43dc6d1d9e88588bb0fa1ad43f8494e77f6eeab5
[linux-2.6.git] / kernel / sched_fair.c
1 /*
2  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3  *
4  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5  *
6  *  Interactivity improvements by Mike Galbraith
7  *  (C) 2007 Mike Galbraith <efault@gmx.de>
8  *
9  *  Various enhancements by Dmitry Adamushko.
10  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11  *
12  *  Group scheduling enhancements by Srivatsa Vaddagiri
13  *  Copyright IBM Corporation, 2007
14  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15  *
16  *  Scaled math optimizations by Thomas Gleixner
17  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18  *
19  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21  */
22
23 #include <linux/latencytop.h>
24
25 /*
26  * Targeted preemption latency for CPU-bound tasks:
27  * (default: 5ms * (1 + ilog(ncpus)), units: nanoseconds)
28  *
29  * NOTE: this latency value is not the same as the concept of
30  * 'timeslice length' - timeslices in CFS are of variable length
31  * and have no persistent notion like in traditional, time-slice
32  * based scheduling concepts.
33  *
34  * (to see the precise effective timeslice length of your workload,
35  *  run vmstat and monitor the context-switches (cs) field)
36  */
37 unsigned int sysctl_sched_latency = 5000000ULL;
38
39 /*
40  * Minimal preemption granularity for CPU-bound tasks:
41  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
42  */
43 unsigned int sysctl_sched_min_granularity = 1000000ULL;
44
45 /*
46  * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
47  */
48 static unsigned int sched_nr_latency = 5;
49
50 /*
51  * After fork, child runs first. If set to 0 (default) then
52  * parent will (try to) run first.
53  */
54 unsigned int sysctl_sched_child_runs_first __read_mostly;
55
56 /*
57  * sys_sched_yield() compat mode
58  *
59  * This option switches the agressive yield implementation of the
60  * old scheduler back on.
61  */
62 unsigned int __read_mostly sysctl_sched_compat_yield;
63
64 /*
65  * SCHED_OTHER wake-up granularity.
66  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
67  *
68  * This option delays the preemption effects of decoupled workloads
69  * and reduces their over-scheduling. Synchronous workloads will still
70  * have immediate wakeup/sleep latencies.
71  */
72 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
73
74 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
75
76 static const struct sched_class fair_sched_class;
77
78 /**************************************************************
79  * CFS operations on generic schedulable entities:
80  */
81
82 #ifdef CONFIG_FAIR_GROUP_SCHED
83
84 /* cpu runqueue to which this cfs_rq is attached */
85 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
86 {
87         return cfs_rq->rq;
88 }
89
90 /* An entity is a task if it doesn't "own" a runqueue */
91 #define entity_is_task(se)      (!se->my_q)
92
93 static inline struct task_struct *task_of(struct sched_entity *se)
94 {
95 #ifdef CONFIG_SCHED_DEBUG
96         WARN_ON_ONCE(!entity_is_task(se));
97 #endif
98         return container_of(se, struct task_struct, se);
99 }
100
101 /* Walk up scheduling entities hierarchy */
102 #define for_each_sched_entity(se) \
103                 for (; se; se = se->parent)
104
105 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
106 {
107         return p->se.cfs_rq;
108 }
109
110 /* runqueue on which this entity is (to be) queued */
111 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
112 {
113         return se->cfs_rq;
114 }
115
116 /* runqueue "owned" by this group */
117 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
118 {
119         return grp->my_q;
120 }
121
122 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
123  * another cpu ('this_cpu')
124  */
125 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
126 {
127         return cfs_rq->tg->cfs_rq[this_cpu];
128 }
129
130 /* Iterate thr' all leaf cfs_rq's on a runqueue */
131 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
132         list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
133
134 /* Do the two (enqueued) entities belong to the same group ? */
135 static inline int
136 is_same_group(struct sched_entity *se, struct sched_entity *pse)
137 {
138         if (se->cfs_rq == pse->cfs_rq)
139                 return 1;
140
141         return 0;
142 }
143
144 static inline struct sched_entity *parent_entity(struct sched_entity *se)
145 {
146         return se->parent;
147 }
148
149 /* return depth at which a sched entity is present in the hierarchy */
150 static inline int depth_se(struct sched_entity *se)
151 {
152         int depth = 0;
153
154         for_each_sched_entity(se)
155                 depth++;
156
157         return depth;
158 }
159
160 static void
161 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
162 {
163         int se_depth, pse_depth;
164
165         /*
166          * preemption test can be made between sibling entities who are in the
167          * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
168          * both tasks until we find their ancestors who are siblings of common
169          * parent.
170          */
171
172         /* First walk up until both entities are at same depth */
173         se_depth = depth_se(*se);
174         pse_depth = depth_se(*pse);
175
176         while (se_depth > pse_depth) {
177                 se_depth--;
178                 *se = parent_entity(*se);
179         }
180
181         while (pse_depth > se_depth) {
182                 pse_depth--;
183                 *pse = parent_entity(*pse);
184         }
185
186         while (!is_same_group(*se, *pse)) {
187                 *se = parent_entity(*se);
188                 *pse = parent_entity(*pse);
189         }
190 }
191
192 #else   /* !CONFIG_FAIR_GROUP_SCHED */
193
194 static inline struct task_struct *task_of(struct sched_entity *se)
195 {
196         return container_of(se, struct task_struct, se);
197 }
198
199 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
200 {
201         return container_of(cfs_rq, struct rq, cfs);
202 }
203
204 #define entity_is_task(se)      1
205
206 #define for_each_sched_entity(se) \
207                 for (; se; se = NULL)
208
209 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
210 {
211         return &task_rq(p)->cfs;
212 }
213
214 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
215 {
216         struct task_struct *p = task_of(se);
217         struct rq *rq = task_rq(p);
218
219         return &rq->cfs;
220 }
221
222 /* runqueue "owned" by this group */
223 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
224 {
225         return NULL;
226 }
227
228 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
229 {
230         return &cpu_rq(this_cpu)->cfs;
231 }
232
233 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
234                 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
235
236 static inline int
237 is_same_group(struct sched_entity *se, struct sched_entity *pse)
238 {
239         return 1;
240 }
241
242 static inline struct sched_entity *parent_entity(struct sched_entity *se)
243 {
244         return NULL;
245 }
246
247 static inline void
248 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
249 {
250 }
251
252 #endif  /* CONFIG_FAIR_GROUP_SCHED */
253
254
255 /**************************************************************
256  * Scheduling class tree data structure manipulation methods:
257  */
258
259 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
260 {
261         s64 delta = (s64)(vruntime - min_vruntime);
262         if (delta > 0)
263                 min_vruntime = vruntime;
264
265         return min_vruntime;
266 }
267
268 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
269 {
270         s64 delta = (s64)(vruntime - min_vruntime);
271         if (delta < 0)
272                 min_vruntime = vruntime;
273
274         return min_vruntime;
275 }
276
277 static inline int entity_before(struct sched_entity *a,
278                                 struct sched_entity *b)
279 {
280         return (s64)(a->vruntime - b->vruntime) < 0;
281 }
282
283 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
284 {
285         return se->vruntime - cfs_rq->min_vruntime;
286 }
287
288 static void update_min_vruntime(struct cfs_rq *cfs_rq)
289 {
290         u64 vruntime = cfs_rq->min_vruntime;
291
292         if (cfs_rq->curr)
293                 vruntime = cfs_rq->curr->vruntime;
294
295         if (cfs_rq->rb_leftmost) {
296                 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
297                                                    struct sched_entity,
298                                                    run_node);
299
300                 if (!cfs_rq->curr)
301                         vruntime = se->vruntime;
302                 else
303                         vruntime = min_vruntime(vruntime, se->vruntime);
304         }
305
306         cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
307 }
308
309 /*
310  * Enqueue an entity into the rb-tree:
311  */
312 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
313 {
314         struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
315         struct rb_node *parent = NULL;
316         struct sched_entity *entry;
317         s64 key = entity_key(cfs_rq, se);
318         int leftmost = 1;
319
320         /*
321          * Find the right place in the rbtree:
322          */
323         while (*link) {
324                 parent = *link;
325                 entry = rb_entry(parent, struct sched_entity, run_node);
326                 /*
327                  * We dont care about collisions. Nodes with
328                  * the same key stay together.
