]> nv-tegra.nvidia Code Review - linux-2.6.git/blob - kernel/sys.c
Merge branch 'timers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6.git] / kernel / sys.c
1 /*
2  *  linux/kernel/sys.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/notifier.h>
12 #include <linux/reboot.h>
13 #include <linux/prctl.h>
14 #include <linux/highuid.h>
15 #include <linux/fs.h>
16 #include <linux/perf_event.h>
17 #include <linux/resource.h>
18 #include <linux/kernel.h>
19 #include <linux/kexec.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
36 #include <linux/personality.h>
37 #include <linux/ptrace.h>
38 #include <linux/fs_struct.h>
39 #include <linux/gfp.h>
40
41 #include <linux/compat.h>
42 #include <linux/syscalls.h>
43 #include <linux/kprobes.h>
44 #include <linux/user_namespace.h>
45
46 #include <asm/uaccess.h>
47 #include <asm/io.h>
48 #include <asm/unistd.h>
49
50 #ifndef SET_UNALIGN_CTL
51 # define SET_UNALIGN_CTL(a,b)   (-EINVAL)
52 #endif
53 #ifndef GET_UNALIGN_CTL
54 # define GET_UNALIGN_CTL(a,b)   (-EINVAL)
55 #endif
56 #ifndef SET_FPEMU_CTL
57 # define SET_FPEMU_CTL(a,b)     (-EINVAL)
58 #endif
59 #ifndef GET_FPEMU_CTL
60 # define GET_FPEMU_CTL(a,b)     (-EINVAL)
61 #endif
62 #ifndef SET_FPEXC_CTL
63 # define SET_FPEXC_CTL(a,b)     (-EINVAL)
64 #endif
65 #ifndef GET_FPEXC_CTL
66 # define GET_FPEXC_CTL(a,b)     (-EINVAL)
67 #endif
68 #ifndef GET_ENDIAN
69 # define GET_ENDIAN(a,b)        (-EINVAL)
70 #endif
71 #ifndef SET_ENDIAN
72 # define SET_ENDIAN(a,b)        (-EINVAL)
73 #endif
74 #ifndef GET_TSC_CTL
75 # define GET_TSC_CTL(a)         (-EINVAL)
76 #endif
77 #ifndef SET_TSC_CTL
78 # define SET_TSC_CTL(a)         (-EINVAL)
79 #endif
80
81 /*
82  * this is where the system-wide overflow UID and GID are defined, for
83  * architectures that now have 32-bit UID/GID but didn't in the past
84  */
85
86 int overflowuid = DEFAULT_OVERFLOWUID;
87 int overflowgid = DEFAULT_OVERFLOWGID;
88
89 #ifdef CONFIG_UID16
90 EXPORT_SYMBOL(overflowuid);
91 EXPORT_SYMBOL(overflowgid);
92 #endif
93
94 /*
95  * the same as above, but for filesystems which can only store a 16-bit
96  * UID and GID. as such, this is needed on all architectures
97  */
98
99 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
100 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
101
102 EXPORT_SYMBOL(fs_overflowuid);
103 EXPORT_SYMBOL(fs_overflowgid);
104
105 /*
106  * this indicates whether you can reboot with ctrl-alt-del: the default is yes
107  */
108
109 int C_A_D = 1;
110 struct pid *cad_pid;
111 EXPORT_SYMBOL(cad_pid);
112
113 /*
114  * If set, this is used for preparing the system to power off.
115  */
116
117 void (*pm_power_off_prepare)(void);
118
119 /*
120  * set the priority of a task
121  * - the caller must hold the RCU read lock
122  */
123 static int set_one_prio(struct task_struct *p, int niceval, int error)
124 {
125         const struct cred *cred = current_cred(), *pcred = __task_cred(p);
126         int no_nice;
127
128         if (pcred->uid  != cred->euid &&
129             pcred->euid != cred->euid && !capable(CAP_SYS_NICE)) {
130                 error = -EPERM;
131                 goto out;
132         }
133         if (niceval < task_nice(p) && !can_nice(p, niceval)) {
134                 error = -EACCES;
135                 goto out;
136         }
137         no_nice = security_task_setnice(p, niceval);
138         if (no_nice) {
139                 error = no_nice;
140                 goto out;
141         }
142         if (error == -ESRCH)
143                 error = 0;
144         set_user_nice(p, niceval);
145 out:
146         return error;
147 }
148
149 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
150 {
151         struct task_struct *g, *p;
152         struct user_struct *user;
153         const struct cred *cred = current_cred();
154         int error = -EINVAL;
155         struct pid *pgrp;
156
157         if (which > PRIO_USER || which < PRIO_PROCESS)
158                 goto out;
159
160         /* normalize: avoid signed division (rounding problems) */
161         error = -ESRCH;
162         if (niceval < -20)
163                 niceval = -20;
164         if (niceval > 19)
165                 niceval = 19;
166
167         rcu_read_lock();
168         read_lock(&tasklist_lock);
169         switch (which) {
170                 case PRIO_PROCESS:
171                         if (who)
172                                 p = find_task_by_vpid(who);
173                         else
174                                 p = current;
175                         if (p)
176                                 error = set_one_prio(p, niceval, error);
177                         break;
178                 case PRIO_PGRP:
179                         if (who)
180                                 pgrp = find_vpid(who);
181                         else
182                                 pgrp = task_pgrp(current);
183                         do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
184                                 error = set_one_prio(p, niceval, error);
185                         } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
186                         break;
187                 case PRIO_USER:
188                         user = (struct user_struct *) cred->user;
189                         if (!who)
190                                 who = cred->uid;
191                         else if ((who != cred->uid) &&
192                                  !(user = find_user(who)))
193                                 goto out_unlock;        /* No processes for this user */
194
195                         do_each_thread(g, p) {
196                                 if (__task_cred(p)->uid == who)
197                                         error = set_one_prio(p, niceval, error);
198                         } while_each_thread(g, p);
199                         if (who != cred->uid)
200                                 free_uid(user);         /* For find_user() */
201                         break;
202         }
203 out_unlock:
204         read_unlock(&tasklist_lock);
205         rcu_read_unlock();
206 out:
207         return error;
208 }
209
210 /*
211  * Ugh. To avoid negative return values, "getpriority()" will
212  * not return the normal nice-value, but a negated value that
213  * has been offset by 20 (ie it returns 40..1 instead of -20..19)
214  * to stay compatible.
