]> nv-tegra.nvidia Code Review - linux-2.6.git/blob - kernel/fork.c
[PATCH] sched: consolidate sbe sbf
[linux-2.6.git] / kernel / fork.c
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13
14 #include <linux/config.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/unistd.h>
18 #include <linux/smp_lock.h>
19 #include <linux/module.h>
20 #include <linux/vmalloc.h>
21 #include <linux/completion.h>
22 #include <linux/namespace.h>
23 #include <linux/personality.h>
24 #include <linux/mempolicy.h>
25 #include <linux/sem.h>
26 #include <linux/file.h>
27 #include <linux/key.h>
28 #include <linux/binfmts.h>
29 #include <linux/mman.h>
30 #include <linux/fs.h>
31 #include <linux/cpu.h>
32 #include <linux/cpuset.h>
33 #include <linux/security.h>
34 #include <linux/swap.h>
35 #include <linux/syscalls.h>
36 #include <linux/jiffies.h>
37 #include <linux/futex.h>
38 #include <linux/ptrace.h>
39 #include <linux/mount.h>
40 #include <linux/audit.h>
41 #include <linux/profile.h>
42 #include <linux/rmap.h>
43 #include <linux/acct.h>
44
45 #include <asm/pgtable.h>
46 #include <asm/pgalloc.h>
47 #include <asm/uaccess.h>
48 #include <asm/mmu_context.h>
49 #include <asm/cacheflush.h>
50 #include <asm/tlbflush.h>
51
52 /*
53  * Protected counters by write_lock_irq(&tasklist_lock)
54  */
55 unsigned long total_forks;      /* Handle normal Linux uptimes. */
56 int nr_threads;                 /* The idle threads do not count.. */
57
58 int max_threads;                /* tunable limit on nr_threads */
59
60 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
61
62  __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
63
64 EXPORT_SYMBOL(tasklist_lock);
65
66 int nr_processes(void)
67 {
68         int cpu;
69         int total = 0;
70
71         for_each_online_cpu(cpu)
72                 total += per_cpu(process_counts, cpu);
73
74         return total;
75 }
76
77 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
78 # define alloc_task_struct()    kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
79 # define free_task_struct(tsk)  kmem_cache_free(task_struct_cachep, (tsk))
80 static kmem_cache_t *task_struct_cachep;
81 #endif
82
83 /* SLAB cache for signal_struct structures (tsk->signal) */
84 kmem_cache_t *signal_cachep;
85
86 /* SLAB cache for sighand_struct structures (tsk->sighand) */
87 kmem_cache_t *sighand_cachep;
88
89 /* SLAB cache for files_struct structures (tsk->files) */
90 kmem_cache_t *files_cachep;
91
92 /* SLAB cache for fs_struct structures (tsk->fs) */
93 kmem_cache_t *fs_cachep;
94
95 /* SLAB cache for vm_area_struct structures */
96 kmem_cache_t *vm_area_cachep;
97
98 /* SLAB cache for mm_struct structures (tsk->mm) */
99 static kmem_cache_t *mm_cachep;
100
101 void free_task(struct task_struct *tsk)
102 {
103         free_thread_info(tsk->thread_info);
104         free_task_struct(tsk);
105 }
106 EXPORT_SYMBOL(free_task);
107
108 void __put_task_struct(struct task_struct *tsk)
109 {
110         WARN_ON(!(tsk->exit_state & (EXIT_DEAD | EXIT_ZOMBIE)));
111         WARN_ON(atomic_read(&tsk->usage));
112         WARN_ON(tsk == current);
113
114         if (unlikely(tsk->audit_context))
115                 audit_free(tsk);
116         security_task_free(tsk);
117         free_uid(tsk->user);
118         put_group_info(tsk->group_info);
119
120         if (!profile_handoff_task(tsk))
121                 free_task(tsk);
122 }
123
124 void __init fork_init(unsigned long mempages)
125 {
126 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
127 #ifndef ARCH_MIN_TASKALIGN
128 #define ARCH_MIN_TASKALIGN      L1_CACHE_BYTES
129 #endif
130         /* create a slab on which task_structs can be allocated */
131         task_struct_cachep =
132                 kmem_cache_create("task_struct", sizeof(struct task_struct),
133                         ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL, NULL);
134 #endif
135
136         /*
137          * The default maximum number of threads is set to a safe
138          * value: the thread structures can take up at most half
139          * of memory.