329                  */
330                 if (key < entity_key(cfs_rq, entry)) {
331                         link = &parent->rb_left;
332                 } else {
333                         link = &parent->rb_right;
334                         leftmost = 0;
335                 }
336         }
337
338         /*
339          * Maintain a cache of leftmost tree entries (it is frequently
340          * used):
341          */
342         if (leftmost)
343                 cfs_rq->rb_leftmost = &se->run_node;
344
345         rb_link_node(&se->run_node, parent, link);
346         rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
347 }
348
349 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
350 {
351         if (cfs_rq->rb_leftmost == &se->run_node) {
352                 struct rb_node *next_node;
353
354                 next_node = rb_next(&se->run_node);
355                 cfs_rq->rb_leftmost = next_node;
356         }
357
358         rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
359 }
360
361 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
362 {
363         struct rb_node *left = cfs_rq->rb_leftmost;
364
365         if (!left)
366                 return NULL;
367
368         return rb_entry(left, struct sched_entity, run_node);
369 }
370
371 static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
372 {
373         struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
374
375         if (!last)
376                 return NULL;
377
378         return rb_entry(last, struct sched_entity, run_node);
379 }
380
381 /**************************************************************
382  * Scheduling class statistics methods:
383  */
384
385 #ifdef CONFIG_SCHED_DEBUG
386 int sched_nr_latency_handler(struct ctl_table *table, int write,
387                 struct file *filp, void __user *buffer, size_t *lenp,
388                 loff_t *ppos)
389 {
390         int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
391
392         if (ret || !write)
393                 return ret;
394
395         sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
396                                         sysctl_sched_min_granularity);
397
398         return 0;
399 }
400 #endif
401
402 /*
403  * delta /= w
404  */
405 static inline unsigned long
406 calc_delta_fair(unsigned long delta, struct sched_entity *se)
407 {
408         if (unlikely(se->load.weight != NICE_0_LOAD))
409                 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
410
411         return delta;
412 }
413
414 /*
415  * The idea is to set a period in which each task runs once.
416  *
417  * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
418  * this period because otherwise the slices get too small.
419  *
420  * p = (nr <= nl) ? l : l*nr/nl
421  */
422 static u64 __sched_period(unsigned long nr_running)
423 {
424         u64 period = sysctl_sched_latency;
425         unsigned long nr_latency = sched_nr_latency;
426
427         if (unlikely(nr_running > nr_latency)) {
428                 period = sysctl_sched_min_granularity;
429                 period *= nr_running;
430         }
431
432         return period;
433 }
434
435 /*
436  * We calculate the wall-time slice from the period by taking a part
437  * proportional to the weight.
438  *
439  * s = p*P[w/rw]
440  */
441 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
442 {
443         u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
444
445         for_each_sched_entity(se) {
446                 struct load_weight *load;
447                 struct load_weight lw;
448
449                 cfs_rq = cfs_rq_of(se);
450                 load = &cfs_rq->load;
451
452                 if (unlikely(!se->on_rq)) {
453                         lw = cfs_rq->load;
454
455                         update_load_add(&lw, se->load.weight);
456                         load = &lw;
457                 }
458                 slice = calc_delta_mine(slice, se->load.weight, load);
459         }
460         return slice;
461 }
462
463 /*
464  * We calculate the vruntime slice of a to be inserted task
465  *
466  * vs = s/w
467  */
468 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
469 {
470         return calc_delta_fair(sched_slice(cfs_rq, se), se);
471 }
472
473 /*
474  * Update the current task's runtime statistics. Skip current tasks that
475  * are not in our scheduling class.
476  */
477 static inline void
478 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
479               unsigned long delta_exec)
480 {
481         unsigned long delta_exec_weighted;
482
483         schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
484
485         curr->sum_exec_runtime += delta_exec;
486         schedstat_add(cfs_rq, exec_clock, delta_exec);
487         delta_exec_weighted = calc_delta_fair(delta_exec, curr);
488         curr->vruntime += delta_exec_weighted;
489         update_min_vruntime(cfs_rq);
490 }
491
492 static void update_curr(struct cfs_rq *cfs_rq)
493 {
494         struct sched_entity *curr = cfs_rq->curr;
495         u64 now = rq_of(cfs_rq)->clock;
496         unsigned long delta_exec;
497
498         if (unlikely(!curr))
499                 return;
500
501         /*
502          * Get the amount of time the current task was running
503          * since the last time we changed load (this cannot
504          * overflow on 32 bits):
505          */
506         delta_exec = (unsigned long)(now - curr->exec_start);
507         if (!delta_exec)
508                 return;
509
510         __update_curr(cfs_rq, curr, delta_exec);
511         curr->exec_start = now;
512
513         if (entity_is_task(curr)) {
514                 struct task_struct *curtask = task_of(curr);
515
516                 cpuacct_charge(curtask, delta_exec);
517                 account_group_exec_runtime(curtask, delta_exec);
518         }
519 }
520
521 static inline void
522 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
523 {
524         schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
525 }
526
527 /*
528  * Task is being enqueued - update stats:
529  */
530 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
531 {
532         /*
533          * Are we enqueueing a waiting task? (for current tasks
534          * a dequeue/enqueue event is a NOP)
535          */
536         if (se != cfs_rq->curr)
537                 update_stats_wait_start(cfs_rq, se);
538 }
539
540 static void
541 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
542 {
543         schedstat_set(se->wait_max, max(se->wait_max,
544                         rq_of(cfs_rq)->clock - se->wait_start));
545         schedstat_set(se->wait_count, se->wait_count + 1);
546         schedstat_set(se->wait_sum, se->wait_sum +
547                         rq_of(cfs_rq)->clock - se->wait_start);
548 #ifdef CONFIG_SCHEDSTATS
549         if (entity_is_task(se)) {
550                 trace_sched_stat_wait(task_of(se),
551                         rq_of(cfs_rq)->clock - se->wait_start);
552         }
553 #endif
554         schedstat_set(se->wait_start, 0);
555 }
556
557 static inline void
558 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
559 {
560         /*
561          * Mark the end of the wait period if dequeueing a
562          * waiting task:
563          */
564         if (se != cfs_rq->curr)
565                 update_stats_wait_end(cfs_rq, se);
566 }
567
568 /*
569  * We are picking a new current task - update its stats:
570  */
571 static inline void
572 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
573 {
574         /*
575          * We are starting a new run period:
576          */
577         se->exec_start = rq_of(cfs_rq)->clock;
578 }
579
580 /**************************************************
581  * Scheduling class queueing methods:
582  */
583
584 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
585 static void
586 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
587 {
588         cfs_rq->task_weight += weight;
589 }
590 #else
