lib: cordic: add library module providing cordic angle calculation
[linux-2.6.git] / kernel / cpuset.c
1 /*
2  *  kernel/cpuset.c
3  *
4  *  Processor and Memory placement constraints for sets of tasks.
5  *
6  *  Copyright (C) 2003 BULL SA.
7  *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
8  *  Copyright (C) 2006 Google, Inc
9  *
10  *  Portions derived from Patrick Mochel's sysfs code.
11  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
12  *
13  *  2003-10-10 Written by Simon Derr.
14  *  2003-10-22 Updates by Stephen Hemminger.
15  *  2004 May-July Rework by Paul Jackson.
16  *  2006 Rework by Paul Menage to use generic cgroups
17  *  2008 Rework of the scheduler domains and CPU hotplug handling
18  *       by Max Krasnyansky
19  *
20  *  This file is subject to the terms and conditions of the GNU General Public
21  *  License.  See the file COPYING in the main directory of the Linux
22  *  distribution for more details.
23  */
24
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
31 #include <linux/fs.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/list.h>
37 #include <linux/mempolicy.h>
38 #include <linux/mm.h>
39 #include <linux/memory.h>
40 #include <linux/module.h>
41 #include <linux/mount.h>
42 #include <linux/namei.h>
43 #include <linux/pagemap.h>
44 #include <linux/proc_fs.h>
45 #include <linux/rcupdate.h>
46 #include <linux/sched.h>
47 #include <linux/seq_file.h>
48 #include <linux/security.h>
49 #include <linux/slab.h>
50 #include <linux/spinlock.h>
51 #include <linux/stat.h>
52 #include <linux/string.h>
53 #include <linux/time.h>
54 #include <linux/backing-dev.h>
55 #include <linux/sort.h>
56
57 #include <asm/uaccess.h>
58 #include <asm/atomic.h>
59 #include <linux/mutex.h>
60 #include <linux/workqueue.h>
61 #include <linux/cgroup.h>
62
63 /*
64  * Workqueue for cpuset related tasks.
65  *
66  * Using kevent workqueue may cause deadlock when memory_migrate
67  * is set. So we create a separate workqueue thread for cpuset.
68  */
69 static struct workqueue_struct *cpuset_wq;
70
71 /*
72  * Tracks how many cpusets are currently defined in system.
73  * When there is only one cpuset (the root cpuset) we can
74  * short circuit some hooks.
75  */
76 int number_of_cpusets __read_mostly;
77
78 /* Forward declare cgroup structures */
79 struct cgroup_subsys cpuset_subsys;
80 struct cpuset;
81
82 /* See "Frequency meter" comments, below. */
83
84 struct fmeter {
85         int cnt;                /* unprocessed events count */
86         int val;                /* most recent output value */
87         time_t time;            /* clock (secs) when val computed */
88         spinlock_t lock;        /* guards read or write of above */
89 };
90
91 struct cpuset {
92         struct cgroup_subsys_state css;
93
94         unsigned long flags;            /* "unsigned long" so bitops work */
95         cpumask_var_t cpus_allowed;     /* CPUs allowed to tasks in cpuset */
96         nodemask_t mems_allowed;        /* Memory Nodes allowed to tasks */
97
98         struct cpuset *parent;          /* my parent */
99
100         struct fmeter fmeter;           /* memory_pressure filter */
101
102         /* partition number for rebuild_sched_domains() */
103         int pn;
104
105         /* for custom sched domain */
106         int relax_domain_level;
107
108         /* used for walking a cpuset hierarchy */
109         struct list_head stack_list;
110 };
111
112 /* Retrieve the cpuset for a cgroup */
113 static inline struct cpuset *cgroup_cs(struct cgroup *cont)
114 {
115         return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
116                             struct cpuset, css);
117 }
118
119 /* Retrieve the cpuset for a task */
120 static inline struct cpuset *task_cs(struct task_struct *task)
121 {
122         return container_of(task_subsys_state(task, cpuset_subsys_id),
123                             struct cpuset, css);
124 }
125
126 /* bits in struct cpuset flags field */
127 typedef enum {
128         CS_CPU_EXCLUSIVE,
129         CS_MEM_EXCLUSIVE,
130         CS_MEM_HARDWALL,
131         CS_MEMORY_MIGRATE,
132         CS_SCHED_LOAD_BALANCE,
133         CS_SPREAD_PAGE,
134         CS_SPREAD_SLAB,
135 } cpuset_flagbits_t;
136
137 /* convenient tests for these bits */
138 static inline int is_cpu_exclusive(const struct cpuset *cs)
139 {
140         return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
141 }
142
143 static inline int is_mem_exclusive(const struct cpuset *cs)
144 {
145         return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
146 }
147
148 static inline int is_mem_hardwall(const struct cpuset *cs)
149 {
