]> nv-tegra.nvidia Code Review - linux-2.6.git/blob - lib/decompress_unlzma.c
Merge branch 'next' of git://git.secretlab.ca/git/linux-2.6
[linux-2.6.git] / lib / decompress_unlzma.c
1 /* Lzma decompressor for Linux kernel. Shamelessly snarfed
2  *from busybox 1.1.1
3  *
4  *Linux kernel adaptation
5  *Copyright (C) 2006  Alain < alain@knaff.lu >
6  *
7  *Based on small lzma deflate implementation/Small range coder
8  *implementation for lzma.
9  *Copyright (C) 2006  Aurelien Jacobs < aurel@gnuage.org >
10  *
11  *Based on LzmaDecode.c from the LZMA SDK 4.22 (http://www.7-zip.org/)
12  *Copyright (C) 1999-2005  Igor Pavlov
13  *
14  *Copyrights of the parts, see headers below.
15  *
16  *
17  *This program is free software; you can redistribute it and/or
18  *modify it under the terms of the GNU Lesser General Public
19  *License as published by the Free Software Foundation; either
20  *version 2.1 of the License, or (at your option) any later version.
21  *
22  *This program is distributed in the hope that it will be useful,
23  *but WITHOUT ANY WARRANTY; without even the implied warranty of
24  *MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
25  *Lesser General Public License for more details.
26  *
27  *You should have received a copy of the GNU Lesser General Public
28  *License along with this library; if not, write to the Free Software
29  *Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
30  */
31
32 #ifdef STATIC
33 #define PREBOOT
34 #else
35 #include <linux/decompress/unlzma.h>
36 #include <linux/slab.h>
37 #endif /* STATIC */
38
39 #include <linux/decompress/mm.h>
40
41 #define MIN(a, b) (((a) < (b)) ? (a) : (b))
42
43 static long long INIT read_int(unsigned char *ptr, int size)
44 {
45         int i;
46         long long ret = 0;
47
48         for (i = 0; i < size; i++)
49                 ret = (ret << 8) | ptr[size-i-1];
50         return ret;
51 }
52
53 #define ENDIAN_CONVERT(x) \
54   x = (typeof(x))read_int((unsigned char *)&x, sizeof(x))
55
56
57 /* Small range coder implementation for lzma.
58  *Copyright (C) 2006  Aurelien Jacobs < aurel@gnuage.org >
59  *
60  *Based on LzmaDecode.c from the LZMA SDK 4.22 (http://www.7-zip.org/)
61  *Copyright (c) 1999-2005  Igor Pavlov
62  */
63
64 #include <linux/compiler.h>
65
66 #define LZMA_IOBUF_SIZE 0x10000
67
68 struct rc {
69         int (*fill)(void*, unsigned int);
70         uint8_t *ptr;
71         uint8_t *buffer;
72         uint8_t *buffer_end;
73         int buffer_size;
74         uint32_t code;
75         uint32_t range;
76         uint32_t bound;
77 };
78
79
80 #define RC_TOP_BITS 24
81 #define RC_MOVE_BITS 5
82 #define RC_MODEL_TOTAL_BITS 11
83
84
85 static int nofill(void *buffer, unsigned int len)
86 {
87         return -1;
88 }
89
90 /* Called twice: once at startup and once in rc_normalize() */
91 static void INIT rc_read(struct rc *rc)
92 {
93         rc->buffer_size = rc->fill((char *)rc->buffer, LZMA_IOBUF_SIZE);
94         if (rc->buffer_size <= 0)
95                 error("unexpected EOF");
96         rc->ptr = rc->buffer;
97         rc->buffer_end = rc->buffer + rc->buffer_size;
98 }
99
100 /* Called once */
101 static inline void INIT rc_init(struct rc *rc,
102                                        int (*fill)(void*, unsigned int),
103                                        char *buffer, int buffer_size)
104 {
105         if (fill)
106                 rc->fill = fill;
107         else
108                 rc->fill = nofill;
109         rc->buffer = (uint8_t *)buffer;
110         rc->buffer_size = buffer_size;
111         rc->buffer_end = rc->buffer + rc->buffer_size;
112         rc->ptr = rc->buffer;
113
114         rc->code = 0;
115         rc->range = 0xFFFFFFFF;
116 }
117
118 static inline void INIT rc_init_code(struct rc *rc)
119 {
120         int i;
121
122         for (i = 0; i < 5; i++) {
123                 if (rc->ptr >= rc->buffer_end)
124                         rc_read(rc);
125                 rc->code = (rc->code << 8) | *rc->ptr++;
126         }
127 }
128
129
130 /* Called once. TODO: bb_maybe_free() */
131 static inline void INIT rc_free(struct rc *rc)
132 {
133         free(rc->buffer);
134 }
135
136 /* Called twice, but one callsite is in inline'd rc_is_bit_0_helper() */
137 static void INIT rc_do_normalize(struct rc *rc)
138 {
139         if (rc->ptr >= rc->buffer_end)
140                 rc_read(rc);
141         rc->range <<= 8;
142         rc->code = (rc->code << 8) | *rc->ptr++;
143 }
144 static inline void INIT rc_normalize(struct rc *rc)
145 {
146         if (rc->range < (1 << RC_TOP_BITS))
147                 rc_do_normalize(rc);
148 }
149
150 /* Called 9 times */
151 /* Why rc_is_bit_0_helper exists?
