sched: revert revert of: fair-group: SMP-nice for group scheduling
[linux-2.6.git] / kernel / sched_rt.c
1 /*
2  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3  * policies)
4  */
5
6 #ifdef CONFIG_SMP
7
8 static inline int rt_overloaded(struct rq *rq)
9 {
10         return atomic_read(&rq->rd->rto_count);
11 }
12
13 static inline void rt_set_overload(struct rq *rq)
14 {
15         if (!rq->online)
16                 return;
17
18         cpu_set(rq->cpu, rq->rd->rto_mask);
19         /*
20          * Make sure the mask is visible before we set
21          * the overload count. That is checked to determine
22          * if we should look at the mask. It would be a shame
23          * if we looked at the mask, but the mask was not
24          * updated yet.
25          */
26         wmb();
27         atomic_inc(&rq->rd->rto_count);
28 }
29
30 static inline void rt_clear_overload(struct rq *rq)
31 {
32         if (!rq->online)
33                 return;
34
35         /* the order here really doesn't matter */
36         atomic_dec(&rq->rd->rto_count);
37         cpu_clear(rq->cpu, rq->rd->rto_mask);
38 }
39
40 static void update_rt_migration(struct rq *rq)
41 {
42         if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) {
43                 if (!rq->rt.overloaded) {
44                         rt_set_overload(rq);
45                         rq->rt.overloaded = 1;
46                 }
47         } else if (rq->rt.overloaded) {
48                 rt_clear_overload(rq);
49                 rq->rt.overloaded = 0;
50         }
51 }
52 #endif /* CONFIG_SMP */
53
54 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
55 {
56         return container_of(rt_se, struct task_struct, rt);
57 }
58
59 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
60 {
61         return !list_empty(&rt_se->run_list);
62 }
63
64 #ifdef CONFIG_RT_GROUP_SCHED
65
66 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
67 {
68         if (!rt_rq->tg)
69                 return RUNTIME_INF;
70
71         return rt_rq->rt_runtime;
72 }
73
74 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
75 {
76         return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
77 }
78
79 #define for_each_leaf_rt_rq(rt_rq, rq) \
80         list_for_each_entry(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
81
82 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
83 {
84         return rt_rq->rq;
85 }
86
87 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
88 {
89         return rt_se->rt_rq;
90 }
91
92 #define for_each_sched_rt_entity(rt_se) \
93         for (; rt_se; rt_se = rt_se->parent)
94
95 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
96 {
97         return rt_se->my_q;
98 }
99
100 static void enqueue_rt_entity(struct sched_rt_entity *rt_se);
101 static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
102
103 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
104 {
105         struct sched_rt_entity *rt_se = rt_rq->rt_se;
106
107         if (rt_se && !on_rt_rq(rt_se) && rt_rq->rt_nr_running) {
108                 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
109
110                 enqueue_rt_entity(rt_se);
111                 if (rt_rq->highest_prio < curr->prio)
112                         resched_task(curr);
113         }
114 }
115
116 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
117 {
118         struct sched_rt_entity *rt_se = rt_rq->rt_se;
119
120         if (rt_se && on_rt_rq(rt_se))
121                 dequeue_rt_entity(rt_se);
122 }
123
124 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
125 {
126         return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
127 }
128
129 static int rt_se_boosted(struct sched_rt_entity *rt_se)
130 {
131         struct rt_rq *rt_rq = group_rt_rq(rt_se);
132         struct task_struct *p;
133
134         if (rt_rq)
135                 return !!rt_rq->rt_nr_boosted;
136
137         p = rt_task_of(rt_se);
138         return p->prio != p->normal_prio;
139 }
140
141 #ifdef CONFIG_SMP
142 static inline cpumask_t sched_rt_period_mask(void)
143 {
144         return cpu_rq(smp_processor_id())->rd->span;
145 }
146 #else
147 static inline cpumask_t sched_rt_period_mask(void)
148 {
149         return cpu_online_map;
150 }
151 #endif
152
153 static inline
154 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
155 {
156         return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
157 }
158
159 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
160 {
161         return &rt_rq->tg->rt_bandwidth;
162 }
163
164 #else
165
166 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
167 {
168         return rt_rq->rt_runtime;
169 }
170
171 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
172 {
173         return ktime_to_ns(def_rt_bandwidth.rt_period);
174 }
175
176 #define for_each_leaf_rt_rq(rt_rq, rq) \
177         for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
178
179 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
180 {
181         return container_of(rt_rq, struct rq, rt);
182 }
183
184 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
185 {
186         struct task_struct *p = rt_task_of(rt_se);
187         struct rq *rq = task_rq(p);
188
189         return &rq->rt;
190 }
191
192 #define for_each_sched_rt_entity(rt_se) \
193         for (; rt_se; rt_se = NULL)
194
195 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
196 {
197         return NULL;
198 }
199
200 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
201 {
202 }
203
204 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
205 {
206 }
207
208 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
209 {
210         return rt_rq->rt_throttled;
211 }
212
213 static inline cpumask_t sched_rt_period_mask(void)
214 {
215         return cpu_online_map;
216 }
217
218 static inline
219 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
220 {
221         return &cpu_rq(cpu)->rt;
222 }
223
224 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
225 {
226         return &def_rt_bandwidth;
227 }
228
229 #endif
230
231 #ifdef CONFIG_SMP
232 static int do_balance_runtime(struct rt_rq *rt_rq)
233 {
234         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
235         struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
236         int i, weight, more = 0;
237         u64 rt_period;
238
239         weight = cpus_weight(rd->span);
240
241         spin_lock(&rt_b->rt_runtime_lock);
242         rt_period = ktime_to_ns(rt_b->rt_period);
243         for_each_cpu_mask(i, rd->span) {
244                 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
245                 s64 diff;
246
247                 if (iter == rt_rq)
248                         continue;
249
250                 spin_lock(&iter->rt_runtime_lock);
251                 if (iter->rt_runtime == RUNTIME_INF)
252                         goto next;
253
254                 diff = iter->rt_runtime - iter->rt_time;
255                 if (diff > 0) {
256                         do_div(diff, weight);
257                         if (rt_rq->rt_runtime + diff > rt_period)