150         return test_bit(CS_MEM_HARDWALL, &cs->flags);
151 }
152
153 static inline int is_sched_load_balance(const struct cpuset *cs)
154 {
155         return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
156 }
157
158 static inline int is_memory_migrate(const struct cpuset *cs)
159 {
160         return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
161 }
162
163 static inline int is_spread_page(const struct cpuset *cs)
164 {
165         return test_bit(CS_SPREAD_PAGE, &cs->flags);
166 }
167
168 static inline int is_spread_slab(const struct cpuset *cs)
169 {
170         return test_bit(CS_SPREAD_SLAB, &cs->flags);
171 }
172
173 static struct cpuset top_cpuset = {
174         .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
175 };
176
177 /*
178  * There are two global mutexes guarding cpuset structures.  The first
179  * is the main control groups cgroup_mutex, accessed via
180  * cgroup_lock()/cgroup_unlock().  The second is the cpuset-specific
181  * callback_mutex, below. They can nest.  It is ok to first take
182  * cgroup_mutex, then nest callback_mutex.  We also require taking
183  * task_lock() when dereferencing a task's cpuset pointer.  See "The
184  * task_lock() exception", at the end of this comment.
185  *
186  * A task must hold both mutexes to modify cpusets.  If a task
187  * holds cgroup_mutex, then it blocks others wanting that mutex,
188  * ensuring that it is the only task able to also acquire callback_mutex
189  * and be able to modify cpusets.  It can perform various checks on
190  * the cpuset structure first, knowing nothing will change.  It can
191  * also allocate memory while just holding cgroup_mutex.  While it is
192  * performing these checks, various callback routines can briefly
193  * acquire callback_mutex to query cpusets.  Once it is ready to make
194  * the changes, it takes callback_mutex, blocking everyone else.
195  *
196  * Calls to the kernel memory allocator can not be made while holding
197  * callback_mutex, as that would risk double tripping on callback_mutex
198  * from one of the callbacks into the cpuset code from within
199  * __alloc_pages().
200  *
201  * If a task is only holding callback_mutex, then it has read-only
202  * access to cpusets.
203  *
204  * Now, the task_struct fields mems_allowed and mempolicy may be changed
205  * by other task, we use alloc_lock in the task_struct fields to protect
206  * them.
207  *
208  * The cpuset_common_file_read() handlers only hold callback_mutex across
209  * small pieces of code, such as when reading out possibly multi-word
210  * cpumasks and nodemasks.
211  *
212  * Accessing a task's cpuset should be done in accordance with the
213  * guidelines for accessing subsystem state in kernel/cgroup.c
214  */
215
216 static DEFINE_MUTEX(callback_mutex);
217
218 /*
219  * cpuset_buffer_lock protects both the cpuset_name and cpuset_nodelist
220  * buffers.  They are statically allocated to prevent using excess stack
221  * when calling cpuset_print_task_mems_allowed().
222  */
223 #define CPUSET_NAME_LEN         (128)
224 #define CPUSET_NODELIST_LEN     (256)
225 static char cpuset_name[CPUSET_NAME_LEN];
226 static char cpuset_nodelist[CPUSET_NODELIST_LEN];
227 static DEFINE_SPINLOCK(cpuset_buffer_lock);
228
229 /*
230  * This is ugly, but preserves the userspace API for existing cpuset
231  * users. If someone tries to mount the "cpuset" filesystem, we
232  * silently switch it to mount "cgroup" instead
233  */
234 static struct dentry *cpuset_mount(struct file_system_type *fs_type,
235                          int flags, const char *unused_dev_name, void *data)
236 {
237         struct file_system_type *cgroup_fs = get_fs_type("cgroup");
238         struct dentry *ret = ERR_PTR(-ENODEV);
239         if (cgroup_fs) {
240                 char mountopts[] =
241                         "cpuset,noprefix,"
242                         "release_agent=/sbin/cpuset_release_agent";
243                 ret = cgroup_fs->mount(cgroup_fs, flags,
244                                            unused_dev_name, mountopts);
245                 put_filesystem(cgroup_fs);
246         }
247         return ret;
248 }
249
250 static struct file_system_type cpuset_fs_type = {
251         .name = "cpuset",
252         .mount = cpuset_mount,
253 };
254
255 /*
256  * Return in pmask the portion of a cpusets's cpus_allowed that
257  * are online.  If none are online, walk up the cpuset hierarchy
258  * until we find one that does have some online cpus.  If we get
259  * all the way to the top and still haven't found any online cpus,
260  * return cpu_online_map.  Or if passed a NULL cs from an exit'ing
261  * task, return cpu_online_map.
