sched: fix warning in inc_rt_tasks() to not declare variable 'rq' if it's not needed
[linux-2.6.git] / kernel / sched_rt.c
1 /*
2  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3  * policies)
4  */
5
6 #ifdef CONFIG_SMP
7
8 static inline int rt_overloaded(struct rq *rq)
9 {
10         return atomic_read(&rq->rd->rto_count);
11 }
12
13 static inline void rt_set_overload(struct rq *rq)
14 {
15         if (!rq->online)
16                 return;
17
18         cpu_set(rq->cpu, rq->rd->rto_mask);
19         /*
20          * Make sure the mask is visible before we set
21          * the overload count. That is checked to determine
22          * if we should look at the mask. It would be a shame
23          * if we looked at the mask, but the mask was not
24          * updated yet.
25          */
26         wmb();
27         atomic_inc(&rq->rd->rto_count);
28 }
29
30 static inline void rt_clear_overload(struct rq *rq)
31 {
32         if (!rq->online)
33                 return;
34
35         /* the order here really doesn't matter */
36         atomic_dec(&rq->rd->rto_count);
37         cpu_clear(rq->cpu, rq->rd->rto_mask);
38 }
39
40 static void update_rt_migration(struct rq *rq)
41 {
42         if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) {
43                 if (!rq->rt.overloaded) {
44                         rt_set_overload(rq);
45                         rq->rt.overloaded = 1;
46                 }
47         } else if (rq->rt.overloaded) {
48                 rt_clear_overload(rq);
49                 rq->rt.overloaded = 0;
50         }
51 }
52 #endif /* CONFIG_SMP */
53
54 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
55 {
56         return container_of(rt_se, struct task_struct, rt);
57 }
58
59 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
60 {
61         return !list_empty(&rt_se->run_list);
62 }
63
64 #ifdef CONFIG_RT_GROUP_SCHED
65
66 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
67 {
68         if (!rt_rq->tg)
69                 return RUNTIME_INF;
70
71         return rt_rq->rt_runtime;
72 }
73
74 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
75 {
76         return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
77 }
78
79 #define for_each_leaf_rt_rq(rt_rq, rq) \
80         list_for_each_entry(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
81
82 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
83 {
84         return rt_rq->rq;
85 }
86
87 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
88 {
89         return rt_se->rt_rq;
90 }
91
92 #define for_each_sched_rt_entity(rt_se) \
93         for (; rt_se; rt_se = rt_se->parent)
94
95 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
96 {
97         return rt_se->my_q;
98 }
99
100 static void enqueue_rt_entity(struct sched_rt_entity *rt_se);
101 static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
102
103 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
104 {
105         struct sched_rt_entity *rt_se = rt_rq->rt_se;
106
107         if (rt_se && !on_rt_rq(rt_se) && rt_rq->rt_nr_running) {
108                 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
109
110                 enqueue_rt_entity(rt_se);
111                 if (rt_rq->highest_prio < curr->prio)
112                         resched_task(curr);
113         }
114 }
115
116 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
117 {
118         struct sched_rt_entity *rt_se = rt_rq->rt_se;
119
120         if (rt_se && on_rt_rq(rt_se))
121                 dequeue_rt_entity(rt_se);
122 }
123
124 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
125 {
126         return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
127 }
128
129 static int rt_se_boosted(struct sched_rt_entity *rt_se)
130 {
131         struct rt_rq *rt_rq = group_rt_rq(rt_se);
132         struct task_struct *p;
133
134         if (rt_rq)
135                 return !!rt_rq->rt_nr_boosted;
136
137         p = rt_task_of(rt_se);
138         return p->prio != p->normal_prio;
139 }
140
141 #ifdef CONFIG_SMP
142 static inline cpumask_t sched_rt_period_mask(void)
143 {
144         return cpu_rq(smp_processor_id())->rd->span;
145 }
146 #else
147 static inline cpumask_t sched_rt_period_mask(void)
148 {
149         return cpu_online_map;
150 }
151 #endif
152
153 static inline
154 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
155 {
156         return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
157 }
158
159 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
160 {
161         return &rt_rq->tg->rt_bandwidth;
162 }
163
164 #else /* !CONFIG_RT_GROUP_SCHED */
165
166 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
167 {
168         return rt_rq->rt_runtime;
169 }
170
171 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
172 {
173         return ktime_to_ns(def_rt_bandwidth.rt_period);
174 }
175
176 #define for_each_leaf_rt_rq(rt_rq, rq) \
177         for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
178
179 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
180 {
181         return container_of(rt_rq, struct rq, rt);
182 }
183
184 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
185 {
186         struct task_struct *p = rt_task_of(rt_se);
187         struct rq *rq = task_rq(p);
188
189         return &rq->rt;
190 }
191
192 #define for_each_sched_rt_entity(rt_se) \
193         for (; rt_se; rt_se = NULL)
194
195 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
196 {
197         return NULL;
198 }
199
200 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
201 {
202 }
203
204 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
205 {
206 }
207
208 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
209 {
210         return rt_rq->rt_throttled;
211 }
212
213 static inline cpumask_t sched_rt_period_mask(void)
214 {
215         return cpu_online_map;
216 }
217
218 static inline
219 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
220 {
221         return &cpu_rq(cpu)->rt;
222 }
223
224 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
225 {
226         return &def_rt_bandwidth;
227 }
228
229 #endif /* CONFIG_RT_GROUP_SCHED */
230
231 #ifdef CONFIG_SMP
232 static int do_balance_runtime(struct rt_rq *rt_rq)
233 {
234         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
235         struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
236         int i, weight, more = 0;
237         u64 rt_period;
238
239         weight = cpus_weight(rd->span);
240
241         spin_lock(&rt_b->rt_runtime_lock);
242         rt_period = ktime_to_ns(rt_b->rt_period);
243         for_each_cpu_mask(i, rd->span) {
244                 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
245                 s64 diff;
246
247                 if (iter == rt_rq)
248                         continue;
249
250                 spin_lock(&iter->rt_runtime_lock);
251                 if (iter->rt_runtime == RUNTIME_INF)
252                         goto next;
253
254                 diff = iter->rt_runtime - iter->rt_time;
255                 if (diff > 0) {
256                         do_div(diff, weight);
257                         if (rt_rq->rt_runtime + diff > rt_period)