140          */
141         max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
142
143         /*
144          * we need to allow at least 20 threads to boot a system
145          */
146         if(max_threads < 20)
147                 max_threads = 20;
148
149         init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
150         init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
151         init_task.signal->rlim[RLIMIT_SIGPENDING] =
152                 init_task.signal->rlim[RLIMIT_NPROC];
153 }
154
155 static struct task_struct *dup_task_struct(struct task_struct *orig)
156 {
157         struct task_struct *tsk;
158         struct thread_info *ti;
159
160         prepare_to_copy(orig);
161
162         tsk = alloc_task_struct();
163         if (!tsk)
164                 return NULL;
165
166         ti = alloc_thread_info(tsk);
167         if (!ti) {
168                 free_task_struct(tsk);
169                 return NULL;
170         }
171
172         *ti = *orig->thread_info;
173         *tsk = *orig;
174         tsk->thread_info = ti;
175         ti->task = tsk;
176
177         /* One for us, one for whoever does the "release_task()" (usually parent) */
178         atomic_set(&tsk->usage,2);
179         return tsk;
180 }
181
182 #ifdef CONFIG_MMU
183 static inline int dup_mmap(struct mm_struct * mm, struct mm_struct * oldmm)
184 {
185         struct vm_area_struct * mpnt, *tmp, **pprev;
186         struct rb_node **rb_link, *rb_parent;
187         int retval;
188         unsigned long charge;
189         struct mempolicy *pol;
190
191         down_write(&oldmm->mmap_sem);
192         flush_cache_mm(current->mm);
193         mm->locked_vm = 0;
194         mm->mmap = NULL;
195         mm->mmap_cache = NULL;
196         mm->free_area_cache = oldmm->mmap_base;
197         mm->cached_hole_size = ~0UL;
198         mm->map_count = 0;
199         set_mm_counter(mm, rss, 0);
200         set_mm_counter(mm, anon_rss, 0);
201         cpus_clear(mm->cpu_vm_mask);
202         mm->mm_rb = RB_ROOT;
203         rb_link = &mm->mm_rb.rb_node;
204         rb_parent = NULL;
205         pprev = &mm->mmap;
206
207         for (mpnt = current->mm->mmap ; mpnt ; mpnt = mpnt->vm_next) {
208                 struct file *file;
209
210                 if (mpnt->vm_flags & VM_DONTCOPY) {
211                         __vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
212                                                         -vma_pages(mpnt));
213                         continue;
214                 }
215                 charge = 0;
216                 if (mpnt->vm_flags & VM_ACCOUNT) {
217                         unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
218                         if (security_vm_enough_memory(len))
219                                 goto fail_nomem;
220                         charge = len;
221                 }
222                 tmp = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
223                 if (!tmp)
224                         goto fail_nomem;
225                 *tmp = *mpnt;
226                 pol = mpol_copy(vma_policy(mpnt));
227                 retval = PTR_ERR(pol);
228                 if (IS_ERR(pol))
229                         goto fail_nomem_policy;
230                 vma_set_policy(tmp, pol);
231                 tmp->vm_flags &= ~VM_LOCKED;
232                 tmp->vm_mm = mm;
233                 tmp->vm_next = NULL;
234                 anon_vma_link(tmp);
235                 file = tmp->vm_file;
236                 if (file) {
237                         struct inode *inode = file->f_dentry->d_inode;
238                         get_file(file);
239                         if (tmp->vm_flags & VM_DENYWRITE)
240                                 atomic_dec(&inode->i_writecount);
241       
242                         /* insert tmp into the share list, just after mpnt */
243                         spin_lock(&file->f_mapping->i_mmap_lock);
244                         tmp->vm_truncate_count = mpnt->vm_truncate_count;
245                         flush_dcache_mmap_lock(file->f_mapping);
246                         vma_prio_tree_add(tmp, mpnt);
247                         flush_dcache_mmap_unlock(file->f_mapping);
248                         spin_unlock(&file->f_mapping->i_mmap_lock);
249                 }
250
251                 /*
252                  * Link in the new vma and copy the page table entries:
253                  * link in first so that swapoff can see swap entries.
254                  * Note that, exceptionally, here the vma is inserted
255                  * without holding mm->mmap_sem.
256                  */
257                 spin_lock(&mm->page_table_lock);
258                 *pprev = tmp;
259                 pprev = &tmp->vm_next;
260
261                 __vma_link_rb(mm, tmp, rb_link, rb_parent);
262                 rb_link = &tmp->vm_rb.rb_right;
263                 rb_parent = &tmp->vm_rb;
264
265                 mm->map_count++;
266                 retval = copy_page_range(mm, current->mm, tmp);
267                 spin_unlock(&mm->page_table_lock);
268
269                 if (tmp->vm_ops && tmp->vm_ops->open)
270                         tmp->vm_ops->open(tmp);
271
272                 if (retval)
273                         goto out;
274         }
275         retval = 0;
276
277 out:
278         flush_tlb_mm(current->mm);
279         up_write(&oldmm->mmap_sem);
280         return retval;
281 fail_nomem_policy:
282         kmem_cache_free(vm_area_cachep, tmp);
283 fail_nomem:
284         retval = -ENOMEM;
285         vm_unacct_memory(charge);
286         goto out;
287 }
288
289 static inline int mm_alloc_pgd(struct mm_struct * mm)
290 {
291         mm->pgd = pgd_alloc(mm);
292         if (unlikely(!mm->pgd))
293                 return -ENOMEM;
294         return 0;
295 }
296
297 static inline void mm_free_pgd(struct mm_struct * mm)
298 {
299         pgd_free(mm->pgd);
300 }
301 #else
302 #define dup_mmap(mm, oldmm)     (0)
303 #define mm_alloc_pgd(mm)        (0)
304 #define mm_free_pgd(mm)
305 #endif /* CONFIG_MMU */
306
307  __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
308
309 #define allocate_mm()   (kmem_cache_alloc(mm_cachep, SLAB_KERNEL))
310 #define free_mm(mm)     (kmem_cache_free(mm_cachep, (mm)))
311
312 #include <linux/init_task.h>
313
314 static struct mm_struct * mm_init(struct mm_struct * mm)
315 {
316         atomic_set(&mm->mm_users, 1);
317         atomic_set(&mm->mm_count, 1);
318         init_rwsem(&mm->mmap_sem);
319         INIT_LIST_HEAD(&mm->mmlist);
320         mm->core_waiters = 0;
321         mm->nr_ptes = 0;
322         spin_lock_init(&mm->page_table_lock);
323         rwlock_init(&mm->ioctx_list_lock);
324         mm->ioctx_list = NULL;
325         mm->default_kioctx = (struct kioctx)INIT_KIOCTX(mm->default_kioctx, *mm);
326         mm->free_area_cache = TASK_UNMAPPED_BASE;
327         mm->cached_hole_size = ~0UL;
328
329         if (likely(!mm_alloc_pgd(mm))) {
330                 mm->def_flags = 0;
331                 return mm;
332         }
333         free_mm(mm);
334         return NULL;
335 }
336
337 /*
338  * Allocate and initialize an mm_struct.