262  *
263  * One way or another, we guarantee to return some non-empty subset
264  * of cpu_online_map.
265  *
266  * Call with callback_mutex held.
267  */
268
269 static void guarantee_online_cpus(const struct cpuset *cs,
270                                   struct cpumask *pmask)
271 {
272         while (cs && !cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
273                 cs = cs->parent;
274         if (cs)
275                 cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
276         else
277                 cpumask_copy(pmask, cpu_online_mask);
278         BUG_ON(!cpumask_intersects(pmask, cpu_online_mask));
279 }
280
281 /*
282  * Return in *pmask the portion of a cpusets's mems_allowed that
283  * are online, with memory.  If none are online with memory, walk
284  * up the cpuset hierarchy until we find one that does have some
285  * online mems.  If we get all the way to the top and still haven't
286  * found any online mems, return node_states[N_HIGH_MEMORY].
287  *
288  * One way or another, we guarantee to return some non-empty subset
289  * of node_states[N_HIGH_MEMORY].
290  *
291  * Call with callback_mutex held.
292  */
293
294 static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
295 {
296         while (cs && !nodes_intersects(cs->mems_allowed,
297                                         node_states[N_HIGH_MEMORY]))
298                 cs = cs->parent;
299         if (cs)
300                 nodes_and(*pmask, cs->mems_allowed,
301                                         node_states[N_HIGH_MEMORY]);
302         else
303                 *pmask = node_states[N_HIGH_MEMORY];
304         BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY]));
305 }
306
307 /*
308  * update task's spread flag if cpuset's page/slab spread flag is set
309  *
310  * Called with callback_mutex/cgroup_mutex held
311  */
312 static void cpuset_update_task_spread_flag(struct cpuset *cs,
313                                         struct task_struct *tsk)
314 {
315         if (is_spread_page(cs))
316                 tsk->flags |= PF_SPREAD_PAGE;
317         else
318                 tsk->flags &= ~PF_SPREAD_PAGE;
319         if (is_spread_slab(cs))
320                 tsk->flags |= PF_SPREAD_SLAB;
321         else
322                 tsk->flags &= ~PF_SPREAD_SLAB;
323 }
324
325 /*
326  * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
327  *
328  * One cpuset is a subset of another if all its allowed CPUs and
329  * Memory Nodes are a subset of the other, and its exclusive flags
330  * are only set if the other's are set.  Call holding cgroup_mutex.
331  */
332
333 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
334 {
335         return  cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
336                 nodes_subset(p->mems_allowed, q->mems_allowed) &&
337                 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
338                 is_mem_exclusive(p) <= is_mem_exclusive(q);
339 }
340
341 /**
342  * alloc_trial_cpuset - allocate a trial cpuset
343  * @cs: the cpuset that the trial cpuset duplicates
344  */
345 static struct cpuset *alloc_trial_cpuset(const struct cpuset *cs)
346 {
347         struct cpuset *trial;
348
349         trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
350         if (!trial)
351                 return NULL;
352
353         if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
354                 kfree(trial);
355                 return NULL;
356         }
357         cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
358
359         return trial;
360 }
361
362 /**
363  * free_trial_cpuset - free the trial cpuset
364  * @trial: the trial cpuset to be freed
365  */
366 static void free_trial_cpuset(struct cpuset *trial)
367 {
368         free_cpumask_var(trial->cpus_allowed);
369         kfree(trial);
370 }
371
372 /*
373  * validate_change() - Used to validate that any proposed cpuset change
374  *                     follows the structural rules for cpusets.
375  *
376  * If we replaced the flag and mask values of the current cpuset
377  * (cur) with those values in the trial cpuset (trial), would
378  * our various subset and exclusive rules still be valid?  Presumes
379  * cgroup_mutex held.
