sched: convert local_cpu_mask to cpumask_var_t.
[linux-2.6.git] / kernel / sched_rt.c
1 /*
2  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3  * policies)
4  */
5
6 #ifdef CONFIG_SMP
7
8 static inline int rt_overloaded(struct rq *rq)
9 {
10         return atomic_read(&rq->rd->rto_count);
11 }
12
13 static inline void rt_set_overload(struct rq *rq)
14 {
15         if (!rq->online)
16                 return;
17
18         cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
19         /*
20          * Make sure the mask is visible before we set
21          * the overload count. That is checked to determine
22          * if we should look at the mask. It would be a shame
23          * if we looked at the mask, but the mask was not
24          * updated yet.
25          */
26         wmb();
27         atomic_inc(&rq->rd->rto_count);
28 }
29
30 static inline void rt_clear_overload(struct rq *rq)
31 {
32         if (!rq->online)
33                 return;
34
35         /* the order here really doesn't matter */
36         atomic_dec(&rq->rd->rto_count);
37         cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
38 }
39
40 static void update_rt_migration(struct rq *rq)
41 {
42         if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) {
43                 if (!rq->rt.overloaded) {
44                         rt_set_overload(rq);
45                         rq->rt.overloaded = 1;
46                 }
47         } else if (rq->rt.overloaded) {
48                 rt_clear_overload(rq);
49                 rq->rt.overloaded = 0;
50         }
51 }
52 #endif /* CONFIG_SMP */
53
54 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
55 {
56         return container_of(rt_se, struct task_struct, rt);
57 }
58
59 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
60 {
61         return !list_empty(&rt_se->run_list);
62 }
63
64 #ifdef CONFIG_RT_GROUP_SCHED
65
66 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
67 {
68         if (!rt_rq->tg)
69                 return RUNTIME_INF;
70
71         return rt_rq->rt_runtime;
72 }
73
74 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
75 {
76         return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
77 }
78
79 #define for_each_leaf_rt_rq(rt_rq, rq) \
80         list_for_each_entry(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
81
82 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
83 {
84         return rt_rq->rq;
85 }
86
87 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
88 {
89         return rt_se->rt_rq;
90 }
91
92 #define for_each_sched_rt_entity(rt_se) \
93         for (; rt_se; rt_se = rt_se->parent)
94
95 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
96 {
97         return rt_se->my_q;
98 }
99
100 static void enqueue_rt_entity(struct sched_rt_entity *rt_se);
101 static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
102
103 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
104 {
105         struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
106         struct sched_rt_entity *rt_se = rt_rq->rt_se;
107
108         if (rt_rq->rt_nr_running) {
109                 if (rt_se && !on_rt_rq(rt_se))
110                         enqueue_rt_entity(rt_se);
111                 if (rt_rq->highest_prio < curr->prio)
112                         resched_task(curr);
113         }
114 }
115
116 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
117 {
118         struct sched_rt_entity *rt_se = rt_rq->rt_se;
119
120         if (rt_se && on_rt_rq(rt_se))
121                 dequeue_rt_entity(rt_se);
122 }
123
124 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
125 {
126         return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
127 }
128
129 static int rt_se_boosted(struct sched_rt_entity *rt_se)
130 {
131         struct rt_rq *rt_rq = group_rt_rq(rt_se);
132         struct task_struct *p;
133
134         if (rt_rq)
135                 return !!rt_rq->rt_nr_boosted;
136
137         p = rt_task_of(rt_se);
138         return p->prio != p->normal_prio;
139 }
140
141 #ifdef CONFIG_SMP
142 static inline const struct cpumask *sched_rt_period_mask(void)
143 {
144         return cpu_rq(smp_processor_id())->rd->span;
145 }
146 #else
147 static inline const struct cpumask *sched_rt_period_mask(void)
148 {
149         return cpu_online_mask;
150 }
151 #endif
152
153 static inline
154 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
155 {
156         return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
157 }
158
159 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
160 {
161         return &rt_rq->tg->rt_bandwidth;
162 }
163
164 #else /* !CONFIG_RT_GROUP_SCHED */
165
166 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
167 {
168         return rt_rq->rt_runtime;
169 }
170
171 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
172 {
173         return ktime_to_ns(def_rt_bandwidth.rt_period);
174 }
175
176 #define for_each_leaf_rt_rq(rt_rq, rq) \
177         for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
178
179 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
180 {
181         return container_of(rt_rq, struct rq, rt);
182 }
183
184 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
185 {
186         struct task_struct *p = rt_task_of(rt_se);
187         struct rq *rq = task_rq(p);
188
189         return &rq->rt;
190 }
191
192 #define for_each_sched_rt_entity(rt_se) \
193         for (; rt_se; rt_se = NULL)
194
195 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
196 {
197         return NULL;
198 }
199
200 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
201 {
202         if (rt_rq->rt_nr_running)
203                 resched_task(rq_of_rt_rq(rt_rq)->curr);
204 }
205
206 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
207 {
208 }
209
210 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
211 {
212         return rt_rq->rt_throttled;
213 }
214
215 static inline const struct cpumask *sched_rt_period_mask(void)
216 {
217         return cpu_online_mask;
218 }
219
220 static inline
221 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
222 {
223         return &cpu_rq(cpu)->rt;
224 }
225
226 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
227 {
228         return &def_rt_bandwidth;
229 }
230
231 #endif /* CONFIG_RT_GROUP_SCHED */
232
233 #ifdef CONFIG_SMP
234 /*
235  * We ran out of runtime, see if we can borrow some from our neighbours.
236  */
237 static int do_balance_runtime(struct rt_rq *rt_rq)
238 {
239         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
240         struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
241         int i, weight, more = 0;
242         u64 rt_period;
243
244         weight = cpumask_weight(rd->span);
245
246         spin_lock(&rt_b->rt_runtime_lock);
247         rt_period = ktime_to_ns(rt_b->rt_period);
248         for_each_cpu(i, rd->span) {
249                 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
250                 s64 diff;
251
252                 if (iter == rt_rq)
253                         continue;
254
255                 spin_lock(&iter->rt_runtime_lock);
256                 /*
257                  * Either all rqs have inf runtime and there's nothing to steal
258                  * or __disable_runtime() below sets a specific rq to inf to
259                  * indicate its been disabled and disalow stealing.
