /* Common case: data arrive in order after hole. */
4511                         tp->selective_acks[0].end_seq = end_seq;
4512                         return;
4513                 }
4514
4515                 /* Find place to insert this segment. */
4516                 while (1) {
4517                         if (!after(TCP_SKB_CB(skb1)->seq, seq))
4518                                 break;
4519                         if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4520                                 skb1 = NULL;
4521                                 break;
4522                         }
4523                         skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4524                 }
4525
4526                 /* Do skb overlap to previous one? */
4527                 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4528                         if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4529                                 /* All the bits are present. Drop. */
4530                                 __kfree_skb(skb);
4531                                 tcp_dsack_set(sk, seq, end_seq);
4532                                 goto add_sack;
4533                         }
4534                         if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4535                                 /* Partial overlap. */
4536                                 tcp_dsack_set(sk, seq,
4537                                               TCP_SKB_CB(skb1)->end_seq);
4538                         } else {
4539                                 if (skb_queue_is_first(&tp->out_of_order_queue,
4540                                                        skb1))
4541                                         skb1 = NULL;
4542                                 else
4543                                         skb1 = skb_queue_prev(
4544                                                 &tp->out_of_order_queue,
4545                                                 skb1);
4546                         }
4547                 }
4548                 if (!skb1)
4549                         __skb_queue_head(&tp->out_of_order_queue, skb);
4550                 else
4551                         __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4552
4553                 /* And clean segments covered by new one as whole. */
4554                 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4555                         skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4556
4557                         if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4558                                 break;
4559                         if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4560                                 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4561                                                  end_seq);
4562                                 break;
4563                         }
4564                         __skb_unlink(skb1, &tp->out_of_order_queue);
4565                         tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4566                                          TCP_SKB_CB(skb1)->end_seq);
4567                         __kfree_skb(skb1);
4568                 }
4569
4570 add_sack:
4571                 if (tcp_is_sack(tp))
4572                         tcp_sack_new_ofo_skb(sk, seq, end_seq);
4573         }
4574 }
4575
4576 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4577                                         struct sk_buff_head *list)
4578 {
4579         struct sk_buff *next = NULL;
4580
4581         if (!skb_queue_is_last(list, skb))
4582                 next = skb_queue_next(list, skb);
4583
4584         __skb_unlink(skb, list);
4585         __kfree_skb(skb);
4586         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4587
4588         return next;
4589 }
4590
4591 /* Collapse contiguous sequence of skbs head..tail with
4592  * sequence numbers start..end.
4593  *
4594  * If tail is NULL, this means until the end of the list.
4595  *
4596  * Segments with FIN/SYN are not collapsed (only because this
4597  * simplifies code)
4598  */
4599 static void
4600 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4601              struct sk_buff *head, struct sk_buff *tail,
4602              u32 start, u32 end)
4603 {
4604         struct sk_buff *skb, *n;
4605         bool end_of_skbs;
4606
4607         /* First, check that queue is collapsible and find
4608          * the point where collapsing can be useful. */
4609         skb = head;
4610 restart:
4611         end_of_skbs = true;
4612         skb_queue_walk_from_safe(list, skb, n) {
4613                 if (skb == tail)
4614                         break;
4615                 /* No new bits? It is possible on ofo queue. */
4616                 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4617                         skb = tcp_collapse_one(sk, skb, list);
4618                         if (!skb)
4619                                 break;
4620                         goto restart;
4621                 }
4622
4623                 /* The first skb to collapse is:
4624                  * - not SYN/FIN and
4625                  * - bloated or contains data before "start" or
4626                  *   overlaps to the next one.