591 static inline void
592 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
593 {
594 }
595 #endif
596
597 static void
598 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
599 {
600         update_load_add(&cfs_rq->load, se->load.weight);
601         if (!parent_entity(se))
602                 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
603         if (entity_is_task(se)) {
604                 add_cfs_task_weight(cfs_rq, se->load.weight);
605                 list_add(&se->group_node, &cfs_rq->tasks);
606         }
607         cfs_rq->nr_running++;
608         se->on_rq = 1;
609 }
610
611 static void
612 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
613 {
614         update_load_sub(&cfs_rq->load, se->load.weight);
615         if (!parent_entity(se))
616                 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
617         if (entity_is_task(se)) {
618                 add_cfs_task_weight(cfs_rq, -se->load.weight);
619                 list_del_init(&se->group_node);
620         }
621         cfs_rq->nr_running--;
622         se->on_rq = 0;
623 }
624
625 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
626 {
627 #ifdef CONFIG_SCHEDSTATS
628         struct task_struct *tsk = NULL;
629
630         if (entity_is_task(se))
631                 tsk = task_of(se);
632
633         if (se->sleep_start) {
634                 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
635
636                 if ((s64)delta < 0)
637                         delta = 0;
638
639                 if (unlikely(delta > se->sleep_max))
640                         se->sleep_max = delta;
641
642                 se->sleep_start = 0;
643                 se->sum_sleep_runtime += delta;
644
645                 if (tsk) {
646                         account_scheduler_latency(tsk, delta >> 10, 1);
647                         trace_sched_stat_sleep(tsk, delta);
648                 }
649         }
650         if (se->block_start) {
651                 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
652
653                 if ((s64)delta < 0)
654                         delta = 0;
655
656                 if (unlikely(delta > se->block_max))
657                         se->block_max = delta;
658
659                 se->block_start = 0;
660                 se->sum_sleep_runtime += delta;
661
662                 if (tsk) {
663                         if (tsk->in_iowait) {
664                                 se->iowait_sum += delta;
665                                 se->iowait_count++;
666                                 trace_sched_stat_iowait(tsk, delta);
667                         }
668
669                         /*
670                          * Blocking time is in units of nanosecs, so shift by
671                          * 20 to get a milliseconds-range estimation of the
672                          * amount of time that the task spent sleeping:
673                          */
674                         if (unlikely(prof_on == SLEEP_PROFILING)) {
675                                 profile_hits(SLEEP_PROFILING,
676                                                 (void *)get_wchan(tsk),
677                                                 delta >> 20);
678                         }
679                         account_scheduler_latency(tsk, delta >> 10, 0);
680                 }
681         }
682 #endif
683 }
684
685 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
686 {
687 #ifdef CONFIG_SCHED_DEBUG
688         s64 d = se->vruntime - cfs_rq->min_vruntime;
689
690         if (d < 0)
691                 d = -d;
692
693         if (d > 3*sysctl_sched_latency)
694                 schedstat_inc(cfs_rq, nr_spread_over);
695 #endif
696 }
697
698 static void
699 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
700 {
701         u64 vruntime = cfs_rq->min_vruntime;
702
703         /*
704          * The 'current' period is already promised to the current tasks,
705          * however the extra weight of the new task will slow them down a
706          * little, place the new task so that it fits in the slot that
707          * stays open at the end.
708          */
709         if (initial && sched_feat(START_DEBIT))
710                 vruntime += sched_vslice(cfs_rq, se);
711
712         if (!initial) {
713                 /* sleeps upto a single latency don't count. */
714                 if (sched_feat(NEW_FAIR_SLEEPERS)) {
715                         unsigned long thresh = sysctl_sched_latency;
716
717                         /*
718                          * Convert the sleeper threshold into virtual time.
719                          * SCHED_IDLE is a special sub-class.  We care about
720                          * fairness only relative to other SCHED_IDLE tasks,
721                          * all of which have the same weight.
722                          */
723                         if (sched_feat(NORMALIZED_SLEEPER) &&
724                                         (!entity_is_task(se) ||
725                                          task_of(se)->policy != SCHED_IDLE))
726                                 thresh = calc_delta_fair(thresh, se);
727
728                         vruntime -= thresh;
729                 }
730         }
731
732         /* ensure we never gain time by being placed backwards. */
733         vruntime = max_vruntime(se->vruntime, vruntime);
734
735         se->vruntime = vruntime;
736 }
737
738 static void
739 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
740 {
741         /*
742          * Update run-time statistics of the 'current'.
743          */
744         update_curr(cfs_rq);
745         account_entity_enqueue(cfs_rq, se);
746
747         if (wakeup) {
748                 place_entity(cfs_rq, se, 0);
749                 enqueue_sleeper(cfs_rq, se);
750         }
751
752         update_stats_enqueue(cfs_rq, se);
753         check_spread(cfs_rq, se);
754         if (se != cfs_rq->curr)
755                 __enqueue_entity(cfs_rq, se);
756 }
757
758 static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
759 {
760         if (cfs_rq->last == se)
761                 cfs_rq->last = NULL;
762
763         if (cfs_rq->next == se)
764                 cfs_rq->next = NULL;
765 }
766
767 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
768 {
769         for_each_sched_entity(se)
770                 __clear_buddies(cfs_rq_of(se), se);
771 }
772
773 static void
774 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
775 {
776         /*
777          * Update run-time statistics of the 'current'.
778          */
779         update_curr(cfs_rq);
780
781         update_stats_dequeue(cfs_rq, se);
782         if (sleep) {
783 #ifdef CONFIG_SCHEDSTATS
784                 if (entity_is_task(se)) {
785                         struct task_struct *tsk = task_of(se);
786
787                         if (tsk->state & TASK_INTERRUPTIBLE)
788                                 se->sleep_start = rq_of(cfs_rq)->clock;
789                         if (tsk->state & TASK_UNINTERRUPTIBLE)
790                                 se->block_start = rq_of(cfs_rq)->clock;
791                 }
792 #endif
793         }
794
795         clear_buddies(cfs_rq, se);
796
797         if (se != cfs_rq->curr)
798                 __dequeue_entity(cfs_rq, se);
799         account_entity_dequeue(cfs_rq, se);
800         update_min_vruntime(cfs_rq);
801 }
802
803 /*
804  * Preempt the current task with a newly woken task if needed:
805  */
806 static void
807 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
808 {
809         unsigned long ideal_runtime, delta_exec;
810
811         ideal_runtime = sched_slice(cfs_rq, curr);
812         delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
813         if (delta_exec > ideal_runtime) {
814                 resched_task(rq_of(cfs_rq)->curr);
815                 /*
816                  * The current task ran long enough, ensure it doesn't get
817                  * re-elected due to buddy favours.
