stackprotector: use canary at end of stack to indicate overruns at oops time
[linux-2.6.git] / kernel / exit.c
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/binfmts.h>
24 #include <linux/nsproxy.h>
25 #include <linux/pid_namespace.h>
26 #include <linux/ptrace.h>
27 #include <linux/profile.h>
28 #include <linux/mount.h>
29 #include <linux/proc_fs.h>
30 #include <linux/kthread.h>
31 #include <linux/mempolicy.h>
32 #include <linux/taskstats_kern.h>
33 #include <linux/delayacct.h>
34 #include <linux/freezer.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/pipe_fs_i.h>
44 #include <linux/audit.h> /* for audit_free() */
45 #include <linux/resource.h>
46 #include <linux/blkdev.h>
47 #include <linux/task_io_accounting_ops.h>
48
49 #include <asm/uaccess.h>
50 #include <asm/unistd.h>
51 #include <asm/pgtable.h>
52 #include <asm/mmu_context.h>
53
54 static void exit_mm(struct task_struct * tsk);
55
56 static inline int task_detached(struct task_struct *p)
57 {
58         return p->exit_signal == -1;
59 }
60
61 static void __unhash_process(struct task_struct *p)
62 {
63         nr_threads--;
64         detach_pid(p, PIDTYPE_PID);
65         if (thread_group_leader(p)) {
66                 detach_pid(p, PIDTYPE_PGID);
67                 detach_pid(p, PIDTYPE_SID);
68
69                 list_del_rcu(&p->tasks);
70                 __get_cpu_var(process_counts)--;
71         }
72         list_del_rcu(&p->thread_group);
73         remove_parent(p);
74 }
75
76 /*
77  * This function expects the tasklist_lock write-locked.
78  */
79 static void __exit_signal(struct task_struct *tsk)
80 {
81         struct signal_struct *sig = tsk->signal;
82         struct sighand_struct *sighand;
83
84         BUG_ON(!sig);
85         BUG_ON(!atomic_read(&sig->count));
86
87         rcu_read_lock();
88         sighand = rcu_dereference(tsk->sighand);
89         spin_lock(&sighand->siglock);
90
91         posix_cpu_timers_exit(tsk);
92         if (atomic_dec_and_test(&sig->count))
93                 posix_cpu_timers_exit_group(tsk);
94         else {
95                 /*
96                  * If there is any task waiting for the group exit
97                  * then notify it:
98                  */
99                 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
100                         wake_up_process(sig->group_exit_task);
101
102                 if (tsk == sig->curr_target)
103                         sig->curr_target = next_thread(tsk);
104                 /*
105                  * Accumulate here the counters for all threads but the
106                  * group leader as they die, so they can be added into
107                  * the process-wide totals when those are taken.
108                  * The group leader stays around as a zombie as long
109                  * as there are other threads.  When it gets reaped,
110                  * the exit.c code will add its counts into these totals.
111                  * We won't ever get here for the group leader, since it
112                  * will have been the last reference on the signal_struct.
113                  */
114                 sig->utime = cputime_add(sig->utime, tsk->utime);
115                 sig->stime = cputime_add(sig->stime, tsk->stime);
116                 sig->gtime = cputime_add(sig->gtime, tsk->gtime);
117                 sig->min_flt += tsk->min_flt;
118                 sig->maj_flt += tsk->maj_flt;
119                 sig->nvcsw += tsk->nvcsw;
120                 sig->nivcsw += tsk->nivcsw;
121                 sig->inblock += task_io_get_inblock(tsk);
122                 sig->oublock += task_io_get_oublock(tsk);
123                 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
124                 sig = NULL; /* Marker for below. */
125         }
126
127         __unhash_process(tsk);
128
129         /*
130          * Do this under ->siglock, we can race with another thread
131          * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
132          */
133         flush_sigqueue(&tsk->pending);
134
135         tsk->signal = NULL;
136         tsk->sighand = NULL;
137         spin_unlock(&sighand->siglock);
138         rcu_read_unlock();
139
140         __cleanup_sighand(sighand);
141         clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
142         if (sig) {
143                 flush_sigqueue(&sig->shared_pending);
144                 taskstats_tgid_free(sig);
145                 __cleanup_signal(sig);
146         }
147 }
148
149 static void delayed_put_task_struct(struct rcu_head *rhp)
150 {
151         put_task_struct(container_of(rhp, struct task_struct, rcu));
152 }
153
154 void release_task(struct task_struct * p)
155 {
156         struct task_struct *leader;
157         int zap_leader;
158 repeat:
159         atomic_dec(&p->user->processes);
160         proc_flush_task(p);
161         write_lock_irq(&tasklist_lock);
162         ptrace_unlink(p);
163         BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children));
164         __exit_signal(p);
165
166         /*
167          * If we are the last non-leader member of the thread
168          * group, and the leader is zombie, then notify the
169          * group leader's parent process. (if it wants notification.)
170          */
171         zap_leader = 0;
172         leader = p->group_leader;
173         if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
174                 BUG_ON(task_detached(leader));
175                 do_notify_parent(leader, leader->exit_signal);
176                 /*
177                  * If we were the last child thread and the leader has
178                  * exited already, and the leader's parent ignores SIGCHLD,
179                  * then we are the one who should release the leader.
180                  *
181                  * do_notify_parent() will have marked it self-reaping in
182                  * that case.
183                  */
184                 zap_leader = task_detached(leader);
185         }
186
187         write_unlock_irq(&tasklist_lock);
188         release_thread(p);
189         call_rcu(&p->rcu, delayed_put_task_struct);
190
191         p = leader;
192         if (unlikely(zap_leader))
193                 goto repeat;
194 }
195
196 /*
197  * This checks not only the pgrp, but falls back on the pid if no
198  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
199  * without this...
200  *
201  * The caller must hold rcu lock or the tasklist lock.
202  */
203 struct pid *session_of_pgrp(struct pid *pgrp)
204 {
205         struct task_struct *p;
206         struct pid *sid = NULL;
207
208         p = pid_task(pgrp, PIDTYPE_PGID);
209         if (p == NULL)
210                 p = pid_task(pgrp, PIDTYPE_PID);
211         if (p != NULL)
212                 sid = task_session(p);
213
214         return sid;
215 }
216
217 /*
218  * Determine if a process group is "orphaned", according to the POSIX
219  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
220  * by terminal-generated stop signals.  Newly orphaned process groups are
221  * to receive a SIGHUP and a SIGCONT.
222  *
223  * "I ask you, have you ever known what it is to be an orphan?"
