]> nv-tegra.nvidia Code Review - linux-2.6.git/blob - mm/vmscan.c
[PATCH] zone_reclaim: configurable off node allocation period.
[linux-2.6.git] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/file.h>
23 #include <linux/writeback.h>
24 #include <linux/blkdev.h>
25 #include <linux/buffer_head.h>  /* for try_to_release_page(),
26                                         buffer_heads_over_limit */
27 #include <linux/mm_inline.h>
28 #include <linux/pagevec.h>
29 #include <linux/backing-dev.h>
30 #include <linux/rmap.h>
31 #include <linux/topology.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/notifier.h>
35 #include <linux/rwsem.h>
36
37 #include <asm/tlbflush.h>
38 #include <asm/div64.h>
39
40 #include <linux/swapops.h>
41
42 /* possible outcome of pageout() */
43 typedef enum {
44         /* failed to write page out, page is locked */
45         PAGE_KEEP,
46         /* move page to the active list, page is locked */
47         PAGE_ACTIVATE,
48         /* page has been sent to the disk successfully, page is unlocked */
49         PAGE_SUCCESS,
50         /* page is clean and locked */
51         PAGE_CLEAN,
52 } pageout_t;
53
54 struct scan_control {
55         /* Ask refill_inactive_zone, or shrink_cache to scan this many pages */
56         unsigned long nr_to_scan;
57
58         /* Incremented by the number of inactive pages that were scanned */
59         unsigned long nr_scanned;
60
61         /* Incremented by the number of pages reclaimed */
62         unsigned long nr_reclaimed;
63
64         unsigned long nr_mapped;        /* From page_state */
65
66         /* Ask shrink_caches, or shrink_zone to scan at this priority */
67         unsigned int priority;
68
69         /* This context's GFP mask */
70         gfp_t gfp_mask;
71
72         int may_writepage;
73
74         /* Can pages be swapped as part of reclaim? */
75         int may_swap;
76
77         /* This context's SWAP_CLUSTER_MAX. If freeing memory for
78          * suspend, we effectively ignore SWAP_CLUSTER_MAX.
79          * In this context, it doesn't matter that we scan the
80          * whole list at once. */
81         int swap_cluster_max;
82 };
83
84 /*
85  * The list of shrinker callbacks used by to apply pressure to
86  * ageable caches.
87  */
88 struct shrinker {
89         shrinker_t              shrinker;
90         struct list_head        list;
91         int                     seeks;  /* seeks to recreate an obj */
92         long                    nr;     /* objs pending delete */
93 };
94
95 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
96
97 #ifdef ARCH_HAS_PREFETCH
98 #define prefetch_prev_lru_page(_page, _base, _field)                    \
99         do {                                                            \
100                 if ((_page)->lru.prev != _base) {                       \
101                         struct page *prev;                              \
102                                                                         \
103                         prev = lru_to_page(&(_page->lru));              \
104                         prefetch(&prev->_field);                        \
105                 }                                                       \
106         } while (0)
107 #else
108 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
109 #endif
110
111 #ifdef ARCH_HAS_PREFETCHW
112 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
113         do {                                                            \
114                 if ((_page)->lru.prev != _base) {                       \
115                         struct page *prev;                              \
116                                                                         \
117                         prev = lru_to_page(&(_page->lru));              \
118                         prefetchw(&prev->_field);                       \
119                 }                                                       \
120         } while (0)
121 #else
122 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
123 #endif
124
125 /*
126  * From 0 .. 100.  Higher means more swappy.
127  */
128 int vm_swappiness = 60;
129 static long total_memory;
130
131 static LIST_HEAD(shrinker_list);
132 static DECLARE_RWSEM(shrinker_rwsem);
133
134 /*
135  * Add a shrinker callback to be called from the vm
136  */
137 struct shrinker *set_shrinker(int seeks, shrinker_t theshrinker)
138 {
139         struct shrinker *shrinker;
140
141         shrinker = kmalloc(sizeof(*shrinker), GFP_KERNEL);
142         if (shrinker) {
143                 shrinker->shrinker = theshrinker;
144                 shrinker->seeks = seeks;
145                 shrinker->nr = 0;
146                 down_write(&shrinker_rwsem);
147                 list_add_tail(&shrinker->list, &shrinker_list);
148                 up_write(&shrinker_rwsem);
149         }
150         return shrinker;
151 }
152 EXPORT_SYMBOL(set_shrinker);
153
154 /*
155  * Remove one
156  */
157 void remove_shrinker(struct shrinker *shrinker)
158 {
159         down_write(&shrinker_rwsem);
160         list_del(&shrinker->list);
161         up_write(&shrinker_rwsem);
162         kfree(shrinker);
163 }
164 EXPORT_SYMBOL(remove_shrinker);
165
166 #define SHRINK_BATCH 128
167 /*
168  * Call the shrink functions to age shrinkable caches
169  *
170  * Here we assume it costs one seek to replace a lru page and that it also
171  * takes a seek to recreate a cache object.  With this in mind we age equal
172  * percentages of the lru and ageable caches.  This should balance the seeks
173  * generated by these structures.
174  *
175  * If the vm encounted mapped pages on the LRU it increase the pressure on
176  * slab to avoid swapping.
177  *
178  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
179  *
180  * `lru_pages' represents the number of on-LRU pages in all the zones which
181  * are eligible for the caller's allocation attempt.  It is used for balancing
182  * slab reclaim versus page reclaim.
183  *
184  * Returns the number of slab objects which we shrunk.
185  */
186 int shrink_slab(unsigned long scanned, gfp_t gfp_mask, unsigned long lru_pages)
187 {
188         struct shrinker *shrinker;
189         int ret = 0;
190
191         if (scanned == 0)
192                 scanned = SWAP_CLUSTER_MAX;
193
194         if (!down_read_trylock(&shrinker_rwsem))
195                 return 1;       /* Assume we'll be able to shrink next time */
196
197         list_for_each_entry(shrinker, &shrinker_list, list) {
198                 unsigned long long delta;
199                 unsigned long total_scan;
200                 unsigned long max_pass = (*shrinker->shrinker)(0, gfp_mask);
201
202                 delta = (4 * scanned) / shrinker->seeks;
203                 delta *= max_pass;
204                 do_div(delta, lru_pages + 1);
205                 shrinker->nr += delta;
206                 if (shrinker->nr < 0) {
207                         printk(KERN_ERR "%s: nr=%ld\n",
208                                         __FUNCTION__, shrinker->nr);
209                         shrinker->nr = max_pass;
210                 }
211
212                 /*
213                  * Avoid risking looping forever due to too large nr value:
214                  * never try to free more than twice the estimate number of
215                  * freeable entries.