258                                 diff = rt_period - rt_rq->rt_runtime;
259                         iter->rt_runtime -= diff;
260                         rt_rq->rt_runtime += diff;
261                         more = 1;
262                         if (rt_rq->rt_runtime == rt_period) {
263                                 spin_unlock(&iter->rt_runtime_lock);
264                                 break;
265                         }
266                 }
267 next:
268                 spin_unlock(&iter->rt_runtime_lock);
269         }
270         spin_unlock(&rt_b->rt_runtime_lock);
271
272         return more;
273 }
274
275 static void __disable_runtime(struct rq *rq)
276 {
277         struct root_domain *rd = rq->rd;
278         struct rt_rq *rt_rq;
279
280         if (unlikely(!scheduler_running))
281                 return;
282
283         for_each_leaf_rt_rq(rt_rq, rq) {
284                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
285                 s64 want;
286                 int i;
287
288                 spin_lock(&rt_b->rt_runtime_lock);
289                 spin_lock(&rt_rq->rt_runtime_lock);
290                 if (rt_rq->rt_runtime == RUNTIME_INF ||
291                                 rt_rq->rt_runtime == rt_b->rt_runtime)
292                         goto balanced;
293                 spin_unlock(&rt_rq->rt_runtime_lock);
294
295                 want = rt_b->rt_runtime - rt_rq->rt_runtime;
296
297                 for_each_cpu_mask(i, rd->span) {
298                         struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
299                         s64 diff;
300
301                         if (iter == rt_rq)
302                                 continue;
303
304                         spin_lock(&iter->rt_runtime_lock);
305                         if (want > 0) {
306                                 diff = min_t(s64, iter->rt_runtime, want);
307                                 iter->rt_runtime -= diff;
308                                 want -= diff;
309                         } else {
310                                 iter->rt_runtime -= want;
311                                 want -= want;
312                         }
313                         spin_unlock(&iter->rt_runtime_lock);
314
315                         if (!want)
316                                 break;
317                 }
318
319                 spin_lock(&rt_rq->rt_runtime_lock);
320                 BUG_ON(want);
321 balanced:
322                 rt_rq->rt_runtime = RUNTIME_INF;
323                 spin_unlock(&rt_rq->rt_runtime_lock);
324                 spin_unlock(&rt_b->rt_runtime_lock);
325         }
326 }
327
328 static void disable_runtime(struct rq *rq)
329 {
330         unsigned long flags;
331
332         spin_lock_irqsave(&rq->lock, flags);
333         __disable_runtime(rq);
334         spin_unlock_irqrestore(&rq->lock, flags);
335 }
336
337 static void __enable_runtime(struct rq *rq)
338 {
339         struct rt_rq *rt_rq;
340
341         if (unlikely(!scheduler_running))
342                 return;
343
344         for_each_leaf_rt_rq(rt_rq, rq) {
345                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
346
347                 spin_lock(&rt_b->rt_runtime_lock);
348                 spin_lock(&rt_rq->rt_runtime_lock);
349                 rt_rq->rt_runtime = rt_b->rt_runtime;
350                 rt_rq->rt_time = 0;
351                 spin_unlock(&rt_rq->rt_runtime_lock);
352                 spin_unlock(&rt_b->rt_runtime_lock);
353         }
354 }
355
356 static void enable_runtime(struct rq *rq)
357 {
358         unsigned long flags;
359
360         spin_lock_irqsave(&rq->lock, flags);
361         __enable_runtime(rq);
362         spin_unlock_irqrestore(&rq->lock, flags);
363 }
364
365 static int balance_runtime(struct rt_rq *rt_rq)
366 {
367         int more = 0;
368
369         if (rt_rq->rt_time > rt_rq->rt_runtime) {
370                 spin_unlock(&rt_rq->rt_runtime_lock);
371                 more = do_balance_runtime(rt_rq);
372                 spin_lock(&rt_rq->rt_runtime_lock);
373         }
374
375         return more;
376 }
377 #else /* !CONFIG_SMP */
378 static inline int balance_runtime(struct rt_rq *rt_rq)
379 {
380         return 0;
381 }
382 #endif /* CONFIG_SMP */
383
384 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
385 {
386         int i, idle = 1;
387         cpumask_t span;
388
389         if (rt_b->rt_runtime == RUNTIME_INF)
390                 return 1;
391
392         span = sched_rt_period_mask();
393         for_each_cpu_mask(i, span) {
394                 int enqueue = 0;
395                 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
396                 struct rq *rq = rq_of_rt_rq(rt_rq);
397
398                 spin_lock(&rq->lock);
399                 if (rt_rq->rt_time) {
400                         u64 runtime;
401
402                         spin_lock(&rt_rq->rt_runtime_lock);
403                         if (rt_rq->rt_throttled)
404                                 balance_runtime(rt_rq);
405                         runtime = rt_rq->rt_runtime;
406                         rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
407                         if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
408                                 rt_rq->rt_throttled = 0;
409                                 enqueue = 1;
410                         }
411                         if (rt_rq->rt_time || rt_rq->rt_nr_running)
412                                 idle = 0;
413                         spin_unlock(&rt_rq->rt_runtime_lock);
414                 } else if (rt_rq->rt_nr_running)
415                         idle = 0;
416
417                 if (enqueue)
418                         sched_rt_rq_enqueue(rt_rq);
419                 spin_unlock(&rq->lock);
420         }
421
422         return idle;
423 }
424
425 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
426 {
427 #ifdef CONFIG_RT_GROUP_SCHED
428         struct rt_rq *rt_rq = group_rt_rq(rt_se);
429
430         if (rt_rq)
431                 return rt_rq->highest_prio;
432 #endif
433
434         return rt_task_of(rt_se)->prio;
435 }
436
437 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
438 {
439         u64 runtime = sched_rt_runtime(rt_rq);
440
441         if (runtime == RUNTIME_INF)
442                 return 0;
443
444         if (rt_rq->rt_throttled)
445                 return rt_rq_throttled(rt_rq);
446
447         if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
448                 return 0;
449
450         balance_runtime(rt_rq);
451         runtime = sched_rt_runtime(rt_rq);
452         if (runtime == RUNTIME_INF)
453                 return 0;
454
455         if (rt_rq->rt_time > runtime) {
456                 rt_rq->rt_throttled = 1;
457                 if (rt_rq_throttled(rt_rq)) {
458                         sched_rt_rq_dequeue(rt_rq);
459                         return 1;
460                 }
461         }
462
463         return 0;
464 }
465
466 /*
467  * Update the current task's runtime statistics. Skip current tasks that
468  * are not in our scheduling class.