339  */
340 struct mm_struct * mm_alloc(void)
341 {
342         struct mm_struct * mm;
343
344         mm = allocate_mm();
345         if (mm) {
346                 memset(mm, 0, sizeof(*mm));
347                 mm = mm_init(mm);
348         }
349         return mm;
350 }
351
352 /*
353  * Called when the last reference to the mm
354  * is dropped: either by a lazy thread or by
355  * mmput. Free the page directory and the mm.
356  */
357 void fastcall __mmdrop(struct mm_struct *mm)
358 {
359         BUG_ON(mm == &init_mm);
360         mm_free_pgd(mm);
361         destroy_context(mm);
362         free_mm(mm);
363 }
364
365 /*
366  * Decrement the use count and release all resources for an mm.
367  */
368 void mmput(struct mm_struct *mm)
369 {
370         if (atomic_dec_and_test(&mm->mm_users)) {
371                 exit_aio(mm);
372                 exit_mmap(mm);
373                 if (!list_empty(&mm->mmlist)) {
374                         spin_lock(&mmlist_lock);
375                         list_del(&mm->mmlist);
376                         spin_unlock(&mmlist_lock);
377                 }
378                 put_swap_token(mm);
379                 mmdrop(mm);
380         }
381 }
382 EXPORT_SYMBOL_GPL(mmput);
383
384 /**
385  * get_task_mm - acquire a reference to the task's mm
386  *
387  * Returns %NULL if the task has no mm.  Checks PF_BORROWED_MM (meaning
388  * this kernel workthread has transiently adopted a user mm with use_mm,
389  * to do its AIO) is not set and if so returns a reference to it, after
390  * bumping up the use count.  User must release the mm via mmput()
391  * after use.  Typically used by /proc and ptrace.
392  */
393 struct mm_struct *get_task_mm(struct task_struct *task)
394 {
395         struct mm_struct *mm;
396
397         task_lock(task);
398         mm = task->mm;
399         if (mm) {
400                 if (task->flags & PF_BORROWED_MM)
401                         mm = NULL;
402                 else
403                         atomic_inc(&mm->mm_users);
404         }
405         task_unlock(task);
406         return mm;
407 }
408 EXPORT_SYMBOL_GPL(get_task_mm);
409
410 /* Please note the differences between mmput and mm_release.
411  * mmput is called whenever we stop holding onto a mm_struct,
412  * error success whatever.
413  *
414  * mm_release is called after a mm_struct has been removed
415  * from the current process.
416  *
417  * This difference is important for error handling, when we
418  * only half set up a mm_struct for a new process and need to restore
419  * the old one.  Because we mmput the new mm_struct before
420  * restoring the old one. . .
421  * Eric Biederman 10 January 1998
422  */
423 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
424 {
425         struct completion *vfork_done = tsk->vfork_done;
426
427         /* Get rid of any cached register state */
428         deactivate_mm(tsk, mm);
429
430         /* notify parent sleeping on vfork() */
431         if (vfork_done) {
432                 tsk->vfork_done = NULL;
433                 complete(vfork_done);
434         }
435         if (tsk->clear_child_tid && atomic_read(&mm->mm_users) > 1) {
436                 u32 __user * tidptr = tsk->clear_child_tid;
437                 tsk->clear_child_tid = NULL;
438
439                 /*
440                  * We don't check the error code - if userspace has
441                  * not set up a proper pointer then tough luck.
442                  */
443                 put_user(0, tidptr);
444                 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
445         }
446 }
447
448 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
449 {
450         struct mm_struct * mm, *oldmm;
451         int retval;
452
453         tsk->min_flt = tsk->maj_flt = 0;
454         tsk->nvcsw = tsk->nivcsw = 0;
455
456         tsk->mm = NULL;
457         tsk->active_mm = NULL;
458
459         /*
460          * Are we cloning a kernel thread?
461          *
462          * We need to steal a active VM for that..
463          */
464         oldmm = current->mm;
465         if (!oldmm)
466                 return 0;
467
468         if (clone_flags & CLONE_VM) {
469                 atomic_inc(&oldmm->mm_users);
470                 mm = oldmm;
471                 /*
472                  * There are cases where the PTL is held to ensure no
473                  * new threads start up in user mode using an mm, which
474                  * allows optimizing out ipis; the tlb_gather_mmu code
475                  * is an example.
