]> nv-tegra.nvidia Code Review - linux-2.6.git/blob - kernel/exit.c
Create Documentation/security/,
[linux-2.6.git] / kernel / exit.c
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/binfmts.h>
24 #include <linux/nsproxy.h>
25 #include <linux/pid_namespace.h>
26 #include <linux/ptrace.h>
27 #include <linux/profile.h>
28 #include <linux/mount.h>
29 #include <linux/proc_fs.h>
30 #include <linux/kthread.h>
31 #include <linux/mempolicy.h>
32 #include <linux/taskstats_kern.h>
33 #include <linux/delayacct.h>
34 #include <linux/freezer.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53 #include <linux/oom.h>
54
55 #include <asm/uaccess.h>
56 #include <asm/unistd.h>
57 #include <asm/pgtable.h>
58 #include <asm/mmu_context.h>
59
60 static void exit_mm(struct task_struct * tsk);
61
62 static void __unhash_process(struct task_struct *p, bool group_dead)
63 {
64         nr_threads--;
65         detach_pid(p, PIDTYPE_PID);
66         if (group_dead) {
67                 detach_pid(p, PIDTYPE_PGID);
68                 detach_pid(p, PIDTYPE_SID);
69
70                 list_del_rcu(&p->tasks);
71                 list_del_init(&p->sibling);
72                 __this_cpu_dec(process_counts);
73         }
74         list_del_rcu(&p->thread_group);
75 }
76
77 /*
78  * This function expects the tasklist_lock write-locked.
79  */
80 static void __exit_signal(struct task_struct *tsk)
81 {
82         struct signal_struct *sig = tsk->signal;
83         bool group_dead = thread_group_leader(tsk);
84         struct sighand_struct *sighand;
85         struct tty_struct *uninitialized_var(tty);
86
87         sighand = rcu_dereference_check(tsk->sighand,
88                                         rcu_read_lock_held() ||
89                                         lockdep_tasklist_lock_is_held());
90         spin_lock(&sighand->siglock);
91
92         posix_cpu_timers_exit(tsk);
93         if (group_dead) {
94                 posix_cpu_timers_exit_group(tsk);
95                 tty = sig->tty;
96                 sig->tty = NULL;
97         } else {
98                 /*
99                  * This can only happen if the caller is de_thread().
100                  * FIXME: this is the temporary hack, we should teach
101                  * posix-cpu-timers to handle this case correctly.
102                  */
103                 if (unlikely(has_group_leader_pid(tsk)))
104                         posix_cpu_timers_exit_group(tsk);
105
106                 /*
107                  * If there is any task waiting for the group exit
108                  * then notify it:
109                  */
110                 if (sig->notify_count > 0 && !--sig->notify_count)
111                         wake_up_process(sig->group_exit_task);
112
113                 if (tsk == sig->curr_target)
114                         sig->curr_target = next_thread(tsk);
115                 /*
116                  * Accumulate here the counters for all threads but the
117                  * group leader as they die, so they can be added into
118                  * the process-wide totals when those are taken.
119                  * The group leader stays around as a zombie as long
120                  * as there are other threads.  When it gets reaped,
121                  * the exit.c code will add its counts into these totals.
122                  * We won't ever get here for the group leader, since it
123                  * will have been the last reference on the signal_struct.
124                  */
125                 sig->utime = cputime_add(sig->utime, tsk->utime);
126                 sig->stime = cputime_add(sig->stime, tsk->stime);
127                 sig->gtime = cputime_add(sig->gtime, tsk->gtime);
128                 sig->min_flt += tsk->min_flt;
129                 sig->maj_flt += tsk->maj_flt;
130                 sig->nvcsw += tsk->nvcsw;
131                 sig->nivcsw += tsk->nivcsw;
132                 sig->inblock += task_io_get_inblock(tsk);
133                 sig->oublock += task_io_get_oublock(tsk);
134                 task_io_accounting_add(&sig->ioac, &tsk->ioac);
135                 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
136         }
137
138         sig->nr_threads--;
139         __unhash_process(tsk, group_dead);
140
141         /*
142          * Do this under ->siglock, we can race with another thread
143          * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
144          */
145         flush_sigqueue(&tsk->pending);
146         tsk->sighand = NULL;
147         spin_unlock(&sighand->siglock);
148
149         __cleanup_sighand(sighand);
150         clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
151         if (group_dead) {
152                 flush_sigqueue(&sig->shared_pending);
153                 tty_kref_put(tty);
154         }
155 }
156
157 static void delayed_put_task_struct(struct rcu_head *rhp)
158 {
159         struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
160
161         perf_event_delayed_put(tsk);
162         trace_sched_process_free(tsk);
163         put_task_struct(tsk);
164 }
165
166
167 void release_task(struct task_struct * p)
168 {
169         struct task_struct *leader;
170         int zap_leader;
171 repeat:
172         tracehook_prepare_release_task(p);
173         /* don't need to get the RCU readlock here - the process is dead and
174          * can't be modifying its own credentials. But shut RCU-lockdep up */
175         rcu_read_lock();
176         atomic_dec(&__task_cred(p)->user->processes);
177         rcu_read_unlock();
178
179         proc_flush_task(p);
180
181         write_lock_irq(&tasklist_lock);
182         tracehook_finish_release_task(p);
183         __exit_signal(p);
184
185         /*
186          * If we are the last non-leader member of the thread
187          * group, and the leader is zombie, then notify the
188          * group leader's parent process. (if it wants notification.)
189          */
190         zap_leader = 0;
191         leader = p->group_leader;
192         if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
193                 BUG_ON(task_detached(leader));
194                 do_notify_parent(leader, leader->exit_signal);
195                 /*
196                  * If we were the last child thread and the leader has
197                  * exited already, and the leader's parent ignores SIGCHLD,
198                  * then we are the one who should release the leader.
199                  *
200                  * do_notify_parent() will have marked it self-reaping in
201                  * that case.
202                  */
203                 zap_leader = task_detached(leader);
204
205                 /*
206                  * This maintains the invariant that release_task()
207                  * only runs on a task in EXIT_DEAD, just for sanity.
208                  */
209                 if (zap_leader)
210                         leader->exit_state = EXIT_DEAD;
211         }
212
213         write_unlock_irq(&tasklist_lock);
214         release_thread(p);
215         call_rcu(&p->rcu, delayed_put_task_struct);
216
217         p = leader;
218         if (unlikely(zap_leader))
219                 goto repeat;
220 }
221
222 /*
223  * This checks not only the pgrp, but falls back on the pid if no
224  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
225  * without this...
226  *
227  * The caller must hold rcu lock or the tasklist lock.
228  */
229 struct pid *session_of_pgrp(struct pid *pgrp)
230 {
231         struct task_struct *p;
232         struct pid *sid = NULL;
233
234         p = pid_task(pgrp, PIDTYPE_PGID);
235         if (p == NULL)
236                 p = pid_task(pgrp, PIDTYPE_PID);
237         if (p != NULL)
238                 sid = task_session(p);
239
240         return sid;
241 }
242
243 /*
244  * Determine if a process group is "orphaned", according to the POSIX
245  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
246  * by terminal-generated stop signals.  Newly orphaned process groups are
247  * to receive a SIGHUP and a SIGCONT.
