mempolicy: add bitmap_onto() and bitmap_fold() operations
[linux-2.6.git] / lib / bitmap.c
1 /*
2  * lib/bitmap.c
3  * Helper functions for bitmap.h.
4  *
5  * This source code is licensed under the GNU General Public License,
6  * Version 2.  See the file COPYING for more details.
7  */
8 #include <linux/module.h>
9 #include <linux/ctype.h>
10 #include <linux/errno.h>
11 #include <linux/bitmap.h>
12 #include <linux/bitops.h>
13 #include <asm/uaccess.h>
14
15 /*
16  * bitmaps provide an array of bits, implemented using an an
17  * array of unsigned longs.  The number of valid bits in a
18  * given bitmap does _not_ need to be an exact multiple of
19  * BITS_PER_LONG.
20  *
21  * The possible unused bits in the last, partially used word
22  * of a bitmap are 'don't care'.  The implementation makes
23  * no particular effort to keep them zero.  It ensures that
24  * their value will not affect the results of any operation.
25  * The bitmap operations that return Boolean (bitmap_empty,
26  * for example) or scalar (bitmap_weight, for example) results
27  * carefully filter out these unused bits from impacting their
28  * results.
29  *
30  * These operations actually hold to a slightly stronger rule:
31  * if you don't input any bitmaps to these ops that have some
32  * unused bits set, then they won't output any set unused bits
33  * in output bitmaps.
34  *
35  * The byte ordering of bitmaps is more natural on little
36  * endian architectures.  See the big-endian headers
37  * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
38  * for the best explanations of this ordering.
39  */
40
41 int __bitmap_empty(const unsigned long *bitmap, int bits)
42 {
43         int k, lim = bits/BITS_PER_LONG;
44         for (k = 0; k < lim; ++k)
45                 if (bitmap[k])
46                         return 0;
47
48         if (bits % BITS_PER_LONG)
49                 if (bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
50                         return 0;
51
52         return 1;
53 }
54 EXPORT_SYMBOL(__bitmap_empty);
55
56 int __bitmap_full(const unsigned long *bitmap, int bits)
57 {
58         int k, lim = bits/BITS_PER_LONG;
59         for (k = 0; k < lim; ++k)
60                 if (~bitmap[k])
61                         return 0;
62
63         if (bits % BITS_PER_LONG)
64                 if (~bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
65                         return 0;
66
67         return 1;
68 }
69 EXPORT_SYMBOL(__bitmap_full);
70
71 int __bitmap_equal(const unsigned long *bitmap1,
72                 const unsigned long *bitmap2, int bits)
73 {
74         int k, lim = bits/BITS_PER_LONG;
75         for (k = 0; k < lim; ++k)
76                 if (bitmap1[k] != bitmap2[k])
77                         return 0;
78
79         if (bits % BITS_PER_LONG)
80                 if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
81                         return 0;
82
83         return 1;
84 }
85 EXPORT_SYMBOL(__bitmap_equal);
86
87 void __bitmap_complement(unsigned long *dst, const unsigned long *src, int bits)
88 {
89         int k, lim = bits/BITS_PER_LONG;
90         for (k = 0; k < lim; ++k)
91                 dst[k] = ~src[k];
92
93         if (bits % BITS_PER_LONG)
94                 dst[k] = ~src[k] & BITMAP_LAST_WORD_MASK(bits);
95 }
96 EXPORT_SYMBOL(__bitmap_complement);
97
98 /**
99  * __bitmap_shift_right - logical right shift of the bits in a bitmap
100  *   @dst : destination bitmap
101  *   @src : source bitmap
102  *   @shift : shift by this many bits
103  *   @bits : bitmap size, in bits
104  *
105  * Shifting right (dividing) means moving bits in the MS -> LS bit
106  * direction.  Zeros are fed into the vacated MS positions and the
107  * LS bits shifted off the bottom are lost.
108  */
109 void __bitmap_shift_right(unsigned long *dst,
110                         const unsigned long *src, int shift, int bits)
111 {
112         int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG;
113         int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
114         unsigned long mask = (1UL << left) - 1;
115         for (k = 0; off + k < lim; ++k) {
116                 unsigned long upper, lower;
117
118                 /*
119                  * If shift is not word aligned, take lower rem bits of
120                  * word above and make them the top rem bits of result.