258                                 diff = rt_period - rt_rq->rt_runtime;
259                         iter->rt_runtime -= diff;
260                         rt_rq->rt_runtime += diff;
261                         more = 1;
262                         if (rt_rq->rt_runtime == rt_period) {
263                                 spin_unlock(&iter->rt_runtime_lock);
264                                 break;
265                         }
266                 }
267 next:
268                 spin_unlock(&iter->rt_runtime_lock);
269         }
270         spin_unlock(&rt_b->rt_runtime_lock);
271
272         return more;
273 }
274
275 static void __disable_runtime(struct rq *rq)
276 {
277         struct root_domain *rd = rq->rd;
278         struct rt_rq *rt_rq;
279
280         if (unlikely(!scheduler_running))
281                 return;
282
283         for_each_leaf_rt_rq(rt_rq, rq) {
284                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
285                 s64 want;
286                 int i;
287
288                 spin_lock(&rt_b->rt_runtime_lock);
289                 spin_lock(&rt_rq->rt_runtime_lock);
290                 if (rt_rq->rt_runtime == RUNTIME_INF ||
291                                 rt_rq->rt_runtime == rt_b->rt_runtime)
292                         goto balanced;
293                 spin_unlock(&rt_rq->rt_runtime_lock);
294
295                 want = rt_b->rt_runtime - rt_rq->rt_runtime;
296
297                 for_each_cpu_mask(i, rd->span) {
298                         struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
299                         s64 diff;
300
301                         if (iter == rt_rq)
302                                 continue;
303
304                         spin_lock(&iter->rt_runtime_lock);
305                         if (want > 0) {
306                                 diff = min_t(s64, iter->rt_runtime, want);
307                                 iter->rt_runtime -= diff;
308                                 want -= diff;
309                         } else {
310                                 iter->rt_runtime -= want;
311                                 want -= want;
312                         }
313                         spin_unlock(&iter->rt_runtime_lock);
314
315                         if (!want)
316                                 break;
317                 }
318
319                 spin_lock(&rt_rq->rt_runtime_lock);
320                 BUG_ON(want);
321 balanced:
322                 rt_rq->rt_runtime = RUNTIME_INF;
323                 spin_unlock(&rt_rq->rt_runtime_lock);
324                 spin_unlock(&rt_b->rt_runtime_lock);
325         }
326 }
327
328 static void disable_runtime(struct rq *rq)
329 {
330         unsigned long flags;
331
332         spin_lock_irqsave(&rq->lock, flags);
333         __disable_runtime(rq);
334         spin_unlock_irqrestore(&rq->lock, flags);
335 }
336
337 static void __enable_runtime(struct rq *rq)
338 {
339         struct rt_rq *rt_rq;
340
341         if (unlikely(!scheduler_running))
342                 return;
343
344         for_each_leaf_rt_rq(rt_rq, rq) {
345                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
346
347                 spin_lock(&rt_b->rt_runtime_lock);
348                 spin_lock(&rt_rq->rt_runtime_lock);
349                 rt_rq->rt_runtime = rt_b->rt_runtime;
350                 rt_rq->rt_time = 0;
351                 spin_unlock(&rt_rq->rt_runtime_lock);
352                 spin_unlock(&rt_b->rt_runtime_lock);
353         }
354 }
355
356 static void enable_runtime(struct rq *rq)
357 {
358         unsigned long flags;
359
360         spin_lock_irqsave(&rq->lock, flags);
361         __enable_runtime(rq);
362         spin_unlock_irqrestore(&rq->lock, flags);
363 }
364
365 static int balance_runtime(struct rt_rq *rt_rq)
366 {
367         int more = 0;
368
369         if (rt_rq->rt_time > rt_rq->rt_runtime) {
370                 spin_unlock(&rt_rq->rt_runtime_lock);
371                 more = do_balance_runtime(rt_rq);
372                 spin_lock(&rt_rq->rt_runtime_lock);
373         }
374
375         return more;
376 }
377 #else
378 static inline int balance_runtime(struct rt_rq *rt_rq)
379 {
380         return 0;
381 }
382 #endif
383
384 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
385 {
386         int i, idle = 1;
387         cpumask_t span;
388
389         if (rt_b->rt_runtime == RUNTIME_INF)
390                 return 1;
391
392         span = sched_rt_period_mask();
393         for_each_cpu_mask(i, span) {
394                 int enqueue = 0;
395                 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
396                 struct rq *rq = rq_of_rt_rq(rt_rq);
397
398                 spin_lock(&rq->lock);
399                 if (rt_rq->rt_time) {
400                         u64 runtime;
401
402                         spin_lock(&rt_rq->rt_runtime_lock);
403                         if (rt_rq->rt_throttled)
404                                 balance_runtime(rt_rq);
405                         runtime = rt_rq->rt_runtime;
406                         rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
407                         if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
408                                 rt_rq->rt_throttled = 0;
409                                 enqueue = 1;
410                         }
411                         if (rt_rq->rt_time || rt_rq->rt_nr_running)
412                                 idle = 0;
413                         spin_unlock(&rt_rq->rt_runtime_lock);
414                 } else if (rt_rq->rt_nr_running)
415                         idle = 0;
416
417                 if (enqueue)
418                         sched_rt_rq_enqueue(rt_rq);
419                 spin_unlock(&rq->lock);
420         }
421
422         return idle;
423 }
424
425 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
426 {
427 #ifdef CONFIG_RT_GROUP_SCHED
428         struct rt_rq *rt_rq = group_rt_rq(rt_se);
429
430         if (rt_rq)
431                 return rt_rq->highest_prio;
432 #endif
433
434         return rt_task_of(rt_se)->prio;
435 }
436
437 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
438 {
439         u64 runtime = sched_rt_runtime(rt_rq);
440
441         if (runtime == RUNTIME_INF)
442                 return 0;
443
444         if (rt_rq->rt_throttled)
445                 return rt_rq_throttled(rt_rq);
446
447         if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
448                 return 0;
449
450         balance_runtime(rt_rq);
451         runtime = sched_rt_runtime(rt_rq);
452         if (runtime == RUNTIME_INF)
453                 return 0;
454
455         if (rt_rq->rt_time > runtime) {
456                 rt_rq->rt_throttled = 1;
457                 if (rt_rq_throttled(rt_rq)) {
458                         sched_rt_rq_dequeue(rt_rq);
459                         return 1;
460                 }
461         }
462
463         return 0;
464 }
465
466 /*
467  * Update the current task's runtime statistics. Skip current tasks that
468  * are not in our scheduling class.