215  */
216 SYSCALL_DEFINE2(getpriority, int, which, int, who)
217 {
218         struct task_struct *g, *p;
219         struct user_struct *user;
220         const struct cred *cred = current_cred();
221         long niceval, retval = -ESRCH;
222         struct pid *pgrp;
223
224         if (which > PRIO_USER || which < PRIO_PROCESS)
225                 return -EINVAL;
226
227         rcu_read_lock();
228         read_lock(&tasklist_lock);
229         switch (which) {
230                 case PRIO_PROCESS:
231                         if (who)
232                                 p = find_task_by_vpid(who);
233                         else
234                                 p = current;
235                         if (p) {
236                                 niceval = 20 - task_nice(p);
237                                 if (niceval > retval)
238                                         retval = niceval;
239                         }
240                         break;
241                 case PRIO_PGRP:
242                         if (who)
243                                 pgrp = find_vpid(who);
244                         else
245                                 pgrp = task_pgrp(current);
246                         do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
247                                 niceval = 20 - task_nice(p);
248                                 if (niceval > retval)
249                                         retval = niceval;
250                         } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
251                         break;
252                 case PRIO_USER:
253                         user = (struct user_struct *) cred->user;
254                         if (!who)
255                                 who = cred->uid;
256                         else if ((who != cred->uid) &&
257                                  !(user = find_user(who)))
258                                 goto out_unlock;        /* No processes for this user */
259
260                         do_each_thread(g, p) {
261                                 if (__task_cred(p)->uid == who) {
262                                         niceval = 20 - task_nice(p);
263                                         if (niceval > retval)
264                                                 retval = niceval;
265                                 }
266                         } while_each_thread(g, p);
267                         if (who != cred->uid)
268                                 free_uid(user);         /* for find_user() */
269                         break;
270         }
271 out_unlock:
272         read_unlock(&tasklist_lock);
273         rcu_read_unlock();
274
275         return retval;
276 }
277
278 /**
279  *      emergency_restart - reboot the system
280  *
281  *      Without shutting down any hardware or taking any locks
282  *      reboot the system.  This is called when we know we are in
283  *      trouble so this is our best effort to reboot.  This is
284  *      safe to call in interrupt context.
285  */
286 void emergency_restart(void)
287 {
288         machine_emergency_restart();
289 }
290 EXPORT_SYMBOL_GPL(emergency_restart);
291
292 void kernel_restart_prepare(char *cmd)
293 {
294         blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
295         system_state = SYSTEM_RESTART;
296         device_shutdown();
297         sysdev_shutdown();
298 }
299
300 /**
301  *      kernel_restart - reboot the system
302  *      @cmd: pointer to buffer containing command to execute for restart
303  *              or %NULL
304  *
305  *      Shutdown everything and perform a clean reboot.
306  *      This is not safe to call in interrupt context.
307  */
308 void kernel_restart(char *cmd)
309 {
310         kernel_restart_prepare(cmd);
311         if (!cmd)
312                 printk(KERN_EMERG "Restarting system.\n");
313         else
314                 printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
315         machine_restart(cmd);
316 }
317 EXPORT_SYMBOL_GPL(kernel_restart);
318
319 static void kernel_shutdown_prepare(enum system_states state)
320 {
321         blocking_notifier_call_chain(&reboot_notifier_list,
322                 (state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
323         system_state = state;
324         device_shutdown();
325 }
326 /**
327  *      kernel_halt - halt the system
328  *
329  *      Shutdown everything and perform a clean system halt.
330  */
331 void kernel_halt(void)
332 {
333         kernel_shutdown_prepare(SYSTEM_HALT);
334         sysdev_shutdown();
335         printk(KERN_EMERG "System halted.\n");
336         machine_halt();
337 }
338
339 EXPORT_SYMBOL_GPL(kernel_halt);
340
341 /**
342  *      kernel_power_off - power_off the system
343  *
344  *      Shutdown everything and perform a clean system power_off.
345  */
346 void kernel_power_off(void)
347 {
348         kernel_shutdown_prepare(SYSTEM_POWER_OFF);
349         if (pm_power_off_prepare)
350                 pm_power_off_prepare();
351         disable_nonboot_cpus();
352         sysdev_shutdown();
353         printk(KERN_EMERG "Power down.\n");
354         machine_power_off();
355 }
356 EXPORT_SYMBOL_GPL(kernel_power_off);
357
358 static DEFINE_MUTEX(reboot_mutex);
359
360 /*
361  * Reboot system call: for obvious reasons only root may call it,
362  * and even root needs to set up some magic numbers in the registers
363  * so that some mistake won't make this reboot the whole machine.
364  * You can also set the meaning of the ctrl-alt-del-key here.
365  *
366  * reboot doesn't sync: do that yourself before calling this.
367  */
368 SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd,
369                 void __user *, arg)
370 {
371         char buffer[256];
372         int ret = 0;
373
374         /* We only trust the superuser with rebooting the system. */
375         if (!capable(CAP_SYS_BOOT))
376                 return -EPERM;
377
378         /* For safety, we require "magic" arguments. */
379         if (magic1 != LINUX_REBOOT_MAGIC1 ||
380             (magic2 != LINUX_REBOOT_MAGIC2 &&
381                         magic2 != LINUX_REBOOT_MAGIC2A &&
382                         magic2 != LINUX_REBOOT_MAGIC2B &&
383                         magic2 != LINUX_REBOOT_MAGIC2C))
384                 return -EINVAL;
385
386         /* Instead of trying to make the power_off code look like
387          * halt when pm_power_off is not set do it the easy way.
388          */
389         if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
390                 cmd = LINUX_REBOOT_CMD_HALT;
391
392         mutex_lock(&reboot_mutex);
393         switch (cmd) {
394         case LINUX_REBOOT_CMD_RESTART:
395                 kernel_restart(NULL);
396                 break;
397
398         case LINUX_REBOOT_CMD_CAD_ON:
399                 C_A_D = 1;
400                 break;
401
402         case LINUX_REBOOT_CMD_CAD_OFF:
403                 C_A_D = 0;
404                 break;
405
406         case LINUX_REBOOT_CMD_HALT:
407                 kernel_halt();
408                 do_exit(0);
409                 panic("cannot halt");
410
411         case LINUX_REBOOT_CMD_POWER_OFF:
412                 kernel_power_off();
413                 do_exit(0);
414                 break;
415
416         case LINUX_REBOOT_CMD_RESTART2:
417                 if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
418                         ret = -EFAULT;
419                         break;
420                 }
421                 buffer[sizeof(buffer) - 1] = '\0';
422
423                 kernel_restart(buffer);
424                 break;
425
426 #ifdef CONFIG_KEXEC
427         case LINUX_REBOOT_CMD_KEXEC:
428                 ret = kernel_kexec();
429                 break;
430 #endif
431
432 #ifdef CONFIG_HIBERNATION
433         case LINUX_REBOOT_CMD_SW_SUSPEND:
434                 ret = hibernate();
435                 break;
436 #endif
437
438         default:
439                 ret = -EINVAL;
440                 break;
441         }
442         mutex_unlock(&reboot_mutex);
443         return ret;
444 }
445
446 static void deferred_cad(struct work_struct *dummy)
447 {
448         kernel_restart(NULL);
449 }
450
451 /*
452  * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
453  * As it's called within an interrupt, it may NOT sync: the only choice
454  * is whether to reboot at once, or just ignore the ctrl-alt-del.
455  */
456 void ctrl_alt_del(void)
457 {
458         static DECLARE_WORK(cad_work, deferred_cad);
459
460         if (C_A_D)
461                 schedule_work(&cad_work);
462         else
463                 kill_cad_pid(SIGINT, 1);
464 }
465         
466 /*
467  * Unprivileged users may change the real gid to the effective gid
468  * or vice versa.  (BSD-style)
469  *
470  * If you set the real gid at all, or set the effective gid to a value not
471  * equal to the real gid, then the saved gid is set to the new effective gid.