4627                  */
4628                 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4629                     (tcp_win_from_space(skb->truesize) > skb->len ||
4630                      before(TCP_SKB_CB(skb)->seq, start))) {
4631                         end_of_skbs = false;
4632                         break;
4633                 }
4634
4635                 if (!skb_queue_is_last(list, skb)) {
4636                         struct sk_buff *next = skb_queue_next(list, skb);
4637                         if (next != tail &&
4638                             TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4639                                 end_of_skbs = false;
4640                                 break;
4641                         }
4642                 }
4643
4644                 /* Decided to skip this, advance start seq. */
4645                 start = TCP_SKB_CB(skb)->end_seq;
4646         }
4647         if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4648                 return;
4649
4650         while (before(start, end)) {
4651                 struct sk_buff *nskb;
4652                 unsigned int header = skb_headroom(skb);
4653                 int copy = SKB_MAX_ORDER(header, 0);
4654
4655                 /* Too big header? This can happen with IPv6. */
4656                 if (copy < 0)
4657                         return;
4658                 if (end - start < copy)
4659                         copy = end - start;
4660                 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4661                 if (!nskb)
4662                         return;
4663
4664                 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4665                 skb_set_network_header(nskb, (skb_network_header(skb) -
4666                                               skb->head));
4667                 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4668                                                 skb->head));
4669                 skb_reserve(nskb, header);
4670                 memcpy(nskb->head, skb->head, header);
4671                 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4672                 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4673                 __skb_queue_before(list, skb, nskb);
4674                 skb_set_owner_r(nskb, sk);
4675
4676                 /* Copy data, releasing collapsed skbs. */
4677                 while (copy > 0) {
4678                         int offset = start - TCP_SKB_CB(skb)->seq;
4679                         int size = TCP_SKB_CB(skb)->end_seq - start;
4680
4681                         BUG_ON(offset < 0);
4682                         if (size > 0) {
4683                                 size = min(copy, size);
4684                                 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4685                                         BUG();
4686                                 TCP_SKB_CB(nskb)->end_seq += size;
4687                                 copy -= size;
4688                                 start += size;
4689                         }
4690                         if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4691                                 skb = tcp_collapse_one(sk, skb, list);
4692                                 if (!skb ||
4693                                     skb == tail ||
4694                                     tcp_hdr(skb)->syn ||
4695                                     tcp_hdr(skb)->fin)
4696                                         return;
4697                         }
4698                 }
4699         }
4700 }
4701
4702 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4703  * and tcp_collapse() them until all the queue is collapsed.
4704  */
4705 static void tcp_collapse_ofo_queue(struct sock *sk)
4706 {
4707         struct tcp_sock *tp = tcp_sk(sk);
4708         struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4709         struct sk_buff *head;
4710         u32 start, end;
4711
4712         if (skb == NULL)
4713                 return;
4714
4715         start = TCP_SKB_CB(skb)->seq;
4716         end = TCP_SKB_CB(skb)->end_seq;
4717         head = skb;
4718
4719         for (;;) {
4720                 struct sk_buff *next = NULL;
4721
4722                 if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4723                         next = skb_queue_next(&tp->out_of_order_queue, skb);
4724                 skb = next;
4725
4726                 /* Segment is terminated when we see gap or when
4727                  * we are at the end of all the queue. */
4728                 if (!skb ||
4729                     after(TCP_SKB_CB(skb)->seq, end) ||
4730                     before(TCP_SKB_CB(skb)->end_seq, start)) {
4731                         tcp_collapse(sk, &tp->out_of_order_queue,
4732                                      head, skb, start, end);
4733                         head = skb;
4734                         if (!skb)
4735                                 break;
4736                         /* Start new segment */
4737                         start = TCP_SKB_CB(skb)->seq;
4738                         end = TCP_SKB_CB(skb)->end_seq;
4739                 } else {
4740                         if (before(TCP_SKB_CB(skb)->seq, start))
4741                                 start = TCP_SKB_CB(skb)->seq;
4742                         if (after(TCP_SKB_CB(skb)->end_seq, end))
4743                                 end = TCP_SKB_CB(skb)->end_seq;
4744                 }
4745         }
4746 }
4747
4748 /*
4749  * Purge the out-of-order queue.
4750  * Return true if queue was pruned.
4751  */
4752 static int tcp_prune_ofo_queue(struct sock *sk)
4753 {
4754         struct tcp_sock *tp = tcp_sk(sk);
4755         int res = 0;
4756
4757         if (!skb_queue_empty(&tp->out_of_order_queue)) {
4758                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4759                 __skb_queue_purge(&tp->out_of_order_queue);
4760
4761                 /* Reset SACK state.  A conforming SACK implementation will
4762                  * do the same at a timeout based retransmit.  When a connection
4763                  * is in a sad state like this, we care only about integrity
4764                  * of the connection not performance.
4765                  */
4766                 if (tp->rx_opt.sack_ok)
4767                         tcp_sack_reset(&tp->rx_opt);
4768                 sk_mem_reclaim(sk);
4769                 res = 1;
4770         }
4771         return res;
4772 }
4773
4774 /* Reduce allocated memory if we can, trying to get
4775  * the socket within its memory limits again.