248  *
249  * "I ask you, have you ever known what it is to be an orphan?"
250  */
251 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
252 {
253         struct task_struct *p;
254
255         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
256                 if ((p == ignored_task) ||
257                     (p->exit_state && thread_group_empty(p)) ||
258                     is_global_init(p->real_parent))
259                         continue;
260
261                 if (task_pgrp(p->real_parent) != pgrp &&
262                     task_session(p->real_parent) == task_session(p))
263                         return 0;
264         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
265
266         return 1;
267 }
268
269 int is_current_pgrp_orphaned(void)
270 {
271         int retval;
272
273         read_lock(&tasklist_lock);
274         retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
275         read_unlock(&tasklist_lock);
276
277         return retval;
278 }
279
280 static int has_stopped_jobs(struct pid *pgrp)
281 {
282         int retval = 0;
283         struct task_struct *p;
284
285         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
286                 if (!task_is_stopped(p))
287                         continue;
288                 retval = 1;
289                 break;
290         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
291         return retval;
292 }
293
294 /*
295  * Check to see if any process groups have become orphaned as
296  * a result of our exiting, and if they have any stopped jobs,
297  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
298  */
299 static void
300 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
301 {
302         struct pid *pgrp = task_pgrp(tsk);
303         struct task_struct *ignored_task = tsk;
304
305         if (!parent)
306                  /* exit: our father is in a different pgrp than
307                   * we are and we were the only connection outside.
308                   */
309                 parent = tsk->real_parent;
310         else
311                 /* reparent: our child is in a different pgrp than
312                  * we are, and it was the only connection outside.
313                  */
314                 ignored_task = NULL;
315
316         if (task_pgrp(parent) != pgrp &&
317             task_session(parent) == task_session(tsk) &&
318             will_become_orphaned_pgrp(pgrp, ignored_task) &&
319             has_stopped_jobs(pgrp)) {
320                 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
321                 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
322         }
323 }
324
325 /**
326  * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
327  *
328  * If a kernel thread is launched as a result of a system call, or if
329  * it ever exits, it should generally reparent itself to kthreadd so it
330  * isn't in the way of other processes and is correctly cleaned up on exit.
331  *
332  * The various task state such as scheduling policy and priority may have
333  * been inherited from a user process, so we reset them to sane values here.
334  *
335  * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
336  */
337 static void reparent_to_kthreadd(void)
338 {
339         write_lock_irq(&tasklist_lock);
340
341         ptrace_unlink(current);
342         /* Reparent to init */
343         current->real_parent = current->parent = kthreadd_task;
344         list_move_tail(&current->sibling, &current->real_parent->children);
345
346         /* Set the exit signal to SIGCHLD so we signal init on exit */
347         current->exit_signal = SIGCHLD;
348
349         if (task_nice(current) < 0)
350                 set_user_nice(current, 0);
351         /* cpus_allowed? */
352         /* rt_priority? */
353         /* signals? */
354         memcpy(current->signal->rlim, init_task.signal->rlim,
355                sizeof(current->signal->rlim));
356
357         atomic_inc(&init_cred.usage);
358         commit_creds(&init_cred);
359         write_unlock_irq(&tasklist_lock);
360 }
361
362 void __set_special_pids(struct pid *pid)
363 {
364         struct task_struct *curr = current->group_leader;
365
366         if (task_session(curr) != pid)
367                 change_pid(curr, PIDTYPE_SID, pid);
368
369         if (task_pgrp(curr) != pid)
370                 change_pid(curr, PIDTYPE_PGID, pid);
371 }
372
373 static void set_special_pids(struct pid *pid)
374 {
375         write_lock_irq(&tasklist_lock);
376         __set_special_pids(pid);
377         write_unlock_irq(&tasklist_lock);
378 }
379
380 /*
381  * Let kernel threads use this to say that they allow a certain signal.
382  * Must not be used if kthread was cloned with CLONE_SIGHAND.
383  */
384 int allow_signal(int sig)
385 {
386         if (!valid_signal(sig) || sig < 1)
387                 return -EINVAL;
388
389         spin_lock_irq(&current->sighand->siglock);
390         /* This is only needed for daemonize()'ed kthreads */
391         sigdelset(&current->blocked, sig);
392         /*
393          * Kernel threads handle their own signals. Let the signal code
394          * know it'll be handled, so that they don't get converted to
395          * SIGKILL or just silently dropped.
396          */
397         current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
398         recalc_sigpending();
399         spin_unlock_irq(&current->sighand->siglock);
400         return 0;
401 }
402
403 EXPORT_SYMBOL(allow_signal);
404
405 int disallow_signal(int sig)
406 {
407         if (!valid_signal(sig) || sig < 1)
408                 return -EINVAL;
409
410         spin_lock_irq(&current->sighand->siglock);
411         current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
412         recalc_sigpending();
413         spin_unlock_irq(&current->sighand->siglock);
414         return 0;
415 }
416
417 EXPORT_SYMBOL(disallow_signal);
418
419 /*
420  *      Put all the gunge required to become a kernel thread without
421  *      attached user resources in one place where it belongs.
422  */
423
424 void daemonize(const char *name, ...)
425 {
426         va_list args;
427         sigset_t blocked;
428
429         va_start(args, name);
430         vsnprintf(current->comm, sizeof(current->comm), name, args);
431         va_end(args);
432
433         /*
434          * If we were started as result of loading a module, close all of the
435          * user space pages.  We don't need them, and if we didn't close them
436          * they would be locked into memory.
437          */
438         exit_mm(current);
439         /*
440          * We don't want to have TIF_FREEZE set if the system-wide hibernation
441          * or suspend transition begins right now.
442          */
443         current->flags |= (PF_NOFREEZE | PF_KTHREAD);
444
445         if (current->nsproxy != &init_nsproxy) {
446                 get_nsproxy(&init_nsproxy);
447                 switch_task_namespaces(current, &init_nsproxy);
448         }
449         set_special_pids(&init_struct_pid);
450         proc_clear_tty(current);
451
452         /* Block and flush all signals */
453         sigfillset(&blocked);
454         sigprocmask(SIG_BLOCK, &blocked, NULL);
455         flush_signals(current);
456
457         /* Become as one with the init task */
458
459         daemonize_fs_struct();
460         exit_files(current);
461         current->files = init_task.files;
462         atomic_inc(&current->files->count);
463
464         reparent_to_kthreadd();
465 }
466
467 EXPORT_SYMBOL(daemonize);
468
469 static void close_files(struct files_struct * files)
470 {
471         int i, j;
472         struct fdtable *fdt;
473
474         j = 0;
475
476         /*
477          * It is safe to dereference the fd table without RCU or
478          * ->file_lock because this is the last reference to the
479          * files structure.  But use RCU to shut RCU-lockdep up.
