[IA64] swiotlb bug fixes
[linux-2.6.git] / lib / swiotlb.c
1 /*
2  * Dynamic DMA mapping support.
3  *
4  * This implementation is for IA-64 and EM64T platforms that do not support
5  * I/O TLBs (aka DMA address translation hardware).
6  * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
7  * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
8  * Copyright (C) 2000, 2003 Hewlett-Packard Co
9  *      David Mosberger-Tang <davidm@hpl.hp.com>
10  *
11  * 03/05/07 davidm      Switch from PCI-DMA to generic device DMA API.
12  * 00/12/13 davidm      Rename to swiotlb.c and add mark_clean() to avoid
13  *                      unnecessary i-cache flushing.
14  * 04/07/.. ak          Better overflow handling. Assorted fixes.
15  * 05/09/10 linville    Add support for syncing ranges, support syncing for
16  *                      DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
17  */
18
19 #include <linux/cache.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/spinlock.h>
24 #include <linux/string.h>
25 #include <linux/types.h>
26 #include <linux/ctype.h>
27
28 #include <asm/io.h>
29 #include <asm/dma.h>
30 #include <asm/scatterlist.h>
31
32 #include <linux/init.h>
33 #include <linux/bootmem.h>
34
35 #define OFFSET(val,align) ((unsigned long)      \
36                            ( (val) & ( (align) - 1)))
37
38 #define SG_ENT_VIRT_ADDRESS(sg) (page_address((sg)->page) + (sg)->offset)
39 #define SG_ENT_PHYS_ADDRESS(SG) virt_to_phys(SG_ENT_VIRT_ADDRESS(SG))
40
41 /*
42  * Maximum allowable number of contiguous slabs to map,
43  * must be a power of 2.  What is the appropriate value ?
44  * The complexity of {map,unmap}_single is linearly dependent on this value.
45  */
46 #define IO_TLB_SEGSIZE  128
47
48 /*
49  * log of the size of each IO TLB slab.  The number of slabs is command line
50  * controllable.
51  */
52 #define IO_TLB_SHIFT 11
53
54 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
55
56 /*
57  * Minimum IO TLB size to bother booting with.  Systems with mainly
58  * 64bit capable cards will only lightly use the swiotlb.  If we can't
59  * allocate a contiguous 1MB, we're probably in trouble anyway.
60  */
61 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
62
63 /*
64  * Enumeration for sync targets
65  */
66 enum dma_sync_target {
67         SYNC_FOR_CPU = 0,
68         SYNC_FOR_DEVICE = 1,
69 };
70
71 int swiotlb_force;
72
73 /*
74  * Used to do a quick range check in swiotlb_unmap_single and
75  * swiotlb_sync_single_*, to see if the memory was in fact allocated by this
76  * API.
77  */
78 static char *io_tlb_start, *io_tlb_end;
79
80 /*
81  * The number of IO TLB blocks (in groups of 64) betweeen io_tlb_start and
82  * io_tlb_end.  This is command line adjustable via setup_io_tlb_npages.
83  */
84 static unsigned long io_tlb_nslabs;
85
86 /*
87  * When the IOMMU overflows we return a fallback buffer. This sets the size.
88  */
89 static unsigned long io_tlb_overflow = 32*1024;
90
91 void *io_tlb_overflow_buffer;
92
93 /*
94  * This is a free list describing the number of free entries available from
95  * each index
96  */
97 static unsigned int *io_tlb_list;
98 static unsigned int io_tlb_index;
99
100 /*
101  * We need to save away the original address corresponding to a mapped entry
102  * for the sync operations.