4776  *
4777  * Return less than zero if we should start dropping frames
4778  * until the socket owning process reads some of the data
4779  * to stabilize the situation.
4780  */
4781 static int tcp_prune_queue(struct sock *sk)
4782 {
4783         struct tcp_sock *tp = tcp_sk(sk);
4784
4785         SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4786
4787         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4788
4789         if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4790                 tcp_clamp_window(sk);
4791         else if (tcp_memory_pressure)
4792                 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4793
4794         tcp_collapse_ofo_queue(sk);
4795         if (!skb_queue_empty(&sk->sk_receive_queue))
4796                 tcp_collapse(sk, &sk->sk_receive_queue,
4797                              skb_peek(&sk->sk_receive_queue),
4798                              NULL,
4799                              tp->copied_seq, tp->rcv_nxt);
4800         sk_mem_reclaim(sk);
4801
4802         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4803                 return 0;
4804
4805         /* Collapsing did not help, destructive actions follow.
4806          * This must not ever occur. */
4807
4808         tcp_prune_ofo_queue(sk);
4809
4810         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4811                 return 0;
4812
4813         /* If we are really being abused, tell the caller to silently
4814          * drop receive data on the floor.  It will get retransmitted
4815          * and hopefully then we'll have sufficient space.
4816          */
4817         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4818
4819         /* Massive buffer overcommit. */
4820         tp->pred_flags = 0;
4821         return -1;
4822 }
4823
4824 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4825  * As additional protections, we do not touch cwnd in retransmission phases,
4826  * and if application hit its sndbuf limit recently.
4827  */
4828 void tcp_cwnd_application_limited(struct sock *sk)
4829 {
4830         struct tcp_sock *tp = tcp_sk(sk);
4831
4832         if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4833             sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4834                 /* Limited by application or receiver window. */
4835                 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4836                 u32 win_used = max(tp->snd_cwnd_used, init_win);
4837                 if (win_used < tp->snd_cwnd) {
4838                         tp->snd_ssthresh = tcp_current_ssthresh(sk);
4839                         tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4840                 }
4841                 tp->snd_cwnd_used = 0;
4842         }
4843         tp->snd_cwnd_stamp = tcp_time_stamp;
4844 }
4845
4846 static int tcp_should_expand_sndbuf(struct sock *sk)
4847 {
4848         struct tcp_sock *tp = tcp_sk(sk);
4849
4850         /* If the user specified a specific send buffer setting, do
4851          * not modify it.
4852          */
4853         if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4854                 return 0;
4855
4856         /* If we are under global TCP memory pressure, do not expand.  */
4857         if (tcp_memory_pressure)
4858                 return 0;
4859
4860         /* If we are under soft global TCP memory pressure, do not expand.  */
4861         if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4862                 return 0;
4863
4864         /* If we filled the congestion window, do not expand.  */
4865         if (tp->packets_out >= tp->snd_cwnd)
4866                 return 0;
4867
4868         return 1;
4869 }
4870
4871 /* When incoming ACK allowed to free some skb from write_queue,
4872  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4873  * on the exit from tcp input handler.
4874  *
4875  * PROBLEM: sndbuf expansion does not work well with largesend.
4876  */
4877 static void tcp_new_space(struct sock *sk)
4878 {
4879         struct tcp_sock *tp = tcp_sk(sk);
4880
4881         if (tcp_should_expand_sndbuf(sk)) {
4882                 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4883                         MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
4884                 int demanded = max_t(unsigned int, tp->snd_cwnd,
4885                                      tp->reordering + 1);
4886                 sndmem *= 2 * demanded;
4887                 if (sndmem > sk->sk_sndbuf)
4888                         sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4889                 tp->snd_cwnd_stamp = tcp_time_stamp;
4890         }
4891
4892         sk->sk_write_space(sk);
4893 }
4894
4895 static void tcp_check_space(struct sock *sk)
4896 {
4897         if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4898                 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4899                 if (sk->sk_socket &&
4900                     test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4901                         tcp_new_space(sk);
4902         }
4903 }
4904
4905 static inline void tcp_data_snd_check(struct sock *sk)
4906 {
4907         tcp_push_pending_frames(sk);
4908         tcp_check_space(sk);
4909 }
4910
4911 /*
4912  * Check if sending an ack is needed.
4913  */
4914 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4915 {
4916         struct tcp_sock *tp = tcp_sk(sk);
4917
4918             /* More than one full frame received... */
4919         if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4920              /* ... and right edge of window advances far enough.