469  */
470 static void update_curr_rt(struct rq *rq)
471 {
472         struct task_struct *curr = rq->curr;
473         struct sched_rt_entity *rt_se = &curr->rt;
474         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
475         u64 delta_exec;
476
477         if (!task_has_rt_policy(curr))
478                 return;
479
480         delta_exec = rq->clock - curr->se.exec_start;
481         if (unlikely((s64)delta_exec < 0))
482                 delta_exec = 0;
483
484         schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
485
486         curr->se.sum_exec_runtime += delta_exec;
487         curr->se.exec_start = rq->clock;
488         cpuacct_charge(curr, delta_exec);
489
490         for_each_sched_rt_entity(rt_se) {
491                 rt_rq = rt_rq_of_se(rt_se);
492
493                 spin_lock(&rt_rq->rt_runtime_lock);
494                 rt_rq->rt_time += delta_exec;
495                 if (sched_rt_runtime_exceeded(rt_rq))
496                         resched_task(curr);
497                 spin_unlock(&rt_rq->rt_runtime_lock);
498         }
499 }
500
501 static inline
502 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
503 {
504         WARN_ON(!rt_prio(rt_se_prio(rt_se)));
505         rt_rq->rt_nr_running++;
506 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
507         if (rt_se_prio(rt_se) < rt_rq->highest_prio) {
508                 struct rq *rq = rq_of_rt_rq(rt_rq);
509
510                 rt_rq->highest_prio = rt_se_prio(rt_se);
511 #ifdef CONFIG_SMP
512                 if (rq->online)
513                         cpupri_set(&rq->rd->cpupri, rq->cpu,
514                                    rt_se_prio(rt_se));
515 #endif
516         }
517 #endif
518 #ifdef CONFIG_SMP
519         if (rt_se->nr_cpus_allowed > 1) {
520                 struct rq *rq = rq_of_rt_rq(rt_rq);
521
522                 rq->rt.rt_nr_migratory++;
523         }
524
525         update_rt_migration(rq_of_rt_rq(rt_rq));
526 #endif
527 #ifdef CONFIG_RT_GROUP_SCHED
528         if (rt_se_boosted(rt_se))
529                 rt_rq->rt_nr_boosted++;
530
531         if (rt_rq->tg)
532                 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
533 #else
534         start_rt_bandwidth(&def_rt_bandwidth);
535 #endif
536 }
537
538 static inline
539 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
540 {
541 #ifdef CONFIG_SMP
542         int highest_prio = rt_rq->highest_prio;
543 #endif
544
545         WARN_ON(!rt_prio(rt_se_prio(rt_se)));
546         WARN_ON(!rt_rq->rt_nr_running);
547         rt_rq->rt_nr_running--;
548 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
549         if (rt_rq->rt_nr_running) {
550                 struct rt_prio_array *array;
551
552                 WARN_ON(rt_se_prio(rt_se) < rt_rq->highest_prio);
553                 if (rt_se_prio(rt_se) == rt_rq->highest_prio) {
554                         /* recalculate */
555                         array = &rt_rq->active;
556                         rt_rq->highest_prio =
557                                 sched_find_first_bit(array->bitmap);
558                 } /* otherwise leave rq->highest prio alone */
559         } else
560                 rt_rq->highest_prio = MAX_RT_PRIO;
561 #endif
562 #ifdef CONFIG_SMP
563         if (rt_se->nr_cpus_allowed > 1) {
564                 struct rq *rq = rq_of_rt_rq(rt_rq);
565                 rq->rt.rt_nr_migratory--;
566         }
567
568         if (rt_rq->highest_prio != highest_prio) {
569                 struct rq *rq = rq_of_rt_rq(rt_rq);
570
571                 if (rq->online)
572                         cpupri_set(&rq->rd->cpupri, rq->cpu,
573                                    rt_rq->highest_prio);
574         }
575
576         update_rt_migration(rq_of_rt_rq(rt_rq));
577 #endif /* CONFIG_SMP */
578 #ifdef CONFIG_RT_GROUP_SCHED
579         if (rt_se_boosted(rt_se))
580                 rt_rq->rt_nr_boosted--;
581
582         WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
583 #endif
584 }
585
586 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se)
587 {
588         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
589         struct rt_prio_array *array = &rt_rq->active;
590         struct rt_rq *group_rq = group_rt_rq(rt_se);
591         struct list_head *queue = array->queue + rt_se_prio(rt_se);
592
593         /*
594          * Don't enqueue the group if its throttled, or when empty.