480          */
481         rcu_read_lock();
482         fdt = files_fdtable(files);
483         rcu_read_unlock();
484         for (;;) {
485                 unsigned long set;
486                 i = j * __NFDBITS;
487                 if (i >= fdt->max_fds)
488                         break;
489                 set = fdt->open_fds->fds_bits[j++];
490                 while (set) {
491                         if (set & 1) {
492                                 struct file * file = xchg(&fdt->fd[i], NULL);
493                                 if (file) {
494                                         filp_close(file, files);
495                                         cond_resched();
496                                 }
497                         }
498                         i++;
499                         set >>= 1;
500                 }
501         }
502 }
503
504 struct files_struct *get_files_struct(struct task_struct *task)
505 {
506         struct files_struct *files;
507
508         task_lock(task);
509         files = task->files;
510         if (files)
511                 atomic_inc(&files->count);
512         task_unlock(task);
513
514         return files;
515 }
516
517 void put_files_struct(struct files_struct *files)
518 {
519         struct fdtable *fdt;
520
521         if (atomic_dec_and_test(&files->count)) {
522                 close_files(files);
523                 /*
524                  * Free the fd and fdset arrays if we expanded them.
525                  * If the fdtable was embedded, pass files for freeing
526                  * at the end of the RCU grace period. Otherwise,
527                  * you can free files immediately.
528                  */
529                 rcu_read_lock();
530                 fdt = files_fdtable(files);
531                 if (fdt != &files->fdtab)
532                         kmem_cache_free(files_cachep, files);
533                 free_fdtable(fdt);
534                 rcu_read_unlock();
535         }
536 }
537
538 void reset_files_struct(struct files_struct *files)
539 {
540         struct task_struct *tsk = current;
541         struct files_struct *old;
542
543         old = tsk->files;
544         task_lock(tsk);
545         tsk->files = files;
546         task_unlock(tsk);
547         put_files_struct(old);
548 }
549
550 void exit_files(struct task_struct *tsk)
551 {
552         struct files_struct * files = tsk->files;
553
554         if (files) {
555                 task_lock(tsk);
556                 tsk->files = NULL;
557                 task_unlock(tsk);
558                 put_files_struct(files);
559         }
560 }
561
562 #ifdef CONFIG_MM_OWNER
563 /*
564  * Task p is exiting and it owned mm, lets find a new owner for it
565  */
566 static inline int
567 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
568 {
569         /*
570          * If there are other users of the mm and the owner (us) is exiting
571          * we need to find a new owner to take on the responsibility.
572          */
573         if (atomic_read(&mm->mm_users) <= 1)
574                 return 0;
575         if (mm->owner != p)
576                 return 0;
577         return 1;
578 }
579
580 void mm_update_next_owner(struct mm_struct *mm)
581 {
582         struct task_struct *c, *g, *p = current;
583
584 retry:
585         if (!mm_need_new_owner(mm, p))
586                 return;
587
588         read_lock(&tasklist_lock);
589         /*
590          * Search in the children
591          */
592         list_for_each_entry(c, &p->children, sibling) {
593                 if (c->mm == mm)
594                         goto assign_new_owner;
595         }
596
597         /*
598          * Search in the siblings
599          */
600         list_for_each_entry(c, &p->real_parent->children, sibling) {
601                 if (c->mm == mm)
602                         goto assign_new_owner;
603         }
604
605         /*
606          * Search through everything else. We should not get
607          * here often
608          */
609         do_each_thread(g, c) {
610                 if (c->mm == mm)
611                         goto assign_new_owner;
612         } while_each_thread(g, c);
613
614         read_unlock(&tasklist_lock);
615         /*
616          * We found no owner yet mm_users > 1: this implies that we are
617          * most likely racing with swapoff (try_to_unuse()) or /proc or
618          * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
619          */
620         mm->owner = NULL;
621         return;
622
623 assign_new_owner:
624         BUG_ON(c == p);
625         get_task_struct(c);
626         /*
627          * The task_lock protects c->mm from changing.
628          * We always want mm->owner->mm == mm
629          */
630         task_lock(c);
631         /*
632          * Delay read_unlock() till we have the task_lock()
633          * to ensure that c does not slip away underneath us
634          */
635         read_unlock(&tasklist_lock);
636         if (c->mm != mm) {
637                 task_unlock(c);
638                 put_task_struct(c);
639                 goto retry;
640         }
641         mm->owner = c;
642         task_unlock(c);
643         put_task_struct(c);
644 }
645 #endif /* CONFIG_MM_OWNER */
646
647 /*
648  * Turn us into a lazy TLB process if we
649  * aren't already..
650  */
651 static void exit_mm(struct task_struct * tsk)
652 {
653         struct mm_struct *mm = tsk->mm;
654         struct core_state *core_state;
655
656         mm_release(tsk, mm);
657         if (!mm)
658                 return;
659         /*
660          * Serialize with any possible pending coredump.
661          * We must hold mmap_sem around checking core_state
662          * and clearing tsk->mm.  The core-inducing thread
663          * will increment ->nr_threads for each thread in the
664          * group with ->mm != NULL.
665          */
666         down_read(&mm->mmap_sem);
667         core_state = mm->core_state;
668         if (core_state) {
669                 struct core_thread self;
670                 up_read(&mm->mmap_sem);
671
672                 self.task = tsk;
673                 self.next = xchg(&core_state->dumper.next, &self);
674                 /*
675                  * Implies mb(), the result of xchg() must be visible
676                  * to core_state->dumper.
677                  */
678                 if (atomic_dec_and_test(&core_state->nr_threads))
679                         complete(&core_state->startup);
680
681                 for (;;) {
682                         set_task_state(tsk, TASK_UNINTERRUPTIBLE);
683                         if (!self.task) /* see coredump_finish() */
684                                 break;
685                         schedule();
686                 }
687                 __set_task_state(tsk, TASK_RUNNING);
688                 down_read(&mm->mmap_sem);
689         }
690         atomic_inc(&mm->mm_count);
691         BUG_ON(mm != tsk->active_mm);
692         /* more a memory barrier than a real lock */
693         task_lock(tsk);
694         tsk->mm = NULL;
695         up_read(&mm->mmap_sem);
696         enter_lazy_tlb(mm, current);
697         /* We don't want this task to be frozen prematurely */
698         clear_freeze_flag(tsk);
699         if (tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
700                 atomic_dec(&mm->oom_disable_count);
701         task_unlock(tsk);
702         mm_update_next_owner(mm);
703         mmput(mm);
704 }
705
706 /*
707  * When we die, we re-parent all our children.
708  * Try to give them to another thread in our thread
709  * group, and if no such member exists, give it to
710  * the child reaper process (ie "init") in our pid
711  * space.