4921               * (tcp_recvmsg() will send ACK otherwise). Or...
4922               */
4923              __tcp_select_window(sk) >= tp->rcv_wnd) ||
4924             /* We ACK each frame or... */
4925             tcp_in_quickack_mode(sk) ||
4926             /* We have out of order data. */
4927             (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4928                 /* Then ack it now */
4929                 tcp_send_ack(sk);
4930         } else {
4931                 /* Else, send delayed ack. */
4932                 tcp_send_delayed_ack(sk);
4933         }
4934 }
4935
4936 static inline void tcp_ack_snd_check(struct sock *sk)
4937 {
4938         if (!inet_csk_ack_scheduled(sk)) {
4939                 /* We sent a data segment already. */
4940                 return;
4941         }
4942         __tcp_ack_snd_check(sk, 1);
4943 }
4944
4945 /*
4946  *      This routine is only called when we have urgent data
4947  *      signaled. Its the 'slow' part of tcp_urg. It could be
4948  *      moved inline now as tcp_urg is only called from one
4949  *      place. We handle URGent data wrong. We have to - as
4950  *      BSD still doesn't use the correction from RFC961.
4951  *      For 1003.1g we should support a new option TCP_STDURG to permit
4952  *      either form (or just set the sysctl tcp_stdurg).
4953  */
4954
4955 static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
4956 {
4957         struct tcp_sock *tp = tcp_sk(sk);
4958         u32 ptr = ntohs(th->urg_ptr);
4959
4960         if (ptr && !sysctl_tcp_stdurg)
4961                 ptr--;
4962         ptr += ntohl(th->seq);
4963
4964         /* Ignore urgent data that we've already seen and read. */
4965         if (after(tp->copied_seq, ptr))
4966                 return;
4967
4968         /* Do not replay urg ptr.
4969          *
4970          * NOTE: interesting situation not covered by specs.
4971          * Misbehaving sender may send urg ptr, pointing to segment,
4972          * which we already have in ofo queue. We are not able to fetch
4973          * such data and will stay in TCP_URG_NOTYET until will be eaten
4974          * by recvmsg(). Seems, we are not obliged to handle such wicked
4975          * situations. But it is worth to think about possibility of some
4976          * DoSes using some hypothetical application level deadlock.
4977          */
4978         if (before(ptr, tp->rcv_nxt))
4979                 return;
4980
4981         /* Do we already have a newer (or duplicate) urgent pointer? */
4982         if (tp->urg_data && !after(ptr, tp->urg_seq))
4983                 return;
4984
4985         /* Tell the world about our new urgent pointer. */
4986         sk_send_sigurg(sk);
4987
4988         /* We may be adding urgent data when the last byte read was
4989          * urgent. To do this requires some care. We cannot just ignore
4990          * tp->copied_seq since we would read the last urgent byte again
4991          * as data, nor can we alter copied_seq until this data arrives
4992          * or we break the semantics of SIOCATMARK (and thus sockatmark())
4993          *
4994          * NOTE. Double Dutch. Rendering to plain English: author of comment
4995          * above did something sort of  send("A", MSG_OOB); send("B", MSG_OOB);
4996          * and expect that both A and B disappear from stream. This is _wrong_.
4997          * Though this happens in BSD with high probability, this is occasional.
4998          * Any application relying on this is buggy. Note also, that fix "works"
4999          * only in this artificial test. Insert some normal data between A and B and we will
5000          * decline of BSD again. Verdict: it is better to remove to trap
5001          * buggy users.