595          * The latter is a consequence of the former when a child group
596          * get throttled and the current group doesn't have any other
597          * active members.
598          */
599         if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
600                 return;
601
602         if (rt_se->nr_cpus_allowed == 1)
603                 list_add(&rt_se->run_list, queue);
604         else
605                 list_add_tail(&rt_se->run_list, queue);
606
607         __set_bit(rt_se_prio(rt_se), array->bitmap);
608
609         inc_rt_tasks(rt_se, rt_rq);
610 }
611
612 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
613 {
614         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
615         struct rt_prio_array *array = &rt_rq->active;
616
617         list_del_init(&rt_se->run_list);
618         if (list_empty(array->queue + rt_se_prio(rt_se)))
619                 __clear_bit(rt_se_prio(rt_se), array->bitmap);
620
621         dec_rt_tasks(rt_se, rt_rq);
622 }
623
624 /*
625  * Because the prio of an upper entry depends on the lower
626  * entries, we must remove entries top - down.
627  */
628 static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
629 {
630         struct sched_rt_entity *back = NULL;
631
632         for_each_sched_rt_entity(rt_se) {
633                 rt_se->back = back;
634                 back = rt_se;
635         }
636
637         for (rt_se = back; rt_se; rt_se = rt_se->back) {
638                 if (on_rt_rq(rt_se))
639                         __dequeue_rt_entity(rt_se);
640         }
641 }
642
643 static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
644 {
645         dequeue_rt_stack(rt_se);
646         for_each_sched_rt_entity(rt_se)
647                 __enqueue_rt_entity(rt_se);
648 }
649
650 static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
651 {
652         dequeue_rt_stack(rt_se);
653
654         for_each_sched_rt_entity(rt_se) {
655                 struct rt_rq *rt_rq = group_rt_rq(rt_se);
656
657                 if (rt_rq && rt_rq->rt_nr_running)
658                         __enqueue_rt_entity(rt_se);
659         }
660 }
661
662 /*
663  * Adding/removing a task to/from a priority array:
664  */
665 static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
666 {
667         struct sched_rt_entity *rt_se = &p->rt;
668
669         if (wakeup)
670                 rt_se->timeout = 0;
671
672         enqueue_rt_entity(rt_se);
673
674         inc_cpu_load(rq, p->se.load.weight);
675 }
676
677 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
678 {
679         struct sched_rt_entity *rt_se = &p->rt;
680
681         update_curr_rt(rq);
682         dequeue_rt_entity(rt_se);
683
684         dec_cpu_load(rq, p->se.load.weight);
685 }
686
687 /*
688  * Put task to the end of the run list without the overhead of dequeue
689  * followed by enqueue.
690  */
691 static
692 void requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
693 {
694         struct rt_prio_array *array = &rt_rq->active;
695
696         if (on_rt_rq(rt_se)) {
697                 list_del_init(&rt_se->run_list);
698                 list_add_tail(&rt_se->run_list,
699                               array->queue + rt_se_prio(rt_se));
700         }
701 }
702
703 static void requeue_task_rt(struct rq *rq, struct task_struct *p)
704 {
705         struct sched_rt_entity *rt_se = &p->rt;
706         struct rt_rq *rt_rq;
707
708         for_each_sched_rt_entity(rt_se) {
709                 rt_rq = rt_rq_of_se(rt_se);
710                 requeue_rt_entity(rt_rq, rt_se);
711         }
712 }
713
714 static void yield_task_rt(struct rq *rq)
715 {
716         requeue_task_rt(rq, rq->curr);
717 }
718
719 #ifdef CONFIG_SMP
720 static int find_lowest_rq(struct task_struct *task);
721
722 static int select_task_rq_rt(struct task_struct *p, int sync)
723 {
724         struct rq *rq = task_rq(p);
725
726         /*
727          * If the current task is an RT task, then
728          * try to see if we can wake this RT task up on another
729          * runqueue. Otherwise simply start this RT task
730          * on its current runqueue.
731          *
732          * We want to avoid overloading runqueues. Even if
733          * the RT task is of higher priority than the current RT task.
734          * RT tasks behave differently than other tasks. If
735          * one gets preempted, we try to push it off to another queue.
736          * So trying to keep a preempting RT task on the same
737          * cache hot CPU will force the running RT task to
738          * a cold CPU. So we waste all the cache for the lower
739          * RT task in hopes of saving some of a RT task
740          * that is just being woken and probably will have
741          * cold cache anyway.
742          */
743         if (unlikely(rt_task(rq->curr)) &&
744             (p->rt.nr_cpus_allowed > 1)) {
745                 int cpu = find_lowest_rq(p);
746
747                 return (cpu == -1) ? task_cpu(p) : cpu;
748         }
749
750         /*
751          * Otherwise, just let it ride on the affined RQ and the
752          * post-schedule router will push the preempted task away
753          */
754         return task_cpu(p);
755 }
756 #endif /* CONFIG_SMP */
757
758 /*
759  * Preempt the current task with a newly woken task if needed:
760  */
761 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
762 {
763         if (p->prio < rq->curr->prio) {
764                 resched_task(rq->curr);
765                 return;
766         }
767
768 #ifdef CONFIG_SMP
769         /*
770          * If:
771          *
772          * - the newly woken task is of equal priority to the current task
773          * - the newly woken task is non-migratable while current is migratable
774          * - current will be preempted on the next reschedule
775          *
776          * we should check to see if current can readily move to a different
777          * cpu.  If so, we will reschedule to allow the push logic to try
778          * to move current somewhere else, making room for our non-migratable
779          * task.