469  */
470 static void update_curr_rt(struct rq *rq)
471 {
472         struct task_struct *curr = rq->curr;
473         struct sched_rt_entity *rt_se = &curr->rt;
474         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
475         u64 delta_exec;
476
477         if (!task_has_rt_policy(curr))
478                 return;
479
480         delta_exec = rq->clock - curr->se.exec_start;
481         if (unlikely((s64)delta_exec < 0))
482                 delta_exec = 0;
483
484         schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
485
486         curr->se.sum_exec_runtime += delta_exec;
487         curr->se.exec_start = rq->clock;
488         cpuacct_charge(curr, delta_exec);
489
490         for_each_sched_rt_entity(rt_se) {
491                 rt_rq = rt_rq_of_se(rt_se);
492
493                 spin_lock(&rt_rq->rt_runtime_lock);
494                 rt_rq->rt_time += delta_exec;
495                 if (sched_rt_runtime_exceeded(rt_rq))
496                         resched_task(curr);
497                 spin_unlock(&rt_rq->rt_runtime_lock);
498         }
499 }
500
501 static inline
502 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
503 {
504         WARN_ON(!rt_prio(rt_se_prio(rt_se)));
505         rt_rq->rt_nr_running++;
506 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
507         if (rt_se_prio(rt_se) < rt_rq->highest_prio) {
508 #ifdef CONFIG_SMP
509                 struct rq *rq = rq_of_rt_rq(rt_rq);
510 #endif
511
512                 rt_rq->highest_prio = rt_se_prio(rt_se);
513 #ifdef CONFIG_SMP
514                 if (rq->online)
515                         cpupri_set(&rq->rd->cpupri, rq->cpu,
516                                    rt_se_prio(rt_se));
517 #endif
518         }
519 #endif
520 #ifdef CONFIG_SMP
521         if (rt_se->nr_cpus_allowed > 1) {
522                 struct rq *rq = rq_of_rt_rq(rt_rq);
523
524                 rq->rt.rt_nr_migratory++;
525         }
526
527         update_rt_migration(rq_of_rt_rq(rt_rq));
528 #endif
529 #ifdef CONFIG_RT_GROUP_SCHED
530         if (rt_se_boosted(rt_se))
531                 rt_rq->rt_nr_boosted++;
532
533         if (rt_rq->tg)
534                 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
535 #else
536         start_rt_bandwidth(&def_rt_bandwidth);
537 #endif
538 }
539
540 static inline
541 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
542 {
543 #ifdef CONFIG_SMP
544         int highest_prio = rt_rq->highest_prio;
545 #endif
546
547         WARN_ON(!rt_prio(rt_se_prio(rt_se)));
548         WARN_ON(!rt_rq->rt_nr_running);
549         rt_rq->rt_nr_running--;
550 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
551         if (rt_rq->rt_nr_running) {
552                 struct rt_prio_array *array;
553
554                 WARN_ON(rt_se_prio(rt_se) < rt_rq->highest_prio);
555                 if (rt_se_prio(rt_se) == rt_rq->highest_prio) {
556                         /* recalculate */
557                         array = &rt_rq->active;
558                         rt_rq->highest_prio =
559                                 sched_find_first_bit(array->bitmap);
560                 } /* otherwise leave rq->highest prio alone */
561         } else
562                 rt_rq->highest_prio = MAX_RT_PRIO;
563 #endif
564 #ifdef CONFIG_SMP
565         if (rt_se->nr_cpus_allowed > 1) {
566                 struct rq *rq = rq_of_rt_rq(rt_rq);
567                 rq->rt.rt_nr_migratory--;
568         }
569
570         if (rt_rq->highest_prio != highest_prio) {
571                 struct rq *rq = rq_of_rt_rq(rt_rq);
572
573                 if (rq->online)
574                         cpupri_set(&rq->rd->cpupri, rq->cpu,
575                                    rt_rq->highest_prio);
576         }
577
578         update_rt_migration(rq_of_rt_rq(rt_rq));
579 #endif /* CONFIG_SMP */
580 #ifdef CONFIG_RT_GROUP_SCHED
581         if (rt_se_boosted(rt_se))
582                 rt_rq->rt_nr_boosted--;
583
584         WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
585 #endif
586 }
587
588 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se)
589 {
590         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
591         struct rt_prio_array *array = &rt_rq->active;
592         struct rt_rq *group_rq = group_rt_rq(rt_se);
593         struct list_head *queue = array->queue + rt_se_prio(rt_se);
594
595         /*
596          * Don't enqueue the group if its throttled, or when empty.