472  *
473  * This makes it possible for a setgid program to completely drop its
474  * privileges, which is often a useful assertion to make when you are doing
475  * a security audit over a program.
476  *
477  * The general idea is that a program which uses just setregid() will be
478  * 100% compatible with BSD.  A program which uses just setgid() will be
479  * 100% compatible with POSIX with saved IDs. 
480  *
481  * SMP: There are not races, the GIDs are checked only by filesystem
482  *      operations (as far as semantic preservation is concerned).
483  */
484 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
485 {
486         const struct cred *old;
487         struct cred *new;
488         int retval;
489
490         new = prepare_creds();
491         if (!new)
492                 return -ENOMEM;
493         old = current_cred();
494
495         retval = -EPERM;
496         if (rgid != (gid_t) -1) {
497                 if (old->gid == rgid ||
498                     old->egid == rgid ||
499                     capable(CAP_SETGID))
500                         new->gid = rgid;
501                 else
502                         goto error;
503         }
504         if (egid != (gid_t) -1) {
505                 if (old->gid == egid ||
506                     old->egid == egid ||
507                     old->sgid == egid ||
508                     capable(CAP_SETGID))
509                         new->egid = egid;
510                 else
511                         goto error;
512         }
513
514         if (rgid != (gid_t) -1 ||
515             (egid != (gid_t) -1 && egid != old->gid))
516                 new->sgid = new->egid;
517         new->fsgid = new->egid;
518
519         return commit_creds(new);
520
521 error:
522         abort_creds(new);
523         return retval;
524 }
525
526 /*
527  * setgid() is implemented like SysV w/ SAVED_IDS 
528  *
529  * SMP: Same implicit races as above.
530  */
531 SYSCALL_DEFINE1(setgid, gid_t, gid)
532 {
533         const struct cred *old;
534         struct cred *new;
535         int retval;
536
537         new = prepare_creds();
538         if (!new)
539                 return -ENOMEM;
540         old = current_cred();
541
542         retval = -EPERM;
543         if (capable(CAP_SETGID))
544                 new->gid = new->egid = new->sgid = new->fsgid = gid;
545         else if (gid == old->gid || gid == old->sgid)
546                 new->egid = new->fsgid = gid;
547         else
548                 goto error;
549
550         return commit_creds(new);
551
552 error:
553         abort_creds(new);
554         return retval;
555 }
556
557 /*
558  * change the user struct in a credentials set to match the new UID
559  */
560 static int set_user(struct cred *new)
561 {
562         struct user_struct *new_user;
563
564         new_user = alloc_uid(current_user_ns(), new->uid);
565         if (!new_user)
566                 return -EAGAIN;
567
568         if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
569                         new_user != INIT_USER) {
570                 free_uid(new_user);
571                 return -EAGAIN;
572         }
573
574         free_uid(new->user);
575         new->user = new_user;
576         return 0;
577 }
578
579 /*
580  * Unprivileged users may change the real uid to the effective uid
581  * or vice versa.  (BSD-style)
582  *
583  * If you set the real uid at all, or set the effective uid to a value not
584  * equal to the real uid, then the saved uid is set to the new effective uid.
585  *
586  * This makes it possible for a setuid program to completely drop its
587  * privileges, which is often a useful assertion to make when you are doing
588  * a security audit over a program.
589  *
590  * The general idea is that a program which uses just setreuid() will be
591  * 100% compatible with BSD.  A program which uses just setuid() will be
592  * 100% compatible with POSIX with saved IDs. 
593  */
594 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
595 {
596         const struct cred *old;
597         struct cred *new;
598         int retval;
599
600         new = prepare_creds();
601         if (!new)
602                 return -ENOMEM;
603         old = current_cred();
604
605         retval = -EPERM;
606         if (ruid != (uid_t) -1) {
607                 new->uid = ruid;
608                 if (old->uid != ruid &&
609                     old->euid != ruid &&
610                     !capable(CAP_SETUID))
611                         goto error;
612         }
613
614         if (euid != (uid_t) -1) {
615                 new->euid = euid;
616                 if (old->uid != euid &&
617                     old->euid != euid &&
618                     old->suid != euid &&
619                     !capable(CAP_SETUID))
620                         goto error;
621         }
622
623         if (new->uid != old->uid) {
624                 retval = set_user(new);
625                 if (retval < 0)
626                         goto error;
627         }
628         if (ruid != (uid_t) -1 ||
629             (euid != (uid_t) -1 && euid != old->uid))
630                 new->suid = new->euid;
631         new->fsuid = new->euid;
632
633         retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
634         if (retval < 0)
635                 goto error;
636
637         return commit_creds(new);
638
639 error:
640         abort_creds(new);
641         return retval;
642 }
643                 
644 /*
645  * setuid() is implemented like SysV with SAVED_IDS 
646  * 
647  * Note that SAVED_ID's is deficient in that a setuid root program
648  * like sendmail, for example, cannot set its uid to be a normal 
649  * user and then switch back, because if you're root, setuid() sets
650  * the saved uid too.  If you don't like this, blame the bright people
651  * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
652  * will allow a root program to temporarily drop privileges and be able to
653  * regain them by swapping the real and effective uid.  
654  */
655 SYSCALL_DEFINE1(setuid, uid_t, uid)
656 {
657         const struct cred *old;
658         struct cred *new;
659         int retval;
660
661         new = prepare_creds();
662         if (!new)
663                 return -ENOMEM;
664         old = current_cred();
665
666         retval = -EPERM;
667         if (capable(CAP_SETUID)) {
668                 new->suid = new->uid = uid;
669                 if (uid != old->uid) {
670                         retval = set_user(new);
671                         if (retval < 0)
672                                 goto error;
673                 }
674         } else if (uid != old->uid && uid != new->suid) {
675                 goto error;
676         }
677
678         new->fsuid = new->euid = uid;
679
680         retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
681         if (retval < 0)
682                 goto error;
683
684         return commit_creds(new);
685
686 error:
687         abort_creds(new);
688         return retval;
689 }
690
691
692 /*
693  * This function implements a generic ability to update ruid, euid,
694  * and suid.  This allows you to implement the 4.4 compatible seteuid().