152  *Because we want to always expose (rc->code < rc->bound) to optimizer
153  */
154 static inline uint32_t INIT rc_is_bit_0_helper(struct rc *rc, uint16_t *p)
155 {
156         rc_normalize(rc);
157         rc->bound = *p * (rc->range >> RC_MODEL_TOTAL_BITS);
158         return rc->bound;
159 }
160 static inline int INIT rc_is_bit_0(struct rc *rc, uint16_t *p)
161 {
162         uint32_t t = rc_is_bit_0_helper(rc, p);
163         return rc->code < t;
164 }
165
166 /* Called ~10 times, but very small, thus inlined */
167 static inline void INIT rc_update_bit_0(struct rc *rc, uint16_t *p)
168 {
169         rc->range = rc->bound;
170         *p += ((1 << RC_MODEL_TOTAL_BITS) - *p) >> RC_MOVE_BITS;
171 }
172 static inline void rc_update_bit_1(struct rc *rc, uint16_t *p)
173 {
174         rc->range -= rc->bound;
175         rc->code -= rc->bound;
176         *p -= *p >> RC_MOVE_BITS;
177 }
178
179 /* Called 4 times in unlzma loop */
180 static int INIT rc_get_bit(struct rc *rc, uint16_t *p, int *symbol)
181 {
182         if (rc_is_bit_0(rc, p)) {
183                 rc_update_bit_0(rc, p);
184                 *symbol *= 2;
185                 return 0;
186         } else {
187                 rc_update_bit_1(rc, p);
188                 *symbol = *symbol * 2 + 1;
189                 return 1;
190         }
191 }
192
193 /* Called once */
194 static inline int INIT rc_direct_bit(struct rc *rc)
195 {
196         rc_normalize(rc);
197         rc->range >>= 1;
198         if (rc->code >= rc->range) {
199                 rc->code -= rc->range;
200                 return 1;
201         }
202         return 0;
203 }
204
205 /* Called twice */
206 static inline void INIT
207 rc_bit_tree_decode(struct rc *rc, uint16_t *p, int num_levels, int *symbol)
208 {
209         int i = num_levels;
210
211         *symbol = 1;
212         while (i--)
213                 rc_get_bit(rc, p + *symbol, symbol);
214         *symbol -= 1 << num_levels;
215 }
216
217
218 /*
219  * Small lzma deflate implementation.