216                  */
217                 if (shrinker->nr > max_pass * 2)
218                         shrinker->nr = max_pass * 2;
219
220                 total_scan = shrinker->nr;
221                 shrinker->nr = 0;
222
223                 while (total_scan >= SHRINK_BATCH) {
224                         long this_scan = SHRINK_BATCH;
225                         int shrink_ret;
226                         int nr_before;
227
228                         nr_before = (*shrinker->shrinker)(0, gfp_mask);
229                         shrink_ret = (*shrinker->shrinker)(this_scan, gfp_mask);
230                         if (shrink_ret == -1)
231                                 break;
232                         if (shrink_ret < nr_before)
233                                 ret += nr_before - shrink_ret;
234                         mod_page_state(slabs_scanned, this_scan);
235                         total_scan -= this_scan;
236
237                         cond_resched();
238                 }
239
240                 shrinker->nr += total_scan;
241         }
242         up_read(&shrinker_rwsem);
243         return ret;
244 }
245
246 /* Called without lock on whether page is mapped, so answer is unstable */
247 static inline int page_mapping_inuse(struct page *page)
248 {
249         struct address_space *mapping;
250
251         /* Page is in somebody's page tables. */
252         if (page_mapped(page))
253                 return 1;
254
255         /* Be more reluctant to reclaim swapcache than pagecache */
256         if (PageSwapCache(page))
257                 return 1;
258
259         mapping = page_mapping(page);
260         if (!mapping)
261                 return 0;
262
263         /* File is mmap'd by somebody? */
264         return mapping_mapped(mapping);
265 }
266
267 static inline int is_page_cache_freeable(struct page *page)
268 {
269         return page_count(page) - !!PagePrivate(page) == 2;
270 }
271
272 static int may_write_to_queue(struct backing_dev_info *bdi)
273 {
274         if (current->flags & PF_SWAPWRITE)
275                 return 1;
276         if (!bdi_write_congested(bdi))
277                 return 1;
278         if (bdi == current->backing_dev_info)
279                 return 1;
280         return 0;
281 }
282
283 /*
284  * We detected a synchronous write error writing a page out.  Probably
285  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
286  * fsync(), msync() or close().
287  *
288  * The tricky part is that after writepage we cannot touch the mapping: nothing
289  * prevents it from being freed up.  But we have a ref on the page and once
290  * that page is locked, the mapping is pinned.
291  *
292  * We're allowed to run sleeping lock_page() here because we know the caller has
293  * __GFP_FS.
294  */
295 static void handle_write_error(struct address_space *mapping,
296                                 struct page *page, int error)
297 {
298         lock_page(page);
299         if (page_mapping(page) == mapping) {
300                 if (error == -ENOSPC)
301                         set_bit(AS_ENOSPC, &mapping->flags);
302                 else
303                         set_bit(AS_EIO, &mapping->flags);
304         }
305         unlock_page(page);
306 }
307
308 /*
309  * pageout is called by shrink_list() for each dirty page. Calls ->writepage().
310  */
311 static pageout_t pageout(struct page *page, struct address_space *mapping)
312 {
313         /*
314          * If the page is dirty, only perform writeback if that write
315          * will be non-blocking.  To prevent this allocation from being
316          * stalled by pagecache activity.  But note that there may be
317          * stalls if we need to run get_block().  We could test
318          * PagePrivate for that.
319          *
320          * If this process is currently in generic_file_write() against
321          * this page's queue, we can perform writeback even if that
322          * will block.
323          *
324          * If the page is swapcache, write it back even if that would
325          * block, for some throttling. This happens by accident, because
326          * swap_backing_dev_info is bust: it doesn't reflect the
327          * congestion state of the swapdevs.  Easy to fix, if needed.
328          * See swapfile.c:page_queue_congested().
329          */
330         if (!is_page_cache_freeable(page))
331                 return PAGE_KEEP;
332         if (!mapping) {
333                 /*
334                  * Some data journaling orphaned pages can have
335                  * page->mapping == NULL while being dirty with clean buffers.
336                  */
337                 if (PagePrivate(page)) {
338                         if (try_to_free_buffers(page)) {
339                                 ClearPageDirty(page);
340                                 printk("%s: orphaned page\n", __FUNCTION__);
341                                 return PAGE_CLEAN;
342                         }
343                 }
344                 return PAGE_KEEP;
345         }
346         if (mapping->a_ops->writepage == NULL)
347                 return PAGE_ACTIVATE;
348         if (!may_write_to_queue(mapping->backing_dev_info))
349                 return PAGE_KEEP;
350
351         if (clear_page_dirty_for_io(page)) {
352                 int res;
353                 struct writeback_control wbc = {
354                         .sync_mode = WB_SYNC_NONE,
355                         .nr_to_write = SWAP_CLUSTER_MAX,
356                         .nonblocking = 1,
357                         .for_reclaim = 1,
358                 };
359
360                 SetPageReclaim(page);
361                 res = mapping->a_ops->writepage(page, &wbc);
362                 if (res < 0)
363                         handle_write_error(mapping, page, res);
364                 if (res == AOP_WRITEPAGE_ACTIVATE) {
365                         ClearPageReclaim(page);
366                         return PAGE_ACTIVATE;
367                 }
368                 if (!PageWriteback(page)) {
369                         /* synchronous write or broken a_ops? */
370                         ClearPageReclaim(page);
371                 }
372
373                 return PAGE_SUCCESS;
374         }
375
376         return PAGE_CLEAN;
377 }
378
379 static int remove_mapping(struct address_space *mapping, struct page *page)
380 {
381         if (!mapping)
382                 return 0;               /* truncate got there first */
383
384         write_lock_irq(&mapping->tree_lock);
385
386         /*
387          * The non-racy check for busy page.  It is critical to check
388          * PageDirty _after_ making sure that the page is freeable and
389          * not in use by anybody.       (pagecache + us == 2)
390          */
391         if (unlikely(page_count(page) != 2))
392                 goto cannot_free;
393         smp_rmb();
394         if (unlikely(PageDirty(page)))
395                 goto cannot_free;
396
397         if (PageSwapCache(page)) {
398                 swp_entry_t swap = { .val = page_private(page) };
399                 __delete_from_swap_cache(page);
400                 write_unlock_irq(&mapping->tree_lock);
401                 swap_free(swap);
402                 __put_page(page);       /* The pagecache ref */
403                 return 1;
404         }
405
406         __remove_from_page_cache(page);
407         write_unlock_irq(&mapping->tree_lock);
408         __put_page(page);
409         return 1;
410
411 cannot_free:
412         write_unlock_irq(&mapping->tree_lock);
413         return 0;
414 }
415
416 /*
417  * shrink_list adds the number of reclaimed pages to sc->nr_reclaimed
418  */
419 static int shrink_list(struct list_head *page_list, struct scan_control *sc)
420 {
421         LIST_HEAD(ret_pages);
422         struct pagevec freed_pvec;
423         int pgactivate = 0;
424         int reclaimed = 0;
425
426         cond_resched();
427
428         pagevec_init(&freed_pvec, 1);
429         while (!list_empty(page_list)) {
430                 struct address_space *mapping;
431                 struct page *page;
432                 int may_enter_fs;
433                 int referenced;
434
435                 cond_resched();
436
437                 page = lru_to_page(page_list);
438                 list_del(&page->lru);
439
440                 if (TestSetPageLocked(page))
441                         goto keep;
442
443                 BUG_ON(PageActive(page));
444
445                 sc->nr_scanned++;
446                 /* Double the slab pressure for mapped and swapcache pages */
447                 if (page_mapped(page) || PageSwapCache(page))
448                         sc->nr_scanned++;
449
450                 if (PageWriteback(page))
451                         goto keep_locked;
452
453                 referenced = page_referenced(page, 1);
454                 /* In active use or really unfreeable?  Activate it. */
455                 if (referenced && page_mapping_inuse(page))
456                         goto activate_locked;
457
458 #ifdef CONFIG_SWAP
459                 /*
460                  * Anonymous process memory has backing store?