260                  */
261                 if (iter->rt_runtime == RUNTIME_INF)
262                         goto next;
263
264                 /*
265                  * From runqueues with spare time, take 1/n part of their
266                  * spare time, but no more than our period.
267                  */
268                 diff = iter->rt_runtime - iter->rt_time;
269                 if (diff > 0) {
270                         diff = div_u64((u64)diff, weight);
271                         if (rt_rq->rt_runtime + diff > rt_period)
272                                 diff = rt_period - rt_rq->rt_runtime;
273                         iter->rt_runtime -= diff;
274                         rt_rq->rt_runtime += diff;
275                         more = 1;
276                         if (rt_rq->rt_runtime == rt_period) {
277                                 spin_unlock(&iter->rt_runtime_lock);
278                                 break;
279                         }
280                 }
281 next:
282                 spin_unlock(&iter->rt_runtime_lock);
283         }
284         spin_unlock(&rt_b->rt_runtime_lock);
285
286         return more;
287 }
288
289 /*
290  * Ensure this RQ takes back all the runtime it lend to its neighbours.
291  */
292 static void __disable_runtime(struct rq *rq)
293 {
294         struct root_domain *rd = rq->rd;
295         struct rt_rq *rt_rq;
296
297         if (unlikely(!scheduler_running))
298                 return;
299
300         for_each_leaf_rt_rq(rt_rq, rq) {
301                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
302                 s64 want;
303                 int i;
304
305                 spin_lock(&rt_b->rt_runtime_lock);
306                 spin_lock(&rt_rq->rt_runtime_lock);
307                 /*
308                  * Either we're all inf and nobody needs to borrow, or we're
309                  * already disabled and thus have nothing to do, or we have
310                  * exactly the right amount of runtime to take out.
311                  */
312                 if (rt_rq->rt_runtime == RUNTIME_INF ||
313                                 rt_rq->rt_runtime == rt_b->rt_runtime)
314                         goto balanced;
315                 spin_unlock(&rt_rq->rt_runtime_lock);
316
317                 /*
318                  * Calculate the difference between what we started out with
319                  * and what we current have, that's the amount of runtime
320                  * we lend and now have to reclaim.
321                  */
322                 want = rt_b->rt_runtime - rt_rq->rt_runtime;
323
324                 /*
325                  * Greedy reclaim, take back as much as we can.
326                  */
327                 for_each_cpu(i, rd->span) {
328                         struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
329                         s64 diff;
330
331                         /*
332                          * Can't reclaim from ourselves or disabled runqueues.
333                          */
334                         if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
335                                 continue;
336
337                         spin_lock(&iter->rt_runtime_lock);
338                         if (want > 0) {
339                                 diff = min_t(s64, iter->rt_runtime, want);
340                                 iter->rt_runtime -= diff;
341                                 want -= diff;
342                         } else {
343                                 iter->rt_runtime -= want;
344                                 want -= want;
345                         }
346                         spin_unlock(&iter->rt_runtime_lock);
347
348                         if (!want)
349                                 break;
350                 }
351
352                 spin_lock(&rt_rq->rt_runtime_lock);
353                 /*
354                  * We cannot be left wanting - that would mean some runtime
355                  * leaked out of the system.
356                  */
357                 BUG_ON(want);
358 balanced:
359                 /*
360                  * Disable all the borrow logic by pretending we have inf
361                  * runtime - in which case borrowing doesn't make sense.
362                  */
363                 rt_rq->rt_runtime = RUNTIME_INF;
364                 spin_unlock(&rt_rq->rt_runtime_lock);
365                 spin_unlock(&rt_b->rt_runtime_lock);
366         }
367 }
368
369 static void disable_runtime(struct rq *rq)
370 {
371         unsigned long flags;
372
373         spin_lock_irqsave(&rq->lock, flags);
374         __disable_runtime(rq);
375         spin_unlock_irqrestore(&rq->lock, flags);
376 }
377
378 static void __enable_runtime(struct rq *rq)
379 {
380         struct rt_rq *rt_rq;
381
382         if (unlikely(!scheduler_running))
383                 return;
384
385         /*
386          * Reset each runqueue's bandwidth settings
387          */
388         for_each_leaf_rt_rq(rt_rq, rq) {
389                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
390
391                 spin_lock(&rt_b->rt_runtime_lock);
392                 spin_lock(&rt_rq->rt_runtime_lock);
393                 rt_rq->rt_runtime = rt_b->rt_runtime;
394                 rt_rq->rt_time = 0;
395                 rt_rq->rt_throttled = 0;
396                 spin_unlock(&rt_rq->rt_runtime_lock);
397                 spin_unlock(&rt_b->rt_runtime_lock);
398         }
399 }
400
401 static void enable_runtime(struct rq *rq)
402 {
403         unsigned long flags;
404
405         spin_lock_irqsave(&rq->lock, flags);
406         __enable_runtime(rq);
407         spin_unlock_irqrestore(&rq->lock, flags);
408 }
409
410 static int balance_runtime(struct rt_rq *rt_rq)
411 {
412         int more = 0;
413
414         if (rt_rq->rt_time > rt_rq->rt_runtime) {
415                 spin_unlock(&rt_rq->rt_runtime_lock);
416                 more = do_balance_runtime(rt_rq);
417                 spin_lock(&rt_rq->rt_runtime_lock);
418         }
419
420         return more;
421 }
422 #else /* !CONFIG_SMP */
423 static inline int balance_runtime(struct rt_rq *rt_rq)
424 {
425         return 0;
426 }
427 #endif /* CONFIG_SMP */
428
429 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
430 {
431         int i, idle = 1;
432         const struct cpumask *span;
433
434         if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
435                 return 1;
436
437         span = sched_rt_period_mask();
438         for_each_cpu(i, span) {
439                 int enqueue = 0;
440                 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
441                 struct rq *rq = rq_of_rt_rq(rt_rq);
442
443                 spin_lock(&rq->lock);
444                 if (rt_rq->rt_time) {
445                         u64 runtime;
446