780          */
781         if((p->prio == rq->curr->prio)
782            && p->rt.nr_cpus_allowed == 1
783            && rq->curr->rt.nr_cpus_allowed != 1) {
784                 cpumask_t mask;
785
786                 if (cpupri_find(&rq->rd->cpupri, rq->curr, &mask))
787                         /*
788                          * There appears to be other cpus that can accept
789                          * current, so lets reschedule to try and push it away
790                          */
791                         resched_task(rq->curr);
792         }
793 #endif
794 }
795
796 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
797                                                    struct rt_rq *rt_rq)
798 {
799         struct rt_prio_array *array = &rt_rq->active;
800         struct sched_rt_entity *next = NULL;
801         struct list_head *queue;
802         int idx;
803
804         idx = sched_find_first_bit(array->bitmap);
805         BUG_ON(idx >= MAX_RT_PRIO);
806
807         queue = array->queue + idx;
808         next = list_entry(queue->next, struct sched_rt_entity, run_list);
809
810         return next;
811 }
812
813 static struct task_struct *pick_next_task_rt(struct rq *rq)
814 {
815         struct sched_rt_entity *rt_se;
816         struct task_struct *p;
817         struct rt_rq *rt_rq;
818
819         rt_rq = &rq->rt;
820
821         if (unlikely(!rt_rq->rt_nr_running))
822                 return NULL;
823
824         if (rt_rq_throttled(rt_rq))
825                 return NULL;
826
827         do {
828                 rt_se = pick_next_rt_entity(rq, rt_rq);
829                 BUG_ON(!rt_se);
830                 rt_rq = group_rt_rq(rt_se);
831         } while (rt_rq);
832
833         p = rt_task_of(rt_se);
834         p->se.exec_start = rq->clock;
835         return p;
836 }
837
838 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
839 {
840         update_curr_rt(rq);
841         p->se.exec_start = 0;
842 }
843
844 #ifdef CONFIG_SMP
845
846 /* Only try algorithms three times */
847 #define RT_MAX_TRIES 3
848
849 static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
850 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
851
852 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
853 {
854         if (!task_running(rq, p) &&
855             (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) &&
856             (p->rt.nr_cpus_allowed > 1))
857                 return 1;
858         return 0;
859 }
860
861 /* Return the second highest RT task, NULL otherwise */
862 static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
863 {
864         struct task_struct *next = NULL;
865         struct sched_rt_entity *rt_se;
866         struct rt_prio_array *array;
867         struct rt_rq *rt_rq;
868         int idx;
869
870         for_each_leaf_rt_rq(rt_rq, rq) {
871                 array = &rt_rq->active;
872                 idx = sched_find_first_bit(array->bitmap);
873  next_idx:
874                 if (idx >= MAX_RT_PRIO)
875                         continue;
876                 if (next && next->prio < idx)
877                         continue;
878                 list_for_each_entry(rt_se, array->queue + idx, run_list) {
879                         struct task_struct *p = rt_task_of(rt_se);
880                         if (pick_rt_task(rq, p, cpu)) {
881                                 next = p;
882                                 break;
883                         }
884                 }
885                 if (!next) {
886                         idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
887                         goto next_idx;
888                 }
889         }
890
891         return next;
892 }
893
894 static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);
895
896 static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
897 {
898         int first;
899
900         /* "this_cpu" is cheaper to preempt than a remote processor */
901         if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
902                 return this_cpu;
903
904         first = first_cpu(*mask);
905         if (first != NR_CPUS)
906                 return first;
907
908         return -1;
909 }
910
911 static int find_lowest_rq(struct task_struct *task)
912 {
913         struct sched_domain *sd;
914         cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask);
915         int this_cpu = smp_processor_id();
916         int cpu      = task_cpu(task);
917
918         if (task->rt.nr_cpus_allowed == 1)
919                 return -1; /* No other targets possible */
920
921         if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
922                 return -1; /* No targets found */
923
924         /*
925          * At this point we have built a mask of cpus representing the
926          * lowest priority tasks in the system.  Now we want to elect
927          * the best one based on our affinity and topology.
928          *
929          * We prioritize the last cpu that the task executed on since
930          * it is most likely cache-hot in that location.
931          */
932         if (cpu_isset(cpu, *lowest_mask))
933                 return cpu;
934
935         /*
936          * Otherwise, we consult the sched_domains span maps to figure
937          * out which cpu is logically closest to our hot cache data.
938          */
939         if (this_cpu == cpu)
940                 this_cpu = -1; /* Skip this_cpu opt if the same */
941
942         for_each_domain(cpu, sd) {
943                 if (sd->flags & SD_WAKE_AFFINE) {
944                         cpumask_t domain_mask;
945                         int       best_cpu;
946
947                         cpus_and(domain_mask, sd->span, *lowest_mask);
948
949                         best_cpu = pick_optimal_cpu(this_cpu,
950                                                     &domain_mask);
951                         if (best_cpu != -1)
952                                 return best_cpu;
953                 }
954         }
955
956         /*
957          * And finally, if there were no matches within the domains
958          * just give the caller *something* to work with from the compatible
959          * locations.