220  * Copyright (C) 2006  Aurelien Jacobs < aurel@gnuage.org >
221  *
222  * Based on LzmaDecode.c from the LZMA SDK 4.22 (http://www.7-zip.org/)
223  * Copyright (C) 1999-2005  Igor Pavlov
224  */
225
226
227 struct lzma_header {
228         uint8_t pos;
229         uint32_t dict_size;
230         uint64_t dst_size;
231 } __attribute__ ((packed)) ;
232
233
234 #define LZMA_BASE_SIZE 1846
235 #define LZMA_LIT_SIZE 768
236
237 #define LZMA_NUM_POS_BITS_MAX 4
238
239 #define LZMA_LEN_NUM_LOW_BITS 3
240 #define LZMA_LEN_NUM_MID_BITS 3
241 #define LZMA_LEN_NUM_HIGH_BITS 8
242
243 #define LZMA_LEN_CHOICE 0
244 #define LZMA_LEN_CHOICE_2 (LZMA_LEN_CHOICE + 1)
245 #define LZMA_LEN_LOW (LZMA_LEN_CHOICE_2 + 1)
246 #define LZMA_LEN_MID (LZMA_LEN_LOW \
247                       + (1 << (LZMA_NUM_POS_BITS_MAX + LZMA_LEN_NUM_LOW_BITS)))
248 #define LZMA_LEN_HIGH (LZMA_LEN_MID \
249                        +(1 << (LZMA_NUM_POS_BITS_MAX + LZMA_LEN_NUM_MID_BITS)))
250 #define LZMA_NUM_LEN_PROBS (LZMA_LEN_HIGH + (1 << LZMA_LEN_NUM_HIGH_BITS))
251
252 #define LZMA_NUM_STATES 12
253 #define LZMA_NUM_LIT_STATES 7
254
255 #define LZMA_START_POS_MODEL_INDEX 4
256 #define LZMA_END_POS_MODEL_INDEX 14
257 #define LZMA_NUM_FULL_DISTANCES (1 << (LZMA_END_POS_MODEL_INDEX >> 1))
258
259 #define LZMA_NUM_POS_SLOT_BITS 6
260 #define LZMA_NUM_LEN_TO_POS_STATES 4
261
262 #define LZMA_NUM_ALIGN_BITS 4
263
264 #define LZMA_MATCH_MIN_LEN 2
265
266 #define LZMA_IS_MATCH 0
267 #define LZMA_IS_REP (LZMA_IS_MATCH + (LZMA_NUM_STATES << LZMA_NUM_POS_BITS_MAX))
268 #define LZMA_IS_REP_G0 (LZMA_IS_REP + LZMA_NUM_STATES)
269 #define LZMA_IS_REP_G1 (LZMA_IS_REP_G0 + LZMA_NUM_STATES)
270 #define LZMA_IS_REP_G2 (LZMA_IS_REP_G1 + LZMA_NUM_STATES)
271 #define LZMA_IS_REP_0_LONG (LZMA_IS_REP_G2 + LZMA_NUM_STATES)
272 #define LZMA_POS_SLOT (LZMA_IS_REP_0_LONG \
273                        + (LZMA_NUM_STATES << LZMA_NUM_POS_BITS_MAX))
274 #define LZMA_SPEC_POS (LZMA_POS_SLOT \
275                        +(LZMA_NUM_LEN_TO_POS_STATES << LZMA_NUM_POS_SLOT_BITS))
276 #define LZMA_ALIGN (LZMA_SPEC_POS \
277                     + LZMA_NUM_FULL_DISTANCES - LZMA_END_POS_MODEL_INDEX)
278 #define LZMA_LEN_CODER (LZMA_ALIGN + (1 << LZMA_NUM_ALIGN_BITS))
279 #define LZMA_REP_LEN_CODER (LZMA_LEN_CODER + LZMA_NUM_LEN_PROBS)
280 #define LZMA_LITERAL (LZMA_REP_LEN_CODER + LZMA_NUM_LEN_PROBS)
281
282
283 struct writer {
284         uint8_t *buffer;
285         uint8_t previous_byte;
286         size_t buffer_pos;
287         int bufsize;
288         size_t global_pos;
289         int(*flush)(void*, unsigned int);
290         struct lzma_header *header;
291 };
292
293 struct cstate {
294         int state;
295         uint32_t rep0, rep1, rep2, rep3;
296 };
297
298 static inline size_t INIT get_pos(struct writer *wr)
299 {
300         return
301                 wr->global_pos + wr->buffer_pos;
302 }
303
304 static inline uint8_t INIT peek_old_byte(struct writer *wr,
305                                                 uint32_t offs)
306 {
307         if (!wr->flush) {
308                 int32_t pos;
309                 while (offs > wr->header->dict_size)
310                         offs -= wr->header->dict_size;
311                 pos = wr->buffer_pos - offs;
312                 return wr->buffer[pos];
313         } else {
314                 uint32_t pos = wr->buffer_pos - offs;
315                 while (pos >= wr->header->dict_size)
316                         pos += wr->header->dict_size;
317                 return wr->buffer[pos];
318         }
319
320 }
321
322 static inline void INIT write_byte(struct writer *wr, uint8_t byte)
323 {
324         wr->buffer[wr->buffer_pos++] = wr->previous_byte = byte;
325         if (wr->flush && wr->buffer_pos == wr->header->dict_size) {
326                 wr->buffer_pos = 0;