597          * The latter is a consequence of the former when a child group
598          * get throttled and the current group doesn't have any other
599          * active members.
600          */
601         if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
602                 return;
603
604         if (rt_se->nr_cpus_allowed == 1)
605                 list_add(&rt_se->run_list, queue);
606         else
607                 list_add_tail(&rt_se->run_list, queue);
608
609         __set_bit(rt_se_prio(rt_se), array->bitmap);
610
611         inc_rt_tasks(rt_se, rt_rq);
612 }
613
614 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
615 {
616         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
617         struct rt_prio_array *array = &rt_rq->active;
618
619         list_del_init(&rt_se->run_list);
620         if (list_empty(array->queue + rt_se_prio(rt_se)))
621                 __clear_bit(rt_se_prio(rt_se), array->bitmap);
622
623         dec_rt_tasks(rt_se, rt_rq);
624 }
625
626 /*
627  * Because the prio of an upper entry depends on the lower
628  * entries, we must remove entries top - down.
629  */
630 static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
631 {
632         struct sched_rt_entity *back = NULL;
633
634         for_each_sched_rt_entity(rt_se) {
635                 rt_se->back = back;
636                 back = rt_se;
637         }
638
639         for (rt_se = back; rt_se; rt_se = rt_se->back) {
640                 if (on_rt_rq(rt_se))
641                         __dequeue_rt_entity(rt_se);
642         }
643 }
644
645 static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
646 {
647         dequeue_rt_stack(rt_se);
648         for_each_sched_rt_entity(rt_se)
649                 __enqueue_rt_entity(rt_se);
650 }
651
652 static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
653 {
654         dequeue_rt_stack(rt_se);
655
656         for_each_sched_rt_entity(rt_se) {
657                 struct rt_rq *rt_rq = group_rt_rq(rt_se);
658
659                 if (rt_rq && rt_rq->rt_nr_running)
660                         __enqueue_rt_entity(rt_se);
661         }
662 }
663
664 /*
665  * Adding/removing a task to/from a priority array:
666  */
667 static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
668 {
669         struct sched_rt_entity *rt_se = &p->rt;
670
671         if (wakeup)
672                 rt_se->timeout = 0;
673
674         enqueue_rt_entity(rt_se);
675
676         inc_cpu_load(rq, p->se.load.weight);
677 }
678
679 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
680 {
681         struct sched_rt_entity *rt_se = &p->rt;
682
683         update_curr_rt(rq);
684         dequeue_rt_entity(rt_se);
685
686         dec_cpu_load(rq, p->se.load.weight);
687 }
688
689 /*
690  * Put task to the end of the run list without the overhead of dequeue
691  * followed by enqueue.
692  */
693 static
694 void requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
695 {
696         struct rt_prio_array *array = &rt_rq->active;
697
698         if (on_rt_rq(rt_se)) {
699                 list_del_init(&rt_se->run_list);
700                 list_add_tail(&rt_se->run_list,
701                               array->queue + rt_se_prio(rt_se));
702         }
703 }
704
705 static void requeue_task_rt(struct rq *rq, struct task_struct *p)
706 {
707         struct sched_rt_entity *rt_se = &p->rt;
708         struct rt_rq *rt_rq;
709
710         for_each_sched_rt_entity(rt_se) {
711                 rt_rq = rt_rq_of_se(rt_se);
712                 requeue_rt_entity(rt_rq, rt_se);
713         }
714 }
715
716 static void yield_task_rt(struct rq *rq)
717 {
718         requeue_task_rt(rq, rq->curr);
719 }
720
721 #ifdef CONFIG_SMP
722 static int find_lowest_rq(struct task_struct *task);
723
724 static int select_task_rq_rt(struct task_struct *p, int sync)
725 {
726         struct rq *rq = task_rq(p);
727
728         /*
729          * If the current task is an RT task, then
730          * try to see if we can wake this RT task up on another
731          * runqueue. Otherwise simply start this RT task
732          * on its current runqueue.
733          *
734          * We want to avoid overloading runqueues. Even if
735          * the RT task is of higher priority than the current RT task.
736          * RT tasks behave differently than other tasks. If
737          * one gets preempted, we try to push it off to another queue.
738          * So trying to keep a preempting RT task on the same
739          * cache hot CPU will force the running RT task to
740          * a cold CPU. So we waste all the cache for the lower
741          * RT task in hopes of saving some of a RT task
742          * that is just being woken and probably will have
743          * cold cache anyway.
744          */
745         if (unlikely(rt_task(rq->curr)) &&
746             (p->rt.nr_cpus_allowed > 1)) {
747                 int cpu = find_lowest_rq(p);
748
749                 return (cpu == -1) ? task_cpu(p) : cpu;
750         }
751
752         /*
753          * Otherwise, just let it ride on the affined RQ and the
754          * post-schedule router will push the preempted task away
755          */
756         return task_cpu(p);
757 }
758 #endif /* CONFIG_SMP */
759
760 /*
761  * Preempt the current task with a newly woken task if needed:
762  */
763 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
764 {
765         if (p->prio < rq->curr->prio) {
766                 resched_task(rq->curr);
767                 return;
768         }
769
770 #ifdef CONFIG_SMP
771         /*
772          * If:
773          *
774          * - the newly woken task is of equal priority to the current task
775          * - the newly woken task is non-migratable while current is migratable
776          * - current will be preempted on the next reschedule
777          *
778          * we should check to see if current can readily move to a different
779          * cpu.  If so, we will reschedule to allow the push logic to try
780          * to move current somewhere else, making room for our non-migratable
781          * task.
