54ec071de33795bf01c1599f4ee941f1e5210d56
[linux-2.6.git] / kernel / power / main.c
1 /*
2  * kernel/power/main.c - PM subsystem core functionality.
3  *
4  * Copyright (c) 2003 Patrick Mochel
5  * Copyright (c) 2003 Open Source Development Lab
6  *
7  * This file is released under the GPLv2
8  *
9  */
10
11 #include <linux/export.h>
12 #include <linux/kobject.h>
13 #include <linux/string.h>
14 #include <linux/resume-trace.h>
15 #include <linux/workqueue.h>
16 #include <linux/debugfs.h>
17 #include <linux/seq_file.h>
18
19 #include "power.h"
20
21 DEFINE_MUTEX(pm_mutex);
22
23 #ifdef CONFIG_PM_SLEEP
24
25 /* Routines for PM-transition notifications */
26
27 static BLOCKING_NOTIFIER_HEAD(pm_chain_head);
28
29 int register_pm_notifier(struct notifier_block *nb)
30 {
31         return blocking_notifier_chain_register(&pm_chain_head, nb);
32 }
33 EXPORT_SYMBOL_GPL(register_pm_notifier);
34
35 int unregister_pm_notifier(struct notifier_block *nb)
36 {
37         return blocking_notifier_chain_unregister(&pm_chain_head, nb);
38 }
39 EXPORT_SYMBOL_GPL(unregister_pm_notifier);
40
41 int pm_notifier_call_chain(unsigned long val)
42 {
43         int ret = blocking_notifier_call_chain(&pm_chain_head, val, NULL);
44
45         return notifier_to_errno(ret);
46 }
47
48 /* If set, devices may be suspended and resumed asynchronously. */
49 int pm_async_enabled = 1;
50
51 static ssize_t pm_async_show(struct kobject *kobj, struct kobj_attribute *attr,
52                              char *buf)
53 {
54         return sprintf(buf, "%d\n", pm_async_enabled);
55 }
56
57 static ssize_t pm_async_store(struct kobject *kobj, struct kobj_attribute *attr,
58                               const char *buf, size_t n)
59 {
60         unsigned long val;
61
62         if (strict_strtoul(buf, 10, &val))
63                 return -EINVAL;
64
65         if (val > 1)
66                 return -EINVAL;
67
68         pm_async_enabled = val;
69         return n;
70 }
71
72 power_attr(pm_async);
73
74 #ifdef CONFIG_PM_DEBUG
75 int pm_test_level = TEST_NONE;
76
77 static const char * const pm_tests[__TEST_AFTER_LAST] = {
78         [TEST_NONE] = "none",
79         [TEST_CORE] = "core",
80         [TEST_CPUS] = "processors",
81         [TEST_PLATFORM] = "platform",
82         [TEST_DEVICES] = "devices",
83         [TEST_FREEZER] = "freezer",
84 };
85
86 static ssize_t pm_test_show(struct kobject *kobj, struct kobj_attribute *attr,
87                                 char *buf)
88 {
89         char *s = buf;
90         int level;
91
92         for (level = TEST_FIRST; level <= TEST_MAX; level++)
93                 if (pm_tests[level]) {
94                         if (level == pm_test_level)
95                                 s += sprintf(s, "[%s] ", pm_tests[level]);
96                         else
97                                 s += sprintf(s, "%s ", pm_tests[level]);
98                 }
99
100         if (s != buf)
101                 /* convert the last space to a newline */
102                 *(s-1) = '\n';
103
104         return (s - buf);
105 }
106
107 static ssize_t pm_test_store(struct kobject *kobj, struct kobj_attribute *attr,
108                                 const char *buf, size_t n)
109 {
110         const char * const *s;
111         int level;
112         char *p;
113         int len;
114         int error = -EINVAL;
115
116         p = memchr(buf, '\n', n);
117         len = p ? p - buf : n;
118
119         lock_system_sleep();
120
121         level = TEST_FIRST;
122         for (s = &pm_tests[level]; level <= TEST_MAX; s++, level++)
123                 if (*s && len == strlen(*s) && !strncmp(buf, *s, len)) {
124                         pm_test_level = level;
125                         error = 0;
126                         break;
127                 }
128
129         unlock_system_sleep();
130
131         return error ? error : n;
132 }
133
134 power_attr(pm_test);
135 #endif /* CONFIG_PM_DEBUG */
136
137 #ifdef CONFIG_DEBUG_FS
138 static char *suspend_step_name(enum suspend_stat_step step)
139 {
140         switch (step) {
141         case SUSPEND_FREEZE:
142                 return "freeze";
143         case SUSPEND_PREPARE:
144                 return "prepare";
145         case SUSPEND_SUSPEND:
146                 return "suspend";
147         case SUSPEND_SUSPEND_NOIRQ:
148                 return "suspend_noirq";
149         case SUSPEND_RESUME_NOIRQ:
150                 return "resume_noirq";
151         case SUSPEND_RESUME:
152                 return "resume";
153         default:
154                 return "";
155         }
156 }
157
158 static int suspend_stats_show(struct seq_file *s, void *unused)
159 {
160         int i, index, last_dev, last_errno, last_step;
161
162         last_dev = suspend_stats.last_failed_dev + REC_FAILED_NUM - 1;
163         last_dev %= REC_FAILED_NUM;
164         last_errno = suspend_stats.last_failed_errno + REC_FAILED_NUM - 1;
165         last_errno %= REC_FAILED_NUM;
166         last_step = suspend_stats.last_failed_step + REC_FAILED_NUM - 1;
167         last_step %= REC_FAILED_NUM;
168         seq_printf(s, "%s: %d\n%s: %d\n%s: %d\n%s: %d\n%s: %d\n"
169                         "%s: %d\n%s: %d\n%s: %d\n%s: %d\n%s: %d\n",
170                         "success", suspend_stats.success,
171                         "fail", suspend_stats.fail,
172                         "failed_freeze", suspend_stats.failed_freeze,
173                         "failed_prepare", suspend_stats.failed_prepare,
174                         "failed_suspend", suspend_stats.failed_suspend,
175                         "failed_suspend_late",
176                                 suspend_stats.failed_suspend_late,
177                         "failed_suspend_noirq",
178                                 suspend_stats.failed_suspend_noirq,
179                         "failed_resume", suspend_stats.failed_resume,
180                         "failed_resume_early",
181                                 suspend_stats.failed_resume_early,
182                         "failed_resume_noirq",
183                                 suspend_stats.failed_resume_noirq);
184         seq_printf(s,   "failures:\n  last_failed_dev:\t%-s\n",
185                         suspend_stats.failed_devs[last_dev]);
186         for (i = 1; i < REC_FAILED_NUM; i++) {
187                 index = last_dev + REC_FAILED_NUM - i;
188                 index %= REC_FAILED_NUM;
189                 seq_printf(s, "\t\t\t%-s\n",
190                         suspend_stats.failed_devs[index]);
191         }
192         seq_printf(s,   "  last_failed_errno:\t%-d\n",
193                         suspend_stats.errno[last_errno]);
194         for (i = 1; i < REC_FAILED_NUM; i++) {
195                 index = last_errno + REC_FAILED_NUM - i;
196                 index %= REC_FAILED_NUM;
197                 seq_printf(s, "\t\t\t%-d\n",
198                         suspend_stats.errno[index]);
199         }
200         seq_printf(s,   "  last_failed_step:\t%-s\n",
201                         suspend_step_name(
202                                 suspend_stats.failed_steps[last_step]));
203         for (i = 1; i < REC_FAILED_NUM; i++) {
204                 index = last_step + REC_FAILED_NUM - i;
205                 index %= REC_FAILED_NUM;
206                 seq_printf(s, "\t\t\t%-s\n",
207                         suspend_step_name(
208                                 suspend_stats.failed_steps[index]));
209         }
210
211         return 0;
212 }
213
214 static int suspend_stats_open(struct inode *inode, struct file *file)
215 {
216         return single_open(file, suspend_stats_show, NULL);
217 }
218
219 static const struct file_operations suspend_stats_operations = {
220         .open           = suspend_stats_open,
221         .read           = seq_read,
222         .llseek         = seq_lseek,
223         .release        = single_release,
224 };
225
226 static int __init pm_debugfs_init(void)
227 {
228         debugfs_create_file("suspend_stats", S_IFREG | S_IRUGO,
229                         NULL, NULL, &suspend_stats_operations);
230         return 0;
231 }
232
233 late_initcall(pm_debugfs_init);
234 #endif /* CONFIG_DEBUG_FS */
235
236 #endif /* CONFIG_PM_SLEEP */
237
238 struct kobject *power_kobj;
239
240 /**
241  *      state - control system power state.