476                  */
477                 spin_unlock_wait(&oldmm->page_table_lock);
478                 goto good_mm;
479         }
480
481         retval = -ENOMEM;
482         mm = allocate_mm();
483         if (!mm)
484                 goto fail_nomem;
485
486         /* Copy the current MM stuff.. */
487         memcpy(mm, oldmm, sizeof(*mm));
488         if (!mm_init(mm))
489                 goto fail_nomem;
490
491         if (init_new_context(tsk,mm))
492                 goto fail_nocontext;
493
494         retval = dup_mmap(mm, oldmm);
495         if (retval)
496                 goto free_pt;
497
498         mm->hiwater_rss = get_mm_counter(mm,rss);
499         mm->hiwater_vm = mm->total_vm;
500
501 good_mm:
502         tsk->mm = mm;
503         tsk->active_mm = mm;
504         return 0;
505
506 free_pt:
507         mmput(mm);
508 fail_nomem:
509         return retval;
510
511 fail_nocontext:
512         /*
513          * If init_new_context() failed, we cannot use mmput() to free the mm
514          * because it calls destroy_context()
515          */
516         mm_free_pgd(mm);
517         free_mm(mm);
518         return retval;
519 }
520
521 static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old)
522 {
523         struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
524         /* We don't need to lock fs - think why ;-) */
525         if (fs) {
526                 atomic_set(&fs->count, 1);
527                 rwlock_init(&fs->lock);
528                 fs->umask = old->umask;
529                 read_lock(&old->lock);
530                 fs->rootmnt = mntget(old->rootmnt);
531                 fs->root = dget(old->root);
532                 fs->pwdmnt = mntget(old->pwdmnt);
533                 fs->pwd = dget(old->pwd);
534                 if (old->altroot) {
535                         fs->altrootmnt = mntget(old->altrootmnt);
536                         fs->altroot = dget(old->altroot);
537                 } else {
538                         fs->altrootmnt = NULL;
539                         fs->altroot = NULL;
540                 }
541                 read_unlock(&old->lock);
542         }
543         return fs;
544 }
545
546 struct fs_struct *copy_fs_struct(struct fs_struct *old)
547 {
548         return __copy_fs_struct(old);
549 }
550
551 EXPORT_SYMBOL_GPL(copy_fs_struct);
552
553 static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)
554 {
555         if (clone_flags & CLONE_FS) {
556                 atomic_inc(&current->fs->count);
557                 return 0;
558         }
559         tsk->fs = __copy_fs_struct(current->fs);
560         if (!tsk->fs)
561                 return -ENOMEM;
562         return 0;
563 }
564
565 static int count_open_files(struct files_struct *files, int size)
566 {
567         int i;
568
569         /* Find the last open fd */
570         for (i = size/(8*sizeof(long)); i > 0; ) {
571                 if (files->open_fds->fds_bits[--i])
572                         break;
573         }
574         i = (i+1) * 8 * sizeof(long);
575         return i;
576 }
577
578 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
579 {
580         struct files_struct *oldf, *newf;
581         struct file **old_fds, **new_fds;
582         int open_files, size, i, error = 0, expand;
583
584         /*
585          * A background process may not have any files ...
586          */
587         oldf = current->files;
588         if (!oldf)
589                 goto out;
590
591         if (clone_flags & CLONE_FILES) {
592                 atomic_inc(&oldf->count);
593                 goto out;
594         }
595
596         /*
597          * Note: we may be using current for both targets (See exec.c)
598          * This works because we cache current->files (old) as oldf. Don't
599          * break this.
600          */
601         tsk->files = NULL;
602         error = -ENOMEM;
603         newf = kmem_cache_alloc(files_cachep, SLAB_KERNEL);
604         if (!newf) 
605                 goto out;
606
607         atomic_set(&newf->count, 1);
608
609         spin_lock_init(&newf->file_lock);
610         newf->next_fd       = 0;
611         newf->max_fds       = NR_OPEN_DEFAULT;
612         newf->max_fdset     = __FD_SETSIZE;
613         newf->close_on_exec = &newf->close_on_exec_init;
614         newf->open_fds      = &newf->open_fds_init;
615         newf->fd            = &newf->fd_array[0];
616
617         spin_lock(&oldf->file_lock);
618
619         open_files = count_open_files(oldf, oldf->max_fdset);
620         expand = 0;
621
622         /*
623          * Check whether we need to allocate a larger fd array or fd set.
624          * Note: we're not a clone task, so the open count won't  change.
625          */
626         if (open_files > newf->max_fdset) {
627                 newf->max_fdset = 0;
628                 expand = 1;
629         }
630         if (open_files > newf->max_fds) {
631                 newf->max_fds = 0;
632                 expand = 1;
633         }
634
635         /* if the old fdset gets grown now, we'll only copy up to "size" fds */
636         if (expand) {
637                 spin_unlock(&oldf->file_lock);
638                 spin_lock(&newf->file_lock);
639                 error = expand_files(newf, open_files-1);
640                 spin_unlock(&newf->file_lock);
641                 if (error < 0)
642                         goto out_release;
643                 spin_lock(&oldf->file_lock);
644         }
645
646         old_fds = oldf->fd;
647         new_fds = newf->fd;
648
649         memcpy(newf->open_fds->fds_bits, oldf->open_fds->fds_bits, open_files/8);
650         memcpy(newf->close_on_exec->fds_bits, oldf->close_on_exec->fds_bits, open_files/8);
651
652         for (i = open_files; i != 0; i--) {
653                 struct file *f = *old_fds++;
654                 if (f) {
655                         get_file(f);
656                 } else {
657                         /*
658                          * The fd may be claimed in the fd bitmap but not yet
659                          * instantiated in the files array if a sibling thread
660                          * is partway through open().  So make sure that this
661                          * fd is available to the new process.