782          */
783         if((p->prio == rq->curr->prio)
784            && p->rt.nr_cpus_allowed == 1
785            && rq->curr->rt.nr_cpus_allowed != 1) {
786                 cpumask_t mask;
787
788                 if (cpupri_find(&rq->rd->cpupri, rq->curr, &mask))
789                         /*
790                          * There appears to be other cpus that can accept
791                          * current, so lets reschedule to try and push it away
792                          */
793                         resched_task(rq->curr);
794         }
795 #endif
796 }
797
798 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
799                                                    struct rt_rq *rt_rq)
800 {
801         struct rt_prio_array *array = &rt_rq->active;
802         struct sched_rt_entity *next = NULL;
803         struct list_head *queue;
804         int idx;
805
806         idx = sched_find_first_bit(array->bitmap);
807         BUG_ON(idx >= MAX_RT_PRIO);
808
809         queue = array->queue + idx;
810         next = list_entry(queue->next, struct sched_rt_entity, run_list);
811
812         return next;
813 }
814
815 static struct task_struct *pick_next_task_rt(struct rq *rq)
816 {
817         struct sched_rt_entity *rt_se;
818         struct task_struct *p;
819         struct rt_rq *rt_rq;
820
821         rt_rq = &rq->rt;
822
823         if (unlikely(!rt_rq->rt_nr_running))
824                 return NULL;
825
826         if (rt_rq_throttled(rt_rq))
827                 return NULL;
828
829         do {
830                 rt_se = pick_next_rt_entity(rq, rt_rq);
831                 BUG_ON(!rt_se);
832                 rt_rq = group_rt_rq(rt_se);
833         } while (rt_rq);
834
835         p = rt_task_of(rt_se);
836         p->se.exec_start = rq->clock;
837         return p;
838 }
839
840 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
841 {
842         update_curr_rt(rq);
843         p->se.exec_start = 0;
844 }
845
846 #ifdef CONFIG_SMP
847
848 /* Only try algorithms three times */
849 #define RT_MAX_TRIES 3
850
851 static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
852 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
853
854 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
855 {
856         if (!task_running(rq, p) &&
857             (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) &&
858             (p->rt.nr_cpus_allowed > 1))
859                 return 1;
860         return 0;
861 }
862
863 /* Return the second highest RT task, NULL otherwise */
864 static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
865 {
866         struct task_struct *next = NULL;
867         struct sched_rt_entity *rt_se;
868         struct rt_prio_array *array;
869         struct rt_rq *rt_rq;
870         int idx;
871
872         for_each_leaf_rt_rq(rt_rq, rq) {
873                 array = &rt_rq->active;
874                 idx = sched_find_first_bit(array->bitmap);
875  next_idx:
876                 if (idx >= MAX_RT_PRIO)
877                         continue;
878                 if (next && next->prio < idx)
879                         continue;
880                 list_for_each_entry(rt_se, array->queue + idx, run_list) {
881                         struct task_struct *p = rt_task_of(rt_se);
882                         if (pick_rt_task(rq, p, cpu)) {
883                                 next = p;
884                                 break;
885                         }
886                 }
887                 if (!next) {
888                         idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
889                         goto next_idx;
890                 }
891         }
892
893         return next;
894 }
895
896 static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);
897
898 static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
899 {
900         int first;
901
902         /* "this_cpu" is cheaper to preempt than a remote processor */
903         if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
904                 return this_cpu;
905
906         first = first_cpu(*mask);
907         if (first != NR_CPUS)
908                 return first;
909
910         return -1;
911 }
912
913 static int find_lowest_rq(struct task_struct *task)
914 {
915         struct sched_domain *sd;
916         cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask);
917         int this_cpu = smp_processor_id();
918         int cpu      = task_cpu(task);
919
920         if (task->rt.nr_cpus_allowed == 1)
921                 return -1; /* No other targets possible */
922
923         if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
924                 return -1; /* No targets found */
925
926         /*
927          * At this point we have built a mask of cpus representing the
928          * lowest priority tasks in the system.  Now we want to elect
929          * the best one based on our affinity and topology.
930          *
931          * We prioritize the last cpu that the task executed on since
932          * it is most likely cache-hot in that location.
933          */
934         if (cpu_isset(cpu, *lowest_mask))
935                 return cpu;
936
937         /*
938          * Otherwise, we consult the sched_domains span maps to figure
939          * out which cpu is logically closest to our hot cache data.
940          */
941         if (this_cpu == cpu)
942                 this_cpu = -1; /* Skip this_cpu opt if the same */
943
944         for_each_domain(cpu, sd) {
945                 if (sd->flags & SD_WAKE_AFFINE) {
946                         cpumask_t domain_mask;
947                         int       best_cpu;
948
949                         cpus_and(domain_mask, sd->span, *lowest_mask);
950
951                         best_cpu = pick_optimal_cpu(this_cpu,
952                                                     &domain_mask);
953                         if (best_cpu != -1)
954                                 return best_cpu;
955                 }
956         }
957
958         /*
959          * And finally, if there were no matches within the domains
960          * just give the caller *something* to work with from the compatible
961          * locations.