380  *
381  * 'cur' is the address of an actual, in-use cpuset.  Operations
382  * such as list traversal that depend on the actual address of the
383  * cpuset in the list must use cur below, not trial.
384  *
385  * 'trial' is the address of bulk structure copy of cur, with
386  * perhaps one or more of the fields cpus_allowed, mems_allowed,
387  * or flags changed to new, trial values.
388  *
389  * Return 0 if valid, -errno if not.
390  */
391
392 static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
393 {
394         struct cgroup *cont;
395         struct cpuset *c, *par;
396
397         /* Each of our child cpusets must be a subset of us */
398         list_for_each_entry(cont, &cur->css.cgroup->children, sibling) {
399                 if (!is_cpuset_subset(cgroup_cs(cont), trial))
400                         return -EBUSY;
401         }
402
403         /* Remaining checks don't apply to root cpuset */
404         if (cur == &top_cpuset)
405                 return 0;
406
407         par = cur->parent;
408
409         /* We must be a subset of our parent cpuset */
410         if (!is_cpuset_subset(trial, par))
411                 return -EACCES;
412
413         /*
414          * If either I or some sibling (!= me) is exclusive, we can't
415          * overlap
416          */
417         list_for_each_entry(cont, &par->css.cgroup->children, sibling) {
418                 c = cgroup_cs(cont);
419                 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
420                     c != cur &&
421                     cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
422                         return -EINVAL;
423                 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
424                     c != cur &&
425                     nodes_intersects(trial->mems_allowed, c->mems_allowed))
426                         return -EINVAL;
427         }
428
429         /* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */
430         if (cgroup_task_count(cur->css.cgroup)) {
431                 if (cpumask_empty(trial->cpus_allowed) ||
432                     nodes_empty(trial->mems_allowed)) {
433                         return -ENOSPC;
434                 }
435         }
436
437         return 0;
438 }
439
440 #ifdef CONFIG_SMP
441 /*
442  * Helper routine for generate_sched_domains().
443  * Do cpusets a, b have overlapping cpus_allowed masks?
444  */
445 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
446 {
447         return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
448 }
449
450 static void
451 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
452 {
453         if (dattr->relax_domain_level < c->relax_domain_level)
454                 dattr->relax_domain_level = c->relax_domain_level;
455         return;
456 }
457
458 static void
459 update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c)
460 {
461         LIST_HEAD(q);
462
463         list_add(&c->stack_list, &q);
464         while (!list_empty(&q)) {
465                 struct cpuset *cp;
466                 struct cgroup *cont;
467                 struct cpuset *child;
468
469                 cp = list_first_entry(&q, struct cpuset, stack_list);
470                 list_del(q.next);
471
472                 if (cpumask_empty(cp->cpus_allowed))
473                         continue;
474
475                 if (is_sched_load_balance(cp))
476                         update_domain_attr(dattr, cp);
477
478                 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
479                         child = cgroup_cs(cont);
480                         list_add_tail(&child->stack_list, &q);
481                 }
482         }
483 }
484
485 /*
486  * generate_sched_domains()
487  *
488  * This function builds a partial partition of the systems CPUs
489  * A 'partial partition' is a set of non-overlapping subsets whose
490  * union is a subset of that set.
491  * The output of this function needs to be passed to kernel/sched.c
492  * partition_sched_domains() routine, which will rebuild the scheduler's
493  * load balancing domains (sched domains) as specified by that partial
494  * partition.
495  *
496  * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
497  * for a background explanation of this.
498  *
499  * Does not return errors, on the theory that the callers of this
500  * routine would rather not worry about failures to rebuild sched
501  * domains when operating in the severe memory shortage situations
502  * that could cause allocation failures below.
503  *
504  * Must be called with cgroup_lock held.
505  *
506  * The three key local variables below are:
507  *    q  - a linked-list queue of cpuset pointers, used to implement a
508  *         top-down scan of all cpusets.  This scan loads a pointer
509  *         to each cpuset marked is_sched_load_balance into the
510  *         array 'csa'.  For our purposes, rebuilding the schedulers
511  *         sched domains, we can ignore !is_sched_load_balance cpusets.