103  */
104 static unsigned char **io_tlb_orig_addr;
105
106 /*
107  * Protect the above data structures in the map and unmap calls
108  */
109 static DEFINE_SPINLOCK(io_tlb_lock);
110
111 static int __init
112 setup_io_tlb_npages(char *str)
113 {
114         if (isdigit(*str)) {
115                 io_tlb_nslabs = simple_strtoul(str, &str, 0);
116                 /* avoid tail segment of size < IO_TLB_SEGSIZE */
117                 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
118         }
119         if (*str == ',')
120                 ++str;
121         if (!strcmp(str, "force"))
122                 swiotlb_force = 1;
123         return 1;
124 }
125 __setup("swiotlb=", setup_io_tlb_npages);
126 /* make io_tlb_overflow tunable too? */
127
128 /*
129  * Statically reserve bounce buffer space and initialize bounce buffer data
130  * structures for the software IO TLB used to implement the DMA API.
131  */
132 void
133 swiotlb_init_with_default_size (size_t default_size)
134 {
135         unsigned long i;
136
137         if (!io_tlb_nslabs) {
138                 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
139                 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
140         }
141
142         /*
143          * Get IO TLB memory from the low pages
144          */
145         io_tlb_start = alloc_bootmem_low_pages(io_tlb_nslabs * (1 << IO_TLB_SHIFT));
146         if (!io_tlb_start)
147                 panic("Cannot allocate SWIOTLB buffer");
148         io_tlb_end = io_tlb_start + io_tlb_nslabs * (1 << IO_TLB_SHIFT);
149
150         /*
151          * Allocate and initialize the free list array.  This array is used
152          * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
153          * between io_tlb_start and io_tlb_end.
154          */
155         io_tlb_list = alloc_bootmem(io_tlb_nslabs * sizeof(int));
156         for (i = 0; i < io_tlb_nslabs; i++)
157                 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
158         io_tlb_index = 0;
159         io_tlb_orig_addr = alloc_bootmem(io_tlb_nslabs * sizeof(char *));
160
161         /*
162          * Get the overflow emergency buffer
163          */
164         io_tlb_overflow_buffer = alloc_bootmem_low(io_tlb_overflow);
165         printk(KERN_INFO "Placing software IO TLB between 0x%lx - 0x%lx\n",
166                virt_to_phys(io_tlb_start), virt_to_phys(io_tlb_end));
167 }
168
169 void
170 swiotlb_init (void)
171 {
172         swiotlb_init_with_default_size(64 * (1<<20));   /* default to 64MB */
173 }
174
175 /*
176  * Systems with larger DMA zones (those that don't support ISA) can
177  * initialize the swiotlb later using the slab allocator if needed.
178  * This should be just like above, but with some error catching.
179  */
180 int
181 swiotlb_late_init_with_default_size (size_t default_size)
182 {
183         unsigned long i, req_nslabs = io_tlb_nslabs;
184         unsigned int order;
185
186         if (!io_tlb_nslabs) {
187                 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
188                 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
189         }
190
191         /*
192          * Get IO TLB memory from the low pages
193          */
194         order = get_order(io_tlb_nslabs * (1 << IO_TLB_SHIFT));
195         io_tlb_nslabs = SLABS_PER_PAGE << order;
196
197         while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
198                 io_tlb_start = (char *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
199                                                         order);
200                 if (io_tlb_start)
201                         break;
202                 order--;
203         }
204
205         if (!io_tlb_start)
206                 goto cleanup1;
207
208         if (order != get_order(io_tlb_nslabs * (1 << IO_TLB_SHIFT))) {
209                 printk(KERN_WARNING "Warning: only able to allocate %ld MB "
210                        "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
211                 io_tlb_nslabs = SLABS_PER_PAGE << order;
212         }
213         io_tlb_end = io_tlb_start + io_tlb_nslabs * (1 << IO_TLB_SHIFT);
214         memset(io_tlb_start, 0, io_tlb_nslabs * (1 << IO_TLB_SHIFT));
215
216         /*
217          * Allocate and initialize the free list array.  This array is used
218          * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
219          * between io_tlb_start and io_tlb_end.