224  */
225 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
226 {
227         struct task_struct *p;
228
229         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
230                 if ((p == ignored_task) ||
231                     (p->exit_state && thread_group_empty(p)) ||
232                     is_global_init(p->real_parent))
233                         continue;
234
235                 if (task_pgrp(p->real_parent) != pgrp &&
236                     task_session(p->real_parent) == task_session(p))
237                         return 0;
238         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
239
240         return 1;
241 }
242
243 int is_current_pgrp_orphaned(void)
244 {
245         int retval;
246
247         read_lock(&tasklist_lock);
248         retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
249         read_unlock(&tasklist_lock);
250
251         return retval;
252 }
253
254 static int has_stopped_jobs(struct pid *pgrp)
255 {
256         int retval = 0;
257         struct task_struct *p;
258
259         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
260                 if (!task_is_stopped(p))
261                         continue;
262                 retval = 1;
263                 break;
264         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
265         return retval;
266 }
267
268 /*
269  * Check to see if any process groups have become orphaned as
270  * a result of our exiting, and if they have any stopped jobs,
271  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
272  */
273 static void
274 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
275 {
276         struct pid *pgrp = task_pgrp(tsk);
277         struct task_struct *ignored_task = tsk;
278
279         if (!parent)
280                  /* exit: our father is in a different pgrp than
281                   * we are and we were the only connection outside.
282                   */
283                 parent = tsk->real_parent;
284         else
285                 /* reparent: our child is in a different pgrp than
286                  * we are, and it was the only connection outside.
287                  */
288                 ignored_task = NULL;
289
290         if (task_pgrp(parent) != pgrp &&
291             task_session(parent) == task_session(tsk) &&
292             will_become_orphaned_pgrp(pgrp, ignored_task) &&
293             has_stopped_jobs(pgrp)) {
294                 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
295                 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
296         }
297 }
298
299 /**
300  * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
301  *
302  * If a kernel thread is launched as a result of a system call, or if
303  * it ever exits, it should generally reparent itself to kthreadd so it
304  * isn't in the way of other processes and is correctly cleaned up on exit.
305  *
306  * The various task state such as scheduling policy and priority may have
307  * been inherited from a user process, so we reset them to sane values here.
308  *
309  * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
310  */
311 static void reparent_to_kthreadd(void)
312 {
313         write_lock_irq(&tasklist_lock);
314
315         ptrace_unlink(current);
316         /* Reparent to init */
317         remove_parent(current);
318         current->real_parent = current->parent = kthreadd_task;
319         add_parent(current);
320
321         /* Set the exit signal to SIGCHLD so we signal init on exit */
322         current->exit_signal = SIGCHLD;
323
324         if (task_nice(current) < 0)
325                 set_user_nice(current, 0);
326         /* cpus_allowed? */
327         /* rt_priority? */
328         /* signals? */
329         security_task_reparent_to_init(current);
330         memcpy(current->signal->rlim, init_task.signal->rlim,
331                sizeof(current->signal->rlim));
332         atomic_inc(&(INIT_USER->__count));
333         write_unlock_irq(&tasklist_lock);
334         switch_uid(INIT_USER);
335 }
336
337 void __set_special_pids(struct pid *pid)
338 {
339         struct task_struct *curr = current->group_leader;
340         pid_t nr = pid_nr(pid);
341
342         if (task_session(curr) != pid) {
343                 change_pid(curr, PIDTYPE_SID, pid);
344                 set_task_session(curr, nr);
345         }
346         if (task_pgrp(curr) != pid) {
347                 change_pid(curr, PIDTYPE_PGID, pid);
348                 set_task_pgrp(curr, nr);
349         }
350 }
351
352 static void set_special_pids(struct pid *pid)
353 {
354         write_lock_irq(&tasklist_lock);
355         __set_special_pids(pid);
356         write_unlock_irq(&tasklist_lock);
357 }
358
359 /*
360  * Let kernel threads use this to say that they
361  * allow a certain signal (since daemonize() will
362  * have disabled all of them by default).
363  */
364 int allow_signal(int sig)
365 {
366         if (!valid_signal(sig) || sig < 1)
367                 return -EINVAL;
368
369         spin_lock_irq(&current->sighand->siglock);
370         sigdelset(&current->blocked, sig);
371         if (!current->mm) {
372                 /* Kernel threads handle their own signals.
373                    Let the signal code know it'll be handled, so
374                    that they don't get converted to SIGKILL or
375                    just silently dropped */
376                 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
377         }
378         recalc_sigpending();
379         spin_unlock_irq(&current->sighand->siglock);
380         return 0;
381 }
382
383 EXPORT_SYMBOL(allow_signal);
384
385 int disallow_signal(int sig)
386 {
387         if (!valid_signal(sig) || sig < 1)
388                 return -EINVAL;
389
390         spin_lock_irq(&current->sighand->siglock);
391         current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
392         recalc_sigpending();
393         spin_unlock_irq(&current->sighand->siglock);
394         return 0;
395 }
396
397 EXPORT_SYMBOL(disallow_signal);
398
399 /*
400  *      Put all the gunge required to become a kernel thread without
401  *      attached user resources in one place where it belongs.
402  */
403
404 void daemonize(const char *name, ...)
405 {
406         va_list args;
407         struct fs_struct *fs;
408         sigset_t blocked;
409
410         va_start(args, name);
411         vsnprintf(current->comm, sizeof(current->comm), name, args);
412         va_end(args);
413
414         /*
415          * If we were started as result of loading a module, close all of the
416          * user space pages.  We don't need them, and if we didn't close them
417          * they would be locked into memory.
418          */
419         exit_mm(current);
420         /*
421          * We don't want to have TIF_FREEZE set if the system-wide hibernation
422          * or suspend transition begins right now.
423          */
424         current->flags |= PF_NOFREEZE;
425
426         if (current->nsproxy != &init_nsproxy) {
427                 get_nsproxy(&init_nsproxy);
428                 switch_task_namespaces(current, &init_nsproxy);
429         }
430         set_special_pids(&init_struct_pid);
431         proc_clear_tty(current);
432
433         /* Block and flush all signals */
434         sigfillset(&blocked);
435         sigprocmask(SIG_BLOCK, &blocked, NULL);
436         flush_signals(current);
437
438         /* Become as one with the init task */
439
440         exit_fs(current);       /* current->fs->count--; */
441         fs = init_task.fs;
442         current->fs = fs;
443         atomic_inc(&fs->count);
444
445         exit_files(current);
446         current->files = init_task.files;
447         atomic_inc(&current->files->count);
448
449         reparent_to_kthreadd();
450 }
451
452 EXPORT_SYMBOL(daemonize);
453
454 static void close_files(struct files_struct * files)
455 {
456         int i, j;
457         struct fdtable *fdt;
458
459         j = 0;
460
461         /*
462          * It is safe to dereference the fd table without RCU or
463          * ->file_lock because this is the last reference to the
464          * files structure.