5002          */
5003         if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5004             !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5005                 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5006                 tp->copied_seq++;
5007                 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5008                         __skb_unlink(skb, &sk->sk_receive_queue);
5009                         __kfree_skb(skb);
5010                 }
5011         }
5012
5013         tp->urg_data = TCP_URG_NOTYET;
5014         tp->urg_seq = ptr;
5015
5016         /* Disable header prediction. */
5017         tp->pred_flags = 0;
5018 }
5019
5020 /* This is the 'fast' part of urgent handling. */
5021 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
5022 {
5023         struct tcp_sock *tp = tcp_sk(sk);
5024
5025         /* Check if we get a new urgent pointer - normally not. */
5026         if (th->urg)
5027                 tcp_check_urg(sk, th);
5028
5029         /* Do we wait for any urgent data? - normally not... */
5030         if (tp->urg_data == TCP_URG_NOTYET) {
5031                 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5032                           th->syn;
5033
5034                 /* Is the urgent pointer pointing into this packet? */
5035                 if (ptr < skb->len) {
5036                         u8 tmp;
5037                         if (skb_copy_bits(skb, ptr, &tmp, 1))
5038                                 BUG();
5039                         tp->urg_data = TCP_URG_VALID | tmp;
5040                         if (!sock_flag(sk, SOCK_DEAD))
5041                                 sk->sk_data_ready(sk, 0);
5042                 }
5043         }
5044 }
5045
5046 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5047 {
5048         struct tcp_sock *tp = tcp_sk(sk);
5049         int chunk = skb->len - hlen;
5050         int err;
5051
5052         local_bh_enable();
5053         if (skb_csum_unnecessary(skb))
5054                 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
5055         else
5056                 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
5057                                                        tp->ucopy.iov);
5058
5059         if (!err) {
5060                 tp->ucopy.len -= chunk;
5061                 tp->copied_seq += chunk;
5062                 tcp_rcv_space_adjust(sk);
5063         }
5064
5065         local_bh_disable();
5066         return err;
5067 }
5068
5069 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5070                                             struct sk_buff *skb)
5071 {
5072         __sum16 result;
5073
5074         if (sock_owned_by_user(sk)) {
5075                 local_bh_enable();
5076                 result = __tcp_checksum_complete(skb);
5077                 local_bh_disable();
5078         } else {
5079                 result = __tcp_checksum_complete(skb);
5080         }
5081         return result;
5082 }
5083
5084 static inline int tcp_checksum_complete_user(struct sock *sk,
5085                                              struct sk_buff *skb)
5086 {
5087         return !skb_csum_unnecessary(skb) &&
5088                __tcp_checksum_complete_user(sk, skb);
5089 }
5090
5091 #ifdef CONFIG_NET_DMA
5092 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5093                                   int hlen)
5094 {
5095         struct tcp_sock *tp = tcp_sk(sk);
5096         int chunk = skb->len - hlen;
5097         int dma_cookie;
5098         int copied_early = 0;
5099
5100         if (tp->ucopy.wakeup)
5101                 return 0;
5102
5103         if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5104                 tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
5105
5106         if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5107
5108                 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5109                                                          skb, hlen,
5110                                                          tp->ucopy.iov, chunk,
5111                                                          tp->ucopy.pinned_list);
5112
5113                 if (dma_cookie < 0)
5114                         goto out;
5115
5116                 tp->ucopy.dma_cookie = dma_cookie;
5117                 copied_early = 1;
5118
5119                 tp->ucopy.len -= chunk;
5120                 tp->copied_seq += chunk;
5121                 tcp_rcv_space_adjust(sk);
5122
5123                 if ((tp->ucopy.len == 0) ||
5124                     (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5125                     (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5126                         tp->ucopy.wakeup = 1;
5127                         sk->sk_data_ready(sk, 0);
5128                 }
5129         } else if (chunk > 0) {
5130                 tp->ucopy.wakeup = 1;
5131                 sk->sk_data_ready(sk, 0);
5132         }
5133 out:
5134         return copied_early;
5135 }
5136 #endif /* CONFIG_NET_DMA */
5137
5138 /* Does PAWS and seqno based validation of an incoming segment, flags will
5139  * play significant role here.
5140  */
5141 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5142                               struct tcphdr *th, int syn_inerr)
5143 {
5144         u8 *hash_location;
5145         struct tcp_sock *tp = tcp_sk(sk);
5146
5147         /* RFC1323: H1. Apply PAWS check first. */
5148         if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
5149             tp->rx_opt.saw_tstamp &&
5150             tcp_paws_discard(sk, skb)) {
5151                 if (!th->rst) {
5152                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5153                         tcp_send_dupack(sk, skb);
5154                         goto discard;
5155                 }
5156                 /* Reset is accepted even if it did not pass PAWS. */
5157         }
5158
5159         /* Step 1: check sequence number */
5160         if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5161                 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5162                  * (RST) segments are validated by checking their SEQ-fields."
5163                  * And page 69: "If an incoming segment is not acceptable,
5164                  * an acknowledgment should be sent in reply (unless the RST
5165                  * bit is set, if so drop the segment and return)".
5166                  */
5167                 if (!th->rst)
5168                         tcp_send_dupack(sk, skb);
5169                 goto discard;
5170         }
5171
5172         /* Step 2: check RST bit */
5173         if (th->rst) {
5174                 tcp_reset(sk);
5175                 goto discard;
5176         }
5177
5178         /* ts_recent update must be made after we are sure that the packet
5179          * is in window.