220          */
221         io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
222                                       get_order(io_tlb_nslabs * sizeof(int)));
223         if (!io_tlb_list)
224                 goto cleanup2;
225
226         for (i = 0; i < io_tlb_nslabs; i++)
227                 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
228         io_tlb_index = 0;
229
230         io_tlb_orig_addr = (unsigned char **)__get_free_pages(GFP_KERNEL,
231                                    get_order(io_tlb_nslabs * sizeof(char *)));
232         if (!io_tlb_orig_addr)
233                 goto cleanup3;
234
235         memset(io_tlb_orig_addr, 0, io_tlb_nslabs * sizeof(char *));
236
237         /*
238          * Get the overflow emergency buffer
239          */
240         io_tlb_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
241                                                   get_order(io_tlb_overflow));
242         if (!io_tlb_overflow_buffer)
243                 goto cleanup4;
244
245         printk(KERN_INFO "Placing %ldMB software IO TLB between 0x%lx - "
246                "0x%lx\n", (io_tlb_nslabs * (1 << IO_TLB_SHIFT)) >> 20,
247                virt_to_phys(io_tlb_start), virt_to_phys(io_tlb_end));
248
249         return 0;
250
251 cleanup4:
252         free_pages((unsigned long)io_tlb_orig_addr, get_order(io_tlb_nslabs *
253                                                               sizeof(char *)));
254         io_tlb_orig_addr = NULL;
255 cleanup3:
256         free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
257                                                          sizeof(int)));
258         io_tlb_list = NULL;
259         io_tlb_end = NULL;
260 cleanup2:
261         free_pages((unsigned long)io_tlb_start, order);
262         io_tlb_start = NULL;
263 cleanup1:
264         io_tlb_nslabs = req_nslabs;
265         return -ENOMEM;
266 }
267
268 static inline int
269 address_needs_mapping(struct device *hwdev, dma_addr_t addr)
270 {
271         dma_addr_t mask = 0xffffffff;
272         /* If the device has a mask, use it, otherwise default to 32 bits */
273         if (hwdev && hwdev->dma_mask)
274                 mask = *hwdev->dma_mask;
275         return (addr & ~mask) != 0;
276 }
277
278 /*
279  * Allocates bounce buffer and returns its kernel virtual address.
280  */
281 static void *
282 map_single(struct device *hwdev, char *buffer, size_t size, int dir)
283 {
284         unsigned long flags;
285         char *dma_addr;
286         unsigned int nslots, stride, index, wrap;
287         int i;
288
289         /*
290          * For mappings greater than a page, we limit the stride (and
291          * hence alignment) to a page size.
292          */
293         nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
294         if (size > PAGE_SIZE)
295                 stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
296         else
297                 stride = 1;
298
299         BUG_ON(!nslots);
300
301         /*
302          * Find suitable number of IO TLB entries size that will fit this
303          * request and allocate a buffer from that IO TLB pool.
304          */
305         spin_lock_irqsave(&io_tlb_lock, flags);
306         {
307                 wrap = index = ALIGN(io_tlb_index, stride);
308
309                 if (index >= io_tlb_nslabs)
310                         wrap = index = 0;
311
312                 do {
313                         /*
314                          * If we find a slot that indicates we have 'nslots'
315                          * number of contiguous buffers, we allocate the
316                          * buffers from that slot and mark the entries as '0'
317                          * indicating unavailable.
318                          */
319                         if (io_tlb_list[index] >= nslots) {
320                                 int count = 0;
321
322                                 for (i = index; i < (int) (index + nslots); i++)
323                                         io_tlb_list[i] = 0;
324                                 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
325                                         io_tlb_list[i] = ++count;
326                                 dma_addr = io_tlb_start + (index << IO_TLB_SHIFT);
327
328                                 /*
329                                  * Update the indices to avoid searching in
330                                  * the next round.