465          */
466         fdt = files_fdtable(files);
467         for (;;) {
468                 unsigned long set;
469                 i = j * __NFDBITS;
470                 if (i >= fdt->max_fds)
471                         break;
472                 set = fdt->open_fds->fds_bits[j++];
473                 while (set) {
474                         if (set & 1) {
475                                 struct file * file = xchg(&fdt->fd[i], NULL);
476                                 if (file) {
477                                         filp_close(file, files);
478                                         cond_resched();
479                                 }
480                         }
481                         i++;
482                         set >>= 1;
483                 }
484         }
485 }
486
487 struct files_struct *get_files_struct(struct task_struct *task)
488 {
489         struct files_struct *files;
490
491         task_lock(task);
492         files = task->files;
493         if (files)
494                 atomic_inc(&files->count);
495         task_unlock(task);
496
497         return files;
498 }
499
500 void put_files_struct(struct files_struct *files)
501 {
502         struct fdtable *fdt;
503
504         if (atomic_dec_and_test(&files->count)) {
505                 close_files(files);
506                 /*
507                  * Free the fd and fdset arrays if we expanded them.
508                  * If the fdtable was embedded, pass files for freeing
509                  * at the end of the RCU grace period. Otherwise,
510                  * you can free files immediately.
511                  */
512                 fdt = files_fdtable(files);
513                 if (fdt != &files->fdtab)
514                         kmem_cache_free(files_cachep, files);
515                 free_fdtable(fdt);
516         }
517 }
518
519 void reset_files_struct(struct files_struct *files)
520 {
521         struct task_struct *tsk = current;
522         struct files_struct *old;
523
524         old = tsk->files;
525         task_lock(tsk);
526         tsk->files = files;
527         task_unlock(tsk);
528         put_files_struct(old);
529 }
530
531 void exit_files(struct task_struct *tsk)
532 {
533         struct files_struct * files = tsk->files;
534
535         if (files) {
536                 task_lock(tsk);
537                 tsk->files = NULL;
538                 task_unlock(tsk);
539                 put_files_struct(files);
540         }
541 }
542
543 void put_fs_struct(struct fs_struct *fs)
544 {
545         /* No need to hold fs->lock if we are killing it */
546         if (atomic_dec_and_test(&fs->count)) {
547                 path_put(&fs->root);
548                 path_put(&fs->pwd);
549                 if (fs->altroot.dentry)
550                         path_put(&fs->altroot);
551                 kmem_cache_free(fs_cachep, fs);
552         }
553 }
554
555 void exit_fs(struct task_struct *tsk)
556 {
557         struct fs_struct * fs = tsk->fs;
558
559         if (fs) {
560                 task_lock(tsk);
561                 tsk->fs = NULL;
562                 task_unlock(tsk);
563                 put_fs_struct(fs);
564         }
565 }
566
567 EXPORT_SYMBOL_GPL(exit_fs);
568
569 #ifdef CONFIG_MM_OWNER
570 /*
571  * Task p is exiting and it owned mm, lets find a new owner for it
572  */
573 static inline int
574 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
575 {
576         /*
577          * If there are other users of the mm and the owner (us) is exiting
578          * we need to find a new owner to take on the responsibility.
579          */
580         if (!mm)
581                 return 0;
582         if (atomic_read(&mm->mm_users) <= 1)
583                 return 0;
584         if (mm->owner != p)
585                 return 0;
586         return 1;
587 }
588
589 void mm_update_next_owner(struct mm_struct *mm)
590 {
591         struct task_struct *c, *g, *p = current;
592
593 retry:
594         if (!mm_need_new_owner(mm, p))
595                 return;
596
597         read_lock(&tasklist_lock);
598         /*
599          * Search in the children
600          */
601         list_for_each_entry(c, &p->children, sibling) {
602                 if (c->mm == mm)
603                         goto assign_new_owner;
604         }
605
606         /*
607          * Search in the siblings
608          */
609         list_for_each_entry(c, &p->parent->children, sibling) {
610                 if (c->mm == mm)
611                         goto assign_new_owner;
612         }
613
614         /*
615          * Search through everything else. We should not get
616          * here often
617          */
618         do_each_thread(g, c) {
619                 if (c->mm == mm)
620                         goto assign_new_owner;
621         } while_each_thread(g, c);
622
623         read_unlock(&tasklist_lock);
624         return;
625
626 assign_new_owner:
627         BUG_ON(c == p);
628         get_task_struct(c);
629         /*
630          * The task_lock protects c->mm from changing.
631          * We always want mm->owner->mm == mm
632          */
633         task_lock(c);
634         /*
635          * Delay read_unlock() till we have the task_lock()
636          * to ensure that c does not slip away underneath us
637          */
638         read_unlock(&tasklist_lock);
639         if (c->mm != mm) {
640                 task_unlock(c);
641                 put_task_struct(c);
642                 goto retry;
643         }
644         cgroup_mm_owner_callbacks(mm->owner, c);
645         mm->owner = c;
646         task_unlock(c);
647         put_task_struct(c);
648 }
649 #endif /* CONFIG_MM_OWNER */
650
651 /*
652  * Turn us into a lazy TLB process if we
653  * aren't already..
654  */
655 static void exit_mm(struct task_struct * tsk)
656 {
657         struct mm_struct *mm = tsk->mm;
658
659         mm_release(tsk, mm);
660         if (!mm)
661                 return;
662         /*
663          * Serialize with any possible pending coredump.
664          * We must hold mmap_sem around checking core_waiters
665          * and clearing tsk->mm.  The core-inducing thread
666          * will increment core_waiters for each thread in the
667          * group with ->mm != NULL.
668          */
669         down_read(&mm->mmap_sem);
670         if (mm->core_waiters) {
671                 up_read(&mm->mmap_sem);
672                 down_write(&mm->mmap_sem);
673                 if (!--mm->core_waiters)
674                         complete(mm->core_startup_done);
675                 up_write(&mm->mmap_sem);
676
677                 wait_for_completion(&mm->core_done);
678                 down_read(&mm->mmap_sem);
679         }
680         atomic_inc(&mm->mm_count);
681         BUG_ON(mm != tsk->active_mm);
682         /* more a memory barrier than a real lock */
683         task_lock(tsk);
684         tsk->mm = NULL;
685         up_read(&mm->mmap_sem);
686         enter_lazy_tlb(mm, current);
687         /* We don't want this task to be frozen prematurely */
688         clear_freeze_flag(tsk);
689         task_unlock(tsk);
690         mm_update_next_owner(mm);
691         mmput(mm);
692 }
693
694 static void
695 reparent_thread(struct task_struct *p, struct task_struct *father, int traced)
696 {
697         if (p->pdeath_signal)
698                 /* We already hold the tasklist_lock here.  */
699                 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
700
701         /* Move the child from its dying parent to the new one.  */
702         if (unlikely(traced)) {
703                 /* Preserve ptrace links if someone else is tracing this child.  */
704                 list_del_init(&p->ptrace_list);
705                 if (ptrace_reparented(p))
706                         list_add(&p->ptrace_list, &p->real_parent->ptrace_children);
707         } else {
708                 /* If this child is being traced, then we're the one tracing it
709                  * anyway, so let go of it.
710                  */
711                 p->ptrace = 0;
712                 remove_parent(p);
713                 p->parent = p->real_parent;
714                 add_parent(p);
715
716                 if (task_is_traced(p)) {
717                         /*
718                          * If it was at a trace stop, turn it into
719                          * a normal stop since it's no longer being
720                          * traced.