960          */
961         return pick_optimal_cpu(this_cpu, lowest_mask);
962 }
963
964 /* Will lock the rq it finds */
965 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
966 {
967         struct rq *lowest_rq = NULL;
968         int tries;
969         int cpu;
970
971         for (tries = 0; tries < RT_MAX_TRIES; tries++) {
972                 cpu = find_lowest_rq(task);
973
974                 if ((cpu == -1) || (cpu == rq->cpu))
975                         break;
976
977                 lowest_rq = cpu_rq(cpu);
978
979                 /* if the prio of this runqueue changed, try again */
980                 if (double_lock_balance(rq, lowest_rq)) {
981                         /*
982                          * We had to unlock the run queue. In
983                          * the mean time, task could have
984                          * migrated already or had its affinity changed.
985                          * Also make sure that it wasn't scheduled on its rq.
986                          */
987                         if (unlikely(task_rq(task) != rq ||
988                                      !cpu_isset(lowest_rq->cpu,
989                                                 task->cpus_allowed) ||
990                                      task_running(rq, task) ||
991                                      !task->se.on_rq)) {
992
993                                 spin_unlock(&lowest_rq->lock);
994                                 lowest_rq = NULL;
995                                 break;
996                         }
997                 }
998
999                 /* If this rq is still suitable use it. */
1000                 if (lowest_rq->rt.highest_prio > task->prio)
1001                         break;
1002
1003                 /* try again */
1004                 spin_unlock(&lowest_rq->lock);
1005                 lowest_rq = NULL;
1006         }
1007
1008         return lowest_rq;
1009 }
1010
1011 /*
1012  * If the current CPU has more than one RT task, see if the non
1013  * running task can migrate over to a CPU that is running a task
1014  * of lesser priority.
1015  */
1016 static int push_rt_task(struct rq *rq)
1017 {
1018         struct task_struct *next_task;
1019         struct rq *lowest_rq;
1020         int ret = 0;
1021         int paranoid = RT_MAX_TRIES;
1022
1023         if (!rq->rt.overloaded)
1024                 return 0;
1025
1026         next_task = pick_next_highest_task_rt(rq, -1);
1027         if (!next_task)
1028                 return 0;
1029
1030  retry:
1031         if (unlikely(next_task == rq->curr)) {
1032                 WARN_ON(1);
1033                 return 0;
1034         }
1035
1036         /*
1037          * It's possible that the next_task slipped in of
1038          * higher priority than current. If that's the case
1039          * just reschedule current.
1040          */
1041         if (unlikely(next_task->prio < rq->curr->prio)) {
1042                 resched_task(rq->curr);
1043                 return 0;
1044         }
1045
1046         /* We might release rq lock */
1047         get_task_struct(next_task);
1048
1049         /* find_lock_lowest_rq locks the rq if found */
1050         lowest_rq = find_lock_lowest_rq(next_task, rq);
1051         if (!lowest_rq) {
1052                 struct task_struct *task;
1053                 /*
1054                  * find lock_lowest_rq releases rq->lock
1055                  * so it is possible that next_task has changed.
1056                  * If it has, then try again.
1057                  */
1058                 task = pick_next_highest_task_rt(rq, -1);
1059                 if (unlikely(task != next_task) && task && paranoid--) {
1060                         put_task_struct(next_task);
1061                         next_task = task;
1062                         goto retry;
1063                 }
1064                 goto out;
1065         }
1066
1067         deactivate_task(rq, next_task, 0);
1068         set_task_cpu(next_task, lowest_rq->cpu);
1069         activate_task(lowest_rq, next_task, 0);
1070
1071         resched_task(lowest_rq->curr);
1072
1073         spin_unlock(&lowest_rq->lock);
1074
1075         ret = 1;
1076 out:
1077         put_task_struct(next_task);
1078
1079         return ret;
1080 }
1081
1082 /*
1083  * TODO: Currently we just use the second highest prio task on
1084  *       the queue, and stop when it can't migrate (or there's
1085  *       no more RT tasks).  There may be a case where a lower
1086  *       priority RT task has a different affinity than the
1087  *       higher RT task. In this case the lower RT task could
1088  *       possibly be able to migrate where as the higher priority
1089  *       RT task could not.  We currently ignore this issue.
1090  *       Enhancements are welcome!
1091  */
1092 static void push_rt_tasks(struct rq *rq)
1093 {
1094         /* push_rt_task will return true if it moved an RT */
1095         while (push_rt_task(rq))
1096                 ;
1097 }
1098
1099 static int pull_rt_task(struct rq *this_rq)
1100 {
1101         int this_cpu = this_rq->cpu, ret = 0, cpu;
1102         struct task_struct *p, *next;
1103         struct rq *src_rq;
1104
1105         if (likely(!rt_overloaded(this_rq)))
1106                 return 0;
1107
1108         next = pick_next_task_rt(this_rq);
1109
1110         for_each_cpu_mask(cpu, this_rq->rd->rto_mask) {
1111                 if (this_cpu == cpu)
1112                         continue;
1113
1114                 src_rq = cpu_rq(cpu);
1115                 /*
1116                  * We can potentially drop this_rq's lock in
1117                  * double_lock_balance, and another CPU could
1118                  * steal our next task - hence we must cause
1119                  * the caller to recalculate the next task
1120                  * in that case:
1121                  */
1122                 if (double_lock_balance(this_rq, src_rq)) {
1123                         struct task_struct *old_next = next;
1124
1125                         next = pick_next_task_rt(this_rq);
1126                         if (next != old_next)
1127                                 ret = 1;
1128                 }
1129
1130                 /*
1131                  * Are there still pullable RT tasks?