447                         spin_lock(&rt_rq->rt_runtime_lock);
448                         if (rt_rq->rt_throttled)
449                                 balance_runtime(rt_rq);
450                         runtime = rt_rq->rt_runtime;
451                         rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
452                         if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
453                                 rt_rq->rt_throttled = 0;
454                                 enqueue = 1;
455                         }
456                         if (rt_rq->rt_time || rt_rq->rt_nr_running)
457                                 idle = 0;
458                         spin_unlock(&rt_rq->rt_runtime_lock);
459                 } else if (rt_rq->rt_nr_running)
460                         idle = 0;
461
462                 if (enqueue)
463                         sched_rt_rq_enqueue(rt_rq);
464                 spin_unlock(&rq->lock);
465         }
466
467         return idle;
468 }
469
470 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
471 {
472 #ifdef CONFIG_RT_GROUP_SCHED
473         struct rt_rq *rt_rq = group_rt_rq(rt_se);
474
475         if (rt_rq)
476                 return rt_rq->highest_prio;
477 #endif
478
479         return rt_task_of(rt_se)->prio;
480 }
481
482 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
483 {
484         u64 runtime = sched_rt_runtime(rt_rq);
485
486         if (rt_rq->rt_throttled)
487                 return rt_rq_throttled(rt_rq);
488
489         if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
490                 return 0;
491
492         balance_runtime(rt_rq);
493         runtime = sched_rt_runtime(rt_rq);
494         if (runtime == RUNTIME_INF)
495                 return 0;
496
497         if (rt_rq->rt_time > runtime) {
498                 rt_rq->rt_throttled = 1;
499                 if (rt_rq_throttled(rt_rq)) {
500                         sched_rt_rq_dequeue(rt_rq);
501                         return 1;
502                 }
503         }
504
505         return 0;
506 }
507
508 /*
509  * Update the current task's runtime statistics. Skip current tasks that
510  * are not in our scheduling class.
511  */
512 static void update_curr_rt(struct rq *rq)
513 {
514         struct task_struct *curr = rq->curr;
515         struct sched_rt_entity *rt_se = &curr->rt;
516         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
517         u64 delta_exec;
518
519         if (!task_has_rt_policy(curr))
520                 return;
521
522         delta_exec = rq->clock - curr->se.exec_start;
523         if (unlikely((s64)delta_exec < 0))
524                 delta_exec = 0;
525
526         schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
527
528         curr->se.sum_exec_runtime += delta_exec;
529         account_group_exec_runtime(curr, delta_exec);
530
531         curr->se.exec_start = rq->clock;
532         cpuacct_charge(curr, delta_exec);
533
534         if (!rt_bandwidth_enabled())
535                 return;
536
537         for_each_sched_rt_entity(rt_se) {
538                 rt_rq = rt_rq_of_se(rt_se);
539
540                 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
541                         spin_lock(&rt_rq->rt_runtime_lock);
542                         rt_rq->rt_time += delta_exec;
543                         if (sched_rt_runtime_exceeded(rt_rq))
544                                 resched_task(curr);
545                         spin_unlock(&rt_rq->rt_runtime_lock);
546                 }
547         }
548 }
549
550 static inline
551 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
552 {
553         WARN_ON(!rt_prio(rt_se_prio(rt_se)));
554         rt_rq->rt_nr_running++;
555 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
556         if (rt_se_prio(rt_se) < rt_rq->highest_prio) {
557 #ifdef CONFIG_SMP
558                 struct rq *rq = rq_of_rt_rq(rt_rq);
559 #endif
560
561                 rt_rq->highest_prio = rt_se_prio(rt_se);
562 #ifdef CONFIG_SMP
563                 if (rq->online)
564                         cpupri_set(&rq->rd->cpupri, rq->cpu,
565                                    rt_se_prio(rt_se));
566 #endif
567         }
568 #endif
569 #ifdef CONFIG_SMP
570         if (rt_se->nr_cpus_allowed > 1) {
571                 struct rq *rq = rq_of_rt_rq(rt_rq);
572
573                 rq->rt.rt_nr_migratory++;
574         }
575
576         update_rt_migration(rq_of_rt_rq(rt_rq));
577 #endif
578 #ifdef CONFIG_RT_GROUP_SCHED
579         if (rt_se_boosted(rt_se))
580                 rt_rq->rt_nr_boosted++;
581
582         if (rt_rq->tg)
583                 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
584 #else
585         start_rt_bandwidth(&def_rt_bandwidth);
586 #endif
587 }
588
589 static inline
590 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
591 {
592 #ifdef CONFIG_SMP
593         int highest_prio = rt_rq->highest_prio;
594 #endif
595
596         WARN_ON(!rt_prio(rt_se_prio(rt_se)));
597         WARN_ON(!rt_rq->rt_nr_running);
598         rt_rq->rt_nr_running--;
599 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
600         if (rt_rq->rt_nr_running) {
601                 struct rt_prio_array *array;
602
603                 WARN_ON(rt_se_prio(rt_se) < rt_rq->highest_prio);
604                 if (rt_se_prio(rt_se) == rt_rq->highest_prio) {
605                         /* recalculate */
606                         array = &rt_rq->active;
607                         rt_rq->highest_prio =
608                                 sched_find_first_bit(array->bitmap);
609                 } /* otherwise leave rq->highest prio alone */
610         } else
611                 rt_rq->highest_prio = MAX_RT_PRIO;
612 #endif
613 #ifdef CONFIG_SMP
614         if (rt_se->nr_cpus_allowed > 1) {
615                 struct rq *rq = rq_of_rt_rq(rt_rq);
616                 rq->rt.rt_nr_migratory--;
617         }
618
619         if (rt_rq->highest_prio != highest_prio) {
620                 struct rq *rq = rq_of_rt_rq(rt_rq);
621
622                 if (rq->online)
623                         cpupri_set(&rq->rd->cpupri, rq->cpu,
624                                    rt_rq->highest_prio);
625         }
626
627         update_rt_migration(rq_of_rt_rq(rt_rq));
628 #endif /* CONFIG_SMP */
629 #ifdef CONFIG_RT_GROUP_SCHED
630         if (rt_se_boosted(rt_se))
631                 rt_rq->rt_nr_boosted--;
632
633         WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
634 #endif
635 }
636
637 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se)
638 {
639         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
640         struct rt_prio_array *array = &rt_rq->active;
641         struct rt_rq *group_rq = group_rt_rq(rt_se);
642         struct list_head *queue = array->queue + rt_se_prio(rt_se);
643
644         /*
645          * Don't enqueue the group if its throttled, or when empty.