721                          */
722                         ptrace_untrace(p);
723                 }
724         }
725
726         /* If this is a threaded reparent there is no need to
727          * notify anyone anything has happened.
728          */
729         if (same_thread_group(p->real_parent, father))
730                 return;
731
732         /* We don't want people slaying init.  */
733         if (!task_detached(p))
734                 p->exit_signal = SIGCHLD;
735
736         /* If we'd notified the old parent about this child's death,
737          * also notify the new parent.
738          */
739         if (!traced && p->exit_state == EXIT_ZOMBIE &&
740             !task_detached(p) && thread_group_empty(p))
741                 do_notify_parent(p, p->exit_signal);
742
743         kill_orphaned_pgrp(p, father);
744 }
745
746 /*
747  * When we die, we re-parent all our children.
748  * Try to give them to another thread in our thread
749  * group, and if no such member exists, give it to
750  * the child reaper process (ie "init") in our pid
751  * space.
752  */
753 static void forget_original_parent(struct task_struct *father)
754 {
755         struct task_struct *p, *n, *reaper = father;
756         struct list_head ptrace_dead;
757
758         INIT_LIST_HEAD(&ptrace_dead);
759
760         write_lock_irq(&tasklist_lock);
761
762         do {
763                 reaper = next_thread(reaper);
764                 if (reaper == father) {
765                         reaper = task_child_reaper(father);
766                         break;
767                 }
768         } while (reaper->flags & PF_EXITING);
769
770         /*
771          * There are only two places where our children can be:
772          *
773          * - in our child list
774          * - in our ptraced child list
775          *
776          * Search them and reparent children.
777          */
778         list_for_each_entry_safe(p, n, &father->children, sibling) {
779                 int ptrace;
780
781                 ptrace = p->ptrace;
782
783                 /* if father isn't the real parent, then ptrace must be enabled */
784                 BUG_ON(father != p->real_parent && !ptrace);
785
786                 if (father == p->real_parent) {
787                         /* reparent with a reaper, real father it's us */
788                         p->real_parent = reaper;
789                         reparent_thread(p, father, 0);
790                 } else {
791                         /* reparent ptraced task to its real parent */
792                         __ptrace_unlink (p);
793                         if (p->exit_state == EXIT_ZOMBIE && !task_detached(p) &&
794                             thread_group_empty(p))
795                                 do_notify_parent(p, p->exit_signal);
796                 }
797
798                 /*
799                  * if the ptraced child is a detached zombie we must collect
800                  * it before we exit, or it will remain zombie forever since
801                  * we prevented it from self-reap itself while it was being
802                  * traced by us, to be able to see it in wait4.
803                  */
804                 if (unlikely(ptrace && p->exit_state == EXIT_ZOMBIE && task_detached(p)))
805                         list_add(&p->ptrace_list, &ptrace_dead);
806         }
807
808         list_for_each_entry_safe(p, n, &father->ptrace_children, ptrace_list) {
809                 p->real_parent = reaper;
810                 reparent_thread(p, father, 1);
811         }
812
813         write_unlock_irq(&tasklist_lock);
814         BUG_ON(!list_empty(&father->children));
815         BUG_ON(!list_empty(&father->ptrace_children));
816
817         list_for_each_entry_safe(p, n, &ptrace_dead, ptrace_list) {
818                 list_del_init(&p->ptrace_list);
819                 release_task(p);
820         }
821
822 }
823
824 /*
825  * Send signals to all our closest relatives so that they know
826  * to properly mourn us..
827  */
828 static void exit_notify(struct task_struct *tsk, int group_dead)
829 {
830         int state;
831
832         /*
833          * This does two things:
834          *
835          * A.  Make init inherit all the child processes
836          * B.  Check to see if any process groups have become orphaned
837          *      as a result of our exiting, and if they have any stopped
838          *      jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
839          */
840         forget_original_parent(tsk);
841         exit_task_namespaces(tsk);
842
843         write_lock_irq(&tasklist_lock);
844         if (group_dead)
845                 kill_orphaned_pgrp(tsk->group_leader, NULL);
846
847         /* Let father know we died
848          *
849          * Thread signals are configurable, but you aren't going to use
850          * that to send signals to arbitary processes.
851          * That stops right now.
852          *
853          * If the parent exec id doesn't match the exec id we saved
854          * when we started then we know the parent has changed security
855          * domain.
856          *
857          * If our self_exec id doesn't match our parent_exec_id then
858          * we have changed execution domain as these two values started
859          * the same after a fork.
860          */
861         if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
862             (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
863              tsk->self_exec_id != tsk->parent_exec_id) &&
864             !capable(CAP_KILL))
865                 tsk->exit_signal = SIGCHLD;
866
867         /* If something other than our normal parent is ptracing us, then
868          * send it a SIGCHLD instead of honoring exit_signal.  exit_signal
869          * only has special meaning to our real parent.
870          */
871         if (!task_detached(tsk) && thread_group_empty(tsk)) {
872                 int signal = ptrace_reparented(tsk) ?
873                                 SIGCHLD : tsk->exit_signal;
874                 do_notify_parent(tsk, signal);
875         } else if (tsk->ptrace) {
876                 do_notify_parent(tsk, SIGCHLD);
877         }
878
879         state = EXIT_ZOMBIE;
880         if (task_detached(tsk) && likely(!tsk->ptrace))
881                 state = EXIT_DEAD;
882         tsk->exit_state = state;
883
884         /* mt-exec, de_thread() is waiting for us */
885         if (thread_group_leader(tsk) &&
886             tsk->signal->notify_count < 0 &&
887             tsk->signal->group_exit_task)
888                 wake_up_process(tsk->signal->group_exit_task);
889
890         write_unlock_irq(&tasklist_lock);
891
892         /* If the process is dead, release it - nobody will wait for it */
893         if (state == EXIT_DEAD)
894                 release_task(tsk);
895 }
896
897 #ifdef CONFIG_DEBUG_STACK_USAGE
898 static void check_stack_usage(void)
899 {
900         static DEFINE_SPINLOCK(low_water_lock);
901         static int lowest_to_date = THREAD_SIZE;
902         unsigned long free;
903
904         free = stack_not_used(current);
905
906         if (free >= lowest_to_date)
907                 return;
908
909         spin_lock(&low_water_lock);
910         if (free < lowest_to_date) {
911                 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
912                                 "left\n",
913                                 current->comm, free);
914                 lowest_to_date = free;
915         }
916         spin_unlock(&low_water_lock);
917 }
918 #else
919 static inline void check_stack_usage(void) {}
920 #endif
921
922 static inline void exit_child_reaper(struct task_struct *tsk)
923 {
924         if (likely(tsk->group_leader != task_child_reaper(tsk)))
925                 return;
926
927         if (tsk->nsproxy->pid_ns == &init_pid_ns)
928                 panic("Attempted to kill init!");
929
930         /*
931          * @tsk is the last thread in the 'cgroup-init' and is exiting.