512  *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
513  *         that need to be load balanced, for convenient iterative
514  *         access by the subsequent code that finds the best partition,
515  *         i.e the set of domains (subsets) of CPUs such that the
516  *         cpus_allowed of every cpuset marked is_sched_load_balance
517  *         is a subset of one of these domains, while there are as
518  *         many such domains as possible, each as small as possible.
519  * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
520  *         the kernel/sched.c routine partition_sched_domains() in a
521  *         convenient format, that can be easily compared to the prior
522  *         value to determine what partition elements (sched domains)
523  *         were changed (added or removed.)
524  *
525  * Finding the best partition (set of domains):
526  *      The triple nested loops below over i, j, k scan over the
527  *      load balanced cpusets (using the array of cpuset pointers in
528  *      csa[]) looking for pairs of cpusets that have overlapping
529  *      cpus_allowed, but which don't have the same 'pn' partition
530  *      number and gives them in the same partition number.  It keeps
531  *      looping on the 'restart' label until it can no longer find
532  *      any such pairs.
533  *
534  *      The union of the cpus_allowed masks from the set of
535  *      all cpusets having the same 'pn' value then form the one
536  *      element of the partition (one sched domain) to be passed to
537  *      partition_sched_domains().
538  */
539 static int generate_sched_domains(cpumask_var_t **domains,
540                         struct sched_domain_attr **attributes)
541 {
542         LIST_HEAD(q);           /* queue of cpusets to be scanned */
543         struct cpuset *cp;      /* scans q */
544         struct cpuset **csa;    /* array of all cpuset ptrs */
545         int csn;                /* how many cpuset ptrs in csa so far */
546         int i, j, k;            /* indices for partition finding loops */
547         cpumask_var_t *doms;    /* resulting partition; i.e. sched domains */
548         struct sched_domain_attr *dattr;  /* attributes for custom domains */
549         int ndoms = 0;          /* number of sched domains in result */
550         int nslot;              /* next empty doms[] struct cpumask slot */
551
552         doms = NULL;
553         dattr = NULL;
554         csa = NULL;
555
556         /* Special case for the 99% of systems with one, full, sched domain */
557         if (is_sched_load_balance(&top_cpuset)) {
558                 ndoms = 1;
559                 doms = alloc_sched_domains(ndoms);
560                 if (!doms)
561                         goto done;
562
563                 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
564                 if (dattr) {
565                         *dattr = SD_ATTR_INIT;
566                         update_domain_attr_tree(dattr, &top_cpuset);
567                 }
568                 cpumask_copy(doms[0], top_cpuset.cpus_allowed);
569
570                 goto done;
571         }
572
573         csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
574         if (!csa)
575                 goto done;
576         csn = 0;
577
578         list_add(&top_cpuset.stack_list, &q);
579         while (!list_empty(&q)) {
580                 struct cgroup *cont;
581                 struct cpuset *child;   /* scans child cpusets of cp */
582
583                 cp = list_first_entry(&q, struct cpuset, stack_list);
584                 list_del(q.next);
585
586                 if (cpumask_empty(cp->cpus_allowed))
587                         continue;
588
589                 /*
590                  * All child cpusets contain a subset of the parent's cpus, so
591                  * just skip them, and then we call update_domain_attr_tree()
592                  * to calc relax_domain_level of the corresponding sched
593                  * domain.
594                  */
595                 if (is_sched_load_balance(cp)) {
596                         csa[csn++] = cp;
597                         continue;
598                 }
599
600                 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
601                         child = cgroup_cs(cont);
602                         list_add_tail(&child->stack_list, &q);
603                 }
604         }
605
606         for (i = 0; i < csn; i++)
607                 csa[i]->pn = i;
608         ndoms = csn;
609
610 restart:
611         /* Find the best partition (set of sched domains) */
612         for (i = 0; i < csn; i++) {
613                 struct cpuset *a = csa[i];
614                 int apn = a->pn;
615
616                 for (j = 0; j < csn; j++) {
617                         struct cpuset *b = csa[j];
618                         int bpn = b->pn;
619
620                         if (apn != bpn && cpusets_overlap(a, b)) {
621                                 for (k = 0; k < csn; k++) {
622                                         struct cpuset *c = csa[k];
623
624                                         if (c->pn == bpn)
625                                                 c->pn = apn;
626                                 }
627                                 ndoms--;        /* one less element */
628                                 goto restart;
629                         }
630                 }
631         }
632
633         /*
634          * Now we know how many domains to create.