818                  */
819                 clear_buddies(cfs_rq, curr);
820         }
821 }
822
823 static void
824 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
825 {
826         /* 'current' is not kept within the tree. */
827         if (se->on_rq) {
828                 /*
829                  * Any task has to be enqueued before it get to execute on
830                  * a CPU. So account for the time it spent waiting on the
831                  * runqueue.
832                  */
833                 update_stats_wait_end(cfs_rq, se);
834                 __dequeue_entity(cfs_rq, se);
835         }
836
837         update_stats_curr_start(cfs_rq, se);
838         cfs_rq->curr = se;
839 #ifdef CONFIG_SCHEDSTATS
840         /*
841          * Track our maximum slice length, if the CPU's load is at
842          * least twice that of our own weight (i.e. dont track it
843          * when there are only lesser-weight tasks around):
844          */
845         if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
846                 se->slice_max = max(se->slice_max,
847                         se->sum_exec_runtime - se->prev_sum_exec_runtime);
848         }
849 #endif
850         se->prev_sum_exec_runtime = se->sum_exec_runtime;
851 }
852
853 static int
854 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
855
856 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
857 {
858         struct sched_entity *se = __pick_next_entity(cfs_rq);
859
860         if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, se) < 1)
861                 return cfs_rq->next;
862
863         if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, se) < 1)
864                 return cfs_rq->last;
865
866         return se;
867 }
868
869 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
870 {
871         /*
872          * If still on the runqueue then deactivate_task()
873          * was not called and update_curr() has to be done:
874          */
875         if (prev->on_rq)
876                 update_curr(cfs_rq);
877
878         check_spread(cfs_rq, prev);
879         if (prev->on_rq) {
880                 update_stats_wait_start(cfs_rq, prev);
881                 /* Put 'current' back into the tree. */
882                 __enqueue_entity(cfs_rq, prev);
883         }
884         cfs_rq->curr = NULL;
885 }
886
887 static void
888 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
889 {
890         /*
891          * Update run-time statistics of the 'current'.
892          */
893         update_curr(cfs_rq);
894
895 #ifdef CONFIG_SCHED_HRTICK
896         /*
897          * queued ticks are scheduled to match the slice, so don't bother
898          * validating it and just reschedule.
899          */
900         if (queued) {
901                 resched_task(rq_of(cfs_rq)->curr);
902                 return;
903         }
904         /*
905          * don't let the period tick interfere with the hrtick preemption
906          */
907         if (!sched_feat(DOUBLE_TICK) &&
908                         hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
909                 return;
910 #endif
911
912         if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
913                 check_preempt_tick(cfs_rq, curr);
914 }
915
916 /**************************************************
917  * CFS operations on tasks:
918  */
919
920 #ifdef CONFIG_SCHED_HRTICK
921 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
922 {
923         struct sched_entity *se = &p->se;
924         struct cfs_rq *cfs_rq = cfs_rq_of(se);
925
926         WARN_ON(task_rq(p) != rq);
927
928         if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
929                 u64 slice = sched_slice(cfs_rq, se);
930                 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
931                 s64 delta = slice - ran;
932
933                 if (delta < 0) {
934                         if (rq->curr == p)
935                                 resched_task(p);
936                         return;
937                 }
938
939                 /*
940                  * Don't schedule slices shorter than 10000ns, that just
941                  * doesn't make sense. Rely on vruntime for fairness.
942                  */
943                 if (rq->curr != p)
944                         delta = max_t(s64, 10000LL, delta);
945
946                 hrtick_start(rq, delta);
947         }
948 }
949
950 /*
951  * called from enqueue/dequeue and updates the hrtick when the
952  * current task is from our class and nr_running is low enough
953  * to matter.
954  */
955 static void hrtick_update(struct rq *rq)
956 {
957         struct task_struct *curr = rq->curr;
958
959         if (curr->sched_class != &fair_sched_class)
960                 return;
961
962         if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
963                 hrtick_start_fair(rq, curr);
964 }
965 #else /* !CONFIG_SCHED_HRTICK */
966 static inline void
967 hrtick_start_fair(struct rq *rq, struct task_struct *p)
968 {
969 }
970
971 static inline void hrtick_update(struct rq *rq)
972 {
973 }
974 #endif
975
976 /*
977  * The enqueue_task method is called before nr_running is
978  * increased. Here we update the fair scheduling stats and
979  * then put the task into the rbtree:
980  */
981 static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
982 {
983         struct cfs_rq *cfs_rq;
984         struct sched_entity *se = &p->se;
985
986         for_each_sched_entity(se) {
987                 if (se->on_rq)
988                         break;
989                 cfs_rq = cfs_rq_of(se);
990                 enqueue_entity(cfs_rq, se, wakeup);
991                 wakeup = 1;
992         }
993
994         hrtick_update(rq);
995 }
996
997 /*
998  * The dequeue_task method is called before nr_running is
999  * decreased. We remove the task from the rbtree and
1000  * update the fair scheduling stats:
1001  */
1002 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
1003 {
1004         struct cfs_rq *cfs_rq;
1005         struct sched_entity *se = &p->se;
1006
1007         for_each_sched_entity(se) {
1008                 cfs_rq = cfs_rq_of(se);
1009                 dequeue_entity(cfs_rq, se, sleep);
1010                 /* Don't dequeue parent if it has other entities besides us */
1011                 if (cfs_rq->load.weight)
1012                         break;
1013                 sleep = 1;
1014         }
1015
1016         hrtick_update(rq);
1017 }
1018
1019 /*
1020  * sched_yield() support is very simple - we dequeue and enqueue.
1021  *
1022  * If compat_yield is turned on then we requeue to the end of the tree.
1023  */
1024 static void yield_task_fair(struct rq *rq)
1025 {
1026         struct task_struct *curr = rq->curr;
1027         struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1028         struct sched_entity *rightmost, *se = &curr->se;
1029
1030         /*
1031          * Are we the only task in the tree?
1032          */
1033         if (unlikely(cfs_rq->nr_running == 1))
1034                 return;
1035
1036         clear_buddies(cfs_rq, se);
1037
1038         if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
1039                 update_rq_clock(rq);
1040                 /*
1041                  * Update run-time statistics of the 'current'.
1042                  */
1043                 update_curr(cfs_rq);
1044
1045                 return;
1046         }
1047         /*
1048          * Find the rightmost entry in the rbtree:
1049          */
1050         rightmost = __pick_last_entity(cfs_rq);
1051         /*
1052          * Already in the rightmost position?
1053          */
1054         if (unlikely(!rightmost || entity_before(rightmost, se)))
1055                 return;
1056
1057         /*
1058          * Minimally necessary key value to be last in the tree:
1059          * Upon rescheduling, sched_class::put_prev_task() will place
1060          * 'current' within the tree based on its new key value.