121                  */
122                 if (!rem || off + k + 1 >= lim)
123                         upper = 0;
124                 else {
125                         upper = src[off + k + 1];
126                         if (off + k + 1 == lim - 1 && left)
127                                 upper &= mask;
128                 }
129                 lower = src[off + k];
130                 if (left && off + k == lim - 1)
131                         lower &= mask;
132                 dst[k] = upper << (BITS_PER_LONG - rem) | lower >> rem;
133                 if (left && k == lim - 1)
134                         dst[k] &= mask;
135         }
136         if (off)
137                 memset(&dst[lim - off], 0, off*sizeof(unsigned long));
138 }
139 EXPORT_SYMBOL(__bitmap_shift_right);
140
141
142 /**
143  * __bitmap_shift_left - logical left shift of the bits in a bitmap
144  *   @dst : destination bitmap
145  *   @src : source bitmap
146  *   @shift : shift by this many bits
147  *   @bits : bitmap size, in bits
148  *
149  * Shifting left (multiplying) means moving bits in the LS -> MS
150  * direction.  Zeros are fed into the vacated LS bit positions
151  * and those MS bits shifted off the top are lost.
152  */
153
154 void __bitmap_shift_left(unsigned long *dst,
155                         const unsigned long *src, int shift, int bits)
156 {
157         int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG;
158         int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
159         for (k = lim - off - 1; k >= 0; --k) {
160                 unsigned long upper, lower;
161
162                 /*
163                  * If shift is not word aligned, take upper rem bits of
164                  * word below and make them the bottom rem bits of result.
165                  */
166                 if (rem && k > 0)
167                         lower = src[k - 1];
168                 else
169                         lower = 0;
170                 upper = src[k];
171                 if (left && k == lim - 1)
172                         upper &= (1UL << left) - 1;
173                 dst[k + off] = lower  >> (BITS_PER_LONG - rem) | upper << rem;
174                 if (left && k + off == lim - 1)
175                         dst[k + off] &= (1UL << left) - 1;
176         }
177         if (off)
178                 memset(dst, 0, off*sizeof(unsigned long));
179 }
180 EXPORT_SYMBOL(__bitmap_shift_left);
181
182 void __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
183                                 const unsigned long *bitmap2, int bits)
184 {
185         int k;
186         int nr = BITS_TO_LONGS(bits);
187
188         for (k = 0; k < nr; k++)
189                 dst[k] = bitmap1[k] & bitmap2[k];
190 }
191 EXPORT_SYMBOL(__bitmap_and);
192
193 void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
194                                 const unsigned long *bitmap2, int bits)
195 {
196         int k;
197         int nr = BITS_TO_LONGS(bits);
198
199         for (k = 0; k < nr; k++)
200                 dst[k] = bitmap1[k] | bitmap2[k];
201 }
202 EXPORT_SYMBOL(__bitmap_or);
203
204 void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
205                                 const unsigned long *bitmap2, int bits)
206 {
207         int k;
208         int nr = BITS_TO_LONGS(bits);
209
210         for (k = 0; k < nr; k++)
211                 dst[k] = bitmap1[k] ^ bitmap2[k];
212 }
213 EXPORT_SYMBOL(__bitmap_xor);
214
215 void __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
216                                 const unsigned long *bitmap2, int bits)
217 {
218         int k;
219         int nr = BITS_TO_LONGS(bits);
220
221         for (k = 0; k < nr; k++)
222                 dst[k] = bitmap1[k] & ~bitmap2[k];
223 }
224 EXPORT_SYMBOL(__bitmap_andnot);
225
226 int __bitmap_intersects(const unsigned long *bitmap1,
227                                 const unsigned long *bitmap2, int bits)
228 {
229         int k, lim = bits/BITS_PER_LONG;
230         for (k = 0; k < lim; ++k)
231                 if (bitmap1[k] & bitmap2[k])
232                         return 1;
233
234         if (bits % BITS_PER_LONG)
235                 if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
236                         return 1;
237         return 0;
238 }
239 EXPORT_SYMBOL(__bitmap_intersects);
240
241 int __bitmap_subset(const unsigned long *bitmap1,
242                                 const unsigned long *bitmap2, int bits)
243 {
244         int k, lim = bits/BITS_PER_LONG;
245         for (k = 0; k < lim; ++k)
246                 if (bitmap1[k] & ~bitmap2[k])
247                         return 0;
248
249         if (bits % BITS_PER_LONG)
250                 if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
251                         return 0;
252         return 1;
253 }
254 EXPORT_SYMBOL(__bitmap_subset);
255
256 int __bitmap_weight(const unsigned long *bitmap, int bits)
257 {
258         int k, w = 0, lim = bits/BITS_PER_LONG;
259
260         for (k = 0; k < lim; k++)
261                 w += hweight_long(bitmap[k]);
262
263         if (bits % BITS_PER_LONG)
264                 w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
265
266         return w;
267 }
268 EXPORT_SYMBOL(__bitmap_weight);
269
270 /*
271  * Bitmap printing & parsing functions: first version by Bill Irwin,
272  * second version by Paul Jackson, third by Joe Korty.
273  */
274
275 #define CHUNKSZ                         32
276 #define nbits_to_hold_value(val)        fls(val)
277 #define unhex(c)                        (isdigit(c) ? (c - '0') : (toupper(c) - 'A' + 10))
278 #define BASEDEC 10              /* fancier cpuset lists input in decimal */
279
280 /**
281  * bitmap_scnprintf - convert bitmap to an ASCII hex string.