327                 wr->global_pos += wr->header->dict_size;
328                 wr->flush((char *)wr->buffer, wr->header->dict_size);
329         }
330 }
331
332
333 static inline void INIT copy_byte(struct writer *wr, uint32_t offs)
334 {
335         write_byte(wr, peek_old_byte(wr, offs));
336 }
337
338 static inline void INIT copy_bytes(struct writer *wr,
339                                          uint32_t rep0, int len)
340 {
341         do {
342                 copy_byte(wr, rep0);
343                 len--;
344         } while (len != 0 && wr->buffer_pos < wr->header->dst_size);
345 }
346
347 static inline void INIT process_bit0(struct writer *wr, struct rc *rc,
348                                      struct cstate *cst, uint16_t *p,
349                                      int pos_state, uint16_t *prob,
350                                      int lc, uint32_t literal_pos_mask) {
351         int mi = 1;
352         rc_update_bit_0(rc, prob);
353         prob = (p + LZMA_LITERAL +
354                 (LZMA_LIT_SIZE
355                  * (((get_pos(wr) & literal_pos_mask) << lc)
356                     + (wr->previous_byte >> (8 - lc))))
357                 );
358
359         if (cst->state >= LZMA_NUM_LIT_STATES) {
360                 int match_byte = peek_old_byte(wr, cst->rep0);
361                 do {
362                         int bit;
363                         uint16_t *prob_lit;
364
365                         match_byte <<= 1;
366                         bit = match_byte & 0x100;
367                         prob_lit = prob + 0x100 + bit + mi;
368                         if (rc_get_bit(rc, prob_lit, &mi)) {
369                                 if (!bit)
370                                         break;
371                         } else {
372                                 if (bit)
373                                         break;
374                         }
375                 } while (mi < 0x100);
376         }
377         while (mi < 0x100) {
378                 uint16_t *prob_lit = prob + mi;
379                 rc_get_bit(rc, prob_lit, &mi);
380         }
381         write_byte(wr, mi);
382         if (cst->state < 4)
383                 cst->state = 0;
384         else if (cst->state < 10)
385                 cst->state -= 3;
386         else
387                 cst->state -= 6;
388 }
389
390 static inline void INIT process_bit1(struct writer *wr, struct rc *rc,
391                                             struct cstate *cst, uint16_t *p,
392                                             int pos_state, uint16_t *prob) {
393   int offset;
394         uint16_t *prob_len;
395         int num_bits;
396         int len;
397
398         rc_update_bit_1(rc, prob);
399         prob = p + LZMA_IS_REP + cst->state;
400         if (rc_is_bit_0(rc, prob)) {
401                 rc_update_bit_0(rc, prob);
402                 cst->rep3 = cst->rep2;
403                 cst->rep2 = cst->rep1;
404                 cst->rep1 = cst->rep0;
405                 cst->state = cst->state < LZMA_NUM_LIT_STATES ? 0 : 3;
406                 prob = p + LZMA_LEN_CODER;
407         } else {
408                 rc_update_bit_1(rc, prob);
409                 prob = p + LZMA_IS_REP_G0 + cst->state;
410                 if (rc_is_bit_0(rc, prob)) {
411                         rc_update_bit_0(rc, prob);
412                         prob = (p + LZMA_IS_REP_0_LONG
413                                 + (cst->state <<
414                                    LZMA_NUM_POS_BITS_MAX) +
415                                 pos_state);
416                         if (rc_is_bit_0(rc, prob)) {
417                                 rc_update_bit_0(rc, prob);
418
419                                 cst->state = cst->state < LZMA_NUM_LIT_STATES ?