5180          */
5181         tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5182
5183         /* step 3: check security and precedence [ignored] */
5184
5185         /* step 4: Check for a SYN in window. */
5186         if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5187                 if (syn_inerr)
5188                         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5189                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5190                 tcp_reset(sk);
5191                 return -1;
5192         }
5193
5194         return 1;
5195
5196 discard:
5197         __kfree_skb(skb);
5198         return 0;
5199 }
5200
5201 /*
5202  *      TCP receive function for the ESTABLISHED state.
5203  *
5204  *      It is split into a fast path and a slow path. The fast path is
5205  *      disabled when:
5206  *      - A zero window was announced from us - zero window probing
5207  *        is only handled properly in the slow path.
5208  *      - Out of order segments arrived.
5209  *      - Urgent data is expected.
5210  *      - There is no buffer space left
5211  *      - Unexpected TCP flags/window values/header lengths are received
5212  *        (detected by checking the TCP header against pred_flags)
5213  *      - Data is sent in both directions. Fast path only supports pure senders
5214  *        or pure receivers (this means either the sequence number or the ack
5215  *        value must stay constant)
5216  *      - Unexpected TCP option.
5217  *
5218  *      When these conditions are not satisfied it drops into a standard
5219  *      receive procedure patterned after RFC793 to handle all cases.
5220  *      The first three cases are guaranteed by proper pred_flags setting,
5221  *      the rest is checked inline. Fast processing is turned on in
5222  *      tcp_data_queue when everything is OK.
5223  */
5224 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5225                         struct tcphdr *th, unsigned len)
5226 {
5227         struct tcp_sock *tp = tcp_sk(sk);
5228         int res;
5229
5230         /*
5231          *      Header prediction.
5232          *      The code loosely follows the one in the famous
5233          *      "30 instruction TCP receive" Van Jacobson mail.
5234          *
5235          *      Van's trick is to deposit buffers into socket queue
5236          *      on a device interrupt, to call tcp_recv function
5237          *      on the receive process context and checksum and copy
5238          *      the buffer to user space. smart...
5239          *
5240          *      Our current scheme is not silly either but we take the
5241          *      extra cost of the net_bh soft interrupt processing...
5242          *      We do checksum and copy also but from device to kernel.
5243          */
5244
5245         tp->rx_opt.saw_tstamp = 0;
5246
5247         /*      pred_flags is 0xS?10 << 16 + snd_wnd
5248          *      if header_prediction is to be made
5249          *      'S' will always be tp->tcp_header_len >> 2
5250          *      '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5251          *  turn it off (when there are holes in the receive
5252          *       space for instance)
5253          *      PSH flag is ignored.
5254          */
5255
5256         if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5257             TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5258             !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5259                 int tcp_header_len = tp->tcp_header_len;
5260
5261                 /* Timestamp header prediction: tcp_header_len
5262                  * is automatically equal to th->doff*4 due to pred_flags
5263                  * match.
5264                  */
5265
5266                 /* Check timestamp */
5267                 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5268                         /* No? Slow path! */
5269                         if (!tcp_parse_aligned_timestamp(tp, th))
5270                                 goto slow_path;
5271
5272                         /* If PAWS failed, check it more carefully in slow path */
5273                         if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5274                                 goto slow_path;
5275
5276                         /* DO NOT update ts_recent here, if checksum fails
5277                          * and timestamp was corrupted part, it will result
5278                          * in a hung connection since we will drop all
5279                          * future packets due to the PAWS test.
5280                          */
5281                 }
5282
5283                 if (len <= tcp_header_len) {
5284                         /* Bulk data transfer: sender */
5285                         if (len == tcp_header_len) {
5286                                 /* Predicted packet is in window by definition.
5287                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5288                                  * Hence, check seq<=rcv_wup reduces to:
5289                                  */
5290                                 if (tcp_header_len ==
5291                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5292                                     tp->rcv_nxt == tp->rcv_wup)
5293                                         tcp_store_ts_recent(tp);
5294
5295                                 /* We know that such packets are checksummed
5296                                  * on entry.