962          */
963         return pick_optimal_cpu(this_cpu, lowest_mask);
964 }
965
966 /* Will lock the rq it finds */
967 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
968 {
969         struct rq *lowest_rq = NULL;
970         int tries;
971         int cpu;
972
973         for (tries = 0; tries < RT_MAX_TRIES; tries++) {
974                 cpu = find_lowest_rq(task);
975
976                 if ((cpu == -1) || (cpu == rq->cpu))
977                         break;
978
979                 lowest_rq = cpu_rq(cpu);
980
981                 /* if the prio of this runqueue changed, try again */
982                 if (double_lock_balance(rq, lowest_rq)) {
983                         /*
984                          * We had to unlock the run queue. In
985                          * the mean time, task could have
986                          * migrated already or had its affinity changed.
987                          * Also make sure that it wasn't scheduled on its rq.
988                          */
989                         if (unlikely(task_rq(task) != rq ||
990                                      !cpu_isset(lowest_rq->cpu,
991                                                 task->cpus_allowed) ||
992                                      task_running(rq, task) ||
993                                      !task->se.on_rq)) {
994
995                                 spin_unlock(&lowest_rq->lock);
996                                 lowest_rq = NULL;
997                                 break;
998                         }
999                 }
1000
1001                 /* If this rq is still suitable use it. */
1002                 if (lowest_rq->rt.highest_prio > task->prio)
1003                         break;
1004
1005                 /* try again */
1006                 spin_unlock(&lowest_rq->lock);
1007                 lowest_rq = NULL;
1008         }
1009
1010         return lowest_rq;
1011 }
1012
1013 /*
1014  * If the current CPU has more than one RT task, see if the non
1015  * running task can migrate over to a CPU that is running a task
1016  * of lesser priority.
1017  */
1018 static int push_rt_task(struct rq *rq)
1019 {
1020         struct task_struct *next_task;
1021         struct rq *lowest_rq;
1022         int ret = 0;
1023         int paranoid = RT_MAX_TRIES;
1024
1025         if (!rq->rt.overloaded)
1026                 return 0;
1027
1028         next_task = pick_next_highest_task_rt(rq, -1);
1029         if (!next_task)
1030                 return 0;
1031
1032  retry:
1033         if (unlikely(next_task == rq->curr)) {
1034                 WARN_ON(1);
1035                 return 0;
1036         }
1037
1038         /*
1039          * It's possible that the next_task slipped in of
1040          * higher priority than current. If that's the case
1041          * just reschedule current.
1042          */
1043         if (unlikely(next_task->prio < rq->curr->prio)) {
1044                 resched_task(rq->curr);
1045                 return 0;
1046         }
1047
1048         /* We might release rq lock */
1049         get_task_struct(next_task);
1050
1051         /* find_lock_lowest_rq locks the rq if found */
1052         lowest_rq = find_lock_lowest_rq(next_task, rq);
1053         if (!lowest_rq) {
1054                 struct task_struct *task;
1055                 /*
1056                  * find lock_lowest_rq releases rq->lock
1057                  * so it is possible that next_task has changed.
1058                  * If it has, then try again.
1059                  */
1060                 task = pick_next_highest_task_rt(rq, -1);
1061                 if (unlikely(task != next_task) && task && paranoid--) {
1062                         put_task_struct(next_task);
1063                         next_task = task;
1064                         goto retry;
1065                 }
1066                 goto out;
1067         }
1068
1069         deactivate_task(rq, next_task, 0);
1070         set_task_cpu(next_task, lowest_rq->cpu);
1071         activate_task(lowest_rq, next_task, 0);
1072
1073         resched_task(lowest_rq->curr);
1074
1075         spin_unlock(&lowest_rq->lock);
1076
1077         ret = 1;
1078 out:
1079         put_task_struct(next_task);
1080
1081         return ret;
1082 }
1083
1084 /*
1085  * TODO: Currently we just use the second highest prio task on
1086  *       the queue, and stop when it can't migrate (or there's
1087  *       no more RT tasks).  There may be a case where a lower
1088  *       priority RT task has a different affinity than the
1089  *       higher RT task. In this case the lower RT task could
1090  *       possibly be able to migrate where as the higher priority
1091  *       RT task could not.  We currently ignore this issue.
1092  *       Enhancements are welcome!
1093  */
1094 static void push_rt_tasks(struct rq *rq)
1095 {
1096         /* push_rt_task will return true if it moved an RT */
1097         while (push_rt_task(rq))
1098                 ;
1099 }
1100
1101 static int pull_rt_task(struct rq *this_rq)
1102 {
1103         int this_cpu = this_rq->cpu, ret = 0, cpu;
1104         struct task_struct *p, *next;
1105         struct rq *src_rq;
1106
1107         if (likely(!rt_overloaded(this_rq)))
1108                 return 0;
1109
1110         next = pick_next_task_rt(this_rq);
1111
1112         for_each_cpu_mask(cpu, this_rq->rd->rto_mask) {
1113                 if (this_cpu == cpu)
1114                         continue;
1115
1116                 src_rq = cpu_rq(cpu);
1117                 /*
1118                  * We can potentially drop this_rq's lock in
1119                  * double_lock_balance, and another CPU could
1120                  * steal our next task - hence we must cause
1121                  * the caller to recalculate the next task
1122                  * in that case:
1123                  */
1124                 if (double_lock_balance(this_rq, src_rq)) {
1125                         struct task_struct *old_next = next;
1126
1127                         next = pick_next_task_rt(this_rq);
1128                         if (next != old_next)
1129                                 ret = 1;
1130                 }
1131
1132                 /*
1133                  * Are there still pullable RT tasks?