646          * The latter is a consequence of the former when a child group
647          * get throttled and the current group doesn't have any other
648          * active members.
649          */
650         if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
651                 return;
652
653         list_add_tail(&rt_se->run_list, queue);
654         __set_bit(rt_se_prio(rt_se), array->bitmap);
655
656         inc_rt_tasks(rt_se, rt_rq);
657 }
658
659 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
660 {
661         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
662         struct rt_prio_array *array = &rt_rq->active;
663
664         list_del_init(&rt_se->run_list);
665         if (list_empty(array->queue + rt_se_prio(rt_se)))
666                 __clear_bit(rt_se_prio(rt_se), array->bitmap);
667
668         dec_rt_tasks(rt_se, rt_rq);
669 }
670
671 /*
672  * Because the prio of an upper entry depends on the lower
673  * entries, we must remove entries top - down.
674  */
675 static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
676 {
677         struct sched_rt_entity *back = NULL;
678
679         for_each_sched_rt_entity(rt_se) {
680                 rt_se->back = back;
681                 back = rt_se;
682         }
683
684         for (rt_se = back; rt_se; rt_se = rt_se->back) {
685                 if (on_rt_rq(rt_se))
686                         __dequeue_rt_entity(rt_se);
687         }
688 }
689
690 static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
691 {
692         dequeue_rt_stack(rt_se);
693         for_each_sched_rt_entity(rt_se)
694                 __enqueue_rt_entity(rt_se);
695 }
696
697 static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
698 {
699         dequeue_rt_stack(rt_se);
700
701         for_each_sched_rt_entity(rt_se) {
702                 struct rt_rq *rt_rq = group_rt_rq(rt_se);
703
704                 if (rt_rq && rt_rq->rt_nr_running)
705                         __enqueue_rt_entity(rt_se);
706         }
707 }
708
709 /*
710  * Adding/removing a task to/from a priority array:
711  */
712 static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
713 {
714         struct sched_rt_entity *rt_se = &p->rt;
715
716         if (wakeup)
717                 rt_se->timeout = 0;
718
719         enqueue_rt_entity(rt_se);
720
721         inc_cpu_load(rq, p->se.load.weight);
722 }
723
724 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
725 {
726         struct sched_rt_entity *rt_se = &p->rt;
727
728         update_curr_rt(rq);
729         dequeue_rt_entity(rt_se);
730
731         dec_cpu_load(rq, p->se.load.weight);
732 }
733
734 /*
735  * Put task to the end of the run list without the overhead of dequeue
736  * followed by enqueue.
737  */
738 static void
739 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
740 {
741         if (on_rt_rq(rt_se)) {
742                 struct rt_prio_array *array = &rt_rq->active;
743                 struct list_head *queue = array->queue + rt_se_prio(rt_se);
744
745                 if (head)
746                         list_move(&rt_se->run_list, queue);
747                 else
748                         list_move_tail(&rt_se->run_list, queue);
749         }
750 }
751
752 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
753 {
754         struct sched_rt_entity *rt_se = &p->rt;
755         struct rt_rq *rt_rq;
756
757         for_each_sched_rt_entity(rt_se) {
758                 rt_rq = rt_rq_of_se(rt_se);
759                 requeue_rt_entity(rt_rq, rt_se, head);
760         }
761 }
762
763 static void yield_task_rt(struct rq *rq)
764 {
765         requeue_task_rt(rq, rq->curr, 0);
766 }
767
768 #ifdef CONFIG_SMP
769 static int find_lowest_rq(struct task_struct *task);
770
771 static int select_task_rq_rt(struct task_struct *p, int sync)
772 {
773         struct rq *rq = task_rq(p);
774
775         /*
776          * If the current task is an RT task, then
777          * try to see if we can wake this RT task up on another
778          * runqueue. Otherwise simply start this RT task
779          * on its current runqueue.
780          *
781          * We want to avoid overloading runqueues. Even if
782          * the RT task is of higher priority than the current RT task.
783          * RT tasks behave differently than other tasks. If
784          * one gets preempted, we try to push it off to another queue.
785          * So trying to keep a preempting RT task on the same
786          * cache hot CPU will force the running RT task to
787          * a cold CPU. So we waste all the cache for the lower
788          * RT task in hopes of saving some of a RT task
789          * that is just being woken and probably will have
790          * cold cache anyway.