695  */
696 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
697 {
698         const struct cred *old;
699         struct cred *new;
700         int retval;
701
702         new = prepare_creds();
703         if (!new)
704                 return -ENOMEM;
705
706         old = current_cred();
707
708         retval = -EPERM;
709         if (!capable(CAP_SETUID)) {
710                 if (ruid != (uid_t) -1 && ruid != old->uid &&
711                     ruid != old->euid  && ruid != old->suid)
712                         goto error;
713                 if (euid != (uid_t) -1 && euid != old->uid &&
714                     euid != old->euid  && euid != old->suid)
715                         goto error;
716                 if (suid != (uid_t) -1 && suid != old->uid &&
717                     suid != old->euid  && suid != old->suid)
718                         goto error;
719         }
720
721         if (ruid != (uid_t) -1) {
722                 new->uid = ruid;
723                 if (ruid != old->uid) {
724                         retval = set_user(new);
725                         if (retval < 0)
726                                 goto error;
727                 }
728         }
729         if (euid != (uid_t) -1)
730                 new->euid = euid;
731         if (suid != (uid_t) -1)
732                 new->suid = suid;
733         new->fsuid = new->euid;
734
735         retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
736         if (retval < 0)
737                 goto error;
738
739         return commit_creds(new);
740
741 error:
742         abort_creds(new);
743         return retval;
744 }
745
746 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruid, uid_t __user *, euid, uid_t __user *, suid)
747 {
748         const struct cred *cred = current_cred();
749         int retval;
750
751         if (!(retval   = put_user(cred->uid,  ruid)) &&
752             !(retval   = put_user(cred->euid, euid)))
753                 retval = put_user(cred->suid, suid);
754
755         return retval;
756 }
757
758 /*
759  * Same as above, but for rgid, egid, sgid.
760  */
761 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
762 {
763         const struct cred *old;
764         struct cred *new;
765         int retval;
766
767         new = prepare_creds();
768         if (!new)
769                 return -ENOMEM;
770         old = current_cred();
771
772         retval = -EPERM;
773         if (!capable(CAP_SETGID)) {
774                 if (rgid != (gid_t) -1 && rgid != old->gid &&
775                     rgid != old->egid  && rgid != old->sgid)
776                         goto error;
777                 if (egid != (gid_t) -1 && egid != old->gid &&
778                     egid != old->egid  && egid != old->sgid)
779                         goto error;
780                 if (sgid != (gid_t) -1 && sgid != old->gid &&
781                     sgid != old->egid  && sgid != old->sgid)
782                         goto error;
783         }
784
785         if (rgid != (gid_t) -1)
786                 new->gid = rgid;
787         if (egid != (gid_t) -1)
788                 new->egid = egid;
789         if (sgid != (gid_t) -1)
790                 new->sgid = sgid;
791         new->fsgid = new->egid;
792
793         return commit_creds(new);
794
795 error:
796         abort_creds(new);
797         return retval;
798 }
799
800 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgid, gid_t __user *, egid, gid_t __user *, sgid)
801 {
802         const struct cred *cred = current_cred();
803         int retval;
804
805         if (!(retval   = put_user(cred->gid,  rgid)) &&
806             !(retval   = put_user(cred->egid, egid)))
807                 retval = put_user(cred->sgid, sgid);
808
809         return retval;
810 }
811
812
813 /*
814  * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
815  * is used for "access()" and for the NFS daemon (letting nfsd stay at
816  * whatever uid it wants to). It normally shadows "euid", except when
817  * explicitly set by setfsuid() or for access..
818  */
819 SYSCALL_DEFINE1(setfsuid, uid_t, uid)
820 {
821         const struct cred *old;
822         struct cred *new;
823         uid_t old_fsuid;
824
825         new = prepare_creds();
826         if (!new)
827                 return current_fsuid();
828         old = current_cred();
829         old_fsuid = old->fsuid;
830
831         if (uid == old->uid  || uid == old->euid  ||
832             uid == old->suid || uid == old->fsuid ||
833             capable(CAP_SETUID)) {
834                 if (uid != old_fsuid) {
835                         new->fsuid = uid;
836                         if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
837                                 goto change_okay;
838                 }
839         }
840
841         abort_creds(new);
842         return old_fsuid;
843
844 change_okay:
845         commit_creds(new);
846         return old_fsuid;
847 }
848
849 /*
850  * Samma pÃ¥ svenska..
851  */
852 SYSCALL_DEFINE1(setfsgid, gid_t, gid)
853 {
854         const struct cred *old;
855         struct cred *new;
856         gid_t old_fsgid;
857
858         new = prepare_creds();
859         if (!new)
860                 return current_fsgid();
861         old = current_cred();
862         old_fsgid = old->fsgid;
863
864         if (gid == old->gid  || gid == old->egid  ||
865             gid == old->sgid || gid == old->fsgid ||
866             capable(CAP_SETGID)) {
867                 if (gid != old_fsgid) {
868                         new->fsgid = gid;
869                         goto change_okay;
870                 }
871         }
872
873         abort_creds(new);
874         return old_fsgid;
875
876 change_okay:
877         commit_creds(new);
878         return old_fsgid;
879 }
880
881 void do_sys_times(struct tms *tms)
882 {
883         cputime_t tgutime, tgstime, cutime, cstime;
884
885         spin_lock_irq(&current->sighand->siglock);
886         thread_group_times(current, &tgutime, &tgstime);
887         cutime = current->signal->cutime;
888         cstime = current->signal->cstime;
889         spin_unlock_irq(&current->sighand->siglock);
890         tms->tms_utime = cputime_to_clock_t(tgutime);
891         tms->tms_stime = cputime_to_clock_t(tgstime);
892         tms->tms_cutime = cputime_to_clock_t(cutime);
893         tms->tms_cstime = cputime_to_clock_t(cstime);
894 }
895
896 SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
897 {
898         if (tbuf) {
899                 struct tms tmp;
900
901                 do_sys_times(&tmp);
902                 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
903                         return -EFAULT;
904         }
905         force_successful_syscall_return();
906         return (long) jiffies_64_to_clock_t(get_jiffies_64());
907 }
908
909 /*
910  * This needs some heavy checking ...
911  * I just haven't the stomach for it. I also don't fully
912  * understand sessions/pgrp etc. Let somebody who does explain it.