5297                                  */
5298                                 tcp_ack(sk, skb, 0);
5299                                 __kfree_skb(skb);
5300                                 tcp_data_snd_check(sk);
5301                                 return 0;
5302                         } else { /* Header too small */
5303                                 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5304                                 goto discard;
5305                         }
5306                 } else {
5307                         int eaten = 0;
5308                         int copied_early = 0;
5309
5310                         if (tp->copied_seq == tp->rcv_nxt &&
5311                             len - tcp_header_len <= tp->ucopy.len) {
5312 #ifdef CONFIG_NET_DMA
5313                                 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5314                                         copied_early = 1;
5315                                         eaten = 1;
5316                                 }
5317 #endif
5318                                 if (tp->ucopy.task == current &&
5319                                     sock_owned_by_user(sk) && !copied_early) {
5320                                         __set_current_state(TASK_RUNNING);
5321
5322                                         if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5323                                                 eaten = 1;
5324                                 }
5325                                 if (eaten) {
5326                                         /* Predicted packet is in window by definition.
5327                                          * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5328                                          * Hence, check seq<=rcv_wup reduces to:
5329                                          */
5330                                         if (tcp_header_len ==
5331                                             (sizeof(struct tcphdr) +
5332                                              TCPOLEN_TSTAMP_ALIGNED) &&
5333                                             tp->rcv_nxt == tp->rcv_wup)
5334                                                 tcp_store_ts_recent(tp);
5335
5336                                         tcp_rcv_rtt_measure_ts(sk, skb);
5337
5338                                         __skb_pull(skb, tcp_header_len);
5339                                         tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5340                                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5341                                 }
5342                                 if (copied_early)
5343                                         tcp_cleanup_rbuf(sk, skb->len);
5344                         }
5345                         if (!eaten) {
5346                                 if (tcp_checksum_complete_user(sk, skb))
5347                                         goto csum_error;
5348
5349                                 /* Predicted packet is in window by definition.
5350                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5351                                  * Hence, check seq<=rcv_wup reduces to:
5352                                  */
5353                                 if (tcp_header_len ==
5354                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5355                                     tp->rcv_nxt == tp->rcv_wup)
5356                                         tcp_store_ts_recent(tp);
5357
5358                                 tcp_rcv_rtt_measure_ts(sk, skb);
5359
5360                                 if ((int)skb->truesize > sk->sk_forward_alloc)
5361                                         goto step5;
5362
5363                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5364
5365                                 /* Bulk data transfer: receiver */
5366                                 __skb_pull(skb, tcp_header_len);
5367                                 __skb_queue_tail(&sk->sk_receive_queue, skb);
5368                                 skb_set_owner_r(skb, sk);
5369                                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5370                         }
5371
5372                         tcp_event_data_recv(sk, skb);
5373
5374                         if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5375                                 /* Well, only one small jumplet in fast path... */
5376                                 tcp_ack(sk, skb, FLAG_DATA);
5377                                 tcp_data_snd_check(sk);
5378                                 if (!inet_csk_ack_scheduled(sk))
5379                                         goto no_ack;
5380                         }
5381
5382                         if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5383                                 __tcp_ack_snd_check(sk, 0);
5384 no_ack:
5385 #ifdef CONFIG_NET_DMA
5386                         if (copied_early)
5387                                 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5388                         else
5389 #endif
5390                         if (eaten)
5391                                 __kfree_skb(skb);
5392                         else
5393                                 sk->sk_data_ready(sk, 0);
5394                         return 0;
5395                 }
5396         }
5397
5398 slow_path:
5399         if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5400                 goto csum_error;
5401
5402         /*
5403          *      Standard slow path.
5404          */
5405
5406         res = tcp_validate_incoming(sk, skb, th, 1);
5407         if (res <= 0)
5408                 return -res;
5409
5410 step5:
5411         if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
5412                 goto discard;
5413
5414         tcp_rcv_rtt_measure_ts(sk, skb);
5415
5416         /* Process urgent data. */
5417         tcp_urg(sk, skb, th);
5418
5419         /* step 7: process the segment text */
5420         tcp_data_queue(sk, skb);
5421
5422         tcp_data_snd_check(sk);
5423         tcp_ack_snd_check(sk);
5424         return 0;
5425
5426 csum_error:
5427         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5428
5429 discard:
5430         __kfree_skb(skb);
5431         return 0;
5432 }
5433
5434 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5435                                          struct tcphdr *th, unsigned len)
5436 {
5437         u8 *hash_location;
5438         struct inet_connection_sock *icsk = inet_csk(sk);
5439         struct tcp_sock *tp = tcp_sk(sk);
5440         struct tcp_cookie_values *cvp = tp->cookie_values;
5441         int saved_clamp = tp->rx_opt.mss_clamp;
5442
5443         tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0);
5444
5445         if (th->ack) {
5446                 /* rfc793:
5447                  * "If the state is SYN-SENT then
5448                  *    first check the ACK bit
5449                  *      If the ACK bit is set
5450                  *        If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5451                  *        a reset (unless the RST bit is set, if so drop
5452                  *        the segment and return)"
5453                  *
5454                  *  We do not send data with SYN, so that RFC-correct
5455                  *  test reduces to:
5456                  */
5457                 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5458                         goto reset_and_undo;
5459
5460                 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5461                     !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5462                              tcp_time_stamp)) {
5463                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5464                         goto reset_and_undo;
5465                 }
5466
5467                 /* Now ACK is acceptable.