331                                  */
332                                 io_tlb_index = ((index + nslots) < io_tlb_nslabs
333                                                 ? (index + nslots) : 0);
334
335                                 goto found;
336                         }
337                         index += stride;
338                         if (index >= io_tlb_nslabs)
339                                 index = 0;
340                 } while (index != wrap);
341
342                 spin_unlock_irqrestore(&io_tlb_lock, flags);
343                 return NULL;
344         }
345   found:
346         spin_unlock_irqrestore(&io_tlb_lock, flags);
347
348         /*
349          * Save away the mapping from the original address to the DMA address.
350          * This is needed when we sync the memory.  Then we sync the buffer if
351          * needed.
352          */
353         io_tlb_orig_addr[index] = buffer;
354         if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
355                 memcpy(dma_addr, buffer, size);
356
357         return dma_addr;
358 }
359
360 /*
361  * dma_addr is the kernel virtual address of the bounce buffer to unmap.
362  */
363 static void
364 unmap_single(struct device *hwdev, char *dma_addr, size_t size, int dir)
365 {
366         unsigned long flags;
367         int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
368         int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
369         char *buffer = io_tlb_orig_addr[index];
370
371         /*
372          * First, sync the memory before unmapping the entry
373          */
374         if (buffer && ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
375                 /*
376                  * bounce... copy the data back into the original buffer * and
377                  * delete the bounce buffer.
378                  */
379                 memcpy(buffer, dma_addr, size);
380
381         /*
382          * Return the buffer to the free list by setting the corresponding
383          * entries to indicate the number of contigous entries available.
384          * While returning the entries to the free list, we merge the entries
385          * with slots below and above the pool being returned.
386          */
387         spin_lock_irqsave(&io_tlb_lock, flags);
388         {
389                 count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
390                          io_tlb_list[index + nslots] : 0);
391                 /*
392                  * Step 1: return the slots to the free list, merging the
393                  * slots with superceeding slots
394                  */
395                 for (i = index + nslots - 1; i >= index; i--)
396                         io_tlb_list[i] = ++count;
397                 /*
398                  * Step 2: merge the returned slots with the preceding slots,
399                  * if available (non zero)
400                  */
401                 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
402                         io_tlb_list[i] = ++count;
403         }
404         spin_unlock_irqrestore(&io_tlb_lock, flags);
405 }
406
407 static void
408 sync_single(struct device *hwdev, char *dma_addr, size_t size,
409             int dir, int target)
410 {
411         int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
412         char *buffer = io_tlb_orig_addr[index];
413
414         switch (target) {
415         case SYNC_FOR_CPU:
416                 if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
417                         memcpy(buffer, dma_addr, size);
418                 else
419                         BUG_ON(dir != DMA_TO_DEVICE);
420                 break;
421         case SYNC_FOR_DEVICE:
422                 if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
423                         memcpy(dma_addr, buffer, size);
424                 else
425                         BUG_ON(dir != DMA_FROM_DEVICE);
426                 break;
427         default:
428                 BUG();
429         }
430 }
431
432 void *
433 swiotlb_alloc_coherent(struct device *hwdev, size_t size,
434                        dma_addr_t *dma_handle, gfp_t flags)
435 {
436         unsigned long dev_addr;
437         void *ret;
438         int order = get_order(size);
439
440         /*
441          * XXX fix me: the DMA API should pass us an explicit DMA mask
442          * instead, or use ZONE_DMA32 (ia64 overloads ZONE_DMA to be a ~32
443          * bit range instead of a 16MB one).
444          */
445         flags |= GFP_DMA;
446
447         ret = (void *)__get_free_pages(flags, order);
448         if (ret && address_needs_mapping(hwdev, virt_to_phys(ret))) {
449                 /*
450                  * The allocated memory isn't reachable by the device.
451                  * Fall back on swiotlb_map_single().
452                  */
453                 free_pages((unsigned long) ret, order);
454                 ret = NULL;
455         }
456         if (!ret) {
457                 /*
458                  * We are either out of memory or the device can't DMA
459                  * to GFP_DMA memory; fall back on
460                  * swiotlb_map_single(), which will grab memory from
461                  * the lowest available address range.