932          * Terminate all remaining processes in the namespace and reap them
933          * before exiting @tsk.
934          *
935          * Note that @tsk (last thread of cgroup-init) may not necessarily
936          * be the child-reaper (i.e main thread of cgroup-init) of the
937          * namespace i.e the child_reaper may have already exited.
938          *
939          * Even after a child_reaper exits, we let it inherit orphaned children,
940          * because, pid_ns->child_reaper remains valid as long as there is
941          * at least one living sub-thread in the cgroup init.
942
943          * This living sub-thread of the cgroup-init will be notified when
944          * a child inherited by the 'child-reaper' exits (do_notify_parent()
945          * uses __group_send_sig_info()). Further, when reaping child processes,
946          * do_wait() iterates over children of all living sub threads.
947
948          * i.e even though 'child_reaper' thread is listed as the parent of the
949          * orphaned children, any living sub-thread in the cgroup-init can
950          * perform the role of the child_reaper.
951          */
952         zap_pid_ns_processes(tsk->nsproxy->pid_ns);
953 }
954
955 NORET_TYPE void do_exit(long code)
956 {
957         struct task_struct *tsk = current;
958         int group_dead;
959
960         profile_task_exit(tsk);
961
962         WARN_ON(atomic_read(&tsk->fs_excl));
963
964         if (unlikely(in_interrupt()))
965                 panic("Aiee, killing interrupt handler!");
966         if (unlikely(!tsk->pid))
967                 panic("Attempted to kill the idle task!");
968
969         if (unlikely(current->ptrace & PT_TRACE_EXIT)) {
970                 current->ptrace_message = code;
971                 ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP);
972         }
973
974         /*
975          * We're taking recursive faults here in do_exit. Safest is to just
976          * leave this task alone and wait for reboot.
977          */
978         if (unlikely(tsk->flags & PF_EXITING)) {
979                 printk(KERN_ALERT
980                         "Fixing recursive fault but reboot is needed!\n");
981                 /*
982                  * We can do this unlocked here. The futex code uses
983                  * this flag just to verify whether the pi state
984                  * cleanup has been done or not. In the worst case it
985                  * loops once more. We pretend that the cleanup was
986                  * done as there is no way to return. Either the
987                  * OWNER_DIED bit is set by now or we push the blocked
988                  * task into the wait for ever nirwana as well.
989                  */
990                 tsk->flags |= PF_EXITPIDONE;
991                 if (tsk->io_context)
992                         exit_io_context();
993                 set_current_state(TASK_UNINTERRUPTIBLE);
994                 schedule();
995         }
996
997         exit_signals(tsk);  /* sets PF_EXITING */
998         /*
999          * tsk->flags are checked in the futex code to protect against
1000          * an exiting task cleaning up the robust pi futexes.
1001          */
1002         smp_mb();
1003         spin_unlock_wait(&tsk->pi_lock);
1004
1005         if (unlikely(in_atomic()))
1006                 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
1007                                 current->comm, task_pid_nr(current),
1008                                 preempt_count());
1009
1010         acct_update_integrals(tsk);
1011         if (tsk->mm) {
1012                 update_hiwater_rss(tsk->mm);
1013                 update_hiwater_vm(tsk->mm);
1014         }
1015         group_dead = atomic_dec_and_test(&tsk->signal->live);
1016         if (group_dead) {
1017                 exit_child_reaper(tsk);
1018                 hrtimer_cancel(&tsk->signal->real_timer);
1019                 exit_itimers(tsk->signal);
1020         }
1021         acct_collect(code, group_dead);
1022 #ifdef CONFIG_FUTEX
1023         if (unlikely(tsk->robust_list))
1024                 exit_robust_list(tsk);
1025 #ifdef CONFIG_COMPAT
1026         if (unlikely(tsk->compat_robust_list))
1027                 compat_exit_robust_list(tsk);
1028 #endif
1029 #endif
1030         if (group_dead)
1031                 tty_audit_exit();
1032         if (unlikely(tsk->audit_context))
1033                 audit_free(tsk);
1034
1035         tsk->exit_code = code;
1036         taskstats_exit(tsk, group_dead);
1037
1038         exit_mm(tsk);
1039
1040         if (group_dead)
1041                 acct_process();
1042         exit_sem(tsk);
1043         exit_files(tsk);
1044         exit_fs(tsk);
1045         check_stack_usage();
1046         exit_thread();
1047         cgroup_exit(tsk, 1);
1048         exit_keys(tsk);
1049
1050         if (group_dead && tsk->signal->leader)
1051                 disassociate_ctty(1);
1052
1053         module_put(task_thread_info(tsk)->exec_domain->module);
1054         if (tsk->binfmt)
1055                 module_put(tsk->binfmt->module);
1056
1057         proc_exit_connector(tsk);
1058         exit_notify(tsk, group_dead);
1059 #ifdef CONFIG_NUMA
1060         mpol_put(tsk->mempolicy);
1061         tsk->mempolicy = NULL;
1062 #endif
1063 #ifdef CONFIG_FUTEX
1064         /*
1065          * This must happen late, after the PID is not
1066          * hashed anymore:
1067          */
1068         if (unlikely(!list_empty(&tsk->pi_state_list)))
1069                 exit_pi_state_list(tsk);
1070         if (unlikely(current->pi_state_cache))
1071                 kfree(current->pi_state_cache);
1072 #endif
1073         /*
1074          * Make sure we are holding no locks:
1075          */
1076         debug_check_no_locks_held(tsk);
1077         /*
1078          * We can do this unlocked here. The futex code uses this flag
1079          * just to verify whether the pi state cleanup has been done
1080          * or not. In the worst case it loops once more.
1081          */
1082         tsk->flags |= PF_EXITPIDONE;
1083
1084         if (tsk->io_context)
1085                 exit_io_context();
1086
1087         if (tsk->splice_pipe)
1088                 __free_pipe_info(tsk->splice_pipe);
1089
1090         preempt_disable();
1091         /* causes final put_task_struct in finish_task_switch(). */
1092         tsk->state = TASK_DEAD;
1093
1094         schedule();
1095         BUG();
1096         /* Avoid "noreturn function does return".  */
1097         for (;;)
1098                 cpu_relax();    /* For when BUG is null */
1099 }
1100
1101 EXPORT_SYMBOL_GPL(do_exit);
1102
1103 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1104 {
1105         if (comp)
1106                 complete(comp);
1107
1108         do_exit(code);
1109 }
1110
1111 EXPORT_SYMBOL(complete_and_exit);
1112
1113 asmlinkage long sys_exit(int error_code)
1114 {
1115         do_exit((error_code&0xff)<<8);
1116 }
1117
1118 /*
1119  * Take down every thread in the group.  This is called by fatal signals
1120  * as well as by sys_exit_group (below).