913  *
914  * OK, I think I have the protection semantics right.... this is really
915  * only important on a multi-user system anyway, to make sure one user
916  * can't send a signal to a process owned by another.  -TYT, 12/12/91
917  *
918  * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
919  * LBT 04.03.94
920  */
921 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
922 {
923         struct task_struct *p;
924         struct task_struct *group_leader = current->group_leader;
925         struct pid *pgrp;
926         int err;
927
928         if (!pid)
929                 pid = task_pid_vnr(group_leader);
930         if (!pgid)
931                 pgid = pid;
932         if (pgid < 0)
933                 return -EINVAL;
934         rcu_read_lock();
935
936         /* From this point forward we keep holding onto the tasklist lock
937          * so that our parent does not change from under us. -DaveM
938          */
939         write_lock_irq(&tasklist_lock);
940
941         err = -ESRCH;
942         p = find_task_by_vpid(pid);
943         if (!p)
944                 goto out;
945
946         err = -EINVAL;
947         if (!thread_group_leader(p))
948                 goto out;
949
950         if (same_thread_group(p->real_parent, group_leader)) {
951                 err = -EPERM;
952                 if (task_session(p) != task_session(group_leader))
953                         goto out;
954                 err = -EACCES;
955                 if (p->did_exec)
956                         goto out;
957         } else {
958                 err = -ESRCH;
959                 if (p != group_leader)
960                         goto out;
961         }
962
963         err = -EPERM;
964         if (p->signal->leader)
965                 goto out;
966
967         pgrp = task_pid(p);
968         if (pgid != pid) {
969                 struct task_struct *g;
970
971                 pgrp = find_vpid(pgid);
972                 g = pid_task(pgrp, PIDTYPE_PGID);
973                 if (!g || task_session(g) != task_session(group_leader))
974                         goto out;
975         }
976
977         err = security_task_setpgid(p, pgid);
978         if (err)
979                 goto out;
980
981         if (task_pgrp(p) != pgrp)
982                 change_pid(p, PIDTYPE_PGID, pgrp);
983
984         err = 0;
985 out:
986         /* All paths lead to here, thus we are safe. -DaveM */
987         write_unlock_irq(&tasklist_lock);
988         rcu_read_unlock();
989         return err;
990 }
991
992 SYSCALL_DEFINE1(getpgid, pid_t, pid)
993 {
994         struct task_struct *p;
995         struct pid *grp;
996         int retval;
997
998         rcu_read_lock();
999         if (!pid)
1000                 grp = task_pgrp(current);
1001         else {
1002                 retval = -ESRCH;
1003                 p = find_task_by_vpid(pid);
1004                 if (!p)
1005                         goto out;
1006                 grp = task_pgrp(p);
1007                 if (!grp)
1008                         goto out;
1009
1010                 retval = security_task_getpgid(p);
1011                 if (retval)
1012                         goto out;
1013         }
1014         retval = pid_vnr(grp);
1015 out:
1016         rcu_read_unlock();
1017         return retval;
1018 }
1019
1020 #ifdef __ARCH_WANT_SYS_GETPGRP
1021
1022 SYSCALL_DEFINE0(getpgrp)
1023 {
1024         return sys_getpgid(0);
1025 }
1026
1027 #endif
1028
1029 SYSCALL_DEFINE1(getsid, pid_t, pid)
1030 {
1031         struct task_struct *p;
1032         struct pid *sid;
1033         int retval;
1034
1035         rcu_read_lock();
1036         if (!pid)
1037                 sid = task_session(current);
1038         else {
1039                 retval = -ESRCH;
1040                 p = find_task_by_vpid(pid);
1041                 if (!p)
1042                         goto out;
1043                 sid = task_session(p);
1044                 if (!sid)
1045                         goto out;
1046
1047                 retval = security_task_getsid(p);
1048                 if (retval)
1049                         goto out;
1050         }
1051         retval = pid_vnr(sid);
1052 out:
1053         rcu_read_unlock();
1054         return retval;
1055 }
1056
1057 SYSCALL_DEFINE0(setsid)
1058 {
1059         struct task_struct *group_leader = current->group_leader;
1060         struct pid *sid = task_pid(group_leader);
1061         pid_t session = pid_vnr(sid);
1062         int err = -EPERM;
1063
1064         write_lock_irq(&tasklist_lock);
1065         /* Fail if I am already a session leader */
1066         if (group_leader->signal->leader)
1067                 goto out;
1068
1069         /* Fail if a process group id already exists that equals the
1070          * proposed session id.
1071          */
1072         if (pid_task(sid, PIDTYPE_PGID))
1073                 goto out;
1074
1075         group_leader->signal->leader = 1;
1076         __set_special_pids(sid);
1077
1078         proc_clear_tty(group_leader);
1079
1080         err = session;
1081 out:
1082         write_unlock_irq(&tasklist_lock);
1083         if (err > 0) {
1084                 proc_sid_connector(group_leader);
1085                 sched_autogroup_create_attach(group_leader);
1086         }
1087         return err;
1088 }
1089
1090 DECLARE_RWSEM(uts_sem);
1091
1092 #ifdef COMPAT_UTS_MACHINE
1093 #define override_architecture(name) \
1094         (personality(current->personality) == PER_LINUX32 && \
1095          copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1096                       sizeof(COMPAT_UTS_MACHINE)))
1097 #else
1098 #define override_architecture(name)     0
1099 #endif
1100
1101 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1102 {
1103         int errno = 0;
1104
1105         down_read(&uts_sem);
1106         if (copy_to_user(name, utsname(), sizeof *name))
1107                 errno = -EFAULT;
1108         up_read(&uts_sem);
1109
1110         if (!errno && override_architecture(name))
1111                 errno = -EFAULT;
1112         return errno;
1113 }
1114
1115 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1116 /*
1117  * Old cruft
1118  */
1119 SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1120 {
1121         int error = 0;
1122
1123         if (!name)
1124                 return -EFAULT;
1125
1126         down_read(&uts_sem);
1127         if (copy_to_user(name, utsname(), sizeof(*name)))
1128                 error = -EFAULT;
1129         up_read(&uts_sem);
1130
1131         if (!error && override_architecture(name))
1132                 error = -EFAULT;
1133         return error;
1134 }
1135
1136 SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1137 {
1138         int error;
1139
1140         if (!name)
1141                 return -EFAULT;
1142         if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname)))
1143                 return -EFAULT;
1144
1145         down_read(&uts_sem);
1146         error = __copy_to_user(&name->sysname, &utsname()->sysname,
1147                                __OLD_UTS_LEN);
1148         error |= __put_user(0, name->sysname + __OLD_UTS_LEN);
1149         error |= __copy_to_user(&name->nodename, &utsname()->nodename,
1150                                 __OLD_UTS_LEN);
1151         error |= __put_user(0, name->nodename + __OLD_UTS_LEN);
1152         error |= __copy_to_user(&name->release, &utsname()->release,
1153                                 __OLD_UTS_LEN);
1154         error |= __put_user(0, name->release + __OLD_UTS_LEN);
1155         error |= __copy_to_user(&name->version, &utsname()->version,
1156                                 __OLD_UTS_LEN);
1157         error |= __put_user(0, name->version + __OLD_UTS_LEN);
1158         error |= __copy_to_user(&name->machine, &utsname()->machine,
1159                                 __OLD_UTS_LEN);
1160         error |= __put_user(0, name->machine + __OLD_UTS_LEN);
1161         up_read(&uts_sem);
1162
1163         if (!error && override_architecture(name))
1164                 error = -EFAULT;
1165         return error ? -EFAULT : 0;
1166 }
1167 #endif
1168
1169 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1170 {
1171         int errno;
1172         char tmp[__NEW_UTS_LEN];
1173
1174         if (!capable(CAP_SYS_ADMIN))
1175                 return -EPERM;
1176         if (len < 0 || len > __NEW_UTS_LEN)
1177                 return -EINVAL;
1178         down_write(&uts_sem);
1179         errno = -EFAULT;
1180         if (!copy_from_user(tmp, name, len)) {
1181                 struct new_utsname *u = utsname();
1182
1183                 memcpy(u->nodename, tmp, len);
1184                 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1185                 errno = 0;
1186         }
1187         up_write(&uts_sem);
1188         return errno;
1189 }
1190
1191 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1192
1193 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1194 {
1195         int i, errno;
1196         struct new_utsname *u;
1197
1198         if (len < 0)
1199                 return -EINVAL;
1200         down_read(&uts_sem);
1201         u = utsname();
1202         i = 1 + strlen(u->nodename);
1203         if (i > len)
1204                 i = len;
1205         errno = 0;
1206         if (copy_to_user(name, u->nodename, i))
1207                 errno = -EFAULT;
1208         up_read(&uts_sem);
1209         return errno;
1210 }
1211
1212 #endif
1213
1214 /*
1215  * Only setdomainname; getdomainname can be implemented by calling
1216  * uname()
1217  */
1218 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1219 {
1220         int errno;
1221         char tmp[__NEW_UTS_LEN];
1222
1223         if (!capable(CAP_SYS_ADMIN))
1224                 return -EPERM;
1225         if (len < 0 || len > __NEW_UTS_LEN)
1226                 return -EINVAL;
1227
1228         down_write(&uts_sem);
1229         errno = -EFAULT;
1230         if (!copy_from_user(tmp, name, len)) {
1231                 struct new_utsname *u = utsname();
1232
1233                 memcpy(u->domainname, tmp, len);
1234                 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1235                 errno = 0;
1236         }
1237         up_write(&uts_sem);
1238         return errno;
1239 }
1240
1241 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1242 {
1243         struct rlimit value;
1244         int ret;
1245
1246         ret = do_prlimit(current, resource, NULL, &value);
1247         if (!ret)
1248                 ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1249
1250         return ret;
1251 }
1252
1253 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1254
1255 /*
1256  *      Back compatibility for getrlimit. Needed for some apps.