461                  * Try to allocate it some swap space here.
462                  */
463                 if (PageAnon(page) && !PageSwapCache(page)) {
464                         if (!sc->may_swap)
465                                 goto keep_locked;
466                         if (!add_to_swap(page, GFP_ATOMIC))
467                                 goto activate_locked;
468                 }
469 #endif /* CONFIG_SWAP */
470
471                 mapping = page_mapping(page);
472                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
473                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
474
475                 /*
476                  * The page is mapped into the page tables of one or more
477                  * processes. Try to unmap it here.
478                  */
479                 if (page_mapped(page) && mapping) {
480                         /*
481                          * No unmapping if we do not swap
482                          */
483                         if (!sc->may_swap)
484                                 goto keep_locked;
485
486                         switch (try_to_unmap(page)) {
487                         case SWAP_FAIL:
488                                 goto activate_locked;
489                         case SWAP_AGAIN:
490                                 goto keep_locked;
491                         case SWAP_SUCCESS:
492                                 ; /* try to free the page below */
493                         }
494                 }
495
496                 if (PageDirty(page)) {
497                         if (referenced)
498                                 goto keep_locked;
499                         if (!may_enter_fs)
500                                 goto keep_locked;
501                         if (!sc->may_writepage)
502                                 goto keep_locked;
503
504                         /* Page is dirty, try to write it out here */
505                         switch(pageout(page, mapping)) {
506                         case PAGE_KEEP:
507                                 goto keep_locked;
508                         case PAGE_ACTIVATE:
509                                 goto activate_locked;
510                         case PAGE_SUCCESS:
511                                 if (PageWriteback(page) || PageDirty(page))
512                                         goto keep;
513                                 /*
514                                  * A synchronous write - probably a ramdisk.  Go
515                                  * ahead and try to reclaim the page.
516                                  */
517                                 if (TestSetPageLocked(page))
518                                         goto keep;
519                                 if (PageDirty(page) || PageWriteback(page))
520                                         goto keep_locked;
521                                 mapping = page_mapping(page);
522                         case PAGE_CLEAN:
523                                 ; /* try to free the page below */
524                         }
525                 }
526
527                 /*
528                  * If the page has buffers, try to free the buffer mappings
529                  * associated with this page. If we succeed we try to free
530                  * the page as well.
531                  *
532                  * We do this even if the page is PageDirty().
533                  * try_to_release_page() does not perform I/O, but it is
534                  * possible for a page to have PageDirty set, but it is actually
535                  * clean (all its buffers are clean).  This happens if the
536                  * buffers were written out directly, with submit_bh(). ext3
537                  * will do this, as well as the blockdev mapping. 
538                  * try_to_release_page() will discover that cleanness and will
539                  * drop the buffers and mark the page clean - it can be freed.
540                  *
541                  * Rarely, pages can have buffers and no ->mapping.  These are
542                  * the pages which were not successfully invalidated in
543                  * truncate_complete_page().  We try to drop those buffers here
544                  * and if that worked, and the page is no longer mapped into
545                  * process address space (page_count == 1) it can be freed.
546                  * Otherwise, leave the page on the LRU so it is swappable.
547                  */
548                 if (PagePrivate(page)) {
549                         if (!try_to_release_page(page, sc->gfp_mask))
550                                 goto activate_locked;
551                         if (!mapping && page_count(page) == 1)
552                                 goto free_it;
553                 }
554
555                 if (!remove_mapping(mapping, page))
556                         goto keep_locked;
557
558 free_it:
559                 unlock_page(page);
560                 reclaimed++;
561                 if (!pagevec_add(&freed_pvec, page))
562                         __pagevec_release_nonlru(&freed_pvec);
563                 continue;
564
565 activate_locked:
566                 SetPageActive(page);
567                 pgactivate++;
568 keep_locked:
569                 unlock_page(page);
570 keep:
571                 list_add(&page->lru, &ret_pages);
572                 BUG_ON(PageLRU(page));
573         }
574         list_splice(&ret_pages, page_list);
575         if (pagevec_count(&freed_pvec))
576                 __pagevec_release_nonlru(&freed_pvec);
577         mod_page_state(pgactivate, pgactivate);
578         sc->nr_reclaimed += reclaimed;
579         return reclaimed;
580 }
581
582 #ifdef CONFIG_MIGRATION
583 static inline void move_to_lru(struct page *page)
584 {
585         list_del(&page->lru);
586         if (PageActive(page)) {
587                 /*
588                  * lru_cache_add_active checks that
589                  * the PG_active bit is off.
590                  */
591                 ClearPageActive(page);
592                 lru_cache_add_active(page);
593         } else {
594                 lru_cache_add(page);
595         }
596         put_page(page);
597 }
598
599 /*
600  * Add isolated pages on the list back to the LRU.
601  *
602  * returns the number of pages put back.
603  */
604 int putback_lru_pages(struct list_head *l)
605 {
606         struct page *page;
607         struct page *page2;
608         int count = 0;
609
610         list_for_each_entry_safe(page, page2, l, lru) {
611                 move_to_lru(page);
612                 count++;
613         }
614         return count;
615 }
616
617 /*
618  * swapout a single page
619  * page is locked upon entry, unlocked on exit
620  */
621 static int swap_page(struct page *page)
622 {
623         struct address_space *mapping = page_mapping(page);
624
625         if (page_mapped(page) && mapping)
626                 if (try_to_unmap(page) != SWAP_SUCCESS)
627                         goto unlock_retry;
628
629         if (PageDirty(page)) {
630                 /* Page is dirty, try to write it out here */
631                 switch(pageout(page, mapping)) {
632                 case PAGE_KEEP:
633                 case PAGE_ACTIVATE:
634                         goto unlock_retry;
635
636                 case PAGE_SUCCESS:
637                         goto retry;
638
639                 case PAGE_CLEAN:
640                         ; /* try to free the page below */
641                 }
642         }
643
644         if (PagePrivate(page)) {
645                 if (!try_to_release_page(page, GFP_KERNEL) ||
646                     (!mapping && page_count(page) == 1))
647                         goto unlock_retry;
648         }
649
650         if (remove_mapping(mapping, page)) {
651                 /* Success */
652                 unlock_page(page);
653                 return 0;
654         }
655
656 unlock_retry:
657         unlock_page(page);
658
659 retry:
660         return -EAGAIN;
661 }
662 /*
663  * migrate_pages
664  *
665  * Two lists are passed to this function. The first list
666  * contains the pages isolated from the LRU to be migrated.
667  * The second list contains new pages that the pages isolated
668  * can be moved to. If the second list is NULL then all
669  * pages are swapped out.
670  *
671  * The function returns after 10 attempts or if no pages
672  * are movable anymore because t has become empty
673  * or no retryable pages exist anymore.