1121  */
1122 NORET_TYPE void
1123 do_group_exit(int exit_code)
1124 {
1125         struct signal_struct *sig = current->signal;
1126
1127         BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1128
1129         if (signal_group_exit(sig))
1130                 exit_code = sig->group_exit_code;
1131         else if (!thread_group_empty(current)) {
1132                 struct sighand_struct *const sighand = current->sighand;
1133                 spin_lock_irq(&sighand->siglock);
1134                 if (signal_group_exit(sig))
1135                         /* Another thread got here before we took the lock.  */
1136                         exit_code = sig->group_exit_code;
1137                 else {
1138                         sig->group_exit_code = exit_code;
1139                         sig->flags = SIGNAL_GROUP_EXIT;
1140                         zap_other_threads(current);
1141                 }
1142                 spin_unlock_irq(&sighand->siglock);
1143         }
1144
1145         do_exit(exit_code);
1146         /* NOTREACHED */
1147 }
1148
1149 /*
1150  * this kills every thread in the thread group. Note that any externally
1151  * wait4()-ing process will get the correct exit code - even if this
1152  * thread is not the thread group leader.
1153  */
1154 asmlinkage void sys_exit_group(int error_code)
1155 {
1156         do_group_exit((error_code & 0xff) << 8);
1157 }
1158
1159 static struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1160 {
1161         struct pid *pid = NULL;
1162         if (type == PIDTYPE_PID)
1163                 pid = task->pids[type].pid;
1164         else if (type < PIDTYPE_MAX)
1165                 pid = task->group_leader->pids[type].pid;
1166         return pid;
1167 }
1168
1169 static int eligible_child(enum pid_type type, struct pid *pid, int options,
1170                           struct task_struct *p)
1171 {
1172         int err;
1173
1174         if (type < PIDTYPE_MAX) {
1175                 if (task_pid_type(p, type) != pid)
1176                         return 0;
1177         }
1178
1179         /*
1180          * Do not consider detached threads that are
1181          * not ptraced:
1182          */
1183         if (task_detached(p) && !p->ptrace)
1184                 return 0;
1185
1186         /* Wait for all children (clone and not) if __WALL is set;
1187          * otherwise, wait for clone children *only* if __WCLONE is
1188          * set; otherwise, wait for non-clone children *only*.  (Note:
1189          * A "clone" child here is one that reports to its parent
1190          * using a signal other than SIGCHLD.) */
1191         if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1192             && !(options & __WALL))
1193                 return 0;
1194
1195         err = security_task_wait(p);
1196         if (likely(!err))
1197                 return 1;
1198
1199         if (type != PIDTYPE_PID)
1200                 return 0;
1201         /* This child was explicitly requested, abort */
1202         read_unlock(&tasklist_lock);
1203         return err;
1204 }
1205
1206 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1207                                int why, int status,
1208                                struct siginfo __user *infop,
1209                                struct rusage __user *rusagep)
1210 {
1211         int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1212
1213         put_task_struct(p);
1214         if (!retval)
1215                 retval = put_user(SIGCHLD, &infop->si_signo);
1216         if (!retval)
1217                 retval = put_user(0, &infop->si_errno);
1218         if (!retval)
1219                 retval = put_user((short)why, &infop->si_code);
1220         if (!retval)
1221                 retval = put_user(pid, &infop->si_pid);
1222         if (!retval)
1223                 retval = put_user(uid, &infop->si_uid);
1224         if (!retval)
1225                 retval = put_user(status, &infop->si_status);
1226         if (!retval)
1227                 retval = pid;
1228         return retval;
1229 }
1230
1231 /*
1232  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1233  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1234  * the lock and this task is uninteresting.  If we return nonzero, we have
1235  * released the lock and the system call should return.
1236  */
1237 static int wait_task_zombie(struct task_struct *p, int noreap,
1238                             struct siginfo __user *infop,
1239                             int __user *stat_addr, struct rusage __user *ru)
1240 {
1241         unsigned long state;
1242         int retval, status, traced;
1243         pid_t pid = task_pid_vnr(p);
1244
1245         if (unlikely(noreap)) {
1246                 uid_t uid = p->uid;
1247                 int exit_code = p->exit_code;
1248                 int why, status;
1249
1250                 get_task_struct(p);
1251                 read_unlock(&tasklist_lock);
1252                 if ((exit_code & 0x7f) == 0) {
1253                         why = CLD_EXITED;
1254                         status = exit_code >> 8;
1255                 } else {
1256                         why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1257                         status = exit_code & 0x7f;
1258                 }
1259                 return wait_noreap_copyout(p, pid, uid, why,
1260                                            status, infop, ru);
1261         }
1262
1263         /*
1264          * Try to move the task's state to DEAD
1265          * only one thread is allowed to do this:
1266          */
1267         state = xchg(&p->exit_state, EXIT_DEAD);
1268         if (state != EXIT_ZOMBIE) {
1269                 BUG_ON(state != EXIT_DEAD);
1270                 return 0;
1271         }
1272
1273         traced = ptrace_reparented(p);
1274
1275         if (likely(!traced)) {
1276                 struct signal_struct *psig;
1277                 struct signal_struct *sig;
1278
1279                 /*
1280                  * The resource counters for the group leader are in its
1281                  * own task_struct.  Those for dead threads in the group
1282                  * are in its signal_struct, as are those for the child
1283                  * processes it has previously reaped.  All these
1284                  * accumulate in the parent's signal_struct c* fields.
1285                  *
1286                  * We don't bother to take a lock here to protect these
1287                  * p->signal fields, because they are only touched by
1288                  * __exit_signal, which runs with tasklist_lock
1289                  * write-locked anyway, and so is excluded here.  We do
1290                  * need to protect the access to p->parent->signal fields,
1291                  * as other threads in the parent group can be right
1292                  * here reaping other children at the same time.
1293                  */
1294                 spin_lock_irq(&p->parent->sighand->siglock);
1295                 psig = p->parent->signal;
1296                 sig = p->signal;
1297                 psig->cutime =
1298                         cputime_add(psig->cutime,
1299                         cputime_add(p->utime,
1300                         cputime_add(sig->utime,
1301                                     sig->cutime)));
1302                 psig->cstime =
1303                         cputime_add(psig->cstime,
1304                         cputime_add(p->stime,
1305                         cputime_add(sig->stime,
1306                                     sig->cstime)));
1307                 psig->cgtime =
1308                         cputime_add(psig->cgtime,
1309                         cputime_add(p->gtime,
1310                         cputime_add(sig->gtime,
1311                                     sig->cgtime)));
1312                 psig->cmin_flt +=
1313                         p->min_flt + sig->min_flt + sig->cmin_flt;
1314                 psig->cmaj_flt +=
1315                         p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1316                 psig->cnvcsw +=
1317                         p->nvcsw + sig->nvcsw + sig->cnvcsw;
1318                 psig->cnivcsw +=
1319                         p->nivcsw + sig->nivcsw + sig->cnivcsw;
1320                 psig->cinblock +=
1321                         task_io_get_inblock(p) +
1322                         sig->inblock + sig->cinblock;
1323                 psig->coublock +=
1324                         task_io_get_oublock(p) +
1325                         sig->oublock + sig->coublock;
1326                 spin_unlock_irq(&p->parent->sighand->siglock);
1327         }
1328
1329         /*
1330          * Now we are sure this task is interesting, and no other
1331          * thread can reap it because we set its state to EXIT_DEAD.