1061          */
1062         se->vruntime = rightmost->vruntime + 1;
1063 }
1064
1065 #ifdef CONFIG_SMP
1066
1067 #ifdef CONFIG_FAIR_GROUP_SCHED
1068 /*
1069  * effective_load() calculates the load change as seen from the root_task_group
1070  *
1071  * Adding load to a group doesn't make a group heavier, but can cause movement
1072  * of group shares between cpus. Assuming the shares were perfectly aligned one
1073  * can calculate the shift in shares.
1074  *
1075  * The problem is that perfectly aligning the shares is rather expensive, hence
1076  * we try to avoid doing that too often - see update_shares(), which ratelimits
1077  * this change.
1078  *
1079  * We compensate this by not only taking the current delta into account, but
1080  * also considering the delta between when the shares were last adjusted and
1081  * now.
1082  *
1083  * We still saw a performance dip, some tracing learned us that between
1084  * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
1085  * significantly. Therefore try to bias the error in direction of failing
1086  * the affine wakeup.
1087  *
1088  */
1089 static long effective_load(struct task_group *tg, int cpu,
1090                 long wl, long wg)
1091 {
1092         struct sched_entity *se = tg->se[cpu];
1093
1094         if (!tg->parent)
1095                 return wl;
1096
1097         /*
1098          * By not taking the decrease of shares on the other cpu into
1099          * account our error leans towards reducing the affine wakeups.
1100          */
1101         if (!wl && sched_feat(ASYM_EFF_LOAD))
1102                 return wl;
1103
1104         for_each_sched_entity(se) {
1105                 long S, rw, s, a, b;
1106                 long more_w;
1107
1108                 /*
1109                  * Instead of using this increment, also add the difference
1110                  * between when the shares were last updated and now.
1111                  */
1112                 more_w = se->my_q->load.weight - se->my_q->rq_weight;
1113                 wl += more_w;
1114                 wg += more_w;
1115
1116                 S = se->my_q->tg->shares;
1117                 s = se->my_q->shares;
1118                 rw = se->my_q->rq_weight;
1119
1120                 a = S*(rw + wl);
1121                 b = S*rw + s*wg;
1122
1123                 wl = s*(a-b);
1124
1125                 if (likely(b))
1126                         wl /= b;
1127
1128                 /*
1129                  * Assume the group is already running and will
1130                  * thus already be accounted for in the weight.
1131                  *
1132                  * That is, moving shares between CPUs, does not
1133                  * alter the group weight.
1134                  */
1135                 wg = 0;
1136         }
1137
1138         return wl;
1139 }
1140
1141 #else
1142
1143 static inline unsigned long effective_load(struct task_group *tg, int cpu,
1144                 unsigned long wl, unsigned long wg)
1145 {
1146         return wl;
1147 }
1148
1149 #endif
1150
1151 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
1152 {
1153         struct task_struct *curr = current;
1154         unsigned long this_load, load;
1155         int idx, this_cpu, prev_cpu;
1156         unsigned long tl_per_task;
1157         unsigned int imbalance;
1158         struct task_group *tg;
1159         unsigned long weight;
1160         int balanced;
1161
1162         idx       = sd->wake_idx;
1163         this_cpu  = smp_processor_id();
1164         prev_cpu  = task_cpu(p);
1165         load      = source_load(prev_cpu, idx);
1166         this_load = target_load(this_cpu, idx);
1167
1168         if (sync && (curr->se.avg_overlap > sysctl_sched_migration_cost ||
1169                         p->se.avg_overlap > sysctl_sched_migration_cost))
1170                 sync = 0;
1171
1172         /*
1173          * If sync wakeup then subtract the (maximum possible)
1174          * effect of the currently running task from the load
1175          * of the current CPU:
1176          */
1177         if (sync) {
1178                 tg = task_group(current);
1179                 weight = current->se.load.weight;
1180
1181                 this_load += effective_load(tg, this_cpu, -weight, -weight);
1182                 load += effective_load(tg, prev_cpu, 0, -weight);
1183         }
1184
1185         tg = task_group(p);
1186         weight = p->se.load.weight;
1187
1188         imbalance = 100 + (sd->imbalance_pct - 100) / 2;
1189
1190         /*
1191          * In low-load situations, where prev_cpu is idle and this_cpu is idle
1192          * due to the sync cause above having dropped this_load to 0, we'll
1193          * always have an imbalance, but there's really nothing you can do
1194          * about that, so that's good too.
1195          *
1196          * Otherwise check if either cpus are near enough in load to allow this
1197          * task to be woken on this_cpu.
1198          */
1199         balanced = !this_load ||
1200                 100*(this_load + effective_load(tg, this_cpu, weight, weight)) <=
1201                 imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
1202
1203         /*
1204          * If the currently running task will sleep within
1205          * a reasonable amount of time then attract this newly
1206          * woken task:
1207          */
1208         if (sync && balanced)
1209                 return 1;
1210
1211         schedstat_inc(p, se.nr_wakeups_affine_attempts);
1212         tl_per_task = cpu_avg_load_per_task(this_cpu);
1213
1214         if (balanced ||
1215             (this_load <= load &&
1216              this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
1217                 /*
1218                  * This domain has SD_WAKE_AFFINE and
1219                  * p is cache cold in this domain, and
1220                  * there is no bad imbalance.
1221                  */
1222                 schedstat_inc(sd, ttwu_move_affine);
1223                 schedstat_inc(p, se.nr_wakeups_affine);
1224
1225                 return 1;
1226         }
1227         return 0;
1228 }
1229
1230 /*
1231  * find_idlest_group finds and returns the least busy CPU group within the
1232  * domain.
1233  */
1234 static struct sched_group *
1235 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1236 {
1237         struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1238         unsigned long min_load = ULONG_MAX, this_load = 0;
1239         int load_idx = sd->forkexec_idx;
1240         int imbalance = 100 + (sd->imbalance_pct-100)/2;
1241
1242         do {
1243                 unsigned long load, avg_load;
1244                 int local_group;
1245                 int i;
1246
1247                 /* Skip over this group if it has no CPUs allowed */
1248                 if (!cpumask_intersects(sched_group_cpus(group),
1249                                         &p->cpus_allowed))
1250                         continue;
1251
1252                 local_group = cpumask_test_cpu(this_cpu,
1253                                                sched_group_cpus(group));
1254
1255                 /* Tally up the load of all CPUs in the group */
1256                 avg_load = 0;
1257
1258                 for_each_cpu(i, sched_group_cpus(group)) {
1259                         /* Bias balancing toward cpus of our domain */
1260                         if (local_group)
1261                                 load = source_load(i, load_idx);
1262                         else
1263                                 load = target_load(i, load_idx);
1264
1265                         avg_load += load;
1266                 }
1267
1268                 /* Adjust by relative CPU power of the group */
1269                 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1270
1271                 if (local_group) {
1272                         this_load = avg_load;
1273                         this = group;
1274                 } else if (avg_load < min_load) {
1275                         min_load = avg_load;
1276                         idlest = group;
1277                 }
1278         } while (group = group->next, group != sd->groups);
1279
1280         if (!idlest || 100*this_load < imbalance*min_load)
1281                 return NULL;
1282         return idlest;
1283 }
1284
1285 /*
1286  * find_idlest_cpu - find the idlest cpu among the cpus in group.