674  *
675  * SIMPLIFIED VERSION: This implementation of migrate_pages
676  * is only swapping out pages and never touches the second
677  * list. The direct migration patchset
678  * extends this function to avoid the use of swap.
679  *
680  * Return: Number of pages not migrated when "to" ran empty.
681  */
682 int migrate_pages(struct list_head *from, struct list_head *to,
683                   struct list_head *moved, struct list_head *failed)
684 {
685         int retry;
686         int nr_failed = 0;
687         int pass = 0;
688         struct page *page;
689         struct page *page2;
690         int swapwrite = current->flags & PF_SWAPWRITE;
691         int rc;
692
693         if (!swapwrite)
694                 current->flags |= PF_SWAPWRITE;
695
696 redo:
697         retry = 0;
698
699         list_for_each_entry_safe(page, page2, from, lru) {
700                 cond_resched();
701
702                 rc = 0;
703                 if (page_count(page) == 1)
704                         /* page was freed from under us. So we are done. */
705                         goto next;
706
707                 /*
708                  * Skip locked pages during the first two passes to give the
709                  * functions holding the lock time to release the page. Later we
710                  * use lock_page() to have a higher chance of acquiring the
711                  * lock.
712                  */
713                 rc = -EAGAIN;
714                 if (pass > 2)
715                         lock_page(page);
716                 else
717                         if (TestSetPageLocked(page))
718                                 goto next;
719
720                 /*
721                  * Only wait on writeback if we have already done a pass where
722                  * we we may have triggered writeouts for lots of pages.
723                  */
724                 if (pass > 0) {
725                         wait_on_page_writeback(page);
726                 } else {
727                         if (PageWriteback(page))
728                                 goto unlock_page;
729                 }
730
731                 /*
732                  * Anonymous pages must have swap cache references otherwise
733                  * the information contained in the page maps cannot be
734                  * preserved.
735                  */
736                 if (PageAnon(page) && !PageSwapCache(page)) {
737                         if (!add_to_swap(page, GFP_KERNEL)) {
738                                 rc = -ENOMEM;
739                                 goto unlock_page;
740                         }
741                 }
742
743                 /*
744                  * Page is properly locked and writeback is complete.
745                  * Try to migrate the page.
746                  */
747                 rc = swap_page(page);
748                 goto next;
749
750 unlock_page:
751                 unlock_page(page);
752
753 next:
754                 if (rc == -EAGAIN) {
755                         retry++;
756                 } else if (rc) {
757                         /* Permanent failure */
758                         list_move(&page->lru, failed);
759                         nr_failed++;
760                 } else {
761                         /* Success */
762                         list_move(&page->lru, moved);
763                 }
764         }
765         if (retry && pass++ < 10)
766                 goto redo;
767
768         if (!swapwrite)
769                 current->flags &= ~PF_SWAPWRITE;
770
771         return nr_failed + retry;
772 }
773
774 /*
775  * Isolate one page from the LRU lists and put it on the
776  * indicated list with elevated refcount.
777  *
778  * Result:
779  *  0 = page not on LRU list
780  *  1 = page removed from LRU list and added to the specified list.
781  */
782 int isolate_lru_page(struct page *page)
783 {
784         int ret = 0;
785
786         if (PageLRU(page)) {
787                 struct zone *zone = page_zone(page);
788                 spin_lock_irq(&zone->lru_lock);
789                 if (TestClearPageLRU(page)) {
790                         ret = 1;
791                         get_page(page);
792                         if (PageActive(page))
793                                 del_page_from_active_list(zone, page);
794                         else
795                                 del_page_from_inactive_list(zone, page);
796                 }
797                 spin_unlock_irq(&zone->lru_lock);
798         }
799
800         return ret;
801 }
802 #endif
803
804 /*
805  * zone->lru_lock is heavily contended.  Some of the functions that
806  * shrink the lists perform better by taking out a batch of pages
807  * and working on them outside the LRU lock.
808  *
809  * For pagecache intensive workloads, this function is the hottest
810  * spot in the kernel (apart from copy_*_user functions).
811  *
812  * Appropriate locks must be held before calling this function.
813  *
814  * @nr_to_scan: The number of pages to look through on the list.
815  * @src:        The LRU list to pull pages off.
816  * @dst:        The temp list to put pages on to.
817  * @scanned:    The number of pages that were scanned.
818  *
819  * returns how many pages were moved onto *@dst.
820  */
821 static int isolate_lru_pages(int nr_to_scan, struct list_head *src,
822                              struct list_head *dst, int *scanned)
823 {
824         int nr_taken = 0;
825         struct page *page;
826         int scan = 0;
827
828         while (scan++ < nr_to_scan && !list_empty(src)) {
829                 page = lru_to_page(src);
830                 prefetchw_prev_lru_page(page, src, flags);
831
832                 if (!TestClearPageLRU(page))
833                         BUG();
834                 list_del(&page->lru);
835                 if (get_page_testone(page)) {
836                         /*
837                          * It is being freed elsewhere
838                          */
839                         __put_page(page);
840                         SetPageLRU(page);
841                         list_add(&page->lru, src);
842                         continue;
843                 } else {
844                         list_add(&page->lru, dst);
845                         nr_taken++;
846                 }
847         }
848
849         *scanned = scan;
850         return nr_taken;
851 }
852
853 /*
854  * shrink_cache() adds the number of pages reclaimed to sc->nr_reclaimed
855  */
856 static void shrink_cache(struct zone *zone, struct scan_control *sc)
857 {
858         LIST_HEAD(page_list);
859         struct pagevec pvec;
860         int max_scan = sc->nr_to_scan;
861
862         pagevec_init(&pvec, 1);
863
864         lru_add_drain();
865         spin_lock_irq(&zone->lru_lock);
866         while (max_scan > 0) {
867                 struct page *page;
868                 int nr_taken;
869                 int nr_scan;
870                 int nr_freed;
871
872                 nr_taken = isolate_lru_pages(sc->swap_cluster_max,
873                                              &zone->inactive_list,
874                                              &page_list, &nr_scan);
875                 zone->nr_inactive -= nr_taken;
876                 zone->pages_scanned += nr_scan;
877                 spin_unlock_irq(&zone->lru_lock);
878
879                 if (nr_taken == 0)
880                         goto done;
881
882                 max_scan -= nr_scan;
883                 nr_freed = shrink_list(&page_list, sc);
884
885                 local_irq_disable();
886                 if (current_is_kswapd()) {
887                         __mod_page_state_zone(zone, pgscan_kswapd, nr_scan);
888                         __mod_page_state(kswapd_steal, nr_freed);
889                 } else
890                         __mod_page_state_zone(zone, pgscan_direct, nr_scan);
891                 __mod_page_state_zone(zone, pgsteal, nr_freed);
892
893                 spin_lock(&zone->lru_lock);
894                 /*
895                  * Put back any unfreeable pages.
896                  */
897                 while (!list_empty(&page_list)) {
898                         page = lru_to_page(&page_list);
899                         if (TestSetPageLRU(page))
900                                 BUG();
901                         list_del(&page->lru);
902                         if (PageActive(page))
903                                 add_page_to_active_list(zone, page);
904                         else
905                                 add_page_to_inactive_list(zone, page);
906                         if (!pagevec_add(&pvec, page)) {
907                                 spin_unlock_irq(&zone->lru_lock);
908                                 __pagevec_release(&pvec);
909                                 spin_lock_irq(&zone->lru_lock);
910                         }
911                 }
912         }
913         spin_unlock_irq(&zone->lru_lock);
914 done:
915         pagevec_release(&pvec);
916 }
917
918 /*
919  * This moves pages from the active list to the inactive list.