5468                  *
5469                  * "If the RST bit is set
5470                  *    If the ACK was acceptable then signal the user "error:
5471                  *    connection reset", drop the segment, enter CLOSED state,
5472                  *    delete TCB, and return."
5473                  */
5474
5475                 if (th->rst) {
5476                         tcp_reset(sk);
5477                         goto discard;
5478                 }
5479
5480                 /* rfc793:
5481                  *   "fifth, if neither of the SYN or RST bits is set then
5482                  *    drop the segment and return."
5483                  *
5484                  *    See note below!
5485                  *                                        --ANK(990513)
5486                  */
5487                 if (!th->syn)
5488                         goto discard_and_undo;
5489
5490                 /* rfc793:
5491                  *   "If the SYN bit is on ...
5492                  *    are acceptable then ...
5493                  *    (our SYN has been ACKed), change the connection
5494                  *    state to ESTABLISHED..."
5495                  */
5496
5497                 TCP_ECN_rcv_synack(tp, th);
5498
5499                 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5500                 tcp_ack(sk, skb, FLAG_SLOWPATH);
5501
5502                 /* Ok.. it's good. Set up sequence numbers and
5503                  * move to established.
5504                  */
5505                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5506                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5507
5508                 /* RFC1323: The window in SYN & SYN/ACK segments is
5509                  * never scaled.
5510                  */
5511                 tp->snd_wnd = ntohs(th->window);
5512                 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5513
5514                 if (!tp->rx_opt.wscale_ok) {
5515                         tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5516                         tp->window_clamp = min(tp->window_clamp, 65535U);
5517                 }
5518
5519                 if (tp->rx_opt.saw_tstamp) {
5520                         tp->rx_opt.tstamp_ok       = 1;
5521                         tp->tcp_header_len =
5522                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5523                         tp->advmss          -= TCPOLEN_TSTAMP_ALIGNED;
5524                         tcp_store_ts_recent(tp);
5525                 } else {
5526                         tp->tcp_header_len = sizeof(struct tcphdr);
5527                 }
5528
5529                 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5530                         tcp_enable_fack(tp);
5531
5532                 tcp_mtup_init(sk);
5533                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5534                 tcp_initialize_rcv_mss(sk);
5535
5536                 /* Remember, tcp_poll() does not lock socket!
5537                  * Change state from SYN-SENT only after copied_seq
5538                  * is initialized. */
5539                 tp->copied_seq = tp->rcv_nxt;
5540
5541                 if (cvp != NULL &&
5542                     cvp->cookie_pair_size > 0 &&
5543                     tp->rx_opt.cookie_plus > 0) {
5544                         int cookie_size = tp->rx_opt.cookie_plus
5545                                         - TCPOLEN_COOKIE_BASE;
5546                         int cookie_pair_size = cookie_size
5547                                              + cvp->cookie_desired;
5548
5549                         /* A cookie extension option was sent and returned.
5550                          * Note that each incoming SYNACK replaces the
5551                          * Responder cookie.  The initial exchange is most
5552                          * fragile, as protection against spoofing relies
5553                          * entirely upon the sequence and timestamp (above).
5554                          * This replacement strategy allows the correct pair to
5555                          * pass through, while any others will be filtered via
5556                          * Responder verification later.
5557                          */
5558                         if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
5559                                 memcpy(&cvp->cookie_pair[cvp->cookie_desired],
5560                                        hash_location, cookie_size);
5561                                 cvp->cookie_pair_size = cookie_pair_size;
5562                         }
5563                 }
5564
5565                 smp_mb();
5566                 tcp_set_state(sk, TCP_ESTABLISHED);
5567