420                                         9 : 11;
421                                 copy_byte(wr, cst->rep0);
422                                 return;
423                         } else {
424                                 rc_update_bit_1(rc, prob);
425                         }
426                 } else {
427                         uint32_t distance;
428
429                         rc_update_bit_1(rc, prob);
430                         prob = p + LZMA_IS_REP_G1 + cst->state;
431                         if (rc_is_bit_0(rc, prob)) {
432                                 rc_update_bit_0(rc, prob);
433                                 distance = cst->rep1;
434                         } else {
435                                 rc_update_bit_1(rc, prob);
436                                 prob = p + LZMA_IS_REP_G2 + cst->state;
437                                 if (rc_is_bit_0(rc, prob)) {
438                                         rc_update_bit_0(rc, prob);
439                                         distance = cst->rep2;
440                                 } else {
441                                         rc_update_bit_1(rc, prob);
442                                         distance = cst->rep3;
443                                         cst->rep3 = cst->rep2;
444                                 }
445                                 cst->rep2 = cst->rep1;
446                         }
447                         cst->rep1 = cst->rep0;
448                         cst->rep0 = distance;
449                 }
450                 cst->state = cst->state < LZMA_NUM_LIT_STATES ? 8 : 11;
451                 prob = p + LZMA_REP_LEN_CODER;
452         }
453
454         prob_len = prob + LZMA_LEN_CHOICE;
455         if (rc_is_bit_0(rc, prob_len)) {
456                 rc_update_bit_0(rc, prob_len);
457                 prob_len = (prob + LZMA_LEN_LOW
458                             + (pos_state <<
459                                LZMA_LEN_NUM_LOW_BITS));
460                 offset = 0;
461                 num_bits = LZMA_LEN_NUM_LOW_BITS;
462         } else {
463                 rc_update_bit_1(rc, prob_len);
464                 prob_len = prob + LZMA_LEN_CHOICE_2;
465                 if (rc_is_bit_0(rc, prob_len)) {
466                         rc_update_bit_0(rc, prob_len);
467                         prob_len = (prob + LZMA_LEN_MID
468                                     + (pos_state <<
469                                        LZMA_LEN_NUM_MID_BITS));
470                         offset = 1 << LZMA_LEN_NUM_LOW_BITS;
471                         num_bits = LZMA_LEN_NUM_MID_BITS;
472                 } else {
473                         rc_update_bit_1(rc, prob_len);
474                         prob_len = prob + LZMA_LEN_HIGH;
475                         offset = ((1 << LZMA_LEN_NUM_LOW_BITS)
476                                   + (1 << LZMA_LEN_NUM_MID_BITS));
477                         num_bits = LZMA_LEN_NUM_HIGH_BITS;
478                 }
479         }
480
481         rc_bit_tree_decode(rc, prob_len, num_bits, &len);
482         len += offset;
483
484         if (cst->state < 4) {
485                 int pos_slot;
486
487                 cst->state += LZMA_NUM_LIT_STATES;
488                 prob =
489                         p + LZMA_POS_SLOT +
490                         ((len <
491                           LZMA_NUM_LEN_TO_POS_STATES ? len :
492                           LZMA_NUM_LEN_TO_POS_STATES - 1)
493                          << LZMA_NUM_POS_SLOT_BITS);
494                 rc_bit_tree_decode(rc, prob,
495                                    LZMA_NUM_POS_SLOT_BITS,
496                                    &pos_slot);
497                 if (pos_slot >= LZMA_START_POS_MODEL_INDEX) {
498                         int i, mi;
499                         num_bits = (pos_slot >> 1) - 1;
500                         cst->rep0 = 2 | (pos_slot & 1);
501                         if (pos_slot < LZMA_END_POS_MODEL_INDEX) {
502                                 cst->rep0 <<= num_bits;
503                                 prob = p + LZMA_SPEC_POS +
504                                         cst->rep0 - pos_slot - 1;
505                         } else {
506                                 num_bits -= LZMA_NUM_ALIGN_BITS;
507                                 while (num_bits--)
508                                         cst->rep0 = (cst->rep0 << 1) |
509                                                 rc_direct_bit(rc);
510                                 prob = p + LZMA_ALIGN;
511                                 cst->rep0 <<= LZMA_NUM_ALIGN_BITS;
512                                 num_bits = LZMA_NUM_ALIGN_BITS;
513                         }
514                         i = 1;
515                         mi = 1;
516                         while (num_bits--) {
517                                 if (rc_get_bit(rc, prob + mi, &mi))