1134                  */
1135                 if (src_rq->rt.rt_nr_running <= 1)
1136                         goto skip;
1137
1138                 p = pick_next_highest_task_rt(src_rq, this_cpu);
1139
1140                 /*
1141                  * Do we have an RT task that preempts
1142                  * the to-be-scheduled task?
1143                  */
1144                 if (p && (!next || (p->prio < next->prio))) {
1145                         WARN_ON(p == src_rq->curr);
1146                         WARN_ON(!p->se.on_rq);
1147
1148                         /*
1149                          * There's a chance that p is higher in priority
1150                          * than what's currently running on its cpu.
1151                          * This is just that p is wakeing up and hasn't
1152                          * had a chance to schedule. We only pull
1153                          * p if it is lower in priority than the
1154                          * current task on the run queue or
1155                          * this_rq next task is lower in prio than
1156                          * the current task on that rq.
1157                          */
1158                         if (p->prio < src_rq->curr->prio ||
1159                             (next && next->prio < src_rq->curr->prio))
1160                                 goto skip;
1161
1162                         ret = 1;
1163
1164                         deactivate_task(src_rq, p, 0);
1165                         set_task_cpu(p, this_cpu);
1166                         activate_task(this_rq, p, 0);
1167                         /*
1168                          * We continue with the search, just in
1169                          * case there's an even higher prio task
1170                          * in another runqueue. (low likelyhood
1171                          * but possible)
1172                          *
1173                          * Update next so that we won't pick a task
1174                          * on another cpu with a priority lower (or equal)
1175                          * than the one we just picked.
1176                          */
1177                         next = p;
1178
1179                 }
1180  skip:
1181                 spin_unlock(&src_rq->lock);
1182         }
1183
1184         return ret;
1185 }
1186
1187 static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1188 {
1189         /* Try to pull RT tasks here if we lower this rq's prio */
1190         if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio)
1191                 pull_rt_task(rq);
1192 }
1193
1194 static void post_schedule_rt(struct rq *rq)
1195 {
1196         /*
1197          * If we have more than one rt_task queued, then
1198          * see if we can push the other rt_tasks off to other CPUS.
1199          * Note we may release the rq lock, and since
1200          * the lock was owned by prev, we need to release it
1201          * first via finish_lock_switch and then reaquire it here.
1202          */
1203         if (unlikely(rq->rt.overloaded)) {
1204                 spin_lock_irq(&rq->lock);
1205                 push_rt_tasks(rq);
1206                 spin_unlock_irq(&rq->lock);
1207         }
1208 }
1209
1210 /*
1211  * If we are not running and we are not going to reschedule soon, we should
1212  * try to push tasks away now
1213  */
1214 static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
1215 {
1216         if (!task_running(rq, p) &&
1217             !test_tsk_need_resched(rq->curr) &&
1218             rq->rt.overloaded)
1219                 push_rt_tasks(rq);
1220 }
1221
1222 static unsigned long
1223 load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1224                 unsigned long max_load_move,
1225                 struct sched_domain *sd, enum cpu_idle_type idle,
1226                 int *all_pinned, int *this_best_prio)
1227 {
1228         /* don't touch RT tasks */
1229         return 0;
1230 }
1231
1232 static int
1233 move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1234                  struct sched_domain *sd, enum cpu_idle_type idle)
1235 {
1236         /* don't touch RT tasks */
1237         return 0;
1238 }
1239
1240 static void set_cpus_allowed_rt(struct task_struct *p,
1241                                 const cpumask_t *new_mask)
1242 {
1243         int weight = cpus_weight(*new_mask);
1244
1245         BUG_ON(!rt_task(p));
1246
1247         /*
1248          * Update the migration status of the RQ if we have an RT task
1249          * which is running AND changing its weight value.
1250          */
1251         if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
1252                 struct rq *rq = task_rq(p);
1253
1254                 if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
1255                         rq->rt.rt_nr_migratory++;
1256                 } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
1257                         BUG_ON(!rq->rt.rt_nr_migratory);
1258                         rq->rt.rt_nr_migratory--;
1259                 }
1260
1261                 update_rt_migration(rq);
1262         }
1263
1264         p->cpus_allowed    = *new_mask;
1265         p->rt.nr_cpus_allowed = weight;
1266 }
1267
1268 /* Assumes rq->lock is held */
1269 static void rq_online_rt(struct rq *rq)
1270 {
1271         if (rq->rt.overloaded)
1272                 rt_set_overload(rq);
1273
1274         __enable_runtime(rq);
1275
1276         cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio);
1277 }
1278
1279 /* Assumes rq->lock is held */
1280 static void rq_offline_rt(struct rq *rq)
1281 {
1282         if (rq->rt.overloaded)
1283                 rt_clear_overload(rq);
1284
1285         __disable_runtime(rq);
1286
1287         cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1288 }
1289
1290 /*
1291  * When switch from the rt queue, we bring ourselves to a position
1292  * that we might want to pull RT tasks from other runqueues.
1293  */
1294 static void switched_from_rt(struct rq *rq, struct task_struct *p,
1295                            int running)
1296 {
1297         /*
1298          * If there are other RT tasks then we will reschedule
1299          * and the scheduling of the other RT tasks will handle
1300          * the balancing. But if we are the last RT task
1301          * we may need to handle the pulling of RT tasks
1302          * now.
1303          */
1304         if (!rq->rt.rt_nr_running)
1305                 pull_rt_task(rq);
1306 }
1307 #endif /* CONFIG_SMP */
1308
1309 /*
1310  * When switching a task to RT, we may overload the runqueue
1311  * with RT tasks. In this case we try to push them off to
1312  * other runqueues.