462                  */
463                 dma_addr_t handle;
464                 handle = swiotlb_map_single(NULL, NULL, size, DMA_FROM_DEVICE);
465                 if (swiotlb_dma_mapping_error(handle))
466                         return NULL;
467
468                 ret = phys_to_virt(handle);
469         }
470
471         memset(ret, 0, size);
472         dev_addr = virt_to_phys(ret);
473
474         /* Confirm address can be DMA'd by device */
475         if (address_needs_mapping(hwdev, dev_addr)) {
476                 printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016lx\n",
477                        (unsigned long long)*hwdev->dma_mask, dev_addr);
478                 panic("swiotlb_alloc_coherent: allocated memory is out of "
479                       "range for device");
480         }
481         *dma_handle = dev_addr;
482         return ret;
483 }
484
485 void
486 swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
487                       dma_addr_t dma_handle)
488 {
489         if (!(vaddr >= (void *)io_tlb_start
490                     && vaddr < (void *)io_tlb_end))
491                 free_pages((unsigned long) vaddr, get_order(size));
492         else
493                 /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
494                 swiotlb_unmap_single (hwdev, dma_handle, size, DMA_TO_DEVICE);
495 }
496
497 static void
498 swiotlb_full(struct device *dev, size_t size, int dir, int do_panic)
499 {
500         /*
501          * Ran out of IOMMU space for this operation. This is very bad.
502          * Unfortunately the drivers cannot handle this operation properly.
503          * unless they check for dma_mapping_error (most don't)
504          * When the mapping is small enough return a static buffer to limit
505          * the damage, or panic when the transfer is too big.
506          */
507         printk(KERN_ERR "DMA: Out of SW-IOMMU space for %lu bytes at "
508                "device %s\n", size, dev ? dev->bus_id : "?");
509
510         if (size > io_tlb_overflow && do_panic) {
511                 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
512                         panic("DMA: Memory would be corrupted\n");
513                 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
514                         panic("DMA: Random memory would be DMAed\n");
515         }
516 }
517
518 /*
519  * Map a single buffer of the indicated size for DMA in streaming mode.  The
520  * physical address to use is returned.
521  *
522  * Once the device is given the dma address, the device owns this memory until
523  * either swiotlb_unmap_single or swiotlb_dma_sync_single is performed.
524  */
525 dma_addr_t
526 swiotlb_map_single(struct device *hwdev, void *ptr, size_t size, int dir)
527 {
528         unsigned long dev_addr = virt_to_phys(ptr);
529         void *map;
530
531         BUG_ON(dir == DMA_NONE);
532         /*
533          * If the pointer passed in happens to be in the device's DMA window,
534          * we can safely return the device addr and not worry about bounce
535          * buffering it.
536          */
537         if (!address_needs_mapping(hwdev, dev_addr) && !swiotlb_force)
538                 return dev_addr;
539
540         /*
541          * Oh well, have to allocate and map a bounce buffer.
542          */
543         map = map_single(hwdev, ptr, size, dir);
544         if (!map) {
545                 swiotlb_full(hwdev, size, dir, 1);
546                 map = io_tlb_overflow_buffer;
547         }
548
549         dev_addr = virt_to_phys(map);
550
551         /*
552          * Ensure that the address returned is DMA'ble
553          */
554         if (address_needs_mapping(hwdev, dev_addr))
555                 panic("map_single: bounce buffer is not DMA'ble");
556
557         return dev_addr;
558 }
559
560 /*
561  * Unmap a single streaming mode DMA translation.  The dma_addr and size must
562  * match what was provided for in a previous swiotlb_map_single call.  All
563  * other usages are undefined.
564  *
565  * After this call, reads by the cpu to the buffer are guaranteed to see
566  * whatever the device wrote there.