635          * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
636          */
637         doms = alloc_sched_domains(ndoms);
638         if (!doms)
639                 goto done;
640
641         /*
642          * The rest of the code, including the scheduler, can deal with
643          * dattr==NULL case. No need to abort if alloc fails.
644          */
645         dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
646
647         for (nslot = 0, i = 0; i < csn; i++) {
648                 struct cpuset *a = csa[i];
649                 struct cpumask *dp;
650                 int apn = a->pn;
651
652                 if (apn < 0) {
653                         /* Skip completed partitions */
654                         continue;
655                 }
656
657                 dp = doms[nslot];
658
659                 if (nslot == ndoms) {
660                         static int warnings = 10;
661                         if (warnings) {
662                                 printk(KERN_WARNING
663                                  "rebuild_sched_domains confused:"
664                                   " nslot %d, ndoms %d, csn %d, i %d,"
665                                   " apn %d\n",
666                                   nslot, ndoms, csn, i, apn);
667                                 warnings--;
668                         }
669                         continue;
670                 }
671
672                 cpumask_clear(dp);
673                 if (dattr)
674                         *(dattr + nslot) = SD_ATTR_INIT;
675                 for (j = i; j < csn; j++) {
676                         struct cpuset *b = csa[j];
677
678                         if (apn == b->pn) {
679                                 cpumask_or(dp, dp, b->cpus_allowed);
680                                 if (dattr)
681                                         update_domain_attr_tree(dattr + nslot, b);
682
683                                 /* Done with this partition */
684                                 b->pn = -1;
685                         }
686                 }
687                 nslot++;
688         }
689         BUG_ON(nslot != ndoms);
690
691 done:
692         kfree(csa);
693
694         /*
695          * Fallback to the default domain if kmalloc() failed.
696          * See comments in partition_sched_domains().
697          */
698         if (doms == NULL)
699                 ndoms = 1;
700
701         *domains    = doms;
702         *attributes = dattr;
703         return ndoms;
704 }
705
706 /*
707  * Rebuild scheduler domains.
708  *
709  * Call with neither cgroup_mutex held nor within get_online_cpus().
710  * Takes both cgroup_mutex and get_online_cpus().
711  *
712  * Cannot be directly called from cpuset code handling changes
713  * to the cpuset pseudo-filesystem, because it cannot be called
714  * from code that already holds cgroup_mutex.
715  */
716 static void do_rebuild_sched_domains(struct work_struct *unused)
717 {
718         struct sched_domain_attr *attr;
719         cpumask_var_t *doms;
720         int ndoms;
721
722         get_online_cpus();
723
724         /* Generate domain masks and attrs */
725         cgroup_lock();
726         ndoms = generate_sched_domains(&doms, &attr);
727         cgroup_unlock();
728
729         /* Have scheduler rebuild the domains */
730         partition_sched_domains(ndoms, doms, attr);
731
732         put_online_cpus();
733 }
734 #else /* !CONFIG_SMP */
735 static void do_rebuild_sched_domains(struct work_struct *unused)
736 {
737 }
738
739 static int generate_sched_domains(cpumask_var_t **domains,
740                         struct sched_domain_attr **attributes)
741 {
742         *domains = NULL;
743         return 1;
744 }
745 #endif /* CONFIG_SMP */
746
747 static DECLARE_WORK(rebuild_sched_domains_work, do_rebuild_sched_domains);
748
749 /*
750  * Rebuild scheduler domains, asynchronously via workqueue.
751  *
752  * If the flag 'sched_load_balance' of any cpuset with non-empty
753  * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
754  * which has that flag enabled, or if any cpuset with a non-empty
755  * 'cpus' is removed, then call this routine to rebuild the
756  * scheduler's dynamic sched domains.
757  *
758  * The rebuild_sched_domains() and partition_sched_domains()
759  * routines must nest cgroup_lock() inside get_online_cpus(),
760  * but such cpuset changes as these must nest that locking the
761  * other way, holding cgroup_lock() for much of the code.
762  *
763  * So in order to avoid an ABBA deadlock, the cpuset code handling
764  * these user changes delegates the actual sched domain rebuilding
765  * to a separate workqueue thread, which ends up processing the
766  * above do_rebuild_sched_domains() function.