242  *
243  *      show() returns what states are supported, which is hard-coded to
244  *      'standby' (Power-On Suspend), 'mem' (Suspend-to-RAM), and
245  *      'disk' (Suspend-to-Disk).
246  *
247  *      store() accepts one of those strings, translates it into the
248  *      proper enumerated value, and initiates a suspend transition.
249  */
250 static ssize_t state_show(struct kobject *kobj, struct kobj_attribute *attr,
251                           char *buf)
252 {
253         char *s = buf;
254 #ifdef CONFIG_SUSPEND
255         int i;
256
257         for (i = 0; i < PM_SUSPEND_MAX; i++) {
258                 if (pm_states[i] && valid_state(i))
259                         s += sprintf(s,"%s ", pm_states[i]);
260         }
261 #endif
262 #ifdef CONFIG_HIBERNATION
263         s += sprintf(s, "%s\n", "disk");
264 #else
265         if (s != buf)
266                 /* convert the last space to a newline */
267                 *(s-1) = '\n';
268 #endif
269         return (s - buf);
270 }
271
272 static suspend_state_t decode_state(const char *buf, size_t n)
273 {
274 #ifdef CONFIG_SUSPEND
275         suspend_state_t state = PM_SUSPEND_STANDBY;
276         const char * const *s;
277 #endif
278         char *p;
279         int len;
280
281         p = memchr(buf, '\n', n);
282         len = p ? p - buf : n;
283
284         /* Check hibernation first. */
285         if (len == 4 && !strncmp(buf, "disk", len))
286                 return PM_SUSPEND_MAX;
287
288 #ifdef CONFIG_SUSPEND
289         for (s = &pm_states[state]; state < PM_SUSPEND_MAX; s++, state++)
290                 if (*s && len == strlen(*s) && !strncmp(buf, *s, len))
291                         return state;
292 #endif
293
294         return PM_SUSPEND_ON;
295 }
296
297 static ssize_t state_store(struct kobject *kobj, struct kobj_attribute *attr,
298                            const char *buf, size_t n)
299 {
300         suspend_state_t state;
301         int error;
302
303         error = pm_autosleep_lock();
304         if (error)
305                 return error;
306
307         if (pm_autosleep_state() > PM_SUSPEND_ON) {
308                 error = -EBUSY;
309                 goto out;
310         }
311
312         state = decode_state(buf, n);
313         if (state < PM_SUSPEND_MAX)
314                 error = pm_suspend(state);
315         else if (state == PM_SUSPEND_MAX)
316                 error = hibernate();
317         else
318                 error = -EINVAL;
319
320  out:
321         pm_autosleep_unlock();
322         return error ? error : n;
323 }
324
325 power_attr(state);
326
327 #ifdef CONFIG_PM_SLEEP
328 /*
329  * The 'wakeup_count' attribute, along with the functions defined in
330  * drivers/base/power/wakeup.c, provides a means by which wakeup events can be
331  * handled in a non-racy way.