567  */
568 void
569 swiotlb_unmap_single(struct device *hwdev, dma_addr_t dev_addr, size_t size,
570                      int dir)
571 {
572         char *dma_addr = phys_to_virt(dev_addr);
573
574         BUG_ON(dir == DMA_NONE);
575         if (dma_addr >= io_tlb_start && dma_addr < io_tlb_end)
576                 unmap_single(hwdev, dma_addr, size, dir);
577         else if (dir == DMA_FROM_DEVICE)
578                 dma_mark_clean(dma_addr, size);
579 }
580
581 /*
582  * Make physical memory consistent for a single streaming mode DMA translation
583  * after a transfer.
584  *
585  * If you perform a swiotlb_map_single() but wish to interrogate the buffer
586  * using the cpu, yet do not wish to teardown the dma mapping, you must
587  * call this function before doing so.  At the next point you give the dma
588  * address back to the card, you must first perform a
589  * swiotlb_dma_sync_for_device, and then the device again owns the buffer
590  */
591 static inline void
592 swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
593                     size_t size, int dir, int target)
594 {
595         char *dma_addr = phys_to_virt(dev_addr);
596
597         BUG_ON(dir == DMA_NONE);
598         if (dma_addr >= io_tlb_start && dma_addr < io_tlb_end)
599                 sync_single(hwdev, dma_addr, size, dir, target);
600         else if (dir == DMA_FROM_DEVICE)
601                 dma_mark_clean(dma_addr, size);
602 }
603
604 void
605 swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
606                             size_t size, int dir)
607 {
608         swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
609 }
610
611 void
612 swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
613                                size_t size, int dir)
614 {
615         swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
616 }
617
618 /*
619  * Same as above, but for a sub-range of the mapping.
620  */
621 static inline void
622 swiotlb_sync_single_range(struct device *hwdev, dma_addr_t dev_addr,
623                           unsigned long offset, size_t size,
624                           int dir, int target)
625 {
626         char *dma_addr = phys_to_virt(dev_addr) + offset;
627
628         BUG_ON(dir == DMA_NONE);
629         if (dma_addr >= io_tlb_start && dma_addr < io_tlb_end)
630                 sync_single(hwdev, dma_addr, size, dir, target);
631         else if (dir == DMA_FROM_DEVICE)
632                 dma_mark_clean(dma_addr, size);
633 }
634
635 void
636 swiotlb_sync_single_range_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
637                                   unsigned long offset, size_t size, int dir)
638 {
639         swiotlb_sync_single_range(hwdev, dev_addr, offset, size, dir,
640                                   SYNC_FOR_CPU);
641 }
642
643 void
644 swiotlb_sync_single_range_for_device(struct device *hwdev, dma_addr_t dev_addr,
645                                      unsigned long offset, size_t size, int dir)
646 {
647         swiotlb_sync_single_range(hwdev, dev_addr, offset, size, dir,
648                                   SYNC_FOR_DEVICE);
649 }
650
651 /*
652  * Map a set of buffers described by scatterlist in streaming mode for DMA.
653  * This is the scatter-gather version of the above swiotlb_map_single
654  * interface.  Here the scatter gather list elements are each tagged with the
655  * appropriate dma address and length.  They are obtained via
656  * sg_dma_{address,length}(SG).
657  *
658  * NOTE: An implementation may be able to use a smaller number of
659  *       DMA address/length pairs than there are SG table elements.
660  *       (for example via virtual mapping capabilities)
661  *       The routine returns the number of addr/length pairs actually
662  *       used, at most nents.
663  *
664  * Device ownership issues as mentioned above for swiotlb_map_single are the
665  * same here.