791          */
792         if (unlikely(rt_task(rq->curr)) &&
793             (p->rt.nr_cpus_allowed > 1)) {
794                 int cpu = find_lowest_rq(p);
795
796                 return (cpu == -1) ? task_cpu(p) : cpu;
797         }
798
799         /*
800          * Otherwise, just let it ride on the affined RQ and the
801          * post-schedule router will push the preempted task away
802          */
803         return task_cpu(p);
804 }
805
806 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
807 {
808         cpumask_var_t mask;
809
810         if (rq->curr->rt.nr_cpus_allowed == 1)
811                 return;
812
813         if (!alloc_cpumask_var(&mask, GFP_ATOMIC))
814                 return;
815
816         if (p->rt.nr_cpus_allowed != 1
817             && cpupri_find(&rq->rd->cpupri, p, mask))
818                 goto free;
819
820         if (!cpupri_find(&rq->rd->cpupri, rq->curr, mask))
821                 goto free;
822
823         /*
824          * There appears to be other cpus that can accept
825          * current and none to run 'p', so lets reschedule
826          * to try and push current away:
827          */
828         requeue_task_rt(rq, p, 1);
829         resched_task(rq->curr);
830 free:
831         free_cpumask_var(mask);
832 }
833
834 #endif /* CONFIG_SMP */
835
836 /*
837  * Preempt the current task with a newly woken task if needed:
838  */
839 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int sync)
840 {
841         if (p->prio < rq->curr->prio) {
842                 resched_task(rq->curr);
843                 return;
844         }
845
846 #ifdef CONFIG_SMP
847         /*
848          * If:
849          *
850          * - the newly woken task is of equal priority to the current task
851          * - the newly woken task is non-migratable while current is migratable
852          * - current will be preempted on the next reschedule
853          *
854          * we should check to see if current can readily move to a different
855          * cpu.  If so, we will reschedule to allow the push logic to try
856          * to move current somewhere else, making room for our non-migratable
857          * task.
858          */
859         if (p->prio == rq->curr->prio && !need_resched())
860                 check_preempt_equal_prio(rq, p);
861 #endif
862 }
863
864 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
865                                                    struct rt_rq *rt_rq)
866 {
867         struct rt_prio_array *array = &rt_rq->active;
868         struct sched_rt_entity *next = NULL;
869         struct list_head *queue;
870         int idx;
871
872         idx = sched_find_first_bit(array->bitmap);
873         BUG_ON(idx >= MAX_RT_PRIO);
874
875         queue = array->queue + idx;
876         next = list_entry(queue->next, struct sched_rt_entity, run_list);
877
878         return next;
879 }
880
881 static struct task_struct *pick_next_task_rt(struct rq *rq)
882 {
883         struct sched_rt_entity *rt_se;
884         struct task_struct *p;
885         struct rt_rq *rt_rq;
886
887         rt_rq = &rq->rt;
888
889         if (unlikely(!rt_rq->rt_nr_running))
890                 return NULL;
891
892         if (rt_rq_throttled(rt_rq))
893                 return NULL;
894
895         do {
896                 rt_se = pick_next_rt_entity(rq, rt_rq);
897                 BUG_ON(!rt_se);
898                 rt_rq = group_rt_rq(rt_se);
899         } while (rt_rq);
900
901         p = rt_task_of(rt_se);
902         p->se.exec_start = rq->clock;
903         return p;
904 }
905
906 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
907 {
908         update_curr_rt(rq);
909         p->se.exec_start = 0;
910 }
911
912 #ifdef CONFIG_SMP
913
914 /* Only try algorithms three times */
915 #define RT_MAX_TRIES 3
916
917 static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
918 static inline void double_unlock_balance(struct rq *this_rq,
919                                                 struct rq *busiest);
920
921 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
922
923 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
924 {
925         if (!task_running(rq, p) &&
926             (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) &&
927             (p->rt.nr_cpus_allowed > 1))
928                 return 1;
929         return 0;
930 }
931
932 /* Return the second highest RT task, NULL otherwise */
933 static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
934 {
935         struct task_struct *next = NULL;
936         struct sched_rt_entity *rt_se;
937         struct rt_prio_array *array;
938         struct rt_rq *rt_rq;
939         int idx;
940
941         for_each_leaf_rt_rq(rt_rq, rq) {
942                 array = &rt_rq->active;
943                 idx = sched_find_first_bit(array->bitmap);
944  next_idx:
945                 if (idx >= MAX_RT_PRIO)
946                         continue;
947                 if (next && next->prio < idx)
948                         continue;
949                 list_for_each_entry(rt_se, array->queue + idx, run_list) {
950                         struct task_struct *p = rt_task_of(rt_se);
951                         if (pick_rt_task(rq, p, cpu)) {
952                                 next = p;
953                                 break;
954                         }
955                 }
956                 if (!next) {
957                         idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
958                         goto next_idx;
959                 }
960         }
961
962         return next;
963 }
964
965 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
966
967 static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
968 {
969         int first;
970
971         /* "this_cpu" is cheaper to preempt than a remote processor */
972         if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
973                 return this_cpu;
974
975         first = first_cpu(*mask);
976         if (first != NR_CPUS)
977                 return first;
978
979         return -1;
980 }
981
982 static int find_lowest_rq(struct task_struct *task)
983 {
984         struct sched_domain *sd;
985         cpumask_t *lowest_mask = __get_cpu_var(local_cpu_mask);
986         int this_cpu = smp_processor_id();
987         int cpu      = task_cpu(task);
988
989         if (task->rt.nr_cpus_allowed == 1)
990                 return -1; /* No other targets possible */
991
992         if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
993                 return -1; /* No targets found */
994
995         /*
996          * Only consider CPUs that are usable for migration.
997          * I guess we might want to change cpupri_find() to ignore those
998          * in the first place.
999          */
1000         cpus_and(*lowest_mask, *lowest_mask, cpu_active_map);
1001
1002         /*
1003          * At this point we have built a mask of cpus representing the
1004          * lowest priority tasks in the system.  Now we want to elect
1005          * the best one based on our affinity and topology.
1006          *
1007          * We prioritize the last cpu that the task executed on since
1008          * it is most likely cache-hot in that location.
1009          */
1010         if (cpu_isset(cpu, *lowest_mask))
1011                 return cpu;
1012
1013         /*
1014          * Otherwise, we consult the sched_domains span maps to figure
1015          * out which cpu is logically closest to our hot cache data.