920  *
921  * We move them the other way if the page is referenced by one or more
922  * processes, from rmap.
923  *
924  * If the pages are mostly unmapped, the processing is fast and it is
925  * appropriate to hold zone->lru_lock across the whole operation.  But if
926  * the pages are mapped, the processing is slow (page_referenced()) so we
927  * should drop zone->lru_lock around each page.  It's impossible to balance
928  * this, so instead we remove the pages from the LRU while processing them.
929  * It is safe to rely on PG_active against the non-LRU pages in here because
930  * nobody will play with that bit on a non-LRU page.
931  *
932  * The downside is that we have to touch page->_count against each page.
933  * But we had to alter page->flags anyway.
934  */
935 static void
936 refill_inactive_zone(struct zone *zone, struct scan_control *sc)
937 {
938         int pgmoved;
939         int pgdeactivate = 0;
940         int pgscanned;
941         int nr_pages = sc->nr_to_scan;
942         LIST_HEAD(l_hold);      /* The pages which were snipped off */
943         LIST_HEAD(l_inactive);  /* Pages to go onto the inactive_list */
944         LIST_HEAD(l_active);    /* Pages to go onto the active_list */
945         struct page *page;
946         struct pagevec pvec;
947         int reclaim_mapped = 0;
948         long mapped_ratio;
949         long distress;
950         long swap_tendency;
951
952         lru_add_drain();
953         spin_lock_irq(&zone->lru_lock);
954         pgmoved = isolate_lru_pages(nr_pages, &zone->active_list,
955                                     &l_hold, &pgscanned);
956         zone->pages_scanned += pgscanned;
957         zone->nr_active -= pgmoved;
958         spin_unlock_irq(&zone->lru_lock);
959
960         /*
961          * `distress' is a measure of how much trouble we're having reclaiming
962          * pages.  0 -> no problems.  100 -> great trouble.
963          */
964         distress = 100 >> zone->prev_priority;
965
966         /*
967          * The point of this algorithm is to decide when to start reclaiming
968          * mapped memory instead of just pagecache.  Work out how much memory
969          * is mapped.
970          */
971         mapped_ratio = (sc->nr_mapped * 100) / total_memory;
972
973         /*
974          * Now decide how much we really want to unmap some pages.  The mapped
975          * ratio is downgraded - just because there's a lot of mapped memory
976          * doesn't necessarily mean that page reclaim isn't succeeding.
977          *
978          * The distress ratio is important - we don't want to start going oom.
979          *
980          * A 100% value of vm_swappiness overrides this algorithm altogether.
981          */
982         swap_tendency = mapped_ratio / 2 + distress + vm_swappiness;
983
984         /*
985          * Now use this metric to decide whether to start moving mapped memory
986          * onto the inactive list.
987          */
988         if (swap_tendency >= 100)
989                 reclaim_mapped = 1;
990
991         while (!list_empty(&l_hold)) {
992                 cond_resched();
993                 page = lru_to_page(&l_hold);
994                 list_del(&page->lru);
995                 if (page_mapped(page)) {
996                         if (!reclaim_mapped ||
997                             (total_swap_pages == 0 && PageAnon(page)) ||
998                             page_referenced(page, 0)) {
999                                 list_add(&page->lru, &l_active);
1000                                 continue;
1001                         }
1002                 }
1003                 list_add(&page->lru, &l_inactive);
1004         }
1005
1006         pagevec_init(&pvec, 1);
1007         pgmoved = 0;
1008         spin_lock_irq(&zone->lru_lock);
1009         while (!list_empty(&l_inactive)) {
1010                 page = lru_to_page(&l_inactive);
1011                 prefetchw_prev_lru_page(page, &l_inactive, flags);
1012                 if (TestSetPageLRU(page))
1013                         BUG();
1014                 if (!TestClearPageActive(page))
1015                         BUG();
1016                 list_move(&page->lru, &zone->inactive_list);
1017                 pgmoved++;
1018                 if (!pagevec_add(&pvec, page)) {
1019                         zone->nr_inactive += pgmoved;
1020                         spin_unlock_irq(&zone->lru_lock);
1021                         pgdeactivate += pgmoved;
1022                         pgmoved = 0;
1023                         if (buffer_heads_over_limit)
1024                                 pagevec_strip(&pvec);
1025                         __pagevec_release(&pvec);
1026                         spin_lock_irq(&zone->lru_lock);
1027                 }
1028         }
1029         zone->nr_inactive += pgmoved;
1030         pgdeactivate += pgmoved;
1031         if (buffer_heads_over_limit) {
1032                 spin_unlock_irq(&zone->lru_lock);
1033                 pagevec_strip(&pvec);
1034                 spin_lock_irq(&zone->lru_lock);
1035         }
1036
1037         pgmoved = 0;
1038         while (!list_empty(&l_active)) {
1039                 page = lru_to_page(&l_active);
1040                 prefetchw_prev_lru_page(page, &l_active, flags);
1041                 if (TestSetPageLRU(page))
1042                         BUG();
1043                 BUG_ON(!PageActive(page));
1044                 list_move(&page->lru, &zone->active_list);
1045                 pgmoved++;
1046                 if (!pagevec_add(&pvec, page)) {
1047                         zone->nr_active += pgmoved;
1048                         pgmoved = 0;
1049                         spin_unlock_irq(&zone->lru_lock);
1050                         __pagevec_release(&pvec);
1051                         spin_lock_irq(&zone->lru_lock);
1052                 }
1053         }
1054         zone->nr_active += pgmoved;
1055         spin_unlock(&zone->lru_lock);
1056
1057         __mod_page_state_zone(zone, pgrefill, pgscanned);
1058         __mod_page_state(pgdeactivate, pgdeactivate);
1059         local_irq_enable();
1060
1061         pagevec_release(&pvec);
1062 }
1063
1064 /*
1065  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1066  */
1067 static void
1068 shrink_zone(struct zone *zone, struct scan_control *sc)
1069 {
1070         unsigned long nr_active;
1071         unsigned long nr_inactive;
1072
1073         atomic_inc(&zone->reclaim_in_progress);
1074
1075         /*
1076          * Add one to `nr_to_scan' just to make sure that the kernel will
1077          * slowly sift through the active list.