662                          */
663                         FD_CLR(open_files - i, newf->open_fds);
664                 }
665                 *new_fds++ = f;
666         }
667         spin_unlock(&oldf->file_lock);
668
669         /* compute the remainder to be cleared */
670         size = (newf->max_fds - open_files) * sizeof(struct file *);
671
672         /* This is long word aligned thus could use a optimized version */ 
673         memset(new_fds, 0, size); 
674
675         if (newf->max_fdset > open_files) {
676                 int left = (newf->max_fdset-open_files)/8;
677                 int start = open_files / (8 * sizeof(unsigned long));
678
679                 memset(&newf->open_fds->fds_bits[start], 0, left);
680                 memset(&newf->close_on_exec->fds_bits[start], 0, left);
681         }
682
683         tsk->files = newf;
684         error = 0;
685 out:
686         return error;
687
688 out_release:
689         free_fdset (newf->close_on_exec, newf->max_fdset);
690         free_fdset (newf->open_fds, newf->max_fdset);
691         free_fd_array(newf->fd, newf->max_fds);
692         kmem_cache_free(files_cachep, newf);
693         goto out;
694 }
695
696 /*
697  *      Helper to unshare the files of the current task.
698  *      We don't want to expose copy_files internals to
699  *      the exec layer of the kernel.
700  */
701
702 int unshare_files(void)
703 {
704         struct files_struct *files  = current->files;
705         int rc;
706
707         if(!files)
708                 BUG();
709
710         /* This can race but the race causes us to copy when we don't
711            need to and drop the copy */
712         if(atomic_read(&files->count) == 1)
713         {
714                 atomic_inc(&files->count);
715                 return 0;
716         }
717         rc = copy_files(0, current);
718         if(rc)
719                 current->files = files;
720         return rc;
721 }
722
723 EXPORT_SYMBOL(unshare_files);
724
725 static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)
726 {
727         struct sighand_struct *sig;
728
729         if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
730                 atomic_inc(&current->sighand->count);
731                 return 0;
732         }
733         sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
734         tsk->sighand = sig;
735         if (!sig)
736                 return -ENOMEM;
737         spin_lock_init(&sig->siglock);
738         atomic_set(&sig->count, 1);
739         memcpy(sig->action, current->sighand->action, sizeof(sig->action));
740         return 0;
741 }
742
743 static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk)
744 {
745         struct signal_struct *sig;
746         int ret;
747
748         if (clone_flags & CLONE_THREAD) {
749                 atomic_inc(&current->signal->count);
750                 atomic_inc(&current->signal->live);
751                 return 0;
752         }
753         sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
754         tsk->signal = sig;
755         if (!sig)
756                 return -ENOMEM;
757
758         ret = copy_thread_group_keys(tsk);
759         if (ret < 0) {
760                 kmem_cache_free(signal_cachep, sig);
761                 return ret;
762         }
763
764         atomic_set(&sig->count, 1);
765         atomic_set(&sig->live, 1);
766         init_waitqueue_head(&sig->wait_chldexit);
767         sig->flags = 0;
768         sig->group_exit_code = 0;
769         sig->group_exit_task = NULL;
770         sig->group_stop_count = 0;
771         sig->curr_target = NULL;
772         init_sigpending(&sig->shared_pending);
773         INIT_LIST_HEAD(&sig->posix_timers);
774
775         sig->it_real_value = sig->it_real_incr = 0;
776         sig->real_timer.function = it_real_fn;
777         sig->real_timer.data = (unsigned long) tsk;
778         init_timer(&sig->real_timer);
779
780         sig->it_virt_expires = cputime_zero;
781         sig->it_virt_incr = cputime_zero;
782         sig->it_prof_expires = cputime_zero;
783         sig->it_prof_incr = cputime_zero;
784
785         sig->tty = current->signal->tty;
786         sig->pgrp = process_group(current);
787         sig->session = current->signal->session;
788         sig->leader = 0;        /* session leadership doesn't inherit */
789         sig->tty_old_pgrp = 0;
790
791         sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
792         sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
793         sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
794         sig->sched_time = 0;
795         INIT_LIST_HEAD(&sig->cpu_timers[0]);
796         INIT_LIST_HEAD(&sig->cpu_timers[1]);
797         INIT_LIST_HEAD(&sig->cpu_timers[2]);
798
799         task_lock(current->group_leader);
800         memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
801         task_unlock(current->group_leader);
802
803         if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
804                 /*
805                  * New sole thread in the process gets an expiry time
806                  * of the whole CPU time limit.
807                  */
808                 tsk->it_prof_expires =
809                         secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
810         }
811
812         return 0;
813 }
814
815 static inline void copy_flags(unsigned long clone_flags, struct task_struct *p)
816 {
817         unsigned long new_flags = p->flags;
818
819         new_flags &= ~PF_SUPERPRIV;
820         new_flags |= PF_FORKNOEXEC;
821         if (!(clone_flags & CLONE_PTRACE))
822                 p->ptrace = 0;
823         p->flags = new_flags;
824 }
825
826 asmlinkage long sys_set_tid_address(int __user *tidptr)
827 {
828         current->clear_child_tid = tidptr;
829
830         return current->pid;
831 }
832
833 /*
834  * This creates a new process as a copy of the old one,
835  * but does not actually start it yet.