1287  */
1288 static int
1289 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1290 {
1291         unsigned long load, min_load = ULONG_MAX;
1292         int idlest = -1;
1293         int i;
1294
1295         /* Traverse only the allowed CPUs */
1296         for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
1297                 load = weighted_cpuload(i);
1298
1299                 if (load < min_load || (load == min_load && i == this_cpu)) {
1300                         min_load = load;
1301                         idlest = i;
1302                 }
1303         }
1304
1305         return idlest;
1306 }
1307
1308 /*
1309  * sched_balance_self: balance the current task (running on cpu) in domains
1310  * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1311  * SD_BALANCE_EXEC.
1312  *
1313  * Balance, ie. select the least loaded group.
1314  *
1315  * Returns the target CPU number, or the same CPU if no balancing is needed.
1316  *
1317  * preempt must be disabled.
1318  */
1319 static int select_task_rq_fair(struct task_struct *p, int flag, int sync)
1320 {
1321         struct task_struct *t = current;
1322         struct sched_domain *tmp, *sd = NULL;
1323         int cpu = smp_processor_id();
1324         int prev_cpu = task_cpu(p);
1325         int new_cpu = cpu;
1326         int want_affine = 0;
1327
1328         if (flag & SD_BALANCE_WAKE) {
1329                 if (sched_feat(AFFINE_WAKEUPS))
1330                         want_affine = 1;
1331                 new_cpu = prev_cpu;
1332         }
1333
1334         rcu_read_lock();
1335         for_each_domain(cpu, tmp) {
1336                 /*
1337                  * If power savings logic is enabled for a domain, see if we
1338                  * are not overloaded, if so, don't balance wider.
1339                  */
1340                 if (tmp->flags & SD_POWERSAVINGS_BALANCE) {
1341                         unsigned long power = 0;
1342                         unsigned long nr_running = 0;
1343                         unsigned long capacity;
1344                         int i;
1345
1346                         for_each_cpu(i, sched_domain_span(tmp)) {
1347                                 power += power_of(i);
1348                                 nr_running += cpu_rq(i)->cfs.nr_running;
1349                         }
1350
1351                         capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
1352
1353                         if (nr_running/2 < capacity)
1354                                 break;
1355                 }
1356
1357                 switch (flag) {
1358                 case SD_BALANCE_WAKE:
1359                         if (!sched_feat(LB_WAKEUP_UPDATE))
1360                                 break;
1361                 case SD_BALANCE_FORK:
1362                 case SD_BALANCE_EXEC:
1363                         if (root_task_group_empty())
1364                                 break;
1365                         update_shares(tmp);
1366                 default:
1367                         break;
1368                 }
1369
1370                 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
1371                     cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
1372
1373                         if (wake_affine(tmp, p, sync)) {
1374                                 new_cpu = cpu;
1375                                 goto out;
1376                         }
1377
1378                         want_affine = 0;
1379                 }
1380
1381                 if (!(tmp->flags & flag))
1382                         continue;
1383
1384                 sd = tmp;
1385         }
1386
1387         while (sd) {
1388                 struct sched_group *group;
1389                 int weight;
1390
1391                 if (!(sd->flags & flag)) {
1392                         sd = sd->child;
1393                         continue;
1394                 }
1395
1396                 group = find_idlest_group(sd, t, cpu);
1397                 if (!group) {
1398                         sd = sd->child;
1399                         continue;
1400                 }
1401
1402                 new_cpu = find_idlest_cpu(group, t, cpu);
1403                 if (new_cpu == -1 || new_cpu == cpu) {
1404                         /* Now try balancing at a lower domain level of cpu */
1405                         sd = sd->child;
1406                         continue;
1407                 }
1408
1409                 /* Now try balancing at a lower domain level of new_cpu */
1410                 cpu = new_cpu;
1411                 weight = cpumask_weight(sched_domain_span(sd));
1412                 sd = NULL;
1413                 for_each_domain(cpu, tmp) {
1414                         if (weight <= cpumask_weight(sched_domain_span(tmp)))
1415                                 break;
1416                         if (tmp->flags & flag)
1417                                 sd = tmp;
1418                 }
1419                 /* while loop will break here if sd == NULL */
1420         }
1421
1422 out:
1423         rcu_read_unlock();
1424         return new_cpu;
1425 }
1426 #endif /* CONFIG_SMP */
1427
1428 /*
1429  * Adaptive granularity
1430  *
1431  * se->avg_wakeup gives the average time a task runs until it does a wakeup,
1432  * with the limit of wakeup_gran -- when it never does a wakeup.
1433  *
1434  * So the smaller avg_wakeup is the faster we want this task to preempt,
1435  * but we don't want to treat the preemptee unfairly and therefore allow it
1436  * to run for at least the amount of time we'd like to run.
1437  *
1438  * NOTE: we use 2*avg_wakeup to increase the probability of actually doing one
1439  *
1440  * NOTE: we use *nr_running to scale with load, this nicely matches the
1441  *       degrading latency on load.
1442  */
1443 static unsigned long
1444 adaptive_gran(struct sched_entity *curr, struct sched_entity *se)
1445 {
1446         u64 this_run = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1447         u64 expected_wakeup = 2*se->avg_wakeup * cfs_rq_of(se)->nr_running;
1448         u64 gran = 0;
1449
1450         if (this_run < expected_wakeup)
1451                 gran = expected_wakeup - this_run;
1452
1453         return min_t(s64, gran, sysctl_sched_wakeup_granularity);
1454 }
1455
1456 static unsigned long
1457 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
1458 {
1459         unsigned long gran = sysctl_sched_wakeup_granularity;
1460
1461         if (cfs_rq_of(curr)->curr && sched_feat(ADAPTIVE_GRAN))
1462                 gran = adaptive_gran(curr, se);
1463
1464         /*
1465          * Since its curr running now, convert the gran from real-time
1466          * to virtual-time in his units.
1467          */
1468         if (sched_feat(ASYM_GRAN)) {
1469                 /*
1470                  * By using 'se' instead of 'curr' we penalize light tasks, so
1471                  * they get preempted easier. That is, if 'se' < 'curr' then
1472                  * the resulting gran will be larger, therefore penalizing the
1473                  * lighter, if otoh 'se' > 'curr' then the resulting gran will
1474                  * be smaller, again penalizing the lighter task.
1475                  *
1476                  * This is especially important for buddies when the leftmost
1477                  * task is higher priority than the buddy.
1478                  */
1479                 if (unlikely(se->load.weight != NICE_0_LOAD))
1480                         gran = calc_delta_fair(gran, se);
1481         } else {
1482                 if (unlikely(curr->load.weight != NICE_0_LOAD))
1483                         gran = calc_delta_fair(gran, curr);
1484         }
1485
1486         return gran;
1487 }
1488
1489 /*
1490  * Should 'se' preempt 'curr'.