282  * @buf: byte buffer into which string is placed
283  * @buflen: reserved size of @buf, in bytes
284  * @maskp: pointer to bitmap to convert
285  * @nmaskbits: size of bitmap, in bits
286  *
287  * Exactly @nmaskbits bits are displayed.  Hex digits are grouped into
288  * comma-separated sets of eight digits per set.
289  */
290 int bitmap_scnprintf(char *buf, unsigned int buflen,
291         const unsigned long *maskp, int nmaskbits)
292 {
293         int i, word, bit, len = 0;
294         unsigned long val;
295         const char *sep = "";
296         int chunksz;
297         u32 chunkmask;
298
299         chunksz = nmaskbits & (CHUNKSZ - 1);
300         if (chunksz == 0)
301                 chunksz = CHUNKSZ;
302
303         i = ALIGN(nmaskbits, CHUNKSZ) - CHUNKSZ;
304         for (; i >= 0; i -= CHUNKSZ) {
305                 chunkmask = ((1ULL << chunksz) - 1);
306                 word = i / BITS_PER_LONG;
307                 bit = i % BITS_PER_LONG;
308                 val = (maskp[word] >> bit) & chunkmask;
309                 len += scnprintf(buf+len, buflen-len, "%s%0*lx", sep,
310                         (chunksz+3)/4, val);
311                 chunksz = CHUNKSZ;
312                 sep = ",";
313         }
314         return len;
315 }
316 EXPORT_SYMBOL(bitmap_scnprintf);
317
318 /**
319  * bitmap_scnprintf_len - return buffer length needed to convert
320  * bitmap to an ASCII hex string.
321  * @len: number of bits to be converted
322  */
323 int bitmap_scnprintf_len(unsigned int len)
324 {
325         /* we need 9 chars per word for 32 bit words (8 hexdigits + sep/null) */
326         int bitslen = ALIGN(len, CHUNKSZ);
327         int wordlen = CHUNKSZ / 4;
328         int buflen = (bitslen / wordlen) * (wordlen + 1) * sizeof(char);
329
330         return buflen;
331 }
332 EXPORT_SYMBOL(bitmap_scnprintf_len);
333
334 /**
335  * __bitmap_parse - convert an ASCII hex string into a bitmap.
336  * @buf: pointer to buffer containing string.
337  * @buflen: buffer size in bytes.  If string is smaller than this
338  *    then it must be terminated with a \0.
339  * @is_user: location of buffer, 0 indicates kernel space
340  * @maskp: pointer to bitmap array that will contain result.
341  * @nmaskbits: size of bitmap, in bits.
342  *
343  * Commas group hex digits into chunks.  Each chunk defines exactly 32
344  * bits of the resultant bitmask.  No chunk may specify a value larger
345  * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
346  * then leading 0-bits are prepended.  %-EINVAL is returned for illegal
347  * characters and for grouping errors such as "1,,5", ",44", "," and "".
348  * Leading and trailing whitespace accepted, but not embedded whitespace.
349  */
350 int __bitmap_parse(const char *buf, unsigned int buflen,
351                 int is_user, unsigned long *maskp,
352                 int nmaskbits)
353 {
354         int c, old_c, totaldigits, ndigits, nchunks, nbits;
355         u32 chunk;
356         const char __user *ubuf = buf;
357
358         bitmap_zero(maskp, nmaskbits);
359
360         nchunks = nbits = totaldigits = c = 0;
361         do {
362                 chunk = ndigits = 0;
363
364                 /* Get the next chunk of the bitmap */
365                 while (buflen) {
366                         old_c = c;
367                         if (is_user) {
368                                 if (__get_user(c, ubuf++))
369                                         return -EFAULT;
370                         }
371                         else
372                                 c = *buf++;
373                         buflen--;
374                         if (isspace(c))
375                                 continue;
376
377                         /*
378                          * If the last character was a space and the current
379                          * character isn't '\0', we've got embedded whitespace.
380                          * This is a no-no, so throw an error.
381                          */
382                         if (totaldigits && c && isspace(old_c))
383                                 return -EINVAL;
384
385                         /* A '\0' or a ',' signal the end of the chunk */
386                         if (c == '\0' || c == ',')
387                                 break;
388
389                         if (!isxdigit(c))
390                                 return -EINVAL;
391
392                         /*
393                          * Make sure there are at least 4 free bits in 'chunk'.
394                          * If not, this hexdigit will overflow 'chunk', so
395                          * throw an error.