1078          */
1079         zone->nr_scan_active += (zone->nr_active >> sc->priority) + 1;
1080         nr_active = zone->nr_scan_active;
1081         if (nr_active >= sc->swap_cluster_max)
1082                 zone->nr_scan_active = 0;
1083         else
1084                 nr_active = 0;
1085
1086         zone->nr_scan_inactive += (zone->nr_inactive >> sc->priority) + 1;
1087         nr_inactive = zone->nr_scan_inactive;
1088         if (nr_inactive >= sc->swap_cluster_max)
1089                 zone->nr_scan_inactive = 0;
1090         else
1091                 nr_inactive = 0;
1092
1093         while (nr_active || nr_inactive) {
1094                 if (nr_active) {
1095                         sc->nr_to_scan = min(nr_active,
1096                                         (unsigned long)sc->swap_cluster_max);
1097                         nr_active -= sc->nr_to_scan;
1098                         refill_inactive_zone(zone, sc);
1099                 }
1100
1101                 if (nr_inactive) {
1102                         sc->nr_to_scan = min(nr_inactive,
1103                                         (unsigned long)sc->swap_cluster_max);
1104                         nr_inactive -= sc->nr_to_scan;
1105                         shrink_cache(zone, sc);
1106                 }
1107         }
1108
1109         throttle_vm_writeout();
1110
1111         atomic_dec(&zone->reclaim_in_progress);
1112 }
1113
1114 /*
1115  * This is the direct reclaim path, for page-allocating processes.  We only
1116  * try to reclaim pages from zones which will satisfy the caller's allocation
1117  * request.
1118  *
1119  * We reclaim from a zone even if that zone is over pages_high.  Because:
1120  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1121  *    allocation or
1122  * b) The zones may be over pages_high but they must go *over* pages_high to
1123  *    satisfy the `incremental min' zone defense algorithm.
1124  *
1125  * Returns the number of reclaimed pages.
1126  *
1127  * If a zone is deemed to be full of pinned pages then just give it a light
1128  * scan then give up on it.
1129  */
1130 static void
1131 shrink_caches(struct zone **zones, struct scan_control *sc)
1132 {
1133         int i;
1134
1135         for (i = 0; zones[i] != NULL; i++) {
1136                 struct zone *zone = zones[i];
1137
1138                 if (!populated_zone(zone))
1139                         continue;
1140
1141                 if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1142                         continue;
1143
1144                 zone->temp_priority = sc->priority;
1145                 if (zone->prev_priority > sc->priority)
1146                         zone->prev_priority = sc->priority;
1147
1148                 if (zone->all_unreclaimable && sc->priority != DEF_PRIORITY)
1149                         continue;       /* Let kswapd poll it */
1150
1151                 shrink_zone(zone, sc);
1152         }
1153 }
1154  
1155 /*
1156  * This is the main entry point to direct page reclaim.
1157  *
1158  * If a full scan of the inactive list fails to free enough memory then we
1159  * are "out of memory" and something needs to be killed.
1160  *
1161  * If the caller is !__GFP_FS then the probability of a failure is reasonably
1162  * high - the zone may be full of dirty or under-writeback pages, which this
1163  * caller can't do much about.  We kick pdflush and take explicit naps in the
1164  * hope that some of these pages can be written.  But if the allocating task
1165  * holds filesystem locks which prevent writeout this might not work, and the
1166  * allocation attempt will fail.
1167  */
1168 int try_to_free_pages(struct zone **zones, gfp_t gfp_mask)
1169 {
1170         int priority;
1171         int ret = 0;
1172         int total_scanned = 0, total_reclaimed = 0;
1173         struct reclaim_state *reclaim_state = current->reclaim_state;
1174         struct scan_control sc;
1175         unsigned long lru_pages = 0;
1176         int i;
1177
1178         sc.gfp_mask = gfp_mask;
1179         sc.may_writepage = !laptop_mode;
1180         sc.may_swap = 1;
1181
1182         inc_page_state(allocstall);
1183
1184         for (i = 0; zones[i] != NULL; i++) {
1185                 struct zone *zone = zones[i];
1186
1187                 if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1188                         continue;
1189
1190                 zone->temp_priority = DEF_PRIORITY;
1191                 lru_pages += zone->nr_active + zone->nr_inactive;
1192         }
1193
1194         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1195                 sc.nr_mapped = read_page_state(nr_mapped);
1196                 sc.nr_scanned = 0;
1197                 sc.nr_reclaimed = 0;
1198                 sc.priority = priority;
1199                 sc.swap_cluster_max = SWAP_CLUSTER_MAX;
1200                 if (!priority)
1201                         disable_swap_token();
1202                 shrink_caches(zones, &sc);
1203                 shrink_slab(sc.nr_scanned, gfp_mask, lru_pages);
1204                 if (reclaim_state) {
1205                         sc.nr_reclaimed += reclaim_state->reclaimed_slab;
1206                         reclaim_state->reclaimed_slab = 0;
1207                 }
1208                 total_scanned += sc.nr_scanned;
1209                 total_reclaimed += sc.nr_reclaimed;
1210                 if (total_reclaimed >= sc.swap_cluster_max) {
1211                         ret = 1;
1212                         goto out;
1213                 }
1214
1215                 /*
1216                  * Try to write back as many pages as we just scanned.  This
1217                  * tends to cause slow streaming writers to write data to the
1218                  * disk smoothly, at the dirtying rate, which is nice.   But
1219                  * that's undesirable in laptop mode, where we *want* lumpy
1220                  * writeout.  So in laptop mode, write out the whole world.
1221                  */
1222                 if (total_scanned > sc.swap_cluster_max + sc.swap_cluster_max/2) {
1223                         wakeup_pdflush(laptop_mode ? 0 : total_scanned);
1224                         sc.may_writepage = 1;
1225                 }
1226
1227                 /* Take a nap, wait for some writeback to complete */
1228                 if (sc.nr_scanned && priority < DEF_PRIORITY - 2)
1229                         blk_congestion_wait(WRITE, HZ/10);
1230         }
1231 out:
1232         for (i = 0; zones[i] != 0; i++) {
1233                 struct zone *zone = zones[i];
1234
1235                 if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1236                         continue;
1237
1238                 zone->prev_priority = zone->temp_priority;
1239         }
1240         return ret;
1241 }
1242
1243 /*
1244  * For kswapd, balance_pgdat() will work across all this node's zones until
1245  * they are all at pages_high.
1246  *
1247  * If `nr_pages' is non-zero then it is the number of pages which are to be
1248  * reclaimed, regardless of the zone occupancies.  This is a software suspend
1249  * special.
1250  *
1251  * Returns the number of pages which were actually freed.
1252  *
1253  * There is special handling here for zones which are full of pinned pages.
1254  * This can happen if the pages are all mlocked, or if they are all used by
1255  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
1256  * What we do is to detect the case where all pages in the zone have been
1257  * scanned twice and there has been zero successful reclaim.  Mark the zone as
1258  * dead and from now on, only perform a short scan.  Basically we're polling
1259  * the zone for when the problem goes away.
1260  *
1261  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
1262  * zones which have free_pages > pages_high, but once a zone is found to have
1263  * free_pages <= pages_high, we scan that zone and the lower zones regardless
1264  * of the number of free pages in the lower zones.  This interoperates with
1265  * the page allocator fallback scheme to ensure that aging of pages is balanced
1266  * across the zones.