1491  *
1492  *             |s1
1493  *        |s2
1494  *   |s3
1495  *         g
1496  *      |<--->|c
1497  *
1498  *  w(c, s1) = -1
1499  *  w(c, s2) =  0
1500  *  w(c, s3) =  1
1501  *
1502  */
1503 static int
1504 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1505 {
1506         s64 gran, vdiff = curr->vruntime - se->vruntime;
1507
1508         if (vdiff <= 0)
1509                 return -1;
1510
1511         gran = wakeup_gran(curr, se);
1512         if (vdiff > gran)
1513                 return 1;
1514
1515         return 0;
1516 }
1517
1518 static void set_last_buddy(struct sched_entity *se)
1519 {
1520         if (likely(task_of(se)->policy != SCHED_IDLE)) {
1521                 for_each_sched_entity(se)
1522                         cfs_rq_of(se)->last = se;
1523         }
1524 }
1525
1526 static void set_next_buddy(struct sched_entity *se)
1527 {
1528         if (likely(task_of(se)->policy != SCHED_IDLE)) {
1529                 for_each_sched_entity(se)
1530                         cfs_rq_of(se)->next = se;
1531         }
1532 }
1533
1534 /*
1535  * Preempt the current task with a newly woken task if needed:
1536  */
1537 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync)
1538 {
1539         struct task_struct *curr = rq->curr;
1540         struct sched_entity *se = &curr->se, *pse = &p->se;
1541         struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1542
1543         update_curr(cfs_rq);
1544
1545         if (unlikely(rt_prio(p->prio))) {
1546                 resched_task(curr);
1547                 return;
1548         }
1549
1550         if (unlikely(p->sched_class != &fair_sched_class))
1551                 return;
1552
1553         if (unlikely(se == pse))
1554                 return;
1555
1556         /*
1557          * Only set the backward buddy when the current task is still on the
1558          * rq. This can happen when a wakeup gets interleaved with schedule on
1559          * the ->pre_schedule() or idle_balance() point, either of which can
1560          * drop the rq lock.
1561          *
1562          * Also, during early boot the idle thread is in the fair class, for
1563          * obvious reasons its a bad idea to schedule back to the idle thread.
1564          */
1565         if (sched_feat(LAST_BUDDY) && likely(se->on_rq && curr != rq->idle))
1566                 set_last_buddy(se);
1567         if (sched_feat(NEXT_BUDDY))
1568                 set_next_buddy(pse);
1569
1570         /*
1571          * We can come here with TIF_NEED_RESCHED already set from new task
1572          * wake up path.
1573          */
1574         if (test_tsk_need_resched(curr))
1575                 return;
1576
1577         /*
1578          * Batch and idle tasks do not preempt (their preemption is driven by
1579          * the tick):
1580          */
1581         if (unlikely(p->policy != SCHED_NORMAL))
1582                 return;
1583
1584         /* Idle tasks are by definition preempted by everybody. */
1585         if (unlikely(curr->policy == SCHED_IDLE)) {
1586                 resched_task(curr);
1587                 return;
1588         }
1589
1590         if (!sched_feat(WAKEUP_PREEMPT))
1591                 return;
1592
1593         if ((sched_feat(WAKEUP_SYNC) && sync) ||
1594             (sched_feat(WAKEUP_OVERLAP) &&
1595              (se->avg_overlap < sysctl_sched_migration_cost &&
1596               pse->avg_overlap < sysctl_sched_migration_cost))) {
1597                 resched_task(curr);
1598                 return;
1599         }
1600
1601         find_matching_se(&se, &pse);
1602
1603         BUG_ON(!pse);
1604
1605         if (wakeup_preempt_entity(se, pse) == 1)
1606                 resched_task(curr);
1607 }
1608
1609 static struct task_struct *pick_next_task_fair(struct rq *rq)
1610 {
1611         struct task_struct *p;
1612         struct cfs_rq *cfs_rq = &rq->cfs;
1613         struct sched_entity *se;
1614
1615         if (unlikely(!cfs_rq->nr_running))
1616                 return NULL;
1617
1618         do {
1619                 se = pick_next_entity(cfs_rq);
1620                 /*
1621                  * If se was a buddy, clear it so that it will have to earn
1622                  * the favour again.
1623                  */
1624                 __clear_buddies(cfs_rq, se);
1625                 set_next_entity(cfs_rq, se);
1626                 cfs_rq = group_cfs_rq(se);
1627         } while (cfs_rq);
1628
1629         p = task_of(se);
1630         hrtick_start_fair(rq, p);
1631
1632         return p;
1633 }
1634
1635 /*
1636  * Account for a descheduled task:
1637  */
1638 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1639 {
1640         struct sched_entity *se = &prev->se;
1641         struct cfs_rq *cfs_rq;
1642
1643         for_each_sched_entity(se) {
1644                 cfs_rq = cfs_rq_of(se);
1645                 put_prev_entity(cfs_rq, se);
1646         }
1647 }
1648
1649 #ifdef CONFIG_SMP
1650 /**************************************************
1651  * Fair scheduling class load-balancing methods:
1652  */
1653
1654 /*
1655  * Load-balancing iterator. Note: while the runqueue stays locked
1656  * during the whole iteration, the current task might be
1657  * dequeued so the iterator has to be dequeue-safe. Here we
1658  * achieve that by always pre-iterating before returning
1659  * the current task:
1660  */
1661 static struct task_struct *
1662 __load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
1663 {
1664         struct task_struct *p = NULL;
1665         struct sched_entity *se;
1666
1667         if (next == &cfs_rq->tasks)
1668                 return NULL;
1669
1670         se = list_entry(next, struct sched_entity, group_node);
1671         p = task_of(se);
1672         cfs_rq->balance_iterator = next->next;
1673
1674         return p;
1675 }
1676
1677 static struct task_struct *load_balance_start_fair(void *arg)
1678 {
1679         struct cfs_rq *cfs_rq = arg;
1680
1681         return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
1682 }
1683
1684 static struct task_struct *load_balance_next_fair(void *arg)
1685 {
1686         struct cfs_rq *cfs_rq = arg;
1687
1688         return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
1689 }
1690
1691 static unsigned long
1692 __load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1693                 unsigned long max_load_move, struct sched_domain *sd,
1694                 enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
1695                 struct cfs_rq *cfs_rq)
1696 {
1697         struct rq_iterator cfs_rq_iterator;
1698
1699         cfs_rq_iterator.start = load_balance_start_fair;
1700         cfs_rq_iterator.next = load_balance_next_fair;
1701         cfs_rq_iterator.arg = cfs_rq;
1702
1703         return balance_tasks(this_rq, this_cpu, busiest,
1704                         max_load_move, sd, idle, all_pinned,
1705                         this_best_prio, &cfs_rq_iterator);
1706 }
1707
1708 #ifdef CONFIG_FAIR_GROUP_SCHED
1709 static unsigned long
1710 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1711                   unsigned long max_load_move,
1712                   struct sched_domain *sd, enum cpu_idle_type idle,
1713                   int *all_pinned, int *this_best_prio)
1714 {
1715         long rem_load_move = max_load_move;
1716         int busiest_cpu = cpu_of(busiest);
1717         struct task_group *tg;
1718
1719         rcu_read_lock();
1720         update_h_load(busiest_cpu);
1721
1722         list_for_each_entry_rcu(tg, &task_groups, list) {
1723                 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
1724                 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
1725                 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