666  */
667 int
668 swiotlb_map_sg(struct device *hwdev, struct scatterlist *sg, int nelems,
669                int dir)
670 {
671         void *addr;
672         unsigned long dev_addr;
673         int i;
674
675         BUG_ON(dir == DMA_NONE);
676
677         for (i = 0; i < nelems; i++, sg++) {
678                 addr = SG_ENT_VIRT_ADDRESS(sg);
679                 dev_addr = virt_to_phys(addr);
680                 if (swiotlb_force || address_needs_mapping(hwdev, dev_addr)) {
681                         void *map = map_single(hwdev, addr, sg->length, dir);
682                         if (!map) {
683                                 /* Don't panic here, we expect map_sg users
684                                    to do proper error handling. */
685                                 swiotlb_full(hwdev, sg->length, dir, 0);
686                                 swiotlb_unmap_sg(hwdev, sg - i, i, dir);
687                                 sg[0].dma_length = 0;
688                                 return 0;
689                         }
690                         sg->dma_address = virt_to_bus(map);
691                 } else
692                         sg->dma_address = dev_addr;
693                 sg->dma_length = sg->length;
694         }
695         return nelems;
696 }
697
698 /*
699  * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
700  * concerning calls here are the same as for swiotlb_unmap_single() above.
701  */
702 void
703 swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sg, int nelems,
704                  int dir)
705 {
706         int i;
707
708         BUG_ON(dir == DMA_NONE);
709
710         for (i = 0; i < nelems; i++, sg++)
711                 if (sg->dma_address != SG_ENT_PHYS_ADDRESS(sg))
712                         unmap_single(hwdev, (void *) phys_to_virt(sg->dma_address), sg->dma_length, dir);
713                 else if (dir == DMA_FROM_DEVICE)
714                         dma_mark_clean(SG_ENT_VIRT_ADDRESS(sg), sg->dma_length);
715 }
716
717 /*
718  * Make physical memory consistent for a set of streaming mode DMA translations
719  * after a transfer.
720  *
721  * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
722  * and usage.
723  */
724 static inline void
725 swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sg,
726                 int nelems, int dir, int target)
727 {
728         int i;
729
730         BUG_ON(dir == DMA_NONE);
731
732         for (i = 0; i < nelems; i++, sg++)
733                 if (sg->dma_address != SG_ENT_PHYS_ADDRESS(sg))
734                         sync_single(hwdev, (void *) sg->dma_address,
735                                     sg->dma_length, dir, target);
736                 else if (dir == DMA_FROM_DEVICE)
737                         dma_mark_clean(SG_ENT_VIRT_ADDRESS(sg), sg->dma_length);
738 }
739
740 void
741 swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
742                         int nelems, int dir)
743 {
744         swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
745 }
746
747 void
748 swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
749                            int nelems, int dir)
750 {
751         swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
752 }
753
754 int
755 swiotlb_dma_mapping_error(dma_addr_t dma_addr)
756 {
757         return (dma_addr == virt_to_phys(io_tlb_overflow_buffer));
758 }
759
760 /*
761  * Return whether the given device DMA address mask can be supported
762  * properly.  For example, if your device can only drive the low 24-bits
763  * during bus mastering, then you would pass 0x00ffffff as the mask to
764  * this function.
765  */
766 int
767 swiotlb_dma_supported (struct device *hwdev, u64 mask)
768 {
769         return virt_to_phys(io_tlb_end - 1) <= mask;
770 }
771
772 EXPORT_SYMBOL(swiotlb_init);
773 EXPORT_SYMBOL(swiotlb_map_single);
774 EXPORT_SYMBOL(swiotlb_unmap_single);
775 EXPORT_SYMBOL(swiotlb_map_sg);
776 EXPORT_SYMBOL(swiotlb_unmap_sg);
777 EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
778 EXPORT_SYMBOL(swiotlb_sync_single_for_device);
779 EXPORT_SYMBOL_GPL(swiotlb_sync_single_range_for_cpu);
780 EXPORT_SYMBOL_GPL(swiotlb_sync_single_range_for_device);
781 EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
782 EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
783 EXPORT_SYMBOL(swiotlb_dma_mapping_error);
784 EXPORT_SYMBOL(swiotlb_alloc_coherent);
785 EXPORT_SYMBOL(swiotlb_free_coherent);
786 EXPORT_SYMBOL(swiotlb_dma_supported);