1016          */
1017         if (this_cpu == cpu)
1018                 this_cpu = -1; /* Skip this_cpu opt if the same */
1019
1020         for_each_domain(cpu, sd) {
1021                 if (sd->flags & SD_WAKE_AFFINE) {
1022                         cpumask_t domain_mask;
1023                         int       best_cpu;
1024
1025                         cpumask_and(&domain_mask, sched_domain_span(sd),
1026                                     lowest_mask);
1027
1028                         best_cpu = pick_optimal_cpu(this_cpu,
1029                                                     &domain_mask);
1030                         if (best_cpu != -1)
1031                                 return best_cpu;
1032                 }
1033         }
1034
1035         /*
1036          * And finally, if there were no matches within the domains
1037          * just give the caller *something* to work with from the compatible
1038          * locations.
1039          */
1040         return pick_optimal_cpu(this_cpu, lowest_mask);
1041 }
1042
1043 /* Will lock the rq it finds */
1044 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1045 {
1046         struct rq *lowest_rq = NULL;
1047         int tries;
1048         int cpu;
1049
1050         for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1051                 cpu = find_lowest_rq(task);
1052
1053                 if ((cpu == -1) || (cpu == rq->cpu))
1054                         break;
1055
1056                 lowest_rq = cpu_rq(cpu);
1057
1058                 /* if the prio of this runqueue changed, try again */
1059                 if (double_lock_balance(rq, lowest_rq)) {
1060                         /*
1061                          * We had to unlock the run queue. In
1062                          * the mean time, task could have
1063                          * migrated already or had its affinity changed.
1064                          * Also make sure that it wasn't scheduled on its rq.
1065                          */
1066                         if (unlikely(task_rq(task) != rq ||
1067                                      !cpu_isset(lowest_rq->cpu,
1068                                                 task->cpus_allowed) ||
1069                                      task_running(rq, task) ||
1070                                      !task->se.on_rq)) {
1071
1072                                 spin_unlock(&lowest_rq->lock);
1073                                 lowest_rq = NULL;
1074                                 break;
1075                         }
1076                 }
1077
1078                 /* If this rq is still suitable use it. */
1079                 if (lowest_rq->rt.highest_prio > task->prio)
1080                         break;
1081
1082                 /* try again */
1083                 double_unlock_balance(rq, lowest_rq);
1084                 lowest_rq = NULL;
1085         }
1086
1087         return lowest_rq;
1088 }
1089
1090 /*
1091  * If the current CPU has more than one RT task, see if the non
1092  * running task can migrate over to a CPU that is running a task
1093  * of lesser priority.
1094  */
1095 static int push_rt_task(struct rq *rq)
1096 {
1097         struct task_struct *next_task;
1098         struct rq *lowest_rq;
1099         int ret = 0;
1100         int paranoid = RT_MAX_TRIES;
1101
1102         if (!rq->rt.overloaded)
1103                 return 0;
1104
1105         next_task = pick_next_highest_task_rt(rq, -1);
1106         if (!next_task)
1107                 return 0;
1108
1109  retry:
1110         if (unlikely(next_task == rq->curr)) {
1111                 WARN_ON(1);
1112                 return 0;
1113         }
1114
1115         /*
1116          * It's possible that the next_task slipped in of
1117          * higher priority than current. If that's the case
1118          * just reschedule current.
1119          */
1120         if (unlikely(next_task->prio < rq->curr->prio)) {
1121                 resched_task(rq->curr);
1122                 return 0;
1123         }
1124
1125         /* We might release rq lock */
1126         get_task_struct(next_task);
1127
1128         /* find_lock_lowest_rq locks the rq if found */
1129         lowest_rq = find_lock_lowest_rq(next_task, rq);
1130         if (!lowest_rq) {
1131                 struct task_struct *task;
1132                 /*
1133                  * find lock_lowest_rq releases rq->lock
1134                  * so it is possible that next_task has changed.
1135                  * If it has, then try again.
1136                  */
1137                 task = pick_next_highest_task_rt(rq, -1);
1138                 if (unlikely(task != next_task) && task && paranoid--) {
1139                         put_task_struct(next_task);
1140                         next_task = task;
1141                         goto retry;
1142                 }
1143                 goto out;
1144         }
1145
1146         deactivate_task(rq, next_task, 0);
1147         set_task_cpu(next_task, lowest_rq->cpu);
1148         activate_task(lowest_rq, next_task, 0);
1149
1150         resched_task(lowest_rq->curr);
1151
1152         double_unlock_balance(rq, lowest_rq);
1153
1154         ret = 1;
1155 out:
1156         put_task_struct(next_task);
1157
1158         return ret;
1159 }
1160
1161 /*
1162  * TODO: Currently we just use the second highest prio task on
1163  *       the queue, and stop when it can't migrate (or there's
1164  *       no more RT tasks).  There may be a case where a lower
1165  *       priority RT task has a different affinity than the
1166  *       higher RT task. In this case the lower RT task could
1167  *       possibly be able to migrate where as the higher priority
1168  *       RT task could not.  We currently ignore this issue.
1169  *       Enhancements are welcome!
1170  */
1171 static void push_rt_tasks(struct rq *rq)
1172 {
1173         /* push_rt_task will return true if it moved an RT */
1174         while (push_rt_task(rq))
1175                 ;
1176 }
1177
1178 static int pull_rt_task(struct rq *this_rq)
1179 {
1180         int this_cpu = this_rq->cpu, ret = 0, cpu;
1181         struct task_struct *p, *next;
1182         struct rq *src_rq;
1183
1184         if (likely(!rt_overloaded(this_rq)))
1185                 return 0;
1186
1187         next = pick_next_task_rt(this_rq);
1188
1189         for_each_cpu(cpu, this_rq->rd->rto_mask) {
1190                 if (this_cpu == cpu)
1191                         continue;
1192
1193                 src_rq = cpu_rq(cpu);
1194                 /*
1195                  * We can potentially drop this_rq's lock in
1196                  * double_lock_balance, and another CPU could
1197                  * steal our next task - hence we must cause
1198                  * the caller to recalculate the next task
1199                  * in that case:
1200                  */
1201                 if (double_lock_balance(this_rq, src_rq)) {
1202                         struct task_struct *old_next = next;
1203
1204                         next = pick_next_task_rt(this_rq);
1205                         if (next != old_next)
1206                                 ret = 1;
1207                 }
1208
1209                 /*
1210                  * Are there still pullable RT tasks?