1726                 u64 rem_load, moved_load;
1727
1728                 /*
1729                  * empty group
1730                  */
1731                 if (!busiest_cfs_rq->task_weight)
1732                         continue;
1733
1734                 rem_load = (u64)rem_load_move * busiest_weight;
1735                 rem_load = div_u64(rem_load, busiest_h_load + 1);
1736
1737                 moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
1738                                 rem_load, sd, idle, all_pinned, this_best_prio,
1739                                 tg->cfs_rq[busiest_cpu]);
1740
1741                 if (!moved_load)
1742                         continue;
1743
1744                 moved_load *= busiest_h_load;
1745                 moved_load = div_u64(moved_load, busiest_weight + 1);
1746
1747                 rem_load_move -= moved_load;
1748                 if (rem_load_move < 0)
1749                         break;
1750         }
1751         rcu_read_unlock();
1752
1753         return max_load_move - rem_load_move;
1754 }
1755 #else
1756 static unsigned long
1757 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1758                   unsigned long max_load_move,
1759                   struct sched_domain *sd, enum cpu_idle_type idle,
1760                   int *all_pinned, int *this_best_prio)
1761 {
1762         return __load_balance_fair(this_rq, this_cpu, busiest,
1763                         max_load_move, sd, idle, all_pinned,
1764                         this_best_prio, &busiest->cfs);
1765 }
1766 #endif
1767
1768 static int
1769 move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1770                    struct sched_domain *sd, enum cpu_idle_type idle)
1771 {
1772         struct cfs_rq *busy_cfs_rq;
1773         struct rq_iterator cfs_rq_iterator;
1774
1775         cfs_rq_iterator.start = load_balance_start_fair;
1776         cfs_rq_iterator.next = load_balance_next_fair;
1777
1778         for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1779                 /*
1780                  * pass busy_cfs_rq argument into
1781                  * load_balance_[start|next]_fair iterators
1782                  */
1783                 cfs_rq_iterator.arg = busy_cfs_rq;
1784                 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1785                                        &cfs_rq_iterator))
1786                     return 1;
1787         }
1788
1789         return 0;
1790 }
1791 #endif /* CONFIG_SMP */
1792
1793 /*
1794  * scheduler tick hitting a task of our scheduling class:
1795  */
1796 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
1797 {
1798         struct cfs_rq *cfs_rq;
1799         struct sched_entity *se = &curr->se;
1800
1801         for_each_sched_entity(se) {
1802                 cfs_rq = cfs_rq_of(se);
1803                 entity_tick(cfs_rq, se, queued);
1804         }
1805 }
1806
1807 /*
1808  * Share the fairness runtime between parent and child, thus the
1809  * total amount of pressure for CPU stays equal - new tasks
1810  * get a chance to run but frequent forkers are not allowed to
1811  * monopolize the CPU. Note: the parent runqueue is locked,
1812  * the child is not running yet.
1813  */
1814 static void task_new_fair(struct rq *rq, struct task_struct *p)
1815 {
1816         struct cfs_rq *cfs_rq = task_cfs_rq(p);
1817         struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1818         int this_cpu = smp_processor_id();
1819
1820         sched_info_queued(p);
1821
1822         update_curr(cfs_rq);
1823         if (curr)
1824                 se->vruntime = curr->vruntime;
1825         place_entity(cfs_rq, se, 1);
1826
1827         /* 'curr' will be NULL if the child belongs to a different group */
1828         if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1829                         curr && entity_before(curr, se)) {
1830                 /*
1831                  * Upon rescheduling, sched_class::put_prev_task() will place
1832                  * 'current' within the tree based on its new key value.
1833                  */
1834                 swap(curr->vruntime, se->vruntime);
1835                 resched_task(rq->curr);
1836         }
1837
1838         enqueue_task_fair(rq, p, 0);
1839 }
1840
1841 /*
1842  * Priority of the task has changed. Check to see if we preempt
1843  * the current task.
1844  */
1845 static void prio_changed_fair(struct rq *rq, struct task_struct *p,
1846                               int oldprio, int running)
1847 {
1848         /*
1849          * Reschedule if we are currently running on this runqueue and
1850          * our priority decreased, or if we are not currently running on
1851          * this runqueue and our priority is higher than the current's
1852          */
1853         if (running) {
1854                 if (p->prio > oldprio)
1855                         resched_task(rq->curr);
1856         } else
1857                 check_preempt_curr(rq, p, 0);
1858 }
1859
1860 /*
1861  * We switched to the sched_fair class.
1862  */
1863 static void switched_to_fair(struct rq *rq, struct task_struct *p,
1864                              int running)
1865 {
1866         /*
1867          * We were most likely switched from sched_rt, so
1868          * kick off the schedule if running, otherwise just see
1869          * if we can still preempt the current task.
1870          */
1871         if (running)
1872                 resched_task(rq->curr);
1873         else
1874                 check_preempt_curr(rq, p, 0);
1875 }
1876
1877 /* Account for a task changing its policy or group.
1878  *
1879  * This routine is mostly called to set cfs_rq->curr field when a task
1880  * migrates between groups/classes.
1881  */
1882 static void set_curr_task_fair(struct rq *rq)
1883 {
1884         struct sched_entity *se = &rq->curr->se;
1885
1886         for_each_sched_entity(se)
1887                 set_next_entity(cfs_rq_of(se), se);
1888 }
1889
1890 #ifdef CONFIG_FAIR_GROUP_SCHED
1891 static void moved_group_fair(struct task_struct *p)
1892 {
1893         struct cfs_rq *cfs_rq = task_cfs_rq(p);
1894
1895         update_curr(cfs_rq);
1896         place_entity(cfs_rq, &p->se, 1);
1897 }
1898 #endif
1899
1900 /*
1901  * All the scheduling class methods:
1902  */
1903 static const struct sched_class fair_sched_class = {
1904         .next                   = &idle_sched_class,
1905         .enqueue_task           = enqueue_task_fair,
1906         .dequeue_task           = dequeue_task_fair,
1907         .yield_task             = yield_task_fair,
1908
1909         .check_preempt_curr     = check_preempt_wakeup,
1910
1911         .pick_next_task         = pick_next_task_fair,
1912         .put_prev_task          = put_prev_task_fair,
1913
1914 #ifdef CONFIG_SMP
1915         .select_task_rq         = select_task_rq_fair,
1916
1917         .load_balance           = load_balance_fair,
1918         .move_one_task          = move_one_task_fair,
1919 #endif
1920
1921         .set_curr_task          = set_curr_task_fair,
1922         .task_tick              = task_tick_fair,
1923         .task_new               = task_new_fair,
1924
1925         .prio_changed           = prio_changed_fair,
1926         .switched_to            = switched_to_fair,
1927
1928 #ifdef CONFIG_FAIR_GROUP_SCHED
1929         .moved_group            = moved_group_fair,
1930 #endif
1931 };
1932
1933 #ifdef CONFIG_SCHED_DEBUG
1934 static void print_cfs_stats(struct seq_file *m, int cpu)
1935 {
1936         struct cfs_rq *cfs_rq;
1937
1938         rcu_read_lock();
1939         for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1940                 print_cfs_rq(m, cpu, cfs_rq);
1941         rcu_read_unlock();
1942 }
1943 #endif