396                          */
397                         if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1))
398                                 return -EOVERFLOW;
399
400                         chunk = (chunk << 4) | unhex(c);
401                         ndigits++; totaldigits++;
402                 }
403                 if (ndigits == 0)
404                         return -EINVAL;
405                 if (nchunks == 0 && chunk == 0)
406                         continue;
407
408                 __bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits);
409                 *maskp |= chunk;
410                 nchunks++;
411                 nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ;
412                 if (nbits > nmaskbits)
413                         return -EOVERFLOW;
414         } while (buflen && c == ',');
415
416         return 0;
417 }
418 EXPORT_SYMBOL(__bitmap_parse);
419
420 /**
421  * bitmap_parse_user()
422  *
423  * @ubuf: pointer to user buffer containing string.
424  * @ulen: buffer size in bytes.  If string is smaller than this
425  *    then it must be terminated with a \0.
426  * @maskp: pointer to bitmap array that will contain result.
427  * @nmaskbits: size of bitmap, in bits.
428  *
429  * Wrapper for __bitmap_parse(), providing it with user buffer.
430  *
431  * We cannot have this as an inline function in bitmap.h because it needs
432  * linux/uaccess.h to get the access_ok() declaration and this causes
433  * cyclic dependencies.
434  */
435 int bitmap_parse_user(const char __user *ubuf,
436                         unsigned int ulen, unsigned long *maskp,
437                         int nmaskbits)
438 {
439         if (!access_ok(VERIFY_READ, ubuf, ulen))
440                 return -EFAULT;
441         return __bitmap_parse((const char *)ubuf, ulen, 1, maskp, nmaskbits);
442 }
443 EXPORT_SYMBOL(bitmap_parse_user);
444
445 /*
446  * bscnl_emit(buf, buflen, rbot, rtop, bp)
447  *
448  * Helper routine for bitmap_scnlistprintf().  Write decimal number
449  * or range to buf, suppressing output past buf+buflen, with optional
450  * comma-prefix.  Return len of what would be written to buf, if it
451  * all fit.
452  */
453 static inline int bscnl_emit(char *buf, int buflen, int rbot, int rtop, int len)
454 {
455         if (len > 0)
456                 len += scnprintf(buf + len, buflen - len, ",");
457         if (rbot == rtop)
458                 len += scnprintf(buf + len, buflen - len, "%d", rbot);
459         else
460                 len += scnprintf(buf + len, buflen - len, "%d-%d", rbot, rtop);
461         return len;
462 }
463
464 /**
465  * bitmap_scnlistprintf - convert bitmap to list format ASCII string
466  * @buf: byte buffer into which string is placed
467  * @buflen: reserved size of @buf, in bytes
468  * @maskp: pointer to bitmap to convert
469  * @nmaskbits: size of bitmap, in bits
470  *
471  * Output format is a comma-separated list of decimal numbers and
472  * ranges.  Consecutively set bits are shown as two hyphen-separated
473  * decimal numbers, the smallest and largest bit numbers set in
474  * the range.  Output format is compatible with the format
475  * accepted as input by bitmap_parselist().
476  *
477  * The return value is the number of characters which would be
478  * generated for the given input, excluding the trailing '\0', as
479  * per ISO C99.
480  */
481 int bitmap_scnlistprintf(char *buf, unsigned int buflen,
482         const unsigned long *maskp, int nmaskbits)
483 {
484         int len = 0;
485         /* current bit is 'cur', most recently seen range is [rbot, rtop] */
486         int cur, rbot, rtop;
487
488         if (buflen == 0)
489                 return 0;
490         buf[0] = 0;
491
492         rbot = cur = find_first_bit(maskp, nmaskbits);
493         while (cur < nmaskbits) {
494                 rtop = cur;
495                 cur = find_next_bit(maskp, nmaskbits, cur+1);
496                 if (cur >= nmaskbits || cur > rtop + 1) {
497                         len = bscnl_emit(buf, buflen, rbot, rtop, len);
498                         rbot = cur;
499                 }
500         }
501         return len;
502 }
503 EXPORT_SYMBOL(bitmap_scnlistprintf);
504
505 /**
506  * bitmap_parselist - convert list format ASCII string to bitmap
507  * @bp: read nul-terminated user string from this buffer
508  * @maskp: write resulting mask here
509  * @nmaskbits: number of bits in mask to be written
510  *
511  * Input format is a comma-separated list of decimal numbers and
512  * ranges.  Consecutively set bits are shown as two hyphen-separated
513  * decimal numbers, the smallest and largest bit numbers set in
514  * the range.
515  *
516  * Returns 0 on success, -errno on invalid input strings.