1257  */
1258  
1259 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1260                 struct rlimit __user *, rlim)
1261 {
1262         struct rlimit x;
1263         if (resource >= RLIM_NLIMITS)
1264                 return -EINVAL;
1265
1266         task_lock(current->group_leader);
1267         x = current->signal->rlim[resource];
1268         task_unlock(current->group_leader);
1269         if (x.rlim_cur > 0x7FFFFFFF)
1270                 x.rlim_cur = 0x7FFFFFFF;
1271         if (x.rlim_max > 0x7FFFFFFF)
1272                 x.rlim_max = 0x7FFFFFFF;
1273         return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1274 }
1275
1276 #endif
1277
1278 static inline bool rlim64_is_infinity(__u64 rlim64)
1279 {
1280 #if BITS_PER_LONG < 64
1281         return rlim64 >= ULONG_MAX;
1282 #else
1283         return rlim64 == RLIM64_INFINITY;
1284 #endif
1285 }
1286
1287 static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1288 {
1289         if (rlim->rlim_cur == RLIM_INFINITY)
1290                 rlim64->rlim_cur = RLIM64_INFINITY;
1291         else
1292                 rlim64->rlim_cur = rlim->rlim_cur;
1293         if (rlim->rlim_max == RLIM_INFINITY)
1294                 rlim64->rlim_max = RLIM64_INFINITY;
1295         else
1296                 rlim64->rlim_max = rlim->rlim_max;
1297 }
1298
1299 static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1300 {
1301         if (rlim64_is_infinity(rlim64->rlim_cur))
1302                 rlim->rlim_cur = RLIM_INFINITY;
1303         else
1304                 rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1305         if (rlim64_is_infinity(rlim64->rlim_max))
1306                 rlim->rlim_max = RLIM_INFINITY;
1307         else
1308                 rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1309 }
1310
1311 /* make sure you are allowed to change @tsk limits before calling this */
1312 int do_prlimit(struct task_struct *tsk, unsigned int resource,
1313                 struct rlimit *new_rlim, struct rlimit *old_rlim)
1314 {
1315         struct rlimit *rlim;
1316         int retval = 0;
1317
1318         if (resource >= RLIM_NLIMITS)
1319                 return -EINVAL;
1320         if (new_rlim) {
1321                 if (new_rlim->rlim_cur > new_rlim->rlim_max)
1322                         return -EINVAL;
1323                 if (resource == RLIMIT_NOFILE &&
1324                                 new_rlim->rlim_max > sysctl_nr_open)
1325                         return -EPERM;
1326         }
1327
1328         /* protect tsk->signal and tsk->sighand from disappearing */
1329         read_lock(&tasklist_lock);
1330         if (!tsk->sighand) {
1331                 retval = -ESRCH;
1332                 goto out;
1333         }
1334
1335         rlim = tsk->signal->rlim + resource;
1336         task_lock(tsk->group_leader);
1337         if (new_rlim) {
1338                 if (new_rlim->rlim_max > rlim->rlim_max &&
1339                                 !capable(CAP_SYS_RESOURCE))
1340                         retval = -EPERM;
1341                 if (!retval)
1342                         retval = security_task_setrlimit(tsk->group_leader,
1343                                         resource, new_rlim);
1344                 if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
1345                         /*
1346                          * The caller is asking for an immediate RLIMIT_CPU
1347                          * expiry.  But we use the zero value to mean "it was
1348                          * never set".  So let's cheat and make it one second
1349                          * instead
1350                          */
1351                         new_rlim->rlim_cur = 1;
1352                 }
1353         }
1354         if (!retval) {
1355                 if (old_rlim)
1356                         *old_rlim = *rlim;
1357                 if (new_rlim)
1358                         *rlim = *new_rlim;
1359         }
1360         task_unlock(tsk->group_leader);
1361
1362         /*
1363          * RLIMIT_CPU handling.   Note that the kernel fails to return an error
1364          * code if it rejected the user's attempt to set RLIMIT_CPU.  This is a
1365          * very long-standing error, and fixing it now risks breakage of
1366          * applications, so we live with it
1367          */
1368          if (!retval && new_rlim && resource == RLIMIT_CPU &&
1369                          new_rlim->rlim_cur != RLIM_INFINITY)
1370                 update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1371 out:
1372         read_unlock(&tasklist_lock);
1373         return retval;
1374 }
1375
1376 /* rcu lock must be held */
1377 static int check_prlimit_permission(struct task_struct *task)
1378 {
1379         const struct cred *cred = current_cred(), *tcred;
1380
1381         tcred = __task_cred(task);
1382         if ((cred->uid != tcred->euid ||
1383              cred->uid != tcred->suid ||
1384              cred->uid != tcred->uid  ||
1385              cred->gid != tcred->egid ||
1386              cred->gid != tcred->sgid ||
1387              cred->gid != tcred->gid) &&
1388              !capable(CAP_SYS_RESOURCE)) {
1389                 return -EPERM;
1390         }
1391
1392         return 0;
1393 }
1394
1395 SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1396                 const struct rlimit64 __user *, new_rlim,
1397                 struct rlimit64 __user *, old_rlim)
1398 {
1399         struct rlimit64 old64, new64;
1400         struct rlimit old, new;
1401         struct task_struct *tsk;
1402         int ret;
1403
1404         if (new_rlim) {
1405                 if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1406                         return -EFAULT;
1407                 rlim64_to_rlim(&new64, &new);
1408         }
1409
1410         rcu_read_lock();
1411         tsk = pid ? find_task_by_vpid(pid) : current;
1412         if (!tsk) {
1413                 rcu_read_unlock();
1414                 return -ESRCH;
1415         }
1416         ret = check_prlimit_permission(tsk);
1417         if (ret) {
1418                 rcu_read_unlock();
1419                 return ret;
1420         }
1421         get_task_struct(tsk);
1422         rcu_read_unlock();
1423
1424         ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1425                         old_rlim ? &old : NULL);
1426
1427         if (!ret && old_rlim) {
1428                 rlim_to_rlim64(&old, &old64);
1429                 if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1430                         ret = -EFAULT;
1431         }
1432
1433         put_task_struct(tsk);
1434         return ret;
1435 }
1436
1437 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1438 {
1439         struct rlimit new_rlim;
1440
1441         if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1442                 return -EFAULT;
1443         return do_prlimit(current, resource, &new_rlim, NULL);
1444 }
1445
1446 /*
1447  * It would make sense to put struct rusage in the task_struct,
1448  * except that would make the task_struct be *really big*.  After
1449  * task_struct gets moved into malloc'ed memory, it would
1450  * make sense to do this.  It will make moving the rest of the information
1451  * a lot simpler!  (Which we're not doing right now because we're not
1452  * measuring them yet).
