mm: factor out main logic of access_process_vm
[linux-2.6.git] / mm / swap_state.c
1 /*
2  *  linux/mm/swap_state.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  *
7  *  Rewritten to use page cache, (C) 1998 Stephen Tweedie
8  */
9 #include <linux/module.h>
10 #include <linux/mm.h>
11 #include <linux/gfp.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/init.h>
16 #include <linux/pagemap.h>
17 #include <linux/buffer_head.h>
18 #include <linux/backing-dev.h>
19 #include <linux/pagevec.h>
20 #include <linux/migrate.h>
21 #include <linux/page_cgroup.h>
22
23 #include <asm/pgtable.h>
24
25 /*
26  * swapper_space is a fiction, retained to simplify the path through
27  * vmscan's shrink_page_list, to make sync_page look nicer, and to allow
28  * future use of radix_tree tags in the swap cache.
29  */
30 static const struct address_space_operations swap_aops = {
31         .writepage      = swap_writepage,
32         .sync_page      = block_sync_page,
33         .set_page_dirty = __set_page_dirty_nobuffers,
34         .migratepage    = migrate_page,
35 };
36
37 static struct backing_dev_info swap_backing_dev_info = {
38         .name           = "swap",
39         .capabilities   = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
40         .unplug_io_fn   = swap_unplug_io_fn,
41 };
42
43 struct address_space swapper_space = {
44         .page_tree      = RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN),
45         .tree_lock      = __SPIN_LOCK_UNLOCKED(swapper_space.tree_lock),
46         .a_ops          = &swap_aops,
47         .i_mmap_nonlinear = LIST_HEAD_INIT(swapper_space.i_mmap_nonlinear),
48         .backing_dev_info = &swap_backing_dev_info,
49 };
50
51 #define INC_CACHE_INFO(x)       do { swap_cache_info.x++; } while (0)
52
53 static struct {
54         unsigned long add_total;
55         unsigned long del_total;
56         unsigned long find_success;
57         unsigned long find_total;
58 } swap_cache_info;
59
60 void show_swap_cache_info(void)
61 {
62         printk("%lu pages in swap cache\n", total_swapcache_pages);
63         printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
64                 swap_cache_info.add_total, swap_cache_info.del_total,
65                 swap_cache_info.find_success, swap_cache_info.find_total);
66         printk("Free swap  = %ldkB\n", nr_swap_pages << (PAGE_SHIFT - 10));
67         printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
68 }
69
70 /*
71  * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
72  * but sets SwapCache flag and private instead of mapping and index.
73  */
74 static int __add_to_swap_cache(struct page *page, swp_entry_t entry)
75 {
76         int error;
77
78         VM_BUG_ON(!PageLocked(page));
79         VM_BUG_ON(PageSwapCache(page));
80         VM_BUG_ON(!PageSwapBacked(page));
81
82         page_cache_get(page);
83         SetPageSwapCache(page);
84         set_page_private(page, entry.val);
85
86         spin_lock_irq(&swapper_space.tree_lock);
87         error = radix_tree_insert(&swapper_space.page_tree, entry.val, page);
88         if (likely(!error)) {
89                 total_swapcache_pages++;
90                 __inc_zone_page_state(page, NR_FILE_PAGES);
91                 INC_CACHE_INFO(add_total);
92         }
93         spin_unlock_irq(&swapper_space.tree_lock);
94
95         if (unlikely(error)) {
96                 /*
97                  * Only the context which have set SWAP_HAS_CACHE flag
98                  * would call add_to_swap_cache().
99                  * So add_to_swap_cache() doesn't returns -EEXIST.
100                  */
101                 VM_BUG_ON(error == -EEXIST);
102                 set_page_private(page, 0UL);
103                 ClearPageSwapCache(page);
104                 page_cache_release(page);
105         }
106
107         return error;
108 }
109
110
111 int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
112 {
113         int error;
114
115         error = radix_tree_preload(gfp_mask);
116         if (!error) {
117                 error = __add_to_swap_cache(page, entry);
118                 radix_tree_preload_end();
119         }
120         return error;
121 }
122
123 /*
124  * This must be called only on pages that have
125  * been verified to be in the swap cache.