517  * Error values:
518  *    %-EINVAL: second number in range smaller than first
519  *    %-EINVAL: invalid character in string
520  *    %-ERANGE: bit number specified too large for mask
521  */
522 int bitmap_parselist(const char *bp, unsigned long *maskp, int nmaskbits)
523 {
524         unsigned a, b;
525
526         bitmap_zero(maskp, nmaskbits);
527         do {
528                 if (!isdigit(*bp))
529                         return -EINVAL;
530                 b = a = simple_strtoul(bp, (char **)&bp, BASEDEC);
531                 if (*bp == '-') {
532                         bp++;
533                         if (!isdigit(*bp))
534                                 return -EINVAL;
535                         b = simple_strtoul(bp, (char **)&bp, BASEDEC);
536                 }
537                 if (!(a <= b))
538                         return -EINVAL;
539                 if (b >= nmaskbits)
540                         return -ERANGE;
541                 while (a <= b) {
542                         set_bit(a, maskp);
543                         a++;
544                 }
545                 if (*bp == ',')
546                         bp++;
547         } while (*bp != '\0' && *bp != '\n');
548         return 0;
549 }
550 EXPORT_SYMBOL(bitmap_parselist);
551
552 /**
553  * bitmap_pos_to_ord(buf, pos, bits)
554  *      @buf: pointer to a bitmap
555  *      @pos: a bit position in @buf (0 <= @pos < @bits)
556  *      @bits: number of valid bit positions in @buf
557  *
558  * Map the bit at position @pos in @buf (of length @bits) to the
559  * ordinal of which set bit it is.  If it is not set or if @pos
560  * is not a valid bit position, map to -1.
561  *
562  * If for example, just bits 4 through 7 are set in @buf, then @pos
563  * values 4 through 7 will get mapped to 0 through 3, respectively,
564  * and other @pos values will get mapped to 0.  When @pos value 7
565  * gets mapped to (returns) @ord value 3 in this example, that means
566  * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
567  *
568  * The bit positions 0 through @bits are valid positions in @buf.
569  */
570 static int bitmap_pos_to_ord(const unsigned long *buf, int pos, int bits)
571 {
572         int i, ord;
573
574         if (pos < 0 || pos >= bits || !test_bit(pos, buf))
575                 return -1;
576
577         i = find_first_bit(buf, bits);
578         ord = 0;
579         while (i < pos) {
580                 i = find_next_bit(buf, bits, i + 1);
581                 ord++;
582         }
583         BUG_ON(i != pos);
584
585         return ord;
586 }
587
588 /**
589  * bitmap_ord_to_pos(buf, ord, bits)
590  *      @buf: pointer to bitmap
591  *      @ord: ordinal bit position (n-th set bit, n >= 0)
592  *      @bits: number of valid bit positions in @buf
593  *
594  * Map the ordinal offset of bit @ord in @buf to its position in @buf.
595  * Value of @ord should be in range 0 <= @ord < weight(buf), else
596  * results are undefined.
597  *
598  * If for example, just bits 4 through 7 are set in @buf, then @ord
599  * values 0 through 3 will get mapped to 4 through 7, respectively,
600  * and all other @ord values return undefined values.  When @ord value 3
601  * gets mapped to (returns) @pos value 7 in this example, that means
602  * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
603  *
604  * The bit positions 0 through @bits are valid positions in @buf.
605  */
606 static int bitmap_ord_to_pos(const unsigned long *buf, int ord, int bits)
607 {
608         int pos = 0;
609
610         if (ord >= 0 && ord < bits) {
611                 int i;
612
613                 for (i = find_first_bit(buf, bits);
614                      i < bits && ord > 0;
615                      i = find_next_bit(buf, bits, i + 1))
616                         ord--;
617                 if (i < bits && ord == 0)
618                         pos = i;
619         }
620
621         return pos;
622 }
623
624 /**
625  * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
626  *      @dst: remapped result
627  *      @src: subset to be remapped
628  *      @old: defines domain of map
629  *      @new: defines range of map
630  *      @bits: number of bits in each of these bitmaps
631  *
632  * Let @old and @new define a mapping of bit positions, such that
633  * whatever position is held by the n-th set bit in @old is mapped
634  * to the n-th set bit in @new.  In the more general case, allowing
635  * for the possibility that the weight 'w' of @new is less than the
636  * weight of @old, map the position of the n-th set bit in @old to
637  * the position of the m-th set bit in @new, where m == n % w.
638  *
639  * If either of the @old and @new bitmaps are empty, or if @src and
640  * @dst point to the same location, then this routine copies @src
641  * to @dst.
642  *
643  * The positions of unset bits in @old are mapped to themselves
644  * (the identify map).
645  *
646  * Apply the above specified mapping to @src, placing the result in
647  * @dst, clearing any bits previously set in @dst.
648  *
649  * For example, lets say that @old has bits 4 through 7 set, and
650  * @new has bits 12 through 15 set.  This defines the mapping of bit
651  * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
652  * bit positions unchanged.  So if say @src comes into this routine
653  * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
654  * 13 and 15 set.