1332          */
1333         read_unlock(&tasklist_lock);
1334
1335         retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1336         status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1337                 ? p->signal->group_exit_code : p->exit_code;
1338         if (!retval && stat_addr)
1339                 retval = put_user(status, stat_addr);
1340         if (!retval && infop)
1341                 retval = put_user(SIGCHLD, &infop->si_signo);
1342         if (!retval && infop)
1343                 retval = put_user(0, &infop->si_errno);
1344         if (!retval && infop) {
1345                 int why;
1346
1347                 if ((status & 0x7f) == 0) {
1348                         why = CLD_EXITED;
1349                         status >>= 8;
1350                 } else {
1351                         why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1352                         status &= 0x7f;
1353                 }
1354                 retval = put_user((short)why, &infop->si_code);
1355                 if (!retval)
1356                         retval = put_user(status, &infop->si_status);
1357         }
1358         if (!retval && infop)
1359                 retval = put_user(pid, &infop->si_pid);
1360         if (!retval && infop)
1361                 retval = put_user(p->uid, &infop->si_uid);
1362         if (!retval)
1363                 retval = pid;
1364
1365         if (traced) {
1366                 write_lock_irq(&tasklist_lock);
1367                 /* We dropped tasklist, ptracer could die and untrace */
1368                 ptrace_unlink(p);
1369                 /*
1370                  * If this is not a detached task, notify the parent.
1371                  * If it's still not detached after that, don't release
1372                  * it now.
1373                  */
1374                 if (!task_detached(p)) {
1375                         do_notify_parent(p, p->exit_signal);
1376                         if (!task_detached(p)) {
1377                                 p->exit_state = EXIT_ZOMBIE;
1378                                 p = NULL;
1379                         }
1380                 }
1381                 write_unlock_irq(&tasklist_lock);
1382         }
1383         if (p != NULL)
1384                 release_task(p);
1385
1386         return retval;
1387 }
1388
1389 /*
1390  * Handle sys_wait4 work for one task in state TASK_STOPPED.  We hold
1391  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1392  * the lock and this task is uninteresting.  If we return nonzero, we have
1393  * released the lock and the system call should return.
1394  */
1395 static int wait_task_stopped(struct task_struct *p,
1396                              int noreap, struct siginfo __user *infop,
1397                              int __user *stat_addr, struct rusage __user *ru)
1398 {
1399         int retval, exit_code, why;
1400         uid_t uid = 0; /* unneeded, required by compiler */
1401         pid_t pid;
1402
1403         exit_code = 0;
1404         spin_lock_irq(&p->sighand->siglock);
1405
1406         if (unlikely(!task_is_stopped_or_traced(p)))
1407                 goto unlock_sig;
1408
1409         if (!(p->ptrace & PT_PTRACED) && p->signal->group_stop_count > 0)
1410                 /*
1411                  * A group stop is in progress and this is the group leader.
1412                  * We won't report until all threads have stopped.
1413                  */
1414                 goto unlock_sig;
1415
1416         exit_code = p->exit_code;
1417         if (!exit_code)
1418                 goto unlock_sig;
1419
1420         if (!noreap)
1421                 p->exit_code = 0;
1422
1423         uid = p->uid;
1424 unlock_sig:
1425         spin_unlock_irq(&p->sighand->siglock);
1426         if (!exit_code)
1427                 return 0;
1428
1429         /*
1430          * Now we are pretty sure this task is interesting.
1431          * Make sure it doesn't get reaped out from under us while we
1432          * give up the lock and then examine it below.  We don't want to
1433          * keep holding onto the tasklist_lock while we call getrusage and
1434          * possibly take page faults for user memory.
1435          */
1436         get_task_struct(p);
1437         pid = task_pid_vnr(p);
1438         why = (p->ptrace & PT_PTRACED) ? CLD_TRAPPED : CLD_STOPPED;
1439         read_unlock(&tasklist_lock);
1440
1441         if (unlikely(noreap))
1442                 return wait_noreap_copyout(p, pid, uid,
1443                                            why, exit_code,
1444                                            infop, ru);
1445
1446         retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1447         if (!retval && stat_addr)
1448                 retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1449         if (!retval && infop)
1450                 retval = put_user(SIGCHLD, &infop->si_signo);
1451         if (!retval && infop)
1452                 retval = put_user(0, &infop->si_errno);
1453         if (!retval && infop)
1454                 retval = put_user((short)why, &infop->si_code);
1455         if (!retval && infop)
1456                 retval = put_user(exit_code, &infop->si_status);
1457         if (!retval && infop)
1458                 retval = put_user(pid, &infop->si_pid);
1459         if (!retval && infop)
1460                 retval = put_user(uid, &infop->si_uid);
1461         if (!retval)
1462                 retval = pid;
1463         put_task_struct(p);
1464
1465         BUG_ON(!retval);
1466         return retval;
1467 }
1468
1469 /*
1470  * Handle do_wait work for one task in a live, non-stopped state.
1471  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1472  * the lock and this task is uninteresting.  If we return nonzero, we have
1473  * released the lock and the system call should return.
1474  */
1475 static int wait_task_continued(struct task_struct *p, int noreap,
1476                                struct siginfo __user *infop,
1477                                int __user *stat_addr, struct rusage __user *ru)
1478 {
1479         int retval;
1480         pid_t pid;
1481         uid_t uid;
1482
1483         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1484                 return 0;
1485
1486         spin_lock_irq(&p->sighand->siglock);
1487         /* Re-check with the lock held.  */
1488         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1489                 spin_unlock_irq(&p->sighand->siglock);
1490                 return 0;
1491         }
1492         if (!noreap)
1493                 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1494         spin_unlock_irq(&p->sighand->siglock);
1495
1496         pid = task_pid_vnr(p);
1497         uid = p->uid;
1498         get_task_struct(p);
1499         read_unlock(&tasklist_lock);
1500
1501         if (!infop) {
1502                 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1503                 put_task_struct(p);
1504                 if (!retval && stat_addr)
1505                         retval = put_user(0xffff, stat_addr);
1506                 if (!retval)
1507                         retval = pid;
1508         } else {
1509                 retval = wait_noreap_copyout(p, pid, uid,
1510                                              CLD_CONTINUED, SIGCONT,
1511                                              infop, ru);
1512                 BUG_ON(retval == 0);
1513         }
1514
1515         return retval;
1516 }
1517
1518 static long do_wait(enum pid_type type, struct pid *pid, int options,
1519                     struct siginfo __user *infop, int __user *stat_addr,
1520                     struct rusage __user *ru)
1521 {
1522         DECLARE_WAITQUEUE(wait, current);
1523         struct task_struct *tsk;
1524         int flag, retval;
1525
1526         add_wait_queue(&current->signal->wait_chldexit,&wait);
1527 repeat:
1528         /* If there is nothing that can match our critier just get out */
1529         retval = -ECHILD;
1530         if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type])))
1531                 goto end;
1532
1533         /*
1534          * We will set this flag if we see any child that might later
1535          * match our criteria, even if we are not able to reap it yet.