712  */
713 static struct task_struct *find_new_reaper(struct task_struct *father)
714         __releases(&tasklist_lock)
715         __acquires(&tasklist_lock)
716 {
717         struct pid_namespace *pid_ns = task_active_pid_ns(father);
718         struct task_struct *thread;
719
720         thread = father;
721         while_each_thread(father, thread) {
722                 if (thread->flags & PF_EXITING)
723                         continue;
724                 if (unlikely(pid_ns->child_reaper == father))
725                         pid_ns->child_reaper = thread;
726                 return thread;
727         }
728
729         if (unlikely(pid_ns->child_reaper == father)) {
730                 write_unlock_irq(&tasklist_lock);
731                 if (unlikely(pid_ns == &init_pid_ns))
732                         panic("Attempted to kill init!");
733
734                 zap_pid_ns_processes(pid_ns);
735                 write_lock_irq(&tasklist_lock);
736                 /*
737                  * We can not clear ->child_reaper or leave it alone.
738                  * There may by stealth EXIT_DEAD tasks on ->children,
739                  * forget_original_parent() must move them somewhere.
740                  */
741                 pid_ns->child_reaper = init_pid_ns.child_reaper;
742         }
743
744         return pid_ns->child_reaper;
745 }
746
747 /*
748 * Any that need to be release_task'd are put on the @dead list.
749  */
750 static void reparent_leader(struct task_struct *father, struct task_struct *p,
751                                 struct list_head *dead)
752 {
753         list_move_tail(&p->sibling, &p->real_parent->children);
754
755         if (task_detached(p))
756                 return;
757         /*
758          * If this is a threaded reparent there is no need to
759          * notify anyone anything has happened.
760          */
761         if (same_thread_group(p->real_parent, father))
762                 return;
763
764         /* We don't want people slaying init.  */
765         p->exit_signal = SIGCHLD;
766
767         /* If it has exited notify the new parent about this child's death. */
768         if (!task_ptrace(p) &&
769             p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
770                 do_notify_parent(p, p->exit_signal);
771                 if (task_detached(p)) {
772                         p->exit_state = EXIT_DEAD;
773                         list_move_tail(&p->sibling, dead);
774                 }
775         }
776
777         kill_orphaned_pgrp(p, father);
778 }
779
780 static void forget_original_parent(struct task_struct *father)
781 {
782         struct task_struct *p, *n, *reaper;
783         LIST_HEAD(dead_children);
784
785         write_lock_irq(&tasklist_lock);
786         /*
787          * Note that exit_ptrace() and find_new_reaper() might
788          * drop tasklist_lock and reacquire it.
789          */
790         exit_ptrace(father);
791         reaper = find_new_reaper(father);
792
793         list_for_each_entry_safe(p, n, &father->children, sibling) {
794                 struct task_struct *t = p;
795                 do {
796                         t->real_parent = reaper;
797                         if (t->parent == father) {
798                                 BUG_ON(task_ptrace(t));
799                                 t->parent = t->real_parent;
800                         }
801                         if (t->pdeath_signal)
802                                 group_send_sig_info(t->pdeath_signal,
803                                                     SEND_SIG_NOINFO, t);
804                 } while_each_thread(p, t);
805                 reparent_leader(father, p, &dead_children);
806         }
807         write_unlock_irq(&tasklist_lock);
808
809         BUG_ON(!list_empty(&father->children));
810
811         list_for_each_entry_safe(p, n, &dead_children, sibling) {
812                 list_del_init(&p->sibling);
813                 release_task(p);
814         }
815 }
816
817 /*
818  * Send signals to all our closest relatives so that they know
819  * to properly mourn us..
820  */
821 static void exit_notify(struct task_struct *tsk, int group_dead)
822 {
823         int signal;
824         void *cookie;
825
826         /*
827          * This does two things:
828          *
829          * A.  Make init inherit all the child processes
830          * B.  Check to see if any process groups have become orphaned
831          *      as a result of our exiting, and if they have any stopped
832          *      jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
833          */
834         forget_original_parent(tsk);
835         exit_task_namespaces(tsk);
836
837         write_lock_irq(&tasklist_lock);
838         if (group_dead)
839                 kill_orphaned_pgrp(tsk->group_leader, NULL);
840
841         /* Let father know we died
842          *
843          * Thread signals are configurable, but you aren't going to use
844          * that to send signals to arbitrary processes.
845          * That stops right now.
846          *
847          * If the parent exec id doesn't match the exec id we saved
848          * when we started then we know the parent has changed security
849          * domain.
850          *
851          * If our self_exec id doesn't match our parent_exec_id then
852          * we have changed execution domain as these two values started
853          * the same after a fork.
854          */
855         if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
856             (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
857              tsk->self_exec_id != tsk->parent_exec_id))
858                 tsk->exit_signal = SIGCHLD;
859
860         signal = tracehook_notify_death(tsk, &cookie, group_dead);
861         if (signal >= 0)
862                 signal = do_notify_parent(tsk, signal);
863
864         tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE;
865
866         /* mt-exec, de_thread() is waiting for group leader */
867         if (unlikely(tsk->signal->notify_count < 0))
868                 wake_up_process(tsk->signal->group_exit_task);
869         write_unlock_irq(&tasklist_lock);
870
871         tracehook_report_death(tsk, signal, cookie, group_dead);
872
873         /* If the process is dead, release it - nobody will wait for it */
874         if (signal == DEATH_REAP)
875                 release_task(tsk);
876 }
877
878 #ifdef CONFIG_DEBUG_STACK_USAGE
879 static void check_stack_usage(void)
880 {
881         static DEFINE_SPINLOCK(low_water_lock);
882         static int lowest_to_date = THREAD_SIZE;
883         unsigned long free;
884
885         free = stack_not_used(current);
886
887         if (free >= lowest_to_date)
888                 return;
889
890         spin_lock(&low_water_lock);
891         if (free < lowest_to_date) {
892                 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
893                                 "left\n",
894                                 current->comm, free);
895                 lowest_to_date = free;
896         }
897         spin_unlock(&low_water_lock);
898 }
899 #else
900 static inline void check_stack_usage(void) {}
901 #endif
902
903 NORET_TYPE void do_exit(long code)
904 {
905         struct task_struct *tsk = current;
906         int group_dead;
907
908         profile_task_exit(tsk);
909
910         WARN_ON(atomic_read(&tsk->fs_excl));
911         WARN_ON(blk_needs_flush_plug(tsk));
912
913         if (unlikely(in_interrupt()))
914                 panic("Aiee, killing interrupt handler!");
915         if (unlikely(!tsk->pid))
916                 panic("Attempted to kill the idle task!");
917
918         /*
919          * If do_exit is called because this processes oopsed, it's possible
920          * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
921          * continuing. Amongst other possible reasons, this is to prevent
922          * mm_release()->clear_child_tid() from writing to a user-controlled
923          * kernel address.
924          */
925         set_fs(USER_DS);
926
927         tracehook_report_exit(&code);
928
929         validate_creds_for_do_exit(tsk);
930
931         /*
932          * We're taking recursive faults here in do_exit. Safest is to just
933          * leave this task alone and wait for reboot.