655  */
656 void bitmap_remap(unsigned long *dst, const unsigned long *src,
657                 const unsigned long *old, const unsigned long *new,
658                 int bits)
659 {
660         int oldbit, w;
661
662         if (dst == src)         /* following doesn't handle inplace remaps */
663                 return;
664         bitmap_zero(dst, bits);
665
666         w = bitmap_weight(new, bits);
667         for (oldbit = find_first_bit(src, bits);
668              oldbit < bits;
669              oldbit = find_next_bit(src, bits, oldbit + 1)) {
670                 int n = bitmap_pos_to_ord(old, oldbit, bits);
671                 if (n < 0 || w == 0)
672                         set_bit(oldbit, dst);   /* identity map */
673                 else
674                         set_bit(bitmap_ord_to_pos(new, n % w, bits), dst);
675         }
676 }
677 EXPORT_SYMBOL(bitmap_remap);
678
679 /**
680  * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
681  *      @oldbit: bit position to be mapped
682  *      @old: defines domain of map
683  *      @new: defines range of map
684  *      @bits: number of bits in each of these bitmaps
685  *
686  * Let @old and @new define a mapping of bit positions, such that
687  * whatever position is held by the n-th set bit in @old is mapped
688  * to the n-th set bit in @new.  In the more general case, allowing
689  * for the possibility that the weight 'w' of @new is less than the
690  * weight of @old, map the position of the n-th set bit in @old to
691  * the position of the m-th set bit in @new, where m == n % w.
692  *
693  * The positions of unset bits in @old are mapped to themselves
694  * (the identify map).
695  *
696  * Apply the above specified mapping to bit position @oldbit, returning
697  * the new bit position.
698  *
699  * For example, lets say that @old has bits 4 through 7 set, and
700  * @new has bits 12 through 15 set.  This defines the mapping of bit
701  * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
702  * bit positions unchanged.  So if say @oldbit is 5, then this routine
703  * returns 13.
704  */
705 int bitmap_bitremap(int oldbit, const unsigned long *old,
706                                 const unsigned long *new, int bits)
707 {
708         int w = bitmap_weight(new, bits);
709         int n = bitmap_pos_to_ord(old, oldbit, bits);
710         if (n < 0 || w == 0)
711                 return oldbit;
712         else
713                 return bitmap_ord_to_pos(new, n % w, bits);
714 }
715 EXPORT_SYMBOL(bitmap_bitremap);
716
717 /**
718  * bitmap_onto - translate one bitmap relative to another
719  *      @dst: resulting translated bitmap
720  *      @orig: original untranslated bitmap
721  *      @relmap: bitmap relative to which translated
722  *      @bits: number of bits in each of these bitmaps
723  *
724  * Set the n-th bit of @dst iff there exists some m such that the
725  * n-th bit of @relmap is set, the m-th bit of @orig is set, and
726  * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
727  * (If you understood the previous sentence the first time your
728  * read it, you're overqualified for your current job.)
729  *
730  * In other words, @orig is mapped onto (surjectively) @dst,
731  * using the the map { <n, m> | the n-th bit of @relmap is the
732  * m-th set bit of @relmap }.
733  *
734  * Any set bits in @orig above bit number W, where W is the
735  * weight of (number of set bits in) @relmap are mapped nowhere.
736  * In particular, if for all bits m set in @orig, m >= W, then
737  * @dst will end up empty.  In situations where the possibility
738  * of such an empty result is not desired, one way to avoid it is
739  * to use the bitmap_fold() operator, below, to first fold the
740  * @orig bitmap over itself so that all its set bits x are in the
741  * range 0 <= x < W.  The bitmap_fold() operator does this by
742  * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
743  *
744  * Example [1] for bitmap_onto():
745  *  Let's say @relmap has bits 30-39 set, and @orig has bits
746  *  1, 3, 5, 7, 9 and 11 set.  Then on return from this routine,
747  *  @dst will have bits 31, 33, 35, 37 and 39 set.
748  *
749  *  When bit 0 is set in @orig, it means turn on the bit in
750  *  @dst corresponding to whatever is the first bit (if any)
751  *  that is turned on in @relmap.  Since bit 0 was off in the
752  *  above example, we leave off that bit (bit 30) in @dst.
753  *
754  *  When bit 1 is set in @orig (as in the above example), it
755  *  means turn on the bit in @dst corresponding to whatever
756  *  is the second bit that is turned on in @relmap.  The second
757  *  bit in @relmap that was turned on in the above example was
758  *  bit 31, so we turned on bit 31 in @dst.
759  *
760  *  Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
761  *  because they were the 4th, 6th, 8th and 10th set bits
762  *  set in @relmap, and the 4th, 6th, 8th and 10th bits of
763  *  @orig (i.e. bits 3, 5, 7 and 9) were also set.
764  *
765  *  When bit 11 is set in @orig, it means turn on the bit in
766  *  @dst corresponding to whatever is the twelth bit that is
767  *  turned on in @relmap.  In the above example, there were
768  *  only ten bits turned on in @relmap (30..39), so that bit
769  *  11 was set in @orig had no affect on @dst.