1453  *
1454  * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1455  * races with threads incrementing their own counters.  But since word
1456  * reads are atomic, we either get new values or old values and we don't
1457  * care which for the sums.  We always take the siglock to protect reading
1458  * the c* fields from p->signal from races with exit.c updating those
1459  * fields when reaping, so a sample either gets all the additions of a
1460  * given child after it's reaped, or none so this sample is before reaping.
1461  *
1462  * Locking:
1463  * We need to take the siglock for CHILDEREN, SELF and BOTH
1464  * for  the cases current multithreaded, non-current single threaded
1465  * non-current multithreaded.  Thread traversal is now safe with
1466  * the siglock held.
1467  * Strictly speaking, we donot need to take the siglock if we are current and
1468  * single threaded,  as no one else can take our signal_struct away, no one
1469  * else can  reap the  children to update signal->c* counters, and no one else
1470  * can race with the signal-> fields. If we do not take any lock, the
1471  * signal-> fields could be read out of order while another thread was just
1472  * exiting. So we should  place a read memory barrier when we avoid the lock.
1473  * On the writer side,  write memory barrier is implied in  __exit_signal
1474  * as __exit_signal releases  the siglock spinlock after updating the signal->
1475  * fields. But we don't do this yet to keep things simple.
1476  *
1477  */
1478
1479 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1480 {
1481         r->ru_nvcsw += t->nvcsw;
1482         r->ru_nivcsw += t->nivcsw;
1483         r->ru_minflt += t->min_flt;
1484         r->ru_majflt += t->maj_flt;
1485         r->ru_inblock += task_io_get_inblock(t);
1486         r->ru_oublock += task_io_get_oublock(t);
1487 }
1488
1489 static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1490 {
1491         struct task_struct *t;
1492         unsigned long flags;
1493         cputime_t tgutime, tgstime, utime, stime;
1494         unsigned long maxrss = 0;
1495
1496         memset((char *) r, 0, sizeof *r);
1497         utime = stime = cputime_zero;
1498
1499         if (who == RUSAGE_THREAD) {
1500                 task_times(current, &utime, &stime);
1501                 accumulate_thread_rusage(p, r);
1502                 maxrss = p->signal->maxrss;
1503                 goto out;
1504         }
1505
1506         if (!lock_task_sighand(p, &flags))
1507                 return;
1508
1509         switch (who) {
1510                 case RUSAGE_BOTH:
1511                 case RUSAGE_CHILDREN:
1512                         utime = p->signal->cutime;
1513                         stime = p->signal->cstime;
1514                         r->ru_nvcsw = p->signal->cnvcsw;
1515                         r->ru_nivcsw = p->signal->cnivcsw;
1516                         r->ru_minflt = p->signal->cmin_flt;
1517                         r->ru_majflt = p->signal->cmaj_flt;
1518                         r->ru_inblock = p->signal->cinblock;
1519                         r->ru_oublock = p->signal->coublock;
1520                         maxrss = p->signal->cmaxrss;
1521
1522                         if (who == RUSAGE_CHILDREN)
1523                                 break;
1524
1525                 case RUSAGE_SELF:
1526                         thread_group_times(p, &tgutime, &tgstime);
1527                         utime = cputime_add(utime, tgutime);
1528                         stime = cputime_add(stime, tgstime);
1529                         r->ru_nvcsw += p->signal->nvcsw;
1530                         r->ru_nivcsw += p->signal->nivcsw;
1531                         r->ru_minflt += p->signal->min_flt;
1532                         r->ru_majflt += p->signal->maj_flt;
1533                         r->ru_inblock += p->signal->inblock;
1534                         r->ru_oublock += p->signal->oublock;
1535                         if (maxrss < p->signal->maxrss)
1536                                 maxrss = p->signal->maxrss;
1537                         t = p;
1538                         do {
1539                                 accumulate_thread_rusage(t, r);
1540                                 t = next_thread(t);
1541                         } while (t != p);
1542                         break;
1543
1544                 default:
1545                         BUG();
1546         }
1547         unlock_task_sighand(p, &flags);
1548
1549 out:
1550         cputime_to_timeval(utime, &r->ru_utime);
1551         cputime_to_timeval(stime, &r->ru_stime);
1552
1553         if (who != RUSAGE_CHILDREN) {
1554                 struct mm_struct *mm = get_task_mm(p);
1555                 if (mm) {
1556                         setmax_mm_hiwater_rss(&maxrss, mm);
1557                         mmput(mm);
1558                 }
1559         }
1560         r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1561 }
1562
1563 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1564 {
1565         struct rusage r;
1566         k_getrusage(p, who, &r);
1567         return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1568 }
1569
1570 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1571 {
1572         if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1573             who != RUSAGE_THREAD)
1574                 return -EINVAL;
1575         return getrusage(current, who, ru);
1576 }
1577
1578 SYSCALL_DEFINE1(umask, int, mask)
1579 {
1580         mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1581         return mask;
1582 }
1583
1584 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
1585                 unsigned long, arg4, unsigned long, arg5)
1586 {
1587         struct task_struct *me = current;
1588         unsigned char comm[sizeof(me->comm)];
1589         long error;
1590
1591         error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1592         if (error != -ENOSYS)
1593                 return error;
1594
1595         error = 0;
1596         switch (option) {
1597                 case PR_SET_PDEATHSIG:
1598                         if (!valid_signal(arg2)) {
1599                                 error = -EINVAL;
1600                                 break;
1601                         }
1602                         me->pdeath_signal = arg2;
1603                         error = 0;
1604                         break;
1605                 case PR_GET_PDEATHSIG:
1606                         error = put_user(me->pdeath_signal, (int __user *)arg2);
1607                         break;
1608                 case PR_GET_DUMPABLE:
1609                         error = get_dumpable(me->mm);
1610                         break;
1611                 case PR_SET_DUMPABLE:
1612                         if (arg2 < 0 || arg2 > 1) {
1613                                 error = -EINVAL;
1614                                 break;
1615                         }
1616                         set_dumpable(me->mm, arg2);
1617                         error = 0;
1618                         break;
1619
1620                 case PR_SET_UNALIGN:
1621                         error = SET_UNALIGN_CTL(me, arg2);
1622                         break;
1623                 case PR_GET_UNALIGN:
1624                         error = GET_UNALIGN_CTL(me, arg2);
1625                         break;
1626                 case PR_SET_FPEMU:
1627                         error = SET_FPEMU_CTL(me, arg2);
1628                         break;
1629                 case PR_GET_FPEMU:
1630                         error = GET_FPEMU_CTL(me, arg2);
1631                         break;