332  *
333  * If a wakeup event occurs when the system is in a sleep state, it simply is
334  * woken up.  In turn, if an event that would wake the system up from a sleep
335  * state occurs when it is undergoing a transition to that sleep state, the
336  * transition should be aborted.  Moreover, if such an event occurs when the
337  * system is in the working state, an attempt to start a transition to the
338  * given sleep state should fail during certain period after the detection of
339  * the event.  Using the 'state' attribute alone is not sufficient to satisfy
340  * these requirements, because a wakeup event may occur exactly when 'state'
341  * is being written to and may be delivered to user space right before it is
342  * frozen, so the event will remain only partially processed until the system is
343  * woken up by another event.  In particular, it won't cause the transition to
344  * a sleep state to be aborted.
345  *
346  * This difficulty may be overcome if user space uses 'wakeup_count' before
347  * writing to 'state'.  It first should read from 'wakeup_count' and store
348  * the read value.  Then, after carrying out its own preparations for the system
349  * transition to a sleep state, it should write the stored value to
350  * 'wakeup_count'.  If that fails, at least one wakeup event has occurred since
351  * 'wakeup_count' was read and 'state' should not be written to.  Otherwise, it
352  * is allowed to write to 'state', but the transition will be aborted if there
353  * are any wakeup events detected after 'wakeup_count' was written to.
354  */
355
356 static ssize_t wakeup_count_show(struct kobject *kobj,
357                                 struct kobj_attribute *attr,
358                                 char *buf)
359 {
360         unsigned int val;
361
362         return pm_get_wakeup_count(&val, true) ?
363                 sprintf(buf, "%u\n", val) : -EINTR;
364 }
365
366 static ssize_t wakeup_count_store(struct kobject *kobj,
367                                 struct kobj_attribute *attr,
368                                 const char *buf, size_t n)
369 {
370         unsigned int val;
371         int error;
372
373         error = pm_autosleep_lock();
374         if (error)
375                 return error;
376
377         if (pm_autosleep_state() > PM_SUSPEND_ON) {
378                 error = -EBUSY;
379                 goto out;
380         }
381
382         error = -EINVAL;
383         if (sscanf(buf, "%u", &val) == 1) {
384                 if (pm_save_wakeup_count(val))
385                         error = n;
386         }
387
388  out:
389         pm_autosleep_unlock();
390         return error;
391 }
392
393 power_attr(wakeup_count);
394
395 #ifdef CONFIG_PM_AUTOSLEEP
396 static ssize_t autosleep_show(struct kobject *kobj,
397                               struct kobj_attribute *attr,
398                               char *buf)
399 {
400         suspend_state_t state = pm_autosleep_state();
401
402         if (state == PM_SUSPEND_ON)
403                 return sprintf(buf, "off\n");
404
405 #ifdef CONFIG_SUSPEND
406         if (state < PM_SUSPEND_MAX)
407                 return sprintf(buf, "%s\n", valid_state(state) ?
408                                                 pm_states[state] : "error");
409 #endif
410 #ifdef CONFIG_HIBERNATION
411         return sprintf(buf, "disk\n");
412 #else
413         return sprintf(buf, "error");
414 #endif
415 }
416
417 static ssize_t autosleep_store(struct kobject *kobj,
418                                struct kobj_attribute *attr,
419                                const char *buf, size_t n)
420 {
421         suspend_state_t state = decode_state(buf, n);
422         int error;
423
424         if (state == PM_SUSPEND_ON
425             && !(strncmp(buf, "off", 3) && strncmp(buf, "off\n", 4)))
426                 return -EINVAL;
427
428         error = pm_autosleep_set_state(state);
429         return error ? error : n;
430 }
431
432 power_attr(autosleep);