934          */
935         if (unlikely(tsk->flags & PF_EXITING)) {
936                 printk(KERN_ALERT
937                         "Fixing recursive fault but reboot is needed!\n");
938                 /*
939                  * We can do this unlocked here. The futex code uses
940                  * this flag just to verify whether the pi state
941                  * cleanup has been done or not. In the worst case it
942                  * loops once more. We pretend that the cleanup was
943                  * done as there is no way to return. Either the
944                  * OWNER_DIED bit is set by now or we push the blocked
945                  * task into the wait for ever nirwana as well.
946                  */
947                 tsk->flags |= PF_EXITPIDONE;
948                 set_current_state(TASK_UNINTERRUPTIBLE);
949                 schedule();
950         }
951
952         exit_irq_thread();
953
954         exit_signals(tsk);  /* sets PF_EXITING */
955         /*
956          * tsk->flags are checked in the futex code to protect against
957          * an exiting task cleaning up the robust pi futexes.
958          */
959         smp_mb();
960         raw_spin_unlock_wait(&tsk->pi_lock);
961
962         if (unlikely(in_atomic()))
963                 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
964                                 current->comm, task_pid_nr(current),
965                                 preempt_count());
966
967         acct_update_integrals(tsk);
968         /* sync mm's RSS info before statistics gathering */
969         if (tsk->mm)
970                 sync_mm_rss(tsk, tsk->mm);
971         group_dead = atomic_dec_and_test(&tsk->signal->live);
972         if (group_dead) {
973                 hrtimer_cancel(&tsk->signal->real_timer);
974                 exit_itimers(tsk->signal);
975                 if (tsk->mm)
976                         setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
977         }
978         acct_collect(code, group_dead);
979         if (group_dead)
980                 tty_audit_exit();
981         if (unlikely(tsk->audit_context))
982                 audit_free(tsk);
983
984         tsk->exit_code = code;
985         taskstats_exit(tsk, group_dead);
986
987         exit_mm(tsk);
988
989         if (group_dead)
990                 acct_process();
991         trace_sched_process_exit(tsk);
992
993         exit_sem(tsk);
994         exit_files(tsk);
995         exit_fs(tsk);
996         check_stack_usage();
997         exit_thread();
998
999         /*
1000          * Flush inherited counters to the parent - before the parent
1001          * gets woken up by child-exit notifications.
1002          *
1003          * because of cgroup mode, must be called before cgroup_exit()
1004          */
1005         perf_event_exit_task(tsk);
1006
1007         cgroup_exit(tsk, 1);
1008
1009         if (group_dead)
1010                 disassociate_ctty(1);
1011
1012         module_put(task_thread_info(tsk)->exec_domain->module);
1013
1014         proc_exit_connector(tsk);
1015
1016         /*
1017          * FIXME: do that only when needed, using sched_exit tracepoint
1018          */
1019         ptrace_put_breakpoints(tsk);
1020
1021         exit_notify(tsk, group_dead);
1022 #ifdef CONFIG_NUMA
1023         task_lock(tsk);
1024         mpol_put(tsk->mempolicy);
1025         tsk->mempolicy = NULL;
1026         task_unlock(tsk);
1027 #endif
1028 #ifdef CONFIG_FUTEX
1029         if (unlikely(current->pi_state_cache))
1030                 kfree(current->pi_state_cache);
1031 #endif
1032         /*
1033          * Make sure we are holding no locks:
1034          */
1035         debug_check_no_locks_held(tsk);
1036         /*
1037          * We can do this unlocked here. The futex code uses this flag
1038          * just to verify whether the pi state cleanup has been done
1039          * or not. In the worst case it loops once more.
1040          */
1041         tsk->flags |= PF_EXITPIDONE;
1042
1043         if (tsk->io_context)
1044                 exit_io_context(tsk);
1045
1046         if (tsk->splice_pipe)
1047                 __free_pipe_info(tsk->splice_pipe);
1048
1049         validate_creds_for_do_exit(tsk);
1050
1051         preempt_disable();
1052         exit_rcu();
1053         /* causes final put_task_struct in finish_task_switch(). */
1054         tsk->state = TASK_DEAD;
1055         schedule();
1056         BUG();
1057         /* Avoid "noreturn function does return".  */
1058         for (;;)
1059                 cpu_relax();    /* For when BUG is null */
1060 }
1061
1062 EXPORT_SYMBOL_GPL(do_exit);
1063
1064 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1065 {
1066         if (comp)
1067                 complete(comp);
1068
1069         do_exit(code);
1070 }
1071
1072 EXPORT_SYMBOL(complete_and_exit);
1073
1074 SYSCALL_DEFINE1(exit, int, error_code)
1075 {
1076         do_exit((error_code&0xff)<<8);
1077 }
1078
1079 /*
1080  * Take down every thread in the group.  This is called by fatal signals
1081  * as well as by sys_exit_group (below).
1082  */
1083 NORET_TYPE void
1084 do_group_exit(int exit_code)
1085 {
1086         struct signal_struct *sig = current->signal;
1087
1088         BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1089
1090         if (signal_group_exit(sig))
1091                 exit_code = sig->group_exit_code;
1092         else if (!thread_group_empty(current)) {
1093                 struct sighand_struct *const sighand = current->sighand;
1094                 spin_lock_irq(&sighand->siglock);
1095                 if (signal_group_exit(sig))
1096                         /* Another thread got here before we took the lock.  */
1097                         exit_code = sig->group_exit_code;
1098                 else {
1099                         sig->group_exit_code = exit_code;
1100                         sig->flags = SIGNAL_GROUP_EXIT;
1101                         zap_other_threads(current);
1102                 }
1103                 spin_unlock_irq(&sighand->siglock);
1104         }
1105
1106         do_exit(exit_code);
1107         /* NOTREACHED */
1108 }
1109
1110 /*
1111  * this kills every thread in the thread group. Note that any externally
1112  * wait4()-ing process will get the correct exit code - even if this
1113  * thread is not the thread group leader.
1114  */
1115 SYSCALL_DEFINE1(exit_group, int, error_code)
1116 {
1117         do_group_exit((error_code & 0xff) << 8);
1118         /* NOTREACHED */
1119         return 0;
1120 }
1121
1122 struct wait_opts {
1123         enum pid_type           wo_type;
1124         int                     wo_flags;
1125         struct pid              *wo_pid;
1126
1127         struct siginfo __user   *wo_info;
1128         int __user              *wo_stat;
1129         struct rusage __user    *wo_rusage;
1130
1131         wait_queue_t            child_wait;
1132         int                     notask_error;
1133 };
1134
1135 static inline
1136 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1137 {
1138         if (type != PIDTYPE_PID)
1139                 task = task->group_leader;
1140         return task->pids[type].pid;
1141 }
1142
1143 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1144 {
1145         return  wo->wo_type == PIDTYPE_MAX ||
1146                 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1147 }
1148
1149 static int eligible_child(struct wait_opts *wo, struct task_struct *p)
1150 {
1151         if (!eligible_pid(wo, p))
1152                 return 0;
1153         /* Wait for all children (clone and not) if __WALL is set;
1154          * otherwise, wait for clone children *only* if __WCLONE is
1155          * set; otherwise, wait for non-clone children *only*.  (Note:
1156          * A "clone" child here is one that reports to its parent
1157          * using a signal other than SIGCHLD.) */
1158         if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1159             && !(wo->wo_flags & __WALL))
1160                 return 0;
1161
1162         return 1;
1163 }
1164
1165 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
1166                                 pid_t pid, uid_t uid, int why, int status)
1167 {
1168         struct siginfo __user *infop;
1169         int retval = wo->wo_rusage
1170                 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1171
1172         put_task_struct(p);
1173         infop = wo->wo_info;
1174         if (infop) {
1175                 if (!retval)
1176                         retval = put_user(SIGCHLD, &infop->si_signo);
1177                 if (!retval)
1178                         retval = put_user(0, &infop->si_errno);
1179                 if (!retval)
1180                         retval = put_user((short)why, &infop->si_code);
1181                 if (!retval)
1182                         retval = put_user(pid, &infop->si_pid);
1183                 if (!retval)
1184                         retval = put_user(uid, &infop->si_uid);
1185                 if (!retval)
1186                         retval = put_user(status, &infop->si_status);
1187         }
1188         if (!retval)
1189                 retval = pid;
1190         return retval;
1191 }
1192
1193 /*
1194  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1195  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1196  * the lock and this task is uninteresting.  If we return nonzero, we have
1197  * released the lock and the system call should return.