836  *
837  * It copies the registers, and all the appropriate
838  * parts of the process environment (as per the clone
839  * flags). The actual kick-off is left to the caller.
840  */
841 static task_t *copy_process(unsigned long clone_flags,
842                                  unsigned long stack_start,
843                                  struct pt_regs *regs,
844                                  unsigned long stack_size,
845                                  int __user *parent_tidptr,
846                                  int __user *child_tidptr,
847                                  int pid)
848 {
849         int retval;
850         struct task_struct *p = NULL;
851
852         if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
853                 return ERR_PTR(-EINVAL);
854
855         /*
856          * Thread groups must share signals as well, and detached threads
857          * can only be started up within the thread group.
858          */
859         if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
860                 return ERR_PTR(-EINVAL);
861
862         /*
863          * Shared signal handlers imply shared VM. By way of the above,
864          * thread groups also imply shared VM. Blocking this case allows
865          * for various simplifications in other code.
866          */
867         if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
868                 return ERR_PTR(-EINVAL);
869
870         retval = security_task_create(clone_flags);
871         if (retval)
872                 goto fork_out;
873
874         retval = -ENOMEM;
875         p = dup_task_struct(current);
876         if (!p)
877                 goto fork_out;
878
879         retval = -EAGAIN;
880         if (atomic_read(&p->user->processes) >=
881                         p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
882                 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
883                                 p->user != &root_user)
884                         goto bad_fork_free;
885         }
886
887         atomic_inc(&p->user->__count);
888         atomic_inc(&p->user->processes);
889         get_group_info(p->group_info);
890
891         /*
892          * If multiple threads are within copy_process(), then this check
893          * triggers too late. This doesn't hurt, the check is only there
894          * to stop root fork bombs.
895          */
896         if (nr_threads >= max_threads)
897                 goto bad_fork_cleanup_count;
898
899         if (!try_module_get(p->thread_info->exec_domain->module))
900                 goto bad_fork_cleanup_count;
901
902         if (p->binfmt && !try_module_get(p->binfmt->module))
903                 goto bad_fork_cleanup_put_domain;
904
905         p->did_exec = 0;
906         copy_flags(clone_flags, p);
907         p->pid = pid;
908         retval = -EFAULT;
909         if (clone_flags & CLONE_PARENT_SETTID)
910                 if (put_user(p->pid, parent_tidptr))
911                         goto bad_fork_cleanup;
912
913         p->proc_dentry = NULL;
914
915         INIT_LIST_HEAD(&p->children);
916         INIT_LIST_HEAD(&p->sibling);
917         p->vfork_done = NULL;
918         spin_lock_init(&p->alloc_lock);
919         spin_lock_init(&p->proc_lock);
920
921         clear_tsk_thread_flag(p, TIF_SIGPENDING);
922         init_sigpending(&p->pending);
923
924         p->utime = cputime_zero;
925         p->stime = cputime_zero;
926         p->sched_time = 0;
927         p->rchar = 0;           /* I/O counter: bytes read */
928         p->wchar = 0;           /* I/O counter: bytes written */
929         p->syscr = 0;           /* I/O counter: read syscalls */
930         p->syscw = 0;           /* I/O counter: write syscalls */
931         acct_clear_integrals(p);
932
933         p->it_virt_expires = cputime_zero;
934         p->it_prof_expires = cputime_zero;
935         p->it_sched_expires = 0;
936         INIT_LIST_HEAD(&p->cpu_timers[0]);
937         INIT_LIST_HEAD(&p->cpu_timers[1]);
938         INIT_LIST_HEAD(&p->cpu_timers[2]);
939
940         p->lock_depth = -1;             /* -1 = no lock */
941         do_posix_clock_monotonic_gettime(&p->start_time);
942         p->security = NULL;
943         p->io_context = NULL;
944         p->io_wait = NULL;
945         p->audit_context = NULL;
946 #ifdef CONFIG_NUMA
947         p->mempolicy = mpol_copy(p->mempolicy);
948         if (IS_ERR(p->mempolicy)) {
949                 retval = PTR_ERR(p->mempolicy);
950                 p->mempolicy = NULL;
951                 goto bad_fork_cleanup;
952         }
953 #endif
954
955         p->tgid = p->pid;
956         if (clone_flags & CLONE_THREAD)
957                 p->tgid = current->tgid;
958
959         if ((retval = security_task_alloc(p)))
960                 goto bad_fork_cleanup_policy;
961         if ((retval = audit_alloc(p)))
962                 goto bad_fork_cleanup_security;
963         /* copy all the process information */
964         if ((retval = copy_semundo(clone_flags, p)))
965                 goto bad_fork_cleanup_audit;
966         if ((retval = copy_files(clone_flags, p)))
967                 goto bad_fork_cleanup_semundo;
968         if ((retval = copy_fs(clone_flags, p)))
969                 goto bad_fork_cleanup_files;
970         if ((retval = copy_sighand(clone_flags, p)))
971                 goto bad_fork_cleanup_fs;
972         if ((retval = copy_signal(clone_flags, p)))
973                 goto bad_fork_cleanup_sighand;
974         if ((retval = copy_mm(clone_flags, p)))
975                 goto bad_fork_cleanup_signal;
976         if ((retval = copy_keys(clone_flags, p)))
977                 goto bad_fork_cleanup_mm;
978         if ((retval = copy_namespace(clone_flags, p)))
979                 goto bad_fork_cleanup_keys;
980         retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
981         if (retval)
982                 goto bad_fork_cleanup_namespace;
983
984         p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
985         /*
986          * Clear TID on mm_release()?