126  */
127 void __delete_from_swap_cache(struct page *page)
128 {
129         VM_BUG_ON(!PageLocked(page));
130         VM_BUG_ON(!PageSwapCache(page));
131         VM_BUG_ON(PageWriteback(page));
132
133         radix_tree_delete(&swapper_space.page_tree, page_private(page));
134         set_page_private(page, 0);
135         ClearPageSwapCache(page);
136         total_swapcache_pages--;
137         __dec_zone_page_state(page, NR_FILE_PAGES);
138         INC_CACHE_INFO(del_total);
139 }
140
141 /**
142  * add_to_swap - allocate swap space for a page
143  * @page: page we want to move to swap
144  *
145  * Allocate swap space for the page and add the page to the
146  * swap cache.  Caller needs to hold the page lock. 
147  */
148 int add_to_swap(struct page *page)
149 {
150         swp_entry_t entry;
151         int err;
152
153         VM_BUG_ON(!PageLocked(page));
154         VM_BUG_ON(!PageUptodate(page));
155
156         entry = get_swap_page();
157         if (!entry.val)
158                 return 0;
159
160         if (unlikely(PageTransHuge(page)))
161                 if (unlikely(split_huge_page(page))) {
162                         swapcache_free(entry, NULL);
163                         return 0;
164                 }
165
166         /*
167          * Radix-tree node allocations from PF_MEMALLOC contexts could
168          * completely exhaust the page allocator. __GFP_NOMEMALLOC
169          * stops emergency reserves from being allocated.
170          *
171          * TODO: this could cause a theoretical memory reclaim
172          * deadlock in the swap out path.
173          */
174         /*
175          * Add it to the swap cache and mark it dirty
176          */
177         err = add_to_swap_cache(page, entry,
178                         __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
179
180         if (!err) {     /* Success */
181                 SetPageDirty(page);
182                 return 1;
183         } else {        /* -ENOMEM radix-tree allocation failure */
184                 /*
185                  * add_to_swap_cache() doesn't return -EEXIST, so we can safely
186                  * clear SWAP_HAS_CACHE flag.
187                  */
188                 swapcache_free(entry, NULL);
189                 return 0;
190         }
191 }
192
193 /*
194  * This must be called only on pages that have
195  * been verified to be in the swap cache and locked.
196  * It will never put the page into the free list,
197  * the caller has a reference on the page.
198  */
199 void delete_from_swap_cache(struct page *page)
200 {
201         swp_entry_t entry;
202
203         entry.val = page_private(page);
204
205         spin_lock_irq(&swapper_space.tree_lock);
206         __delete_from_swap_cache(page);
207         spin_unlock_irq(&swapper_space.tree_lock);
208
209         swapcache_free(entry, page);
210         page_cache_release(page);
211 }
212
213 /* 
214  * If we are the only user, then try to free up the swap cache. 
215  * 
216  * Its ok to check for PageSwapCache without the page lock
217  * here because we are going to recheck again inside
218  * try_to_free_swap() _with_ the lock.
219  *                                      - Marcelo
220  */
221 static inline void free_swap_cache(struct page *page)
222 {
223         if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
224                 try_to_free_swap(page);
225                 unlock_page(page);
226         }
227 }
228
229 /* 
230  * Perform a free_page(), also freeing any swap cache associated with
231  * this page if it is the last user of the page.
232  */
233 void free_page_and_swap_cache(struct page *page)
234 {
235         free_swap_cache(page);
236         page_cache_release(page);
237 }
238
239 /*
240  * Passed an array of pages, drop them all from swapcache and then release
241  * them.  They are removed from the LRU and freed if this is their last use.
242  */
243 void free_pages_and_swap_cache(struct page **pages, int nr)
244 {
245         struct page **pagep = pages;
246
247         lru_add_drain();
248         while (nr) {
249                 int todo = min(nr, PAGEVEC_SIZE);
250                 int i;
251
252                 for (i = 0; i < todo; i++)
253                         free_swap_cache(pagep[i]);
254                 release_pages(pagep, todo, 0);
255                 pagep += todo;
256                 nr -= todo;
257         }
258 }
259
260 /*
261  * Lookup a swap entry in the swap cache. A found page will be returned
262  * unlocked and with its refcount incremented - we rely on the kernel
263  * lock getting page table operations atomic even if we drop the page
264  * lock before returning.
265  */
266 struct page * lookup_swap_cache(swp_entry_t entry)
267 {
268         struct page *page;
269
270         page = find_get_page(&swapper_space, entry.val);
271
272         if (page)
273                 INC_CACHE_INFO(find_success);
274
275         INC_CACHE_INFO(find_total);
276         return page;
277 }
278
279 /* 
280  * Locate a page of swap in physical memory, reserving swap cache space
281  * and reading the disk if it is not already cached.