1198  */
1199 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1200 {
1201         unsigned long state;
1202         int retval, status, traced;
1203         pid_t pid = task_pid_vnr(p);
1204         uid_t uid = __task_cred(p)->uid;
1205         struct siginfo __user *infop;
1206
1207         if (!likely(wo->wo_flags & WEXITED))
1208                 return 0;
1209
1210         if (unlikely(wo->wo_flags & WNOWAIT)) {
1211                 int exit_code = p->exit_code;
1212                 int why;
1213
1214                 get_task_struct(p);
1215                 read_unlock(&tasklist_lock);
1216                 if ((exit_code & 0x7f) == 0) {
1217                         why = CLD_EXITED;
1218                         status = exit_code >> 8;
1219                 } else {
1220                         why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1221                         status = exit_code & 0x7f;
1222                 }
1223                 return wait_noreap_copyout(wo, p, pid, uid, why, status);
1224         }
1225
1226         /*
1227          * Try to move the task's state to DEAD
1228          * only one thread is allowed to do this:
1229          */
1230         state = xchg(&p->exit_state, EXIT_DEAD);
1231         if (state != EXIT_ZOMBIE) {
1232                 BUG_ON(state != EXIT_DEAD);
1233                 return 0;
1234         }
1235
1236         traced = ptrace_reparented(p);
1237         /*
1238          * It can be ptraced but not reparented, check
1239          * !task_detached() to filter out sub-threads.
1240          */
1241         if (likely(!traced) && likely(!task_detached(p))) {
1242                 struct signal_struct *psig;
1243                 struct signal_struct *sig;
1244                 unsigned long maxrss;
1245                 cputime_t tgutime, tgstime;
1246
1247                 /*
1248                  * The resource counters for the group leader are in its
1249                  * own task_struct.  Those for dead threads in the group
1250                  * are in its signal_struct, as are those for the child
1251                  * processes it has previously reaped.  All these
1252                  * accumulate in the parent's signal_struct c* fields.
1253                  *
1254                  * We don't bother to take a lock here to protect these
1255                  * p->signal fields, because they are only touched by
1256                  * __exit_signal, which runs with tasklist_lock
1257                  * write-locked anyway, and so is excluded here.  We do
1258                  * need to protect the access to parent->signal fields,
1259                  * as other threads in the parent group can be right
1260                  * here reaping other children at the same time.
1261                  *
1262                  * We use thread_group_times() to get times for the thread
1263                  * group, which consolidates times for all threads in the
1264                  * group including the group leader.
1265                  */
1266                 thread_group_times(p, &tgutime, &tgstime);
1267                 spin_lock_irq(&p->real_parent->sighand->siglock);
1268                 psig = p->real_parent->signal;
1269                 sig = p->signal;
1270                 psig->cutime =
1271                         cputime_add(psig->cutime,
1272                         cputime_add(tgutime,
1273                                     sig->cutime));
1274                 psig->cstime =
1275                         cputime_add(psig->cstime,
1276                         cputime_add(tgstime,
1277                                     sig->cstime));
1278                 psig->cgtime =
1279                         cputime_add(psig->cgtime,
1280                         cputime_add(p->gtime,
1281                         cputime_add(sig->gtime,
1282                                     sig->cgtime)));
1283                 psig->cmin_flt +=
1284                         p->min_flt + sig->min_flt + sig->cmin_flt;
1285                 psig->cmaj_flt +=
1286                         p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1287                 psig->cnvcsw +=
1288                         p->nvcsw + sig->nvcsw + sig->cnvcsw;
1289                 psig->cnivcsw +=
1290                         p->nivcsw + sig->nivcsw + sig->cnivcsw;
1291                 psig->cinblock +=
1292                         task_io_get_inblock(p) +
1293                         sig->inblock + sig->cinblock;
1294                 psig->coublock +=
1295                         task_io_get_oublock(p) +
1296                         sig->oublock + sig->coublock;
1297                 maxrss = max(sig->maxrss, sig->cmaxrss);
1298                 if (psig->cmaxrss < maxrss)
1299                         psig->cmaxrss = maxrss;
1300                 task_io_accounting_add(&psig->ioac, &p->ioac);
1301                 task_io_accounting_add(&psig->ioac, &sig->ioac);
1302                 spin_unlock_irq(&p->real_parent->sighand->siglock);
1303         }
1304
1305         /*
1306          * Now we are sure this task is interesting, and no other
1307          * thread can reap it because we set its state to EXIT_DEAD.
1308          */
1309         read_unlock(&tasklist_lock);
1310
1311         retval = wo->wo_rusage
1312                 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1313         status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1314                 ? p->signal->group_exit_code : p->exit_code;
1315         if (!retval && wo->wo_stat)
1316                 retval = put_user(status, wo->wo_stat);
1317
1318         infop = wo->wo_info;
1319         if (!retval && infop)
1320                 retval = put_user(SIGCHLD, &infop->si_signo);
1321         if (!retval && infop)
1322                 retval = put_user(0, &infop->si_errno);
1323         if (!retval && infop) {
1324                 int why;
1325
1326                 if ((status & 0x7f) == 0) {
1327                         why = CLD_EXITED;
1328                         status >>= 8;
1329                 } else {
1330                         why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1331                         status &= 0x7f;
1332                 }
1333                 retval = put_user((short)why, &infop->si_code);
1334                 if (!retval)
1335                         retval = put_user(status, &infop->si_status);
1336         }
1337         if (!retval && infop)
1338                 retval = put_user(pid, &infop->si_pid);
1339         if (!retval && infop)
1340                 retval = put_user(uid, &infop->si_uid);
1341         if (!retval)
1342                 retval = pid;
1343
1344         if (traced) {
1345                 write_lock_irq(&tasklist_lock);
1346                 /* We dropped tasklist, ptracer could die and untrace */
1347                 ptrace_unlink(p);
1348                 /*
1349                  * If this is not a detached task, notify the parent.