987          */
988         p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
989
990         /*
991          * Syscall tracing should be turned off in the child regardless
992          * of CLONE_PTRACE.
993          */
994         clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
995
996         /* Our parent execution domain becomes current domain
997            These must match for thread signalling to apply */
998            
999         p->parent_exec_id = p->self_exec_id;
1000
1001         /* ok, now we should be set up.. */
1002         p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1003         p->pdeath_signal = 0;
1004         p->exit_state = 0;
1005
1006         /*
1007          * Ok, make it visible to the rest of the system.
1008          * We dont wake it up yet.
1009          */
1010         p->group_leader = p;
1011         INIT_LIST_HEAD(&p->ptrace_children);
1012         INIT_LIST_HEAD(&p->ptrace_list);
1013
1014         /* Perform scheduler related setup. Assign this task to a CPU. */
1015         sched_fork(p, clone_flags);
1016
1017         /* Need tasklist lock for parent etc handling! */
1018         write_lock_irq(&tasklist_lock);
1019
1020         /*
1021          * The task hasn't been attached yet, so its cpus_allowed mask will
1022          * not be changed, nor will its assigned CPU.
1023          *
1024          * The cpus_allowed mask of the parent may have changed after it was
1025          * copied first time - so re-copy it here, then check the child's CPU
1026          * to ensure it is on a valid CPU (and if not, just force it back to
1027          * parent's CPU). This avoids alot of nasty races.
1028          */
1029         p->cpus_allowed = current->cpus_allowed;
1030         if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed)))
1031                 set_task_cpu(p, smp_processor_id());
1032
1033         /*
1034          * Check for pending SIGKILL! The new thread should not be allowed
1035          * to slip out of an OOM kill. (or normal SIGKILL.)
1036          */
1037         if (sigismember(&current->pending.signal, SIGKILL)) {
1038                 write_unlock_irq(&tasklist_lock);
1039                 retval = -EINTR;
1040                 goto bad_fork_cleanup_namespace;
1041         }
1042
1043         /* CLONE_PARENT re-uses the old parent */
1044         if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1045                 p->real_parent = current->real_parent;
1046         else
1047                 p->real_parent = current;
1048         p->parent = p->real_parent;
1049
1050         if (clone_flags & CLONE_THREAD) {
1051                 spin_lock(&current->sighand->siglock);
1052                 /*
1053                  * Important: if an exit-all has been started then
1054                  * do not create this new thread - the whole thread
1055                  * group is supposed to exit anyway.
1056                  */
1057                 if (current->signal->flags & SIGNAL_GROUP_EXIT) {
1058                         spin_unlock(&current->sighand->siglock);
1059                         write_unlock_irq(&tasklist_lock);
1060                         retval = -EAGAIN;
1061                         goto bad_fork_cleanup_namespace;
1062                 }
1063                 p->group_leader = current->group_leader;
1064
1065                 if (current->signal->group_stop_count > 0) {
1066                         /*
1067                          * There is an all-stop in progress for the group.
1068                          * We ourselves will stop as soon as we check signals.
1069                          * Make the new thread part of that group stop too.
1070                          */
1071                         current->signal->group_stop_count++;
1072                         set_tsk_thread_flag(p, TIF_SIGPENDING);
1073                 }
1074
1075                 if (!cputime_eq(current->signal->it_virt_expires,
1076                                 cputime_zero) ||
1077                     !cputime_eq(current->signal->it_prof_expires,
1078                                 cputime_zero) ||
1079                     current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1080                     !list_empty(&current->signal->cpu_timers[0]) ||
1081                     !list_empty(&current->signal->cpu_timers[1]) ||
1082                     !list_empty(&current->signal->cpu_timers[2])) {
1083                         /*
1084                          * Have child wake up on its first tick to check
1085                          * for process CPU timers.