1313  */
1314 static void switched_to_rt(struct rq *rq, struct task_struct *p,
1315                            int running)
1316 {
1317         int check_resched = 1;
1318
1319         /*
1320          * If we are already running, then there's nothing
1321          * that needs to be done. But if we are not running
1322          * we may need to preempt the current running task.
1323          * If that current running task is also an RT task
1324          * then see if we can move to another run queue.
1325          */
1326         if (!running) {
1327 #ifdef CONFIG_SMP
1328                 if (rq->rt.overloaded && push_rt_task(rq) &&
1329                     /* Don't resched if we changed runqueues */
1330                     rq != task_rq(p))
1331                         check_resched = 0;
1332 #endif /* CONFIG_SMP */
1333                 if (check_resched && p->prio < rq->curr->prio)
1334                         resched_task(rq->curr);
1335         }
1336 }
1337
1338 /*
1339  * Priority of the task has changed. This may cause
1340  * us to initiate a push or pull.
1341  */
1342 static void prio_changed_rt(struct rq *rq, struct task_struct *p,
1343                             int oldprio, int running)
1344 {
1345         if (running) {
1346 #ifdef CONFIG_SMP
1347                 /*
1348                  * If our priority decreases while running, we
1349                  * may need to pull tasks to this runqueue.
1350                  */
1351                 if (oldprio < p->prio)
1352                         pull_rt_task(rq);
1353                 /*
1354                  * If there's a higher priority task waiting to run
1355                  * then reschedule. Note, the above pull_rt_task
1356                  * can release the rq lock and p could migrate.
1357                  * Only reschedule if p is still on the same runqueue.
1358                  */
1359                 if (p->prio > rq->rt.highest_prio && rq->curr == p)
1360                         resched_task(p);
1361 #else
1362                 /* For UP simply resched on drop of prio */
1363                 if (oldprio < p->prio)
1364                         resched_task(p);
1365 #endif /* CONFIG_SMP */
1366         } else {
1367                 /*
1368                  * This task is not running, but if it is
1369                  * greater than the current running task
1370                  * then reschedule.
1371                  */
1372                 if (p->prio < rq->curr->prio)
1373                         resched_task(rq->curr);
1374         }
1375 }
1376
1377 static void watchdog(struct rq *rq, struct task_struct *p)
1378 {
1379         unsigned long soft, hard;
1380
1381         if (!p->signal)
1382                 return;
1383
1384         soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
1385         hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;
1386
1387         if (soft != RLIM_INFINITY) {
1388                 unsigned long next;
1389
1390                 p->rt.timeout++;
1391                 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1392                 if (p->rt.timeout > next)
1393                         p->it_sched_expires = p->se.sum_exec_runtime;
1394         }
1395 }
1396
1397 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
1398 {
1399         update_curr_rt(rq);
1400
1401         watchdog(rq, p);
1402
1403         /*
1404          * RR tasks need a special form of timeslice management.
1405          * FIFO tasks have no timeslices.
1406          */
1407         if (p->policy != SCHED_RR)
1408                 return;
1409
1410         if (--p->rt.time_slice)
1411                 return;
1412
1413         p->rt.time_slice = DEF_TIMESLICE;
1414
1415         /*
1416          * Requeue to the end of queue if we are not the only element
1417          * on the queue:
1418          */
1419         if (p->rt.run_list.prev != p->rt.run_list.next) {
1420                 requeue_task_rt(rq, p);
1421                 set_tsk_need_resched(p);
1422         }
1423 }
1424
1425 static void set_curr_task_rt(struct rq *rq)
1426 {
1427         struct task_struct *p = rq->curr;
1428
1429         p->se.exec_start = rq->clock;
1430 }
1431
1432 static const struct sched_class rt_sched_class = {
1433         .next                   = &fair_sched_class,
1434         .enqueue_task           = enqueue_task_rt,
1435         .dequeue_task           = dequeue_task_rt,
1436         .yield_task             = yield_task_rt,
1437 #ifdef CONFIG_SMP
1438         .select_task_rq         = select_task_rq_rt,
1439 #endif /* CONFIG_SMP */
1440
1441         .check_preempt_curr     = check_preempt_curr_rt,
1442
1443         .pick_next_task         = pick_next_task_rt,
1444         .put_prev_task          = put_prev_task_rt,
1445
1446 #ifdef CONFIG_SMP
1447         .load_balance           = load_balance_rt,
1448         .move_one_task          = move_one_task_rt,
1449         .set_cpus_allowed       = set_cpus_allowed_rt,
1450         .rq_online              = rq_online_rt,
1451         .rq_offline             = rq_offline_rt,
1452         .pre_schedule           = pre_schedule_rt,
1453         .post_schedule          = post_schedule_rt,
1454         .task_wake_up           = task_wake_up_rt,
1455         .switched_from          = switched_from_rt,
1456 #endif
1457
1458         .set_curr_task          = set_curr_task_rt,
1459         .task_tick              = task_tick_rt,
1460
1461         .prio_changed           = prio_changed_rt,
1462         .switched_to            = switched_to_rt,
1463 };
1464
1465 #ifdef CONFIG_SCHED_DEBUG
1466 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
1467
1468 static void print_rt_stats(struct seq_file *m, int cpu)
1469 {
1470         struct rt_rq *rt_rq;
1471
1472         rcu_read_lock();
1473         for_each_leaf_rt_rq(rt_rq, cpu_rq(cpu))
1474                 print_rt_rq(m, cpu, rt_rq);
1475         rcu_read_unlock();
1476 }
1477 #endif /* CONFIG_SCHED_DEBUG */