518                                         cst->rep0 |= i;
519                                 i <<= 1;
520                         }
521                 } else
522                         cst->rep0 = pos_slot;
523                 if (++(cst->rep0) == 0)
524                         return;
525         }
526
527         len += LZMA_MATCH_MIN_LEN;
528
529         copy_bytes(wr, cst->rep0, len);
530 }
531
532
533
534 STATIC inline int INIT unlzma(unsigned char *buf, int in_len,
535                               int(*fill)(void*, unsigned int),
536                               int(*flush)(void*, unsigned int),
537                               unsigned char *output,
538                               int *posp,
539                               void(*error_fn)(char *x)
540         )
541 {
542         struct lzma_header header;
543         int lc, pb, lp;
544         uint32_t pos_state_mask;
545         uint32_t literal_pos_mask;
546         uint16_t *p;
547         int num_probs;
548         struct rc rc;
549         int i, mi;
550         struct writer wr;
551         struct cstate cst;
552         unsigned char *inbuf;
553         int ret = -1;
554
555         set_error_fn(error_fn);
556
557         if (buf)
558                 inbuf = buf;
559         else
560                 inbuf = malloc(LZMA_IOBUF_SIZE);
561         if (!inbuf) {
562                 error("Could not allocate input bufer");
563                 goto exit_0;
564         }
565
566         cst.state = 0;
567         cst.rep0 = cst.rep1 = cst.rep2 = cst.rep3 = 1;
568
569         wr.header = &header;
570         wr.flush = flush;
571         wr.global_pos = 0;
572         wr.previous_byte = 0;
573         wr.buffer_pos = 0;
574
575         rc_init(&rc, fill, inbuf, in_len);
576
577         for (i = 0; i < sizeof(header); i++) {
578                 if (rc.ptr >= rc.buffer_end)
579                         rc_read(&rc);
580                 ((unsigned char *)&header)[i] = *rc.ptr++;
581         }
582
583         if (header.pos >= (9 * 5 * 5))
584                 error("bad header");
585
586         mi = 0;
587         lc = header.pos;
588         while (lc >= 9) {
589                 mi++;
590                 lc -= 9;
591         }
592         pb = 0;
593         lp = mi;
594         while (lp >= 5) {
595                 pb++;
596                 lp -= 5;
597         }
598         pos_state_mask = (1 << pb) - 1;
599         literal_pos_mask = (1 << lp) - 1;
600
601         ENDIAN_CONVERT(header.dict_size);
602         ENDIAN_CONVERT(header.dst_size);
603
604         if (header.dict_size == 0)
605                 header.dict_size = 1;
606
607         if (output)
608                 wr.buffer = output;
609         else {
610                 wr.bufsize = MIN(header.dst_size, header.dict_size);
611                 wr.buffer = large_malloc(wr.bufsize);
612         }
613         if (wr.buffer == NULL)
614                 goto exit_1;
615
616         num_probs = LZMA_BASE_SIZE + (LZMA_LIT_SIZE << (lc + lp));
617         p = (uint16_t *) large_malloc(num_probs * sizeof(*p));
618         if (p == 0)
619                 goto exit_2;
620         num_probs = LZMA_LITERAL + (LZMA_LIT_SIZE << (lc + lp));
621         for (i = 0; i < num_probs; i++)
622                 p[i] = (1 << RC_MODEL_TOTAL_BITS) >> 1;
623
624         rc_init_code(&rc);
625
626         while (get_pos(&wr) < header.dst_size) {
627                 int pos_state = get_pos(&wr) & pos_state_mask;
628                 uint16_t *prob = p + LZMA_IS_MATCH +
629                         (cst.state << LZMA_NUM_POS_BITS_MAX) + pos_state;
630                 if (rc_is_bit_0(&rc, prob))
631                         process_bit0(&wr, &rc, &cst, p, pos_state, prob,
632                                      lc, literal_pos_mask);
633                 else {
634                         process_bit1(&wr, &rc, &cst, p, pos_state, prob);
635                         if (cst.rep0 == 0)
636                                 break;
637                 }
638         }
639
640         if (posp)
641                 *posp = rc.ptr-rc.buffer;
642         if (wr.flush)
643                 wr.flush(wr.buffer, wr.buffer_pos);
644         ret = 0;
645         large_free(p);
646 exit_2:
647         if (!output)
648                 large_free(wr.buffer);
649 exit_1:
650         if (!buf)
651                 free(inbuf);
652 exit_0:
653         return ret;
654 }
655
656 #ifdef PREBOOT
657 STATIC int INIT decompress(unsigned char *buf, int in_len,
658                               int(*fill)(void*, unsigned int),
659                               int(*flush)(void*, unsigned int),
660                               unsigned char *output,
661                               int *posp,
662                               void(*error_fn)(char *x)
663         )
664 {
665         return unlzma(buf, in_len - 4, fill, flush, output, posp, error_fn);
666 }
667 #endif