1211                  */
1212                 if (src_rq->rt.rt_nr_running <= 1)
1213                         goto skip;
1214
1215                 p = pick_next_highest_task_rt(src_rq, this_cpu);
1216
1217                 /*
1218                  * Do we have an RT task that preempts
1219                  * the to-be-scheduled task?
1220                  */
1221                 if (p && (!next || (p->prio < next->prio))) {
1222                         WARN_ON(p == src_rq->curr);
1223                         WARN_ON(!p->se.on_rq);
1224
1225                         /*
1226                          * There's a chance that p is higher in priority
1227                          * than what's currently running on its cpu.
1228                          * This is just that p is wakeing up and hasn't
1229                          * had a chance to schedule. We only pull
1230                          * p if it is lower in priority than the
1231                          * current task on the run queue or
1232                          * this_rq next task is lower in prio than
1233                          * the current task on that rq.
1234                          */
1235                         if (p->prio < src_rq->curr->prio ||
1236                             (next && next->prio < src_rq->curr->prio))
1237                                 goto skip;
1238
1239                         ret = 1;
1240
1241                         deactivate_task(src_rq, p, 0);
1242                         set_task_cpu(p, this_cpu);
1243                         activate_task(this_rq, p, 0);
1244                         /*
1245                          * We continue with the search, just in
1246                          * case there's an even higher prio task
1247                          * in another runqueue. (low likelyhood
1248                          * but possible)
1249                          *
1250                          * Update next so that we won't pick a task
1251                          * on another cpu with a priority lower (or equal)
1252                          * than the one we just picked.
1253                          */
1254                         next = p;
1255
1256                 }
1257  skip:
1258                 double_unlock_balance(this_rq, src_rq);
1259         }
1260
1261         return ret;
1262 }
1263
1264 static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1265 {
1266         /* Try to pull RT tasks here if we lower this rq's prio */
1267         if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio)
1268                 pull_rt_task(rq);
1269 }
1270
1271 static void post_schedule_rt(struct rq *rq)
1272 {
1273         /*
1274          * If we have more than one rt_task queued, then
1275          * see if we can push the other rt_tasks off to other CPUS.
1276          * Note we may release the rq lock, and since
1277          * the lock was owned by prev, we need to release it
1278          * first via finish_lock_switch and then reaquire it here.
1279          */
1280         if (unlikely(rq->rt.overloaded)) {
1281                 spin_lock_irq(&rq->lock);
1282                 push_rt_tasks(rq);
1283                 spin_unlock_irq(&rq->lock);
1284         }
1285 }
1286
1287 /*
1288  * If we are not running and we are not going to reschedule soon, we should
1289  * try to push tasks away now
1290  */
1291 static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
1292 {
1293         if (!task_running(rq, p) &&
1294             !test_tsk_need_resched(rq->curr) &&
1295             rq->rt.overloaded)
1296                 push_rt_tasks(rq);
1297 }
1298
1299 static unsigned long
1300 load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1301                 unsigned long max_load_move,
1302                 struct sched_domain *sd, enum cpu_idle_type idle,
1303                 int *all_pinned, int *this_best_prio)
1304 {
1305         /* don't touch RT tasks */
1306         return 0;
1307 }
1308
1309 static int
1310 move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1311                  struct sched_domain *sd, enum cpu_idle_type idle)
1312 {
1313         /* don't touch RT tasks */
1314         return 0;
1315 }
1316
1317 static void set_cpus_allowed_rt(struct task_struct *p,
1318                                 const cpumask_t *new_mask)
1319 {
1320         int weight = cpus_weight(*new_mask);
1321
1322         BUG_ON(!rt_task(p));
1323
1324         /*
1325          * Update the migration status of the RQ if we have an RT task
1326          * which is running AND changing its weight value.
1327          */
1328         if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
1329                 struct rq *rq = task_rq(p);
1330
1331                 if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
1332                         rq->rt.rt_nr_migratory++;
1333                 } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
1334                         BUG_ON(!rq->rt.rt_nr_migratory);
1335                         rq->rt.rt_nr_migratory--;
1336                 }
1337
1338                 update_rt_migration(rq);
1339         }
1340
1341         p->cpus_allowed    = *new_mask;
1342         p->rt.nr_cpus_allowed = weight;
1343 }
1344
1345 /* Assumes rq->lock is held */
1346 static void rq_online_rt(struct rq *rq)
1347 {
1348         if (rq->rt.overloaded)
1349                 rt_set_overload(rq);
1350
1351         __enable_runtime(rq);
1352
1353         cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio);
1354 }
1355
1356 /* Assumes rq->lock is held */
1357 static void rq_offline_rt(struct rq *rq)
1358 {
1359         if (rq->rt.overloaded)
1360                 rt_clear_overload(rq);
1361
1362         __disable_runtime(rq);
1363
1364         cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1365 }
1366
1367 /*
1368  * When switch from the rt queue, we bring ourselves to a position
1369  * that we might want to pull RT tasks from other runqueues.
1370  */
1371 static void switched_from_rt(struct rq *rq, struct task_struct *p,
1372                            int running)
1373 {
1374         /*
1375          * If there are other RT tasks then we will reschedule
1376          * and the scheduling of the other RT tasks will handle
1377          * the balancing. But if we are the last RT task
1378          * we may need to handle the pulling of RT tasks
1379          * now.