1536          */
1537         flag = retval = 0;
1538         current->state = TASK_INTERRUPTIBLE;
1539         read_lock(&tasklist_lock);
1540         tsk = current;
1541         do {
1542                 struct task_struct *p;
1543
1544                 list_for_each_entry(p, &tsk->children, sibling) {
1545                         int ret = eligible_child(type, pid, options, p);
1546                         if (!ret)
1547                                 continue;
1548
1549                         if (unlikely(ret < 0)) {
1550                                 retval = ret;
1551                         } else if (task_is_stopped_or_traced(p)) {
1552                                 /*
1553                                  * It's stopped now, so it might later
1554                                  * continue, exit, or stop again.
1555                                  */
1556                                 flag = 1;
1557                                 if (!(p->ptrace & PT_PTRACED) &&
1558                                     !(options & WUNTRACED))
1559                                         continue;
1560
1561                                 retval = wait_task_stopped(p,
1562                                                 (options & WNOWAIT), infop,
1563                                                 stat_addr, ru);
1564                         } else if (p->exit_state == EXIT_ZOMBIE &&
1565                                         !delay_group_leader(p)) {
1566                                 /*
1567                                  * We don't reap group leaders with subthreads.
1568                                  */
1569                                 if (!likely(options & WEXITED))
1570                                         continue;
1571                                 retval = wait_task_zombie(p,
1572                                                 (options & WNOWAIT), infop,
1573                                                 stat_addr, ru);
1574                         } else if (p->exit_state != EXIT_DEAD) {
1575                                 /*
1576                                  * It's running now, so it might later
1577                                  * exit, stop, or stop and then continue.
1578                                  */
1579                                 flag = 1;
1580                                 if (!unlikely(options & WCONTINUED))
1581                                         continue;
1582                                 retval = wait_task_continued(p,
1583                                                 (options & WNOWAIT), infop,
1584                                                 stat_addr, ru);
1585                         }
1586                         if (retval != 0) /* tasklist_lock released */
1587                                 goto end;
1588                 }
1589                 if (!flag) {
1590                         list_for_each_entry(p, &tsk->ptrace_children,
1591                                                                 ptrace_list) {
1592                                 flag = eligible_child(type, pid, options, p);
1593                                 if (!flag)
1594                                         continue;
1595                                 if (likely(flag > 0))
1596                                         break;
1597                                 retval = flag;
1598                                 goto end;
1599                         }
1600                 }
1601                 if (options & __WNOTHREAD)
1602                         break;
1603                 tsk = next_thread(tsk);
1604                 BUG_ON(tsk->signal != current->signal);
1605         } while (tsk != current);
1606         read_unlock(&tasklist_lock);
1607
1608         if (flag) {
1609                 if (options & WNOHANG)
1610                         goto end;
1611                 retval = -ERESTARTSYS;
1612                 if (signal_pending(current))
1613                         goto end;
1614                 schedule();
1615                 goto repeat;
1616         }
1617         retval = -ECHILD;
1618 end:
1619         current->state = TASK_RUNNING;
1620         remove_wait_queue(&current->signal->wait_chldexit,&wait);
1621         if (infop) {
1622                 if (retval > 0)
1623                         retval = 0;
1624                 else {
1625                         /*
1626                          * For a WNOHANG return, clear out all the fields
1627                          * we would set so the user can easily tell the
1628                          * difference.
1629                          */
1630                         if (!retval)
1631                                 retval = put_user(0, &infop->si_signo);
1632                         if (!retval)
1633                                 retval = put_user(0, &infop->si_errno);
1634                         if (!retval)
1635                                 retval = put_user(0, &infop->si_code);
1636                         if (!retval)
1637                                 retval = put_user(0, &infop->si_pid);
1638                         if (!retval)
1639                                 retval = put_user(0, &infop->si_uid);
1640                         if (!retval)
1641                                 retval = put_user(0, &infop->si_status);
1642                 }
1643         }
1644         return retval;
1645 }
1646
1647 asmlinkage long sys_waitid(int which, pid_t upid,
1648                            struct siginfo __user *infop, int options,
1649                            struct rusage __user *ru)
1650 {
1651         struct pid *pid = NULL;
1652         enum pid_type type;
1653         long ret;
1654
1655         if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1656                 return -EINVAL;
1657         if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1658                 return -EINVAL;
1659
1660         switch (which) {
1661         case P_ALL:
1662                 type = PIDTYPE_MAX;
1663                 break;
1664         case P_PID:
1665                 type = PIDTYPE_PID;
1666                 if (upid <= 0)
1667                         return -EINVAL;
1668                 break;
1669         case P_PGID:
1670                 type = PIDTYPE_PGID;
1671                 if (upid <= 0)
1672                         return -EINVAL;
1673                 break;
1674         default:
1675                 return -EINVAL;
1676         }
1677
1678         if (type < PIDTYPE_MAX)
1679                 pid = find_get_pid(upid);
1680         ret = do_wait(type, pid, options, infop, NULL, ru);
1681         put_pid(pid);
1682
1683         /* avoid REGPARM breakage on x86: */
1684         asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1685         return ret;
1686 }
1687
1688 asmlinkage long sys_wait4(pid_t upid, int __user *stat_addr,
1689                           int options, struct rusage __user *ru)
1690 {
1691         struct pid *pid = NULL;
1692         enum pid_type type;
1693         long ret;
1694
1695         if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1696                         __WNOTHREAD|__WCLONE|__WALL))
1697                 return -EINVAL;
1698
1699         if (upid == -1)
1700                 type = PIDTYPE_MAX;
1701         else if (upid < 0) {
1702                 type = PIDTYPE_PGID;
1703                 pid = find_get_pid(-upid);
1704         } else if (upid == 0) {
1705                 type = PIDTYPE_PGID;
1706                 pid = get_pid(task_pgrp(current));
1707         } else /* upid > 0 */ {
1708                 type = PIDTYPE_PID;
1709                 pid = find_get_pid(upid);
1710         }
1711
1712         ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru);
1713         put_pid(pid);
1714
1715         /* avoid REGPARM breakage on x86: */
1716         asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1717         return ret;
1718 }
1719
1720 #ifdef __ARCH_WANT_SYS_WAITPID
1721
1722 /*
1723  * sys_waitpid() remains for compatibility. waitpid() should be
1724  * implemented by calling sys_wait4() from libc.a.
1725  */
1726 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
1727 {
1728         return sys_wait4(pid, stat_addr, options, NULL);
1729 }
1730
1731 #endif