1132                  */
1133                 if (src_rq->rt.rt_nr_running <= 1)
1134                         goto skip;
1135
1136                 p = pick_next_highest_task_rt(src_rq, this_cpu);
1137
1138                 /*
1139                  * Do we have an RT task that preempts
1140                  * the to-be-scheduled task?
1141                  */
1142                 if (p && (!next || (p->prio < next->prio))) {
1143                         WARN_ON(p == src_rq->curr);
1144                         WARN_ON(!p->se.on_rq);
1145
1146                         /*
1147                          * There's a chance that p is higher in priority
1148                          * than what's currently running on its cpu.
1149                          * This is just that p is wakeing up and hasn't
1150                          * had a chance to schedule. We only pull
1151                          * p if it is lower in priority than the
1152                          * current task on the run queue or
1153                          * this_rq next task is lower in prio than
1154                          * the current task on that rq.
1155                          */
1156                         if (p->prio < src_rq->curr->prio ||
1157                             (next && next->prio < src_rq->curr->prio))
1158                                 goto skip;
1159
1160                         ret = 1;
1161
1162                         deactivate_task(src_rq, p, 0);
1163                         set_task_cpu(p, this_cpu);
1164                         activate_task(this_rq, p, 0);
1165                         /*
1166                          * We continue with the search, just in
1167                          * case there's an even higher prio task
1168                          * in another runqueue. (low likelyhood
1169                          * but possible)
1170                          *
1171                          * Update next so that we won't pick a task
1172                          * on another cpu with a priority lower (or equal)
1173                          * than the one we just picked.
1174                          */
1175                         next = p;
1176
1177                 }
1178  skip:
1179                 spin_unlock(&src_rq->lock);
1180         }
1181
1182         return ret;
1183 }
1184
1185 static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1186 {
1187         /* Try to pull RT tasks here if we lower this rq's prio */
1188         if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio)
1189                 pull_rt_task(rq);
1190 }
1191
1192 static void post_schedule_rt(struct rq *rq)
1193 {
1194         /*
1195          * If we have more than one rt_task queued, then
1196          * see if we can push the other rt_tasks off to other CPUS.
1197          * Note we may release the rq lock, and since
1198          * the lock was owned by prev, we need to release it
1199          * first via finish_lock_switch and then reaquire it here.
1200          */
1201         if (unlikely(rq->rt.overloaded)) {
1202                 spin_lock_irq(&rq->lock);
1203                 push_rt_tasks(rq);
1204                 spin_unlock_irq(&rq->lock);
1205         }
1206 }
1207
1208 /*
1209  * If we are not running and we are not going to reschedule soon, we should
1210  * try to push tasks away now
1211  */
1212 static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
1213 {
1214         if (!task_running(rq, p) &&
1215             !test_tsk_need_resched(rq->curr) &&
1216             rq->rt.overloaded)
1217                 push_rt_tasks(rq);
1218 }
1219
1220 static unsigned long
1221 load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1222                 unsigned long max_load_move,
1223                 struct sched_domain *sd, enum cpu_idle_type idle,
1224                 int *all_pinned, int *this_best_prio)
1225 {
1226         /* don't touch RT tasks */
1227         return 0;
1228 }
1229
1230 static int
1231 move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1232                  struct sched_domain *sd, enum cpu_idle_type idle)
1233 {
1234         /* don't touch RT tasks */
1235         return 0;
1236 }
1237
1238 static void set_cpus_allowed_rt(struct task_struct *p,
1239                                 const cpumask_t *new_mask)
1240 {
1241         int weight = cpus_weight(*new_mask);
1242
1243         BUG_ON(!rt_task(p));
1244
1245         /*
1246          * Update the migration status of the RQ if we have an RT task
1247          * which is running AND changing its weight value.
1248          */
1249         if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
1250                 struct rq *rq = task_rq(p);
1251
1252                 if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
1253                         rq->rt.rt_nr_migratory++;
1254                 } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
1255                         BUG_ON(!rq->rt.rt_nr_migratory);
1256                         rq->rt.rt_nr_migratory--;
1257                 }
1258
1259                 update_rt_migration(rq);
1260         }
1261
1262         p->cpus_allowed    = *new_mask;
1263         p->rt.nr_cpus_allowed = weight;
1264 }
1265
1266 /* Assumes rq->lock is held */
1267 static void rq_online_rt(struct rq *rq)
1268 {
1269         if (rq->rt.overloaded)
1270                 rt_set_overload(rq);
1271
1272         __enable_runtime(rq);
1273
1274         cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio);
1275 }
1276
1277 /* Assumes rq->lock is held */
1278 static void rq_offline_rt(struct rq *rq)
1279 {
1280         if (rq->rt.overloaded)
1281                 rt_clear_overload(rq);
1282
1283         __disable_runtime(rq);
1284
1285         cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1286 }
1287
1288 /*
1289  * When switch from the rt queue, we bring ourselves to a position
1290  * that we might want to pull RT tasks from other runqueues.
1291  */
1292 static void switched_from_rt(struct rq *rq, struct task_struct *p,
1293                            int running)
1294 {
1295         /*
1296          * If there are other RT tasks then we will reschedule
1297          * and the scheduling of the other RT tasks will handle
1298          * the balancing. But if we are the last RT task
1299          * we may need to handle the pulling of RT tasks
1300          * now.
1301          */
1302         if (!rq->rt.rt_nr_running)
1303                 pull_rt_task(rq);
1304 }
1305 #endif /* CONFIG_SMP */
1306
1307 /*
1308  * When switching a task to RT, we may overload the runqueue
1309  * with RT tasks. In this case we try to push them off to
1310  * other runqueues.