1267  */
1268 static int balance_pgdat(pg_data_t *pgdat, int nr_pages, int order)
1269 {
1270         int to_free = nr_pages;
1271         int all_zones_ok;
1272         int priority;
1273         int i;
1274         int total_scanned, total_reclaimed;
1275         struct reclaim_state *reclaim_state = current->reclaim_state;
1276         struct scan_control sc;
1277
1278 loop_again:
1279         total_scanned = 0;
1280         total_reclaimed = 0;
1281         sc.gfp_mask = GFP_KERNEL;
1282         sc.may_writepage = !laptop_mode;
1283         sc.may_swap = 1;
1284         sc.nr_mapped = read_page_state(nr_mapped);
1285
1286         inc_page_state(pageoutrun);
1287
1288         for (i = 0; i < pgdat->nr_zones; i++) {
1289                 struct zone *zone = pgdat->node_zones + i;
1290
1291                 zone->temp_priority = DEF_PRIORITY;
1292         }
1293
1294         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1295                 int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
1296                 unsigned long lru_pages = 0;
1297
1298                 /* The swap token gets in the way of swapout... */
1299                 if (!priority)
1300                         disable_swap_token();
1301
1302                 all_zones_ok = 1;
1303
1304                 if (nr_pages == 0) {
1305                         /*
1306                          * Scan in the highmem->dma direction for the highest
1307                          * zone which needs scanning
1308                          */
1309                         for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1310                                 struct zone *zone = pgdat->node_zones + i;
1311
1312                                 if (!populated_zone(zone))
1313                                         continue;
1314
1315                                 if (zone->all_unreclaimable &&
1316                                                 priority != DEF_PRIORITY)
1317                                         continue;
1318
1319                                 if (!zone_watermark_ok(zone, order,
1320                                                 zone->pages_high, 0, 0)) {
1321                                         end_zone = i;
1322                                         goto scan;
1323                                 }
1324                         }
1325                         goto out;
1326                 } else {
1327                         end_zone = pgdat->nr_zones - 1;
1328                 }
1329 scan:
1330                 for (i = 0; i <= end_zone; i++) {
1331                         struct zone *zone = pgdat->node_zones + i;
1332
1333                         lru_pages += zone->nr_active + zone->nr_inactive;
1334                 }
1335
1336                 /*
1337                  * Now scan the zone in the dma->highmem direction, stopping
1338                  * at the last zone which needs scanning.
1339                  *
1340                  * We do this because the page allocator works in the opposite
1341                  * direction.  This prevents the page allocator from allocating
1342                  * pages behind kswapd's direction of progress, which would
1343                  * cause too much scanning of the lower zones.
1344                  */
1345                 for (i = 0; i <= end_zone; i++) {
1346                         struct zone *zone = pgdat->node_zones + i;
1347                         int nr_slab;
1348
1349                         if (!populated_zone(zone))
1350                                 continue;
1351
1352                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1353                                 continue;
1354
1355                         if (nr_pages == 0) {    /* Not software suspend */
1356                                 if (!zone_watermark_ok(zone, order,
1357                                                 zone->pages_high, end_zone, 0))
1358                                         all_zones_ok = 0;
1359                         }
1360                         zone->temp_priority = priority;
1361                         if (zone->prev_priority > priority)
1362                                 zone->prev_priority = priority;
1363                         sc.nr_scanned = 0;
1364                         sc.nr_reclaimed = 0;
1365                         sc.priority = priority;
1366                         sc.swap_cluster_max = nr_pages? nr_pages : SWAP_CLUSTER_MAX;
1367                         atomic_inc(&zone->reclaim_in_progress);
1368                         shrink_zone(zone, &sc);
1369                         atomic_dec(&zone->reclaim_in_progress);
1370                         reclaim_state->reclaimed_slab = 0;
1371                         nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1372                                                 lru_pages);
1373                         sc.nr_reclaimed += reclaim_state->reclaimed_slab;
1374                         total_reclaimed += sc.nr_reclaimed;
1375                         total_scanned += sc.nr_scanned;
1376                         if (zone->all_unreclaimable)
1377                                 continue;
1378                         if (nr_slab == 0 && zone->pages_scanned >=
1379                                     (zone->nr_active + zone->nr_inactive) * 4)
1380                                 zone->all_unreclaimable = 1;
1381                         /*
1382                          * If we've done a decent amount of scanning and
1383                          * the reclaim ratio is low, start doing writepage
1384                          * even in laptop mode
1385                          */
1386                         if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1387                             total_scanned > total_reclaimed+total_reclaimed/2)
1388                                 sc.may_writepage = 1;
1389                 }
1390                 if (nr_pages && to_free > total_reclaimed)
1391                         continue;       /* swsusp: need to do more work */
1392                 if (all_zones_ok)
1393                         break;          /* kswapd: all done */
1394                 /*
1395                  * OK, kswapd is getting into trouble.  Take a nap, then take
1396                  * another pass across the zones.
1397                  */
1398                 if (total_scanned && priority < DEF_PRIORITY - 2)
1399                         blk_congestion_wait(WRITE, HZ/10);
1400
1401                 /*
1402                  * We do this so kswapd doesn't build up large priorities for
1403                  * example when it is freeing in parallel with allocators. It
1404                  * matches the direct reclaim path behaviour in terms of impact
1405                  * on zone->*_priority.
1406                  */
1407                 if ((total_reclaimed >= SWAP_CLUSTER_MAX) && (!nr_pages))
1408                         break;
1409         }
1410 out:
1411         for (i = 0; i < pgdat->nr_zones; i++) {
1412                 struct zone *zone = pgdat->node_zones + i;
1413
1414                 zone->prev_priority = zone->temp_priority;
1415         }
1416         if (!all_zones_ok) {
1417                 cond_resched();
1418                 goto loop_again;
1419         }
1420
1421         return total_reclaimed;
1422 }
1423
1424 /*
1425  * The background pageout daemon, started as a kernel thread
1426  * from the init process. 
1427  *
1428  * This basically trickles out pages so that we have _some_
1429  * free memory available even if there is no other activity
1430  * that frees anything up. This is needed for things like routing
1431  * etc, where we otherwise might have all activity going on in
1432  * asynchronous contexts that cannot page things out.
1433  *
1434  * If there are applications that are active memory-allocators
1435  * (most normal use), this basically shouldn't matter.
1436  */
1437 static int kswapd(void *p)
1438 {
1439         unsigned long order;
1440         pg_data_t *pgdat = (pg_data_t*)p;
1441         struct task_struct *tsk = current;
1442         DEFINE_WAIT(wait);
1443         struct reclaim_state reclaim_state = {
1444                 .reclaimed_slab = 0,
1445         };
1446         cpumask_t cpumask;
1447
1448         daemonize("kswapd%d", pgdat->node_id);
1449         cpumask = node_to_cpumask(pgdat->node_id);
1450         if (!cpus_empty(cpumask))
1451                 set_cpus_allowed(tsk, cpumask);
1452         current->reclaim_state = &reclaim_state;
1453
1454         /*
1455          * Tell the memory management that we're a "memory allocator",
1456          * and that if we need more memory we should get access to it
1457          * regardless (see "__alloc_pages()"). "kswapd" should
1458          * never get caught in the normal page freeing logic.
1459          *
1460          * (Kswapd normally doesn't need memory anyway, but sometimes
1461          * you need a small amount of memory in order to be able to
1462          * page out something else, and this flag essentially protects
1463          * us from recursively trying to free more memory as we're
1464          * trying to free the first piece of memory in the first place).