1380          */
1381         if (!rq->rt.rt_nr_running)
1382                 pull_rt_task(rq);
1383 }
1384 #endif /* CONFIG_SMP */
1385
1386 /*
1387  * When switching a task to RT, we may overload the runqueue
1388  * with RT tasks. In this case we try to push them off to
1389  * other runqueues.
1390  */
1391 static void switched_to_rt(struct rq *rq, struct task_struct *p,
1392                            int running)
1393 {
1394         int check_resched = 1;
1395
1396         /*
1397          * If we are already running, then there's nothing
1398          * that needs to be done. But if we are not running
1399          * we may need to preempt the current running task.
1400          * If that current running task is also an RT task
1401          * then see if we can move to another run queue.
1402          */
1403         if (!running) {
1404 #ifdef CONFIG_SMP
1405                 if (rq->rt.overloaded && push_rt_task(rq) &&
1406                     /* Don't resched if we changed runqueues */
1407                     rq != task_rq(p))
1408                         check_resched = 0;
1409 #endif /* CONFIG_SMP */
1410                 if (check_resched && p->prio < rq->curr->prio)
1411                         resched_task(rq->curr);
1412         }
1413 }
1414
1415 /*
1416  * Priority of the task has changed. This may cause
1417  * us to initiate a push or pull.
1418  */
1419 static void prio_changed_rt(struct rq *rq, struct task_struct *p,
1420                             int oldprio, int running)
1421 {
1422         if (running) {
1423 #ifdef CONFIG_SMP
1424                 /*
1425                  * If our priority decreases while running, we
1426                  * may need to pull tasks to this runqueue.
1427                  */
1428                 if (oldprio < p->prio)
1429                         pull_rt_task(rq);
1430                 /*
1431                  * If there's a higher priority task waiting to run
1432                  * then reschedule. Note, the above pull_rt_task
1433                  * can release the rq lock and p could migrate.
1434                  * Only reschedule if p is still on the same runqueue.
1435                  */
1436                 if (p->prio > rq->rt.highest_prio && rq->curr == p)
1437                         resched_task(p);
1438 #else
1439                 /* For UP simply resched on drop of prio */
1440                 if (oldprio < p->prio)
1441                         resched_task(p);
1442 #endif /* CONFIG_SMP */
1443         } else {
1444                 /*
1445                  * This task is not running, but if it is
1446                  * greater than the current running task
1447                  * then reschedule.
1448                  */
1449                 if (p->prio < rq->curr->prio)
1450                         resched_task(rq->curr);
1451         }
1452 }
1453
1454 static void watchdog(struct rq *rq, struct task_struct *p)
1455 {
1456         unsigned long soft, hard;
1457
1458         if (!p->signal)
1459                 return;
1460
1461         soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
1462         hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;
1463
1464         if (soft != RLIM_INFINITY) {
1465                 unsigned long next;
1466
1467                 p->rt.timeout++;
1468                 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1469                 if (p->rt.timeout > next)
1470                         p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
1471         }
1472 }
1473
1474 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
1475 {
1476         update_curr_rt(rq);
1477
1478         watchdog(rq, p);
1479
1480         /*
1481          * RR tasks need a special form of timeslice management.
1482          * FIFO tasks have no timeslices.
1483          */
1484         if (p->policy != SCHED_RR)
1485                 return;
1486
1487         if (--p->rt.time_slice)
1488                 return;
1489
1490         p->rt.time_slice = DEF_TIMESLICE;
1491
1492         /*
1493          * Requeue to the end of queue if we are not the only element
1494          * on the queue:
1495          */
1496         if (p->rt.run_list.prev != p->rt.run_list.next) {
1497                 requeue_task_rt(rq, p, 0);
1498                 set_tsk_need_resched(p);
1499         }
1500 }
1501
1502 static void set_curr_task_rt(struct rq *rq)
1503 {
1504         struct task_struct *p = rq->curr;
1505
1506         p->se.exec_start = rq->clock;
1507 }
1508
1509 static const struct sched_class rt_sched_class = {
1510         .next                   = &fair_sched_class,
1511         .enqueue_task           = enqueue_task_rt,
1512         .dequeue_task           = dequeue_task_rt,
1513         .yield_task             = yield_task_rt,
1514
1515         .check_preempt_curr     = check_preempt_curr_rt,
1516
1517         .pick_next_task         = pick_next_task_rt,
1518         .put_prev_task          = put_prev_task_rt,
1519
1520 #ifdef CONFIG_SMP
1521         .select_task_rq         = select_task_rq_rt,
1522
1523         .load_balance           = load_balance_rt,
1524         .move_one_task          = move_one_task_rt,
1525         .set_cpus_allowed       = set_cpus_allowed_rt,
1526         .rq_online              = rq_online_rt,
1527         .rq_offline             = rq_offline_rt,
1528         .pre_schedule           = pre_schedule_rt,
1529         .post_schedule          = post_schedule_rt,
1530         .task_wake_up           = task_wake_up_rt,
1531         .switched_from          = switched_from_rt,
1532 #endif
1533
1534         .set_curr_task          = set_curr_task_rt,
1535         .task_tick              = task_tick_rt,
1536
1537         .prio_changed           = prio_changed_rt,
1538         .switched_to            = switched_to_rt,
1539 };
1540
1541 #ifdef CONFIG_SCHED_DEBUG
1542 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
1543
1544 static void print_rt_stats(struct seq_file *m, int cpu)
1545 {
1546         struct rt_rq *rt_rq;
1547
1548         rcu_read_lock();
1549         for_each_leaf_rt_rq(rt_rq, cpu_rq(cpu))
1550                 print_rt_rq(m, cpu, rt_rq);
1551         rcu_read_unlock();
1552 }
1553 #endif /* CONFIG_SCHED_DEBUG */
1554
1555 /* Note that this is never called for !SMP, but that's OK. */
1556 static inline void init_sched_rt_class(void)
1557 {
1558         unsigned int i;
1559
1560         for_each_possible_cpu(i)
1561                 alloc_cpumask_var(&per_cpu(local_cpu_mask, i), GFP_KERNEL);
1562 }