1350                  * If it's still not detached after that, don't release
1351                  * it now.
1352                  */
1353                 if (!task_detached(p)) {
1354                         do_notify_parent(p, p->exit_signal);
1355                         if (!task_detached(p)) {
1356                                 p->exit_state = EXIT_ZOMBIE;
1357                                 p = NULL;
1358                         }
1359                 }
1360                 write_unlock_irq(&tasklist_lock);
1361         }
1362         if (p != NULL)
1363                 release_task(p);
1364
1365         return retval;
1366 }
1367
1368 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1369 {
1370         if (ptrace) {
1371                 if (task_is_stopped_or_traced(p))
1372                         return &p->exit_code;
1373         } else {
1374                 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1375                         return &p->signal->group_exit_code;
1376         }
1377         return NULL;
1378 }
1379
1380 /*
1381  * Handle sys_wait4 work for one task in state TASK_STOPPED.  We hold
1382  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1383  * the lock and this task is uninteresting.  If we return nonzero, we have
1384  * released the lock and the system call should return.
1385  */
1386 static int wait_task_stopped(struct wait_opts *wo,
1387                                 int ptrace, struct task_struct *p)
1388 {
1389         struct siginfo __user *infop;
1390         int retval, exit_code, *p_code, why;
1391         uid_t uid = 0; /* unneeded, required by compiler */
1392         pid_t pid;
1393
1394         /*
1395          * Traditionally we see ptrace'd stopped tasks regardless of options.
1396          */
1397         if (!ptrace && !(wo->wo_flags & WUNTRACED))
1398                 return 0;
1399
1400         exit_code = 0;
1401         spin_lock_irq(&p->sighand->siglock);
1402
1403         p_code = task_stopped_code(p, ptrace);
1404         if (unlikely(!p_code))
1405                 goto unlock_sig;
1406
1407         exit_code = *p_code;
1408         if (!exit_code)
1409                 goto unlock_sig;
1410
1411         if (!unlikely(wo->wo_flags & WNOWAIT))
1412                 *p_code = 0;
1413
1414         uid = task_uid(p);
1415 unlock_sig:
1416         spin_unlock_irq(&p->sighand->siglock);
1417         if (!exit_code)
1418                 return 0;
1419
1420         /*
1421          * Now we are pretty sure this task is interesting.
1422          * Make sure it doesn't get reaped out from under us while we
1423          * give up the lock and then examine it below.  We don't want to
1424          * keep holding onto the tasklist_lock while we call getrusage and
1425          * possibly take page faults for user memory.
1426          */
1427         get_task_struct(p);
1428         pid = task_pid_vnr(p);
1429         why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1430         read_unlock(&tasklist_lock);
1431
1432         if (unlikely(wo->wo_flags & WNOWAIT))
1433                 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1434
1435         retval = wo->wo_rusage
1436                 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1437         if (!retval && wo->wo_stat)
1438                 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1439
1440         infop = wo->wo_info;
1441         if (!retval && infop)
1442                 retval = put_user(SIGCHLD, &infop->si_signo);
1443         if (!retval && infop)
1444                 retval = put_user(0, &infop->si_errno);
1445         if (!retval && infop)
1446                 retval = put_user((short)why, &infop->si_code);
1447         if (!retval && infop)
1448                 retval = put_user(exit_code, &infop->si_status);
1449         if (!retval && infop)
1450                 retval = put_user(pid, &infop->si_pid);
1451         if (!retval && infop)
1452                 retval = put_user(uid, &infop->si_uid);
1453         if (!retval)
1454                 retval = pid;
1455         put_task_struct(p);
1456
1457         BUG_ON(!retval);
1458         return retval;
1459 }
1460
1461 /*
1462  * Handle do_wait work for one task in a live, non-stopped state.
1463  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1464  * the lock and this task is uninteresting.  If we return nonzero, we have
1465  * released the lock and the system call should return.
1466  */
1467 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1468 {
1469         int retval;
1470         pid_t pid;
1471         uid_t uid;
1472
1473         if (!unlikely(wo->wo_flags & WCONTINUED))
1474                 return 0;
1475
1476         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1477                 return 0;
1478
1479         spin_lock_irq(&p->sighand->siglock);
1480         /* Re-check with the lock held.  */
1481         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1482                 spin_unlock_irq(&p->sighand->siglock);
1483                 return 0;
1484         }
1485         if (!unlikely(wo->wo_flags & WNOWAIT))
1486                 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1487         uid = task_uid(p);
1488         spin_unlock_irq(&p->sighand->siglock);
1489
1490         pid = task_pid_vnr(p);
1491         get_task_struct(p);
1492         read_unlock(&tasklist_lock);
1493
1494         if (!wo->wo_info) {
1495                 retval = wo->wo_rusage
1496                         ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1497                 put_task_struct(p);
1498                 if (!retval && wo->wo_stat)
1499                         retval = put_user(0xffff, wo->wo_stat);
1500                 if (!retval)
1501                         retval = pid;
1502         } else {
1503                 retval = wait_noreap_copyout(wo, p, pid, uid,
1504                                              CLD_CONTINUED, SIGCONT);
1505                 BUG_ON(retval == 0);
1506         }
1507
1508         return retval;
1509 }
1510
1511 /*
1512  * Consider @p for a wait by @parent.
1513  *
1514  * -ECHILD should be in ->notask_error before the first call.
1515  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1516  * Returns zero if the search for a child should continue;
1517  * then ->notask_error is 0 if @p is an eligible child,
1518  * or another error from security_task_wait(), or still -ECHILD.
1519  */
1520 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1521                                 struct task_struct *p)
1522 {
1523         int ret = eligible_child(wo, p);
1524         if (!ret)
1525                 return ret;
1526
1527         ret = security_task_wait(p);
1528         if (unlikely(ret < 0)) {
1529                 /*
1530                  * If we have not yet seen any eligible child,
1531                  * then let this error code replace -ECHILD.
1532                  * A permission error will give the user a clue
1533                  * to look for security policy problems, rather
1534                  * than for mysterious wait bugs.
1535                  */
1536                 if (wo->notask_error)
1537                         wo->notask_error = ret;
1538                 return 0;
1539         }
1540
1541         if (likely(!ptrace) && unlikely(task_ptrace(p))) {
1542                 /*
1543                  * This child is hidden by ptrace.
1544                  * We aren't allowed to see it now, but eventually we will.
1545                  */
1546                 wo->notask_error = 0;
1547                 return 0;
1548         }
1549
1550         if (p->exit_state == EXIT_DEAD)
1551                 return 0;
1552
1553         /*
1554          * We don't reap group leaders with subthreads.
1555          */
1556         if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
1557                 return wait_task_zombie(wo, p);
1558
1559         /*
1560          * It's stopped or running now, so it might
1561          * later continue, exit, or stop again.