1632                 case PR_SET_FPEXC:
1633                         error = SET_FPEXC_CTL(me, arg2);
1634                         break;
1635                 case PR_GET_FPEXC:
1636                         error = GET_FPEXC_CTL(me, arg2);
1637                         break;
1638                 case PR_GET_TIMING:
1639                         error = PR_TIMING_STATISTICAL;
1640                         break;
1641                 case PR_SET_TIMING:
1642                         if (arg2 != PR_TIMING_STATISTICAL)
1643                                 error = -EINVAL;
1644                         else
1645                                 error = 0;
1646                         break;
1647
1648                 case PR_SET_NAME:
1649                         comm[sizeof(me->comm)-1] = 0;
1650                         if (strncpy_from_user(comm, (char __user *)arg2,
1651                                               sizeof(me->comm) - 1) < 0)
1652                                 return -EFAULT;
1653                         set_task_comm(me, comm);
1654                         return 0;
1655                 case PR_GET_NAME:
1656                         get_task_comm(comm, me);
1657                         if (copy_to_user((char __user *)arg2, comm,
1658                                          sizeof(comm)))
1659                                 return -EFAULT;
1660                         return 0;
1661                 case PR_GET_ENDIAN:
1662                         error = GET_ENDIAN(me, arg2);
1663                         break;
1664                 case PR_SET_ENDIAN:
1665                         error = SET_ENDIAN(me, arg2);
1666                         break;
1667
1668                 case PR_GET_SECCOMP:
1669                         error = prctl_get_seccomp();
1670                         break;
1671                 case PR_SET_SECCOMP:
1672                         error = prctl_set_seccomp(arg2);
1673                         break;
1674                 case PR_GET_TSC:
1675                         error = GET_TSC_CTL(arg2);
1676                         break;
1677                 case PR_SET_TSC:
1678                         error = SET_TSC_CTL(arg2);
1679                         break;
1680                 case PR_TASK_PERF_EVENTS_DISABLE:
1681                         error = perf_event_task_disable();
1682                         break;
1683                 case PR_TASK_PERF_EVENTS_ENABLE:
1684                         error = perf_event_task_enable();
1685                         break;
1686                 case PR_GET_TIMERSLACK:
1687                         error = current->timer_slack_ns;
1688                         break;
1689                 case PR_SET_TIMERSLACK:
1690                         if (arg2 <= 0)
1691                                 current->timer_slack_ns =
1692                                         current->default_timer_slack_ns;
1693                         else
1694                                 current->timer_slack_ns = arg2;
1695                         error = 0;
1696                         break;
1697                 case PR_MCE_KILL:
1698                         if (arg4 | arg5)
1699                                 return -EINVAL;
1700                         switch (arg2) {
1701                         case PR_MCE_KILL_CLEAR:
1702                                 if (arg3 != 0)
1703                                         return -EINVAL;
1704                                 current->flags &= ~PF_MCE_PROCESS;
1705                                 break;
1706                         case PR_MCE_KILL_SET:
1707                                 current->flags |= PF_MCE_PROCESS;
1708                                 if (arg3 == PR_MCE_KILL_EARLY)
1709                                         current->flags |= PF_MCE_EARLY;
1710                                 else if (arg3 == PR_MCE_KILL_LATE)
1711                                         current->flags &= ~PF_MCE_EARLY;
1712                                 else if (arg3 == PR_MCE_KILL_DEFAULT)
1713                                         current->flags &=
1714                                                 ~(PF_MCE_EARLY|PF_MCE_PROCESS);
1715                                 else
1716                                         return -EINVAL;
1717                                 break;
1718                         default:
1719                                 return -EINVAL;
1720                         }
1721                         error = 0;
1722                         break;
1723                 case PR_MCE_KILL_GET:
1724                         if (arg2 | arg3 | arg4 | arg5)
1725                                 return -EINVAL;
1726                         if (current->flags & PF_MCE_PROCESS)
1727                                 error = (current->flags & PF_MCE_EARLY) ?
1728                                         PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
1729                         else
1730                                 error = PR_MCE_KILL_DEFAULT;
1731                         break;
1732                 default:
1733                         error = -EINVAL;
1734                         break;
1735         }
1736         return error;
1737 }
1738
1739 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
1740                 struct getcpu_cache __user *, unused)
1741 {
1742         int err = 0;
1743         int cpu = raw_smp_processor_id();
1744         if (cpup)
1745                 err |= put_user(cpu, cpup);
1746         if (nodep)
1747                 err |= put_user(cpu_to_node(cpu), nodep);
1748         return err ? -EFAULT : 0;
1749 }
1750
1751 char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
1752
1753 static void argv_cleanup(struct subprocess_info *info)
1754 {
1755         argv_free(info->argv);
1756 }
1757
1758 /**
1759  * orderly_poweroff - Trigger an orderly system poweroff
1760  * @force: force poweroff if command execution fails
1761  *
1762  * This may be called from any context to trigger a system shutdown.
1763  * If the orderly shutdown fails, it will force an immediate shutdown.
1764  */
1765 int orderly_poweroff(bool force)
1766 {
1767         int argc;
1768         char **argv = argv_split(GFP_ATOMIC, poweroff_cmd, &argc);
1769         static char *envp[] = {
1770                 "HOME=/",
1771                 "PATH=/sbin:/bin:/usr/sbin:/usr/bin",
1772                 NULL
1773         };
1774         int ret = -ENOMEM;
1775         struct subprocess_info *info;
1776
1777         if (argv == NULL) {
1778                 printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n",
1779                        __func__, poweroff_cmd);
1780                 goto out;
1781         }
1782
1783         info = call_usermodehelper_setup(argv[0], argv, envp, GFP_ATOMIC);
1784         if (info == NULL) {
1785                 argv_free(argv);
1786                 goto out;
1787         }
1788
1789         call_usermodehelper_setfns(info, NULL, argv_cleanup, NULL);
1790
1791         ret = call_usermodehelper_exec(info, UMH_NO_WAIT);
1792
1793   out:
1794         if (ret && force) {
1795                 printk(KERN_WARNING "Failed to start orderly shutdown: "
1796                        "forcing the issue\n");
1797
1798                 /* I guess this should try to kick off some daemon to
1799                    sync and poweroff asap.  Or not even bother syncing
1800                    if we're doing an emergency shutdown? */
1801                 emergency_sync();
1802                 kernel_power_off();
1803         }
1804
1805         return ret;
1806 }
1807 EXPORT_SYMBOL_GPL(orderly_poweroff);