1086                          */
1087                         p->it_prof_expires = jiffies_to_cputime(1);
1088                 }
1089
1090                 spin_unlock(&current->sighand->siglock);
1091         }
1092
1093         SET_LINKS(p);
1094         if (unlikely(p->ptrace & PT_PTRACED))
1095                 __ptrace_link(p, current->parent);
1096
1097         cpuset_fork(p);
1098
1099         attach_pid(p, PIDTYPE_PID, p->pid);
1100         attach_pid(p, PIDTYPE_TGID, p->tgid);
1101         if (thread_group_leader(p)) {
1102                 attach_pid(p, PIDTYPE_PGID, process_group(p));
1103                 attach_pid(p, PIDTYPE_SID, p->signal->session);
1104                 if (p->pid)
1105                         __get_cpu_var(process_counts)++;
1106         }
1107
1108         nr_threads++;
1109         total_forks++;
1110         write_unlock_irq(&tasklist_lock);
1111         retval = 0;
1112
1113 fork_out:
1114         if (retval)
1115                 return ERR_PTR(retval);
1116         return p;
1117
1118 bad_fork_cleanup_namespace:
1119         exit_namespace(p);
1120 bad_fork_cleanup_keys:
1121         exit_keys(p);
1122 bad_fork_cleanup_mm:
1123         if (p->mm)
1124                 mmput(p->mm);
1125 bad_fork_cleanup_signal:
1126         exit_signal(p);
1127 bad_fork_cleanup_sighand:
1128         exit_sighand(p);
1129 bad_fork_cleanup_fs:
1130         exit_fs(p); /* blocking */
1131 bad_fork_cleanup_files:
1132         exit_files(p); /* blocking */
1133 bad_fork_cleanup_semundo:
1134         exit_sem(p);
1135 bad_fork_cleanup_audit:
1136         audit_free(p);
1137 bad_fork_cleanup_security:
1138         security_task_free(p);
1139 bad_fork_cleanup_policy:
1140 #ifdef CONFIG_NUMA
1141         mpol_free(p->mempolicy);
1142 #endif
1143 bad_fork_cleanup:
1144         if (p->binfmt)
1145                 module_put(p->binfmt->module);
1146 bad_fork_cleanup_put_domain:
1147         module_put(p->thread_info->exec_domain->module);
1148 bad_fork_cleanup_count:
1149         put_group_info(p->group_info);
1150         atomic_dec(&p->user->processes);
1151         free_uid(p->user);
1152 bad_fork_free:
1153         free_task(p);
1154         goto fork_out;
1155 }
1156
1157 struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1158 {
1159         memset(regs, 0, sizeof(struct pt_regs));
1160         return regs;
1161 }
1162
1163 task_t * __devinit fork_idle(int cpu)
1164 {
1165         task_t *task;
1166         struct pt_regs regs;
1167
1168         task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL, NULL, 0);
1169         if (!task)
1170                 return ERR_PTR(-ENOMEM);
1171         init_idle(task, cpu);
1172         unhash_process(task);
1173         return task;
1174 }
1175
1176 static inline int fork_traceflag (unsigned clone_flags)
1177 {
1178         if (clone_flags & CLONE_UNTRACED)
1179                 return 0;
1180         else if (clone_flags & CLONE_VFORK) {
1181                 if (current->ptrace & PT_TRACE_VFORK)
1182                         return PTRACE_EVENT_VFORK;
1183         } else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1184                 if (current->ptrace & PT_TRACE_CLONE)
1185                         return PTRACE_EVENT_CLONE;
1186         } else if (current->ptrace & PT_TRACE_FORK)
1187                 return PTRACE_EVENT_FORK;
1188
1189         return 0;
1190 }
1191
1192 /*
1193  *  Ok, this is the main fork-routine.
1194  *
1195  * It copies the process, and if successful kick-starts
1196  * it and waits for it to finish using the VM if required.
1197  */
1198 long do_fork(unsigned long clone_flags,
1199               unsigned long stack_start,
1200               struct pt_regs *regs,
1201               unsigned long stack_size,
1202               int __user *parent_tidptr,
1203               int __user *child_tidptr)
1204 {
1205         struct task_struct *p;
1206         int trace = 0;
1207         long pid = alloc_pidmap();
1208
1209         if (pid < 0)
1210                 return -EAGAIN;
1211         if (unlikely(current->ptrace)) {
1212                 trace = fork_traceflag (clone_flags);
1213                 if (trace)
1214                         clone_flags |= CLONE_PTRACE;
1215         }
1216
1217         p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, pid);
1218         /*
1219          * Do this prior waking up the new thread - the thread pointer
1220          * might get invalid after that point, if the thread exits quickly.
1221          */
1222         if (!IS_ERR(p)) {
1223                 struct completion vfork;
1224
1225                 if (clone_flags & CLONE_VFORK) {
1226                         p->vfork_done = &vfork;
1227                         init_completion(&vfork);
1228                 }
1229
1230                 if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1231                         /*
1232                          * We'll start up with an immediate SIGSTOP.
1233                          */
1234                         sigaddset(&p->pending.signal, SIGSTOP);
1235                         set_tsk_thread_flag(p, TIF_SIGPENDING);
1236                 }
1237
1238                 if (!(clone_flags & CLONE_STOPPED))
1239                         wake_up_new_task(p, clone_flags);
1240                 else
1241                         p->state = TASK_STOPPED;
1242
1243                 if (unlikely (trace)) {
1244                         current->ptrace_message = pid;
1245                         ptrace_notify ((trace << 8) | SIGTRAP);
1246                 }
1247
1248                 if (clone_flags & CLONE_VFORK) {
1249                         wait_for_completion(&vfork);
1250                         if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE))
1251                                 ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1252                 }
1253         } else {
1254                 free_pidmap(pid);
1255                 pid = PTR_ERR(p);
1256         }
1257         return pid;
1258 }
1259
1260 void __init proc_caches_init(void)
1261 {
1262         sighand_cachep = kmem_cache_create("sighand_cache",
1263                         sizeof(struct sighand_struct), 0,
1264                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1265         signal_cachep = kmem_cache_create("signal_cache",
1266                         sizeof(struct signal_struct), 0,
1267                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1268         files_cachep = kmem_cache_create("files_cache", 
1269                         sizeof(struct files_struct), 0,
1270                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1271         fs_cachep = kmem_cache_create("fs_cache", 
1272                         sizeof(struct fs_struct), 0,
1273                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1274         vm_area_cachep = kmem_cache_create("vm_area_struct",
1275                         sizeof(struct vm_area_struct), 0,
1276                         SLAB_PANIC, NULL, NULL);
1277         mm_cachep = kmem_cache_create("mm_struct",
1278                         sizeof(struct mm_struct), 0,
1279                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1280 }