770  *
771  * Example [2] for bitmap_fold() + bitmap_onto():
772  *  Let's say @relmap has these ten bits set:
773  *              40 41 42 43 45 48 53 61 74 95
774  *  (for the curious, that's 40 plus the first ten terms of the
775  *  Fibonacci sequence.)
776  *
777  *  Further lets say we use the following code, invoking
778  *  bitmap_fold() then bitmap_onto, as suggested above to
779  *  avoid the possitility of an empty @dst result:
780  *
781  *      unsigned long *tmp;     // a temporary bitmap's bits
782  *
783  *      bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
784  *      bitmap_onto(dst, tmp, relmap, bits);
785  *
786  *  Then this table shows what various values of @dst would be, for
787  *  various @orig's.  I list the zero-based positions of each set bit.
788  *  The tmp column shows the intermediate result, as computed by
789  *  using bitmap_fold() to fold the @orig bitmap modulo ten
790  *  (the weight of @relmap).
791  *
792  *      @orig           tmp            @dst
793  *      0                0             40
794  *      1                1             41
795  *      9                9             95
796  *      10               0             40 (*)
797  *      1 3 5 7          1 3 5 7       41 43 48 61
798  *      0 1 2 3 4        0 1 2 3 4     40 41 42 43 45
799  *      0 9 18 27        0 9 8 7       40 61 74 95
800  *      0 10 20 30       0             40
801  *      0 11 22 33       0 1 2 3       40 41 42 43
802  *      0 12 24 36       0 2 4 6       40 42 45 53
803  *      78 102 211       1 2 8         41 42 74 (*)
804  *
805  * (*) For these marked lines, if we hadn't first done bitmap_fold()
806  *     into tmp, then the @dst result would have been empty.
807  *
808  * If either of @orig or @relmap is empty (no set bits), then @dst
809  * will be returned empty.
810  *
811  * If (as explained above) the only set bits in @orig are in positions
812  * m where m >= W, (where W is the weight of @relmap) then @dst will
813  * once again be returned empty.
814  *
815  * All bits in @dst not set by the above rule are cleared.
816  */
817 void bitmap_onto(unsigned long *dst, const unsigned long *orig,
818                         const unsigned long *relmap, int bits)
819 {
820         int n, m;               /* same meaning as in above comment */
821
822         if (dst == orig)        /* following doesn't handle inplace mappings */
823                 return;
824         bitmap_zero(dst, bits);
825
826         /*
827          * The following code is a more efficient, but less
828          * obvious, equivalent to the loop:
829          *      for (m = 0; m < bitmap_weight(relmap, bits); m++) {
830          *              n = bitmap_ord_to_pos(orig, m, bits);
831          *              if (test_bit(m, orig))
832          *                      set_bit(n, dst);
833          *      }
834          */
835
836         m = 0;
837         for (n = find_first_bit(relmap, bits);
838              n < bits;
839              n = find_next_bit(relmap, bits, n + 1)) {
840                 /* m == bitmap_pos_to_ord(relmap, n, bits) */
841                 if (test_bit(m, orig))
842                         set_bit(n, dst);
843                 m++;
844         }
845 }
846 EXPORT_SYMBOL(bitmap_onto);
847
848 /**
849  * bitmap_fold - fold larger bitmap into smaller, modulo specified size
850  *      @dst: resulting smaller bitmap
851  *      @orig: original larger bitmap
852  *      @sz: specified size
853  *      @bits: number of bits in each of these bitmaps
854  *
855  * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
856  * Clear all other bits in @dst.  See further the comment and
857  * Example [2] for bitmap_onto() for why and how to use this.
858  */
859 void bitmap_fold(unsigned long *dst, const unsigned long *orig,
860                         int sz, int bits)
861 {
862         int oldbit;
863
864         if (dst == orig)        /* following doesn't handle inplace mappings */
865                 return;
866         bitmap_zero(dst, bits);
867
868         for (oldbit = find_first_bit(orig, bits);
869              oldbit < bits;
870              oldbit = find_next_bit(orig, bits, oldbit + 1))
871                 set_bit(oldbit % sz, dst);
872 }
873 EXPORT_SYMBOL(bitmap_fold);
874
875 /*
876  * Common code for bitmap_*_region() routines.
877  *      bitmap: array of unsigned longs corresponding to the bitmap
878  *      pos: the beginning of the region
879  *      order: region size (log base 2 of number of bits)
880  *      reg_op: operation(s) to perform on that region of bitmap
881  *
882  * Can set, verify and/or release a region of bits in a bitmap,
883  * depending on which combination of REG_OP_* flag bits is set.
884  *
885  * A region of a bitmap is a sequence of bits in the bitmap, of
886  * some size '1 << order' (a power of two), aligned to that same
887  * '1 << order' power of two.