1311  */
1312 static void switched_to_rt(struct rq *rq, struct task_struct *p,
1313                            int running)
1314 {
1315         int check_resched = 1;
1316
1317         /*
1318          * If we are already running, then there's nothing
1319          * that needs to be done. But if we are not running
1320          * we may need to preempt the current running task.
1321          * If that current running task is also an RT task
1322          * then see if we can move to another run queue.
1323          */
1324         if (!running) {
1325 #ifdef CONFIG_SMP
1326                 if (rq->rt.overloaded && push_rt_task(rq) &&
1327                     /* Don't resched if we changed runqueues */
1328                     rq != task_rq(p))
1329                         check_resched = 0;
1330 #endif /* CONFIG_SMP */
1331                 if (check_resched && p->prio < rq->curr->prio)
1332                         resched_task(rq->curr);
1333         }
1334 }
1335
1336 /*
1337  * Priority of the task has changed. This may cause
1338  * us to initiate a push or pull.
1339  */
1340 static void prio_changed_rt(struct rq *rq, struct task_struct *p,
1341                             int oldprio, int running)
1342 {
1343         if (running) {
1344 #ifdef CONFIG_SMP
1345                 /*
1346                  * If our priority decreases while running, we
1347                  * may need to pull tasks to this runqueue.
1348                  */
1349                 if (oldprio < p->prio)
1350                         pull_rt_task(rq);
1351                 /*
1352                  * If there's a higher priority task waiting to run
1353                  * then reschedule. Note, the above pull_rt_task
1354                  * can release the rq lock and p could migrate.
1355                  * Only reschedule if p is still on the same runqueue.
1356                  */
1357                 if (p->prio > rq->rt.highest_prio && rq->curr == p)
1358                         resched_task(p);
1359 #else
1360                 /* For UP simply resched on drop of prio */
1361                 if (oldprio < p->prio)
1362                         resched_task(p);
1363 #endif /* CONFIG_SMP */
1364         } else {
1365                 /*
1366                  * This task is not running, but if it is
1367                  * greater than the current running task
1368                  * then reschedule.
1369                  */
1370                 if (p->prio < rq->curr->prio)
1371                         resched_task(rq->curr);
1372         }
1373 }
1374
1375 static void watchdog(struct rq *rq, struct task_struct *p)
1376 {
1377         unsigned long soft, hard;
1378
1379         if (!p->signal)
1380                 return;
1381
1382         soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
1383         hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;
1384
1385         if (soft != RLIM_INFINITY) {
1386                 unsigned long next;
1387
1388                 p->rt.timeout++;
1389                 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1390                 if (p->rt.timeout > next)
1391                         p->it_sched_expires = p->se.sum_exec_runtime;
1392         }
1393 }
1394
1395 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
1396 {
1397         update_curr_rt(rq);
1398
1399         watchdog(rq, p);
1400
1401         /*
1402          * RR tasks need a special form of timeslice management.
1403          * FIFO tasks have no timeslices.
1404          */
1405         if (p->policy != SCHED_RR)
1406                 return;
1407
1408         if (--p->rt.time_slice)
1409                 return;
1410
1411         p->rt.time_slice = DEF_TIMESLICE;
1412
1413         /*
1414          * Requeue to the end of queue if we are not the only element
1415          * on the queue:
1416          */
1417         if (p->rt.run_list.prev != p->rt.run_list.next) {
1418                 requeue_task_rt(rq, p);
1419                 set_tsk_need_resched(p);
1420         }
1421 }
1422
1423 static void set_curr_task_rt(struct rq *rq)
1424 {
1425         struct task_struct *p = rq->curr;
1426
1427         p->se.exec_start = rq->clock;
1428 }
1429
1430 static const struct sched_class rt_sched_class = {
1431         .next                   = &fair_sched_class,
1432         .enqueue_task           = enqueue_task_rt,
1433         .dequeue_task           = dequeue_task_rt,
1434         .yield_task             = yield_task_rt,
1435 #ifdef CONFIG_SMP
1436         .select_task_rq         = select_task_rq_rt,
1437 #endif /* CONFIG_SMP */
1438
1439         .check_preempt_curr     = check_preempt_curr_rt,
1440
1441         .pick_next_task         = pick_next_task_rt,
1442         .put_prev_task          = put_prev_task_rt,
1443
1444 #ifdef CONFIG_SMP
1445         .load_balance           = load_balance_rt,
1446         .move_one_task          = move_one_task_rt,
1447         .set_cpus_allowed       = set_cpus_allowed_rt,
1448         .rq_online              = rq_online_rt,
1449         .rq_offline             = rq_offline_rt,
1450         .pre_schedule           = pre_schedule_rt,
1451         .post_schedule          = post_schedule_rt,
1452         .task_wake_up           = task_wake_up_rt,
1453         .switched_from          = switched_from_rt,
1454 #endif
1455
1456         .set_curr_task          = set_curr_task_rt,
1457         .task_tick              = task_tick_rt,
1458
1459         .prio_changed           = prio_changed_rt,
1460         .switched_to            = switched_to_rt,
1461 };
1462
1463 #ifdef CONFIG_SCHED_DEBUG
1464 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
1465
1466 static void print_rt_stats(struct seq_file *m, int cpu)
1467 {
1468         struct rt_rq *rt_rq;
1469
1470         rcu_read_lock();
1471         for_each_leaf_rt_rq(rt_rq, cpu_rq(cpu))
1472                 print_rt_rq(m, cpu, rt_rq);
1473         rcu_read_unlock();
1474 }
1475 #endif