1562          */
1563         wo->notask_error = 0;
1564
1565         if (task_stopped_code(p, ptrace))
1566                 return wait_task_stopped(wo, ptrace, p);
1567
1568         return wait_task_continued(wo, p);
1569 }
1570
1571 /*
1572  * Do the work of do_wait() for one thread in the group, @tsk.
1573  *
1574  * -ECHILD should be in ->notask_error before the first call.
1575  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1576  * Returns zero if the search for a child should continue; then
1577  * ->notask_error is 0 if there were any eligible children,
1578  * or another error from security_task_wait(), or still -ECHILD.
1579  */
1580 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1581 {
1582         struct task_struct *p;
1583
1584         list_for_each_entry(p, &tsk->children, sibling) {
1585                 int ret = wait_consider_task(wo, 0, p);
1586                 if (ret)
1587                         return ret;
1588         }
1589
1590         return 0;
1591 }
1592
1593 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1594 {
1595         struct task_struct *p;
1596
1597         list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1598                 int ret = wait_consider_task(wo, 1, p);
1599                 if (ret)
1600                         return ret;
1601         }
1602
1603         return 0;
1604 }
1605
1606 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1607                                 int sync, void *key)
1608 {
1609         struct wait_opts *wo = container_of(wait, struct wait_opts,
1610                                                 child_wait);
1611         struct task_struct *p = key;
1612
1613         if (!eligible_pid(wo, p))
1614                 return 0;
1615
1616         if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1617                 return 0;
1618
1619         return default_wake_function(wait, mode, sync, key);
1620 }
1621
1622 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1623 {
1624         __wake_up_sync_key(&parent->signal->wait_chldexit,
1625                                 TASK_INTERRUPTIBLE, 1, p);
1626 }
1627
1628 static long do_wait(struct wait_opts *wo)
1629 {
1630         struct task_struct *tsk;
1631         int retval;
1632
1633         trace_sched_process_wait(wo->wo_pid);
1634
1635         init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1636         wo->child_wait.private = current;
1637         add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1638 repeat:
1639         /*
1640          * If there is nothing that can match our critiera just get out.
1641          * We will clear ->notask_error to zero if we see any child that
1642          * might later match our criteria, even if we are not able to reap
1643          * it yet.
1644          */
1645         wo->notask_error = -ECHILD;
1646         if ((wo->wo_type < PIDTYPE_MAX) &&
1647            (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1648                 goto notask;
1649
1650         set_current_state(TASK_INTERRUPTIBLE);
1651         read_lock(&tasklist_lock);
1652         tsk = current;
1653         do {
1654                 retval = do_wait_thread(wo, tsk);
1655                 if (retval)
1656                         goto end;
1657
1658                 retval = ptrace_do_wait(wo, tsk);
1659                 if (retval)
1660                         goto end;
1661
1662                 if (wo->wo_flags & __WNOTHREAD)
1663                         break;
1664         } while_each_thread(current, tsk);
1665         read_unlock(&tasklist_lock);
1666
1667 notask:
1668         retval = wo->notask_error;
1669         if (!retval && !(wo->wo_flags & WNOHANG)) {
1670                 retval = -ERESTARTSYS;
1671                 if (!signal_pending(current)) {
1672                         schedule();
1673                         goto repeat;
1674                 }
1675         }
1676 end:
1677         __set_current_state(TASK_RUNNING);
1678         remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1679         return retval;
1680 }
1681
1682 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1683                 infop, int, options, struct rusage __user *, ru)
1684 {
1685         struct wait_opts wo;
1686         struct pid *pid = NULL;
1687         enum pid_type type;
1688         long ret;
1689
1690         if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1691                 return -EINVAL;
1692         if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1693                 return -EINVAL;
1694
1695         switch (which) {
1696         case P_ALL:
1697                 type = PIDTYPE_MAX;
1698                 break;
1699         case P_PID:
1700                 type = PIDTYPE_PID;
1701                 if (upid <= 0)
1702                         return -EINVAL;
1703                 break;
1704         case P_PGID:
1705                 type = PIDTYPE_PGID;
1706                 if (upid <= 0)
1707                         return -EINVAL;
1708                 break;
1709         default:
1710                 return -EINVAL;
1711         }
1712
1713         if (type < PIDTYPE_MAX)
1714                 pid = find_get_pid(upid);
1715
1716         wo.wo_type      = type;
1717         wo.wo_pid       = pid;
1718         wo.wo_flags     = options;
1719         wo.wo_info      = infop;
1720         wo.wo_stat      = NULL;
1721         wo.wo_rusage    = ru;
1722         ret = do_wait(&wo);
1723
1724         if (ret > 0) {
1725                 ret = 0;
1726         } else if (infop) {
1727                 /*
1728                  * For a WNOHANG return, clear out all the fields
1729                  * we would set so the user can easily tell the
1730                  * difference.
1731                  */
1732                 if (!ret)
1733                         ret = put_user(0, &infop->si_signo);
1734                 if (!ret)
1735                         ret = put_user(0, &infop->si_errno);
1736                 if (!ret)
1737                         ret = put_user(0, &infop->si_code);
1738                 if (!ret)
1739                         ret = put_user(0, &infop->si_pid);
1740                 if (!ret)
1741                         ret = put_user(0, &infop->si_uid);
1742                 if (!ret)
1743                         ret = put_user(0, &infop->si_status);
1744         }
1745
1746         put_pid(pid);
1747
1748         /* avoid REGPARM breakage on x86: */
1749         asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1750         return ret;
1751 }
1752
1753 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1754                 int, options, struct rusage __user *, ru)
1755 {
1756         struct wait_opts wo;
1757         struct pid *pid = NULL;
1758         enum pid_type type;
1759         long ret;
1760
1761         if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1762                         __WNOTHREAD|__WCLONE|__WALL))
1763                 return -EINVAL;
1764
1765         if (upid == -1)
1766                 type = PIDTYPE_MAX;
1767         else if (upid < 0) {
1768                 type = PIDTYPE_PGID;
1769                 pid = find_get_pid(-upid);
1770         } else if (upid == 0) {
1771                 type = PIDTYPE_PGID;
1772                 pid = get_task_pid(current, PIDTYPE_PGID);
1773         } else /* upid > 0 */ {
1774                 type = PIDTYPE_PID;
1775                 pid = find_get_pid(upid);
1776         }
1777
1778         wo.wo_type      = type;
1779         wo.wo_pid       = pid;
1780         wo.wo_flags     = options | WEXITED;
1781         wo.wo_info      = NULL;
1782         wo.wo_stat      = stat_addr;
1783         wo.wo_rusage    = ru;
1784         ret = do_wait(&wo);
1785         put_pid(pid);
1786
1787         /* avoid REGPARM breakage on x86: */
1788         asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1789         return ret;
1790 }
1791
1792 #ifdef __ARCH_WANT_SYS_WAITPID
1793
1794 /*
1795  * sys_waitpid() remains for compatibility. waitpid() should be
1796  * implemented by calling sys_wait4() from libc.a.
1797  */
1798 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1799 {
1800         return sys_wait4(pid, stat_addr, options, NULL);
1801 }
1802
1803 #endif