888  *
889  * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
890  * Returns 0 in all other cases and reg_ops.
891  */
892
893 enum {
894         REG_OP_ISFREE,          /* true if region is all zero bits */
895         REG_OP_ALLOC,           /* set all bits in region */
896         REG_OP_RELEASE,         /* clear all bits in region */
897 };
898
899 static int __reg_op(unsigned long *bitmap, int pos, int order, int reg_op)
900 {
901         int nbits_reg;          /* number of bits in region */
902         int index;              /* index first long of region in bitmap */
903         int offset;             /* bit offset region in bitmap[index] */
904         int nlongs_reg;         /* num longs spanned by region in bitmap */
905         int nbitsinlong;        /* num bits of region in each spanned long */
906         unsigned long mask;     /* bitmask for one long of region */
907         int i;                  /* scans bitmap by longs */
908         int ret = 0;            /* return value */
909
910         /*
911          * Either nlongs_reg == 1 (for small orders that fit in one long)
912          * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
913          */
914         nbits_reg = 1 << order;
915         index = pos / BITS_PER_LONG;
916         offset = pos - (index * BITS_PER_LONG);
917         nlongs_reg = BITS_TO_LONGS(nbits_reg);
918         nbitsinlong = min(nbits_reg,  BITS_PER_LONG);
919
920         /*
921          * Can't do "mask = (1UL << nbitsinlong) - 1", as that
922          * overflows if nbitsinlong == BITS_PER_LONG.
923          */
924         mask = (1UL << (nbitsinlong - 1));
925         mask += mask - 1;
926         mask <<= offset;
927
928         switch (reg_op) {
929         case REG_OP_ISFREE:
930                 for (i = 0; i < nlongs_reg; i++) {
931                         if (bitmap[index + i] & mask)
932                                 goto done;
933                 }
934                 ret = 1;        /* all bits in region free (zero) */
935                 break;
936
937         case REG_OP_ALLOC:
938                 for (i = 0; i < nlongs_reg; i++)
939                         bitmap[index + i] |= mask;
940                 break;
941
942         case REG_OP_RELEASE:
943                 for (i = 0; i < nlongs_reg; i++)
944                         bitmap[index + i] &= ~mask;
945                 break;
946         }
947 done:
948         return ret;
949 }
950
951 /**
952  * bitmap_find_free_region - find a contiguous aligned mem region
953  *      @bitmap: array of unsigned longs corresponding to the bitmap
954  *      @bits: number of bits in the bitmap
955  *      @order: region size (log base 2 of number of bits) to find
956  *
957  * Find a region of free (zero) bits in a @bitmap of @bits bits and
958  * allocate them (set them to one).  Only consider regions of length
959  * a power (@order) of two, aligned to that power of two, which
960  * makes the search algorithm much faster.
961  *
962  * Return the bit offset in bitmap of the allocated region,
963  * or -errno on failure.
964  */
965 int bitmap_find_free_region(unsigned long *bitmap, int bits, int order)
966 {
967         int pos;                /* scans bitmap by regions of size order */
968
969         for (pos = 0; pos < bits; pos += (1 << order))
970                 if (__reg_op(bitmap, pos, order, REG_OP_ISFREE))
971                         break;
972         if (pos == bits)
973                 return -ENOMEM;
974         __reg_op(bitmap, pos, order, REG_OP_ALLOC);
975         return pos;
976 }
977 EXPORT_SYMBOL(bitmap_find_free_region);
978
979 /**
980  * bitmap_release_region - release allocated bitmap region
981  *      @bitmap: array of unsigned longs corresponding to the bitmap
982  *      @pos: beginning of bit region to release
983  *      @order: region size (log base 2 of number of bits) to release
984  *
985  * This is the complement to __bitmap_find_free_region() and releases
986  * the found region (by clearing it in the bitmap).
987  *
988  * No return value.
989  */
990 void bitmap_release_region(unsigned long *bitmap, int pos, int order)
991 {
992         __reg_op(bitmap, pos, order, REG_OP_RELEASE);
993 }
994 EXPORT_SYMBOL(bitmap_release_region);
995
996 /**
997  * bitmap_allocate_region - allocate bitmap region
998  *      @bitmap: array of unsigned longs corresponding to the bitmap
999  *      @pos: beginning of bit region to allocate
1000  *      @order: region size (log base 2 of number of bits) to allocate
1001  *
1002  * Allocate (set bits in) a specified region of a bitmap.
1003  *
1004  * Return 0 on success, or %-EBUSY if specified region wasn't
1005  * free (not all bits were zero).
1006  */
1007 int bitmap_allocate_region(unsigned long *bitmap, int pos, int order)
1008 {
1009         if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1010                 return -EBUSY;
1011         __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1012         return 0;
1013 }
1014 EXPORT_SYMBOL(bitmap_allocate_region);