282  * A failure return means that either the page allocation failed or that
283  * the swap entry is no longer in use.
284  */
285 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
286                         struct vm_area_struct *vma, unsigned long addr)
287 {
288         struct page *found_page, *new_page = NULL;
289         int err;
290
291         do {
292                 /*
293                  * First check the swap cache.  Since this is normally
294                  * called after lookup_swap_cache() failed, re-calling
295                  * that would confuse statistics.
296                  */
297                 found_page = find_get_page(&swapper_space, entry.val);
298                 if (found_page)
299                         break;
300
301                 /*
302                  * Get a new page to read into from swap.
303                  */
304                 if (!new_page) {
305                         new_page = alloc_page_vma(gfp_mask, vma, addr);
306                         if (!new_page)
307                                 break;          /* Out of memory */
308                 }
309
310                 /*
311                  * call radix_tree_preload() while we can wait.
312                  */
313                 err = radix_tree_preload(gfp_mask & GFP_KERNEL);
314                 if (err)
315                         break;
316
317                 /*
318                  * Swap entry may have been freed since our caller observed it.
319                  */
320                 err = swapcache_prepare(entry);
321                 if (err == -EEXIST) {   /* seems racy */
322                         radix_tree_preload_end();
323                         continue;
324                 }
325                 if (err) {              /* swp entry is obsolete ? */
326                         radix_tree_preload_end();
327                         break;
328                 }
329
330                 /* May fail (-ENOMEM) if radix-tree node allocation failed. */
331                 __set_page_locked(new_page);
332                 SetPageSwapBacked(new_page);
333                 err = __add_to_swap_cache(new_page, entry);
334                 if (likely(!err)) {
335                         radix_tree_preload_end();
336                         /*
337                          * Initiate read into locked page and return.
338                          */
339                         lru_cache_add_anon(new_page);
340                         swap_readpage(new_page);
341                         return new_page;
342                 }
343                 radix_tree_preload_end();
344                 ClearPageSwapBacked(new_page);
345                 __clear_page_locked(new_page);
346                 /*
347                  * add_to_swap_cache() doesn't return -EEXIST, so we can safely
348                  * clear SWAP_HAS_CACHE flag.
349                  */
350                 swapcache_free(entry, NULL);
351         } while (err != -ENOMEM);
352
353         if (new_page)
354                 page_cache_release(new_page);
355         return found_page;
356 }
357
358 /**
359  * swapin_readahead - swap in pages in hope we need them soon
360  * @entry: swap entry of this memory
361  * @gfp_mask: memory allocation flags
362  * @vma: user vma this address belongs to
363  * @addr: target address for mempolicy
364  *
365  * Returns the struct page for entry and addr, after queueing swapin.
366  *
367  * Primitive swap readahead code. We simply read an aligned block of
368  * (1 << page_cluster) entries in the swap area. This method is chosen
369  * because it doesn't cost us any seek time.  We also make sure to queue
370  * the 'original' request together with the readahead ones...
371  *
372  * This has been extended to use the NUMA policies from the mm triggering
373  * the readahead.
374  *
375  * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
376  */
377 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
378                         struct vm_area_struct *vma, unsigned long addr)
379 {
380         int nr_pages;
381         struct page *page;
382         unsigned long offset;
383         unsigned long end_offset;
384
385         /*
386          * Get starting offset for readaround, and number of pages to read.
387          * Adjust starting address by readbehind (for NUMA interleave case)?
388          * No, it's very unlikely that swap layout would follow vma layout,
389          * more likely that neighbouring swap pages came from the same node:
390          * so use the same "addr" to choose the same node for each swap read.
391          */
392         nr_pages = valid_swaphandles(entry, &offset);
393         for (end_offset = offset + nr_pages; offset < end_offset; offset++) {
394                 /* Ok, do the async read-ahead now */
395                 page = read_swap_cache_async(swp_entry(swp_type(entry), offset),
396                                                 gfp_mask, vma, addr);
397                 if (!page)
398                         break;
399                 page_cache_release(page);
400         }
401         lru_add_drain();        /* Push any new pages onto the LRU now */
402         return read_swap_cache_async(entry, gfp_mask, vma, addr);
403 }