433 #endif /* CONFIG_PM_AUTOSLEEP */
434
435 #ifdef CONFIG_PM_WAKELOCKS
436 static ssize_t wake_lock_show(struct kobject *kobj,
437                               struct kobj_attribute *attr,
438                               char *buf)
439 {
440         return pm_show_wakelocks(buf, true);
441 }
442
443 static ssize_t wake_lock_store(struct kobject *kobj,
444                                struct kobj_attribute *attr,
445                                const char *buf, size_t n)
446 {
447         int error = pm_wake_lock(buf);
448         return error ? error : n;
449 }
450
451 power_attr(wake_lock);
452
453 static ssize_t wake_unlock_show(struct kobject *kobj,
454                                 struct kobj_attribute *attr,
455                                 char *buf)
456 {
457         return pm_show_wakelocks(buf, false);
458 }
459
460 static ssize_t wake_unlock_store(struct kobject *kobj,
461                                  struct kobj_attribute *attr,
462                                  const char *buf, size_t n)
463 {
464         int error = pm_wake_unlock(buf);
465         return error ? error : n;
466 }
467
468 power_attr(wake_unlock);
469
470 #endif /* CONFIG_PM_WAKELOCKS */
471 #endif /* CONFIG_PM_SLEEP */
472
473 #ifdef CONFIG_PM_TRACE
474 int pm_trace_enabled;
475
476 static ssize_t pm_trace_show(struct kobject *kobj, struct kobj_attribute *attr,
477                              char *buf)
478 {
479         return sprintf(buf, "%d\n", pm_trace_enabled);
480 }
481
482 static ssize_t
483 pm_trace_store(struct kobject *kobj, struct kobj_attribute *attr,
484                const char *buf, size_t n)
485 {
486         int val;
487
488         if (sscanf(buf, "%d", &val) == 1) {
489                 pm_trace_enabled = !!val;
490                 return n;
491         }
492         return -EINVAL;
493 }
494
495 power_attr(pm_trace);
496
497 static ssize_t pm_trace_dev_match_show(struct kobject *kobj,
498                                        struct kobj_attribute *attr,
499                                        char *buf)
500 {
501         return show_trace_dev_match(buf, PAGE_SIZE);
502 }
503
504 static ssize_t
505 pm_trace_dev_match_store(struct kobject *kobj, struct kobj_attribute *attr,
506                          const char *buf, size_t n)
507 {
508         return -EINVAL;
509 }
510
511 power_attr(pm_trace_dev_match);
512
513 #endif /* CONFIG_PM_TRACE */
514
515 static struct attribute * g[] = {
516         &state_attr.attr,
517 #ifdef CONFIG_PM_TRACE
518         &pm_trace_attr.attr,
519         &pm_trace_dev_match_attr.attr,
520 #endif
521 #ifdef CONFIG_PM_SLEEP
522         &pm_async_attr.attr,
523         &wakeup_count_attr.attr,
524 #ifdef CONFIG_PM_AUTOSLEEP
525         &autosleep_attr.attr,
526 #endif
527 #ifdef CONFIG_PM_WAKELOCKS
528         &wake_lock_attr.attr,
529         &wake_unlock_attr.attr,
530 #endif
531 #ifdef CONFIG_PM_DEBUG
532         &pm_test_attr.attr,
533 #endif
534 #endif
535         NULL,
536 };
537
538 static struct attribute_group attr_group = {
539         .attrs = g,
540 };
541
542 #ifdef CONFIG_PM_RUNTIME
543 struct workqueue_struct *pm_wq;
544 EXPORT_SYMBOL_GPL(pm_wq);
545
546 static int __init pm_start_workqueue(void)
547 {
548         pm_wq = alloc_workqueue("pm", WQ_FREEZABLE, 0);
549
550         return pm_wq ? 0 : -ENOMEM;
551 }
552 #else
553 static inline int pm_start_workqueue(void) { return 0; }
554 #endif
555
556 static int __init pm_init(void)
557 {
558         int error = pm_start_workqueue();
559         if (error)
560                 return error;
561         hibernate_image_size_init();
562         hibernate_reserved_size_init();
563         power_kobj = kobject_create_and_add("power", NULL);
564         if (!power_kobj)
565                 return -ENOMEM;
566         error = sysfs_create_group(power_kobj, &attr_group);
567         if (error)
568                 return error;
569         return pm_autosleep_init();
570 }
571
572 core_initcall(pm_init);