1465          */
1466         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
1467
1468         order = 0;
1469         for ( ; ; ) {
1470                 unsigned long new_order;
1471
1472                 try_to_freeze();
1473
1474                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1475                 new_order = pgdat->kswapd_max_order;
1476                 pgdat->kswapd_max_order = 0;
1477                 if (order < new_order) {
1478                         /*
1479                          * Don't sleep if someone wants a larger 'order'
1480                          * allocation
1481                          */
1482                         order = new_order;
1483                 } else {
1484                         schedule();
1485                         order = pgdat->kswapd_max_order;
1486                 }
1487                 finish_wait(&pgdat->kswapd_wait, &wait);
1488
1489                 balance_pgdat(pgdat, 0, order);
1490         }
1491         return 0;
1492 }
1493
1494 /*
1495  * A zone is low on free memory, so wake its kswapd task to service it.
1496  */
1497 void wakeup_kswapd(struct zone *zone, int order)
1498 {
1499         pg_data_t *pgdat;
1500
1501         if (!populated_zone(zone))
1502                 return;
1503
1504         pgdat = zone->zone_pgdat;
1505         if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
1506                 return;
1507         if (pgdat->kswapd_max_order < order)
1508                 pgdat->kswapd_max_order = order;
1509         if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1510                 return;
1511         if (!waitqueue_active(&pgdat->kswapd_wait))
1512                 return;
1513         wake_up_interruptible(&pgdat->kswapd_wait);
1514 }
1515
1516 #ifdef CONFIG_PM
1517 /*
1518  * Try to free `nr_pages' of memory, system-wide.  Returns the number of freed
1519  * pages.
1520  */
1521 int shrink_all_memory(int nr_pages)
1522 {
1523         pg_data_t *pgdat;
1524         int nr_to_free = nr_pages;
1525         int ret = 0;
1526         struct reclaim_state reclaim_state = {
1527                 .reclaimed_slab = 0,
1528         };
1529
1530         current->reclaim_state = &reclaim_state;
1531         for_each_pgdat(pgdat) {
1532                 int freed;
1533                 freed = balance_pgdat(pgdat, nr_to_free, 0);
1534                 ret += freed;
1535                 nr_to_free -= freed;
1536                 if (nr_to_free <= 0)
1537                         break;
1538         }
1539         current->reclaim_state = NULL;
1540         return ret;
1541 }
1542 #endif
1543
1544 #ifdef CONFIG_HOTPLUG_CPU
1545 /* It's optimal to keep kswapds on the same CPUs as their memory, but
1546    not required for correctness.  So if the last cpu in a node goes
1547    away, we get changed to run anywhere: as the first one comes back,
1548    restore their cpu bindings. */
1549 static int __devinit cpu_callback(struct notifier_block *nfb,
1550                                   unsigned long action,
1551                                   void *hcpu)
1552 {
1553         pg_data_t *pgdat;
1554         cpumask_t mask;
1555
1556         if (action == CPU_ONLINE) {
1557                 for_each_pgdat(pgdat) {
1558                         mask = node_to_cpumask(pgdat->node_id);
1559                         if (any_online_cpu(mask) != NR_CPUS)
1560                                 /* One of our CPUs online: restore mask */
1561                                 set_cpus_allowed(pgdat->kswapd, mask);
1562                 }
1563         }
1564         return NOTIFY_OK;
1565 }
1566 #endif /* CONFIG_HOTPLUG_CPU */
1567
1568 static int __init kswapd_init(void)
1569 {
1570         pg_data_t *pgdat;
1571         swap_setup();
1572         for_each_pgdat(pgdat)
1573                 pgdat->kswapd
1574                 = find_task_by_pid(kernel_thread(kswapd, pgdat, CLONE_KERNEL));
1575         total_memory = nr_free_pagecache_pages();
1576         hotcpu_notifier(cpu_callback, 0);
1577         return 0;
1578 }
1579
1580 module_init(kswapd_init)
1581
1582 #ifdef CONFIG_NUMA
1583 /*
1584  * Zone reclaim mode
1585  *
1586  * If non-zero call zone_reclaim when the number of free pages falls below
1587  * the watermarks.
1588  *
1589  * In the future we may add flags to the mode. However, the page allocator
1590  * should only have to check that zone_reclaim_mode != 0 before calling
1591  * zone_reclaim().
1592  */
1593 int zone_reclaim_mode __read_mostly;
1594
1595 /*
1596  * Mininum time between zone reclaim scans
1597  */
1598 int zone_reclaim_interval __read_mostly = 30*HZ;
1599
1600 /*
1601  * Priority for ZONE_RECLAIM. This determines the fraction of pages
1602  * of a node considered for each zone_reclaim. 4 scans 1/16th of
1603  * a zone.
1604  */
1605 #define ZONE_RECLAIM_PRIORITY 4
1606
1607 /*
1608  * Try to free up some pages from this zone through reclaim.
1609  */
1610 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
1611 {
1612         int nr_pages;
1613         struct task_struct *p = current;
1614         struct reclaim_state reclaim_state;
1615         struct scan_control sc;
1616         cpumask_t mask;
1617         int node_id;
1618
1619         if (time_before(jiffies,
1620                 zone->last_unsuccessful_zone_reclaim + zone_reclaim_interval))
1621                         return 0;
1622
1623         if (!(gfp_mask & __GFP_WAIT) ||
1624                 zone->all_unreclaimable ||
1625                 atomic_read(&zone->reclaim_in_progress) > 0)
1626                         return 0;
1627
1628         node_id = zone->zone_pgdat->node_id;
1629         mask = node_to_cpumask(node_id);
1630         if (!cpus_empty(mask) && node_id != numa_node_id())
1631                 return 0;
1632
1633         sc.may_writepage = 0;
1634         sc.may_swap = 0;
1635         sc.nr_scanned = 0;
1636         sc.nr_reclaimed = 0;
1637         sc.priority = ZONE_RECLAIM_PRIORITY + 1;
1638         sc.nr_mapped = read_page_state(nr_mapped);
1639         sc.gfp_mask = gfp_mask;
1640
1641         disable_swap_token();
1642
1643         nr_pages = 1 << order;
1644         if (nr_pages > SWAP_CLUSTER_MAX)
1645                 sc.swap_cluster_max = nr_pages;
1646         else
1647                 sc.swap_cluster_max = SWAP_CLUSTER_MAX;
1648
1649         cond_resched();
1650         p->flags |= PF_MEMALLOC;
1651         reclaim_state.reclaimed_slab = 0;
1652         p->reclaim_state = &reclaim_state;
1653
1654         /*
1655          * Free memory by calling shrink zone with increasing priorities
1656          * until we have enough memory freed.
1657          */
1658         do {
1659                 sc.priority--;
1660                 shrink_zone(zone, &sc);
1661
1662         } while (sc.nr_reclaimed < nr_pages && sc.priority > 0);
1663
1664         p->reclaim_state = NULL;
1665         current->flags &= ~PF_MEMALLOC;
1666
1667         if (sc.nr_reclaimed == 0)
1668                 zone->last_unsuccessful_zone_reclaim = jiffies;
1669
1670         return sc.nr_reclaimed >= nr_pages;
1671 }
1672 #endif
1673