767  */
768 static void async_rebuild_sched_domains(void)
769 {
770         queue_work(cpuset_wq, &rebuild_sched_domains_work);
771 }
772
773 /*
774  * Accomplishes the same scheduler domain rebuild as the above
775  * async_rebuild_sched_domains(), however it directly calls the
776  * rebuild routine synchronously rather than calling it via an
777  * asynchronous work thread.
778  *
779  * This can only be called from code that is not holding
780  * cgroup_mutex (not nested in a cgroup_lock() call.)
781  */
782 void rebuild_sched_domains(void)
783 {
784         do_rebuild_sched_domains(NULL);
785 }
786
787 /**
788  * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
789  * @tsk: task to test
790  * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
791  *
792  * Call with cgroup_mutex held.  May take callback_mutex during call.
793  * Called for each task in a cgroup by cgroup_scan_tasks().
794  * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
795  * words, if its mask is not equal to its cpuset's mask).
796  */
797 static int cpuset_test_cpumask(struct task_struct *tsk,
798                                struct cgroup_scanner *scan)
799 {
800         return !cpumask_equal(&tsk->cpus_allowed,
801                         (cgroup_cs(scan->cg))->cpus_allowed);
802 }
803
804 /**
805  * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
806  * @tsk: task to test
807  * @scan: struct cgroup_scanner containing the cgroup of the task
808  *
809  * Called by cgroup_scan_tasks() for each task in a cgroup whose
810  * cpus_allowed mask needs to be changed.
811  *
812  * We don't need to re-check for the cgroup/cpuset membership, since we're
813  * holding cgroup_lock() at this point.
814  */
815 static void cpuset_change_cpumask(struct task_struct *tsk,
816                                   struct cgroup_scanner *scan)
817 {
818         set_cpus_allowed_ptr(tsk, ((cgroup_cs(scan->cg))->cpus_allowed));
819 }
820
821 /**
822  * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
823  * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
824  * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
825  *
826  * Called with cgroup_mutex held
827  *
828  * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
829  * calling callback functions for each.
830  *
831  * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
832  * if @heap != NULL.
833  */
834 static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
835 {
836         struct cgroup_scanner scan;
837
838         scan.cg = cs->css.cgroup;
839         scan.test_task = cpuset_test_cpumask;
840         scan.process_task = cpuset_change_cpumask;
841         scan.heap = heap;
842         cgroup_scan_tasks(&scan);
843 }
844
845 /**
846  * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
847  * @cs: the cpuset to consider
848  * @buf: buffer of cpu numbers written to this cpuset
849  */
850 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
851                           const char *buf)
852 {
853         struct ptr_heap heap;
854         int retval;
855         int is_load_balanced;
856
857         /* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
858         if (cs == &top_cpuset)
859                 return -EACCES;
860
861         /*
862          * An empty cpus_allowed is ok only if the cpuset has no tasks.
863          * Since cpulist_parse() fails on an empty mask, we special case
864          * that parsing.  The validate_change() call ensures that cpusets
865          * with tasks have cpus.
866          */
867         if (!*buf) {
868                 cpumask_clear(trialcs->cpus_allowed);
869         } else {
870                 retval = cpulist_parse(buf, trialcs->cpus_allowed);
871                 if (retval < 0)
872                         return retval;
873
874                 if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask))
875                         return -EINVAL;
876         }
877         retval = validate_change(cs, trialcs);
878         if (retval < 0)
879                 return retval;
880
881         /* Nothing to do if the cpus didn't change */
882         if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
883                 return 0;
884
885         retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
886         if (retval)
887                 return retval;
888
889         is_load_balanced = is_sched_load_balance(trialcs);
890
891         mutex_lock(&callback_mutex);
892         cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
893         mutex_unlock(&callback_mutex);
894
895         /*
896          * Scan tasks in the cpuset, and update the cpumasks of any
897          * that need an update.
898          */
899         update_tasks_cpumask(cs, &heap);
900
901         heap_free(&heap);
902
903         if (is_load_balanced)
904                 async_rebuild_sched_domains();
905         return 0;
906 }
907
908 /*
909  * cpuset_migrate_mm
910  *
911  *    Migrate memory region from one set of nodes to another.
912  *
913  *    Temporarilly set tasks mems_allowed to target nodes of migration,
914  *    so that the migration code can allocate pages on these nodes.
915  *
916  *    Call holding cgroup_mutex, so current's cpuset won't change
917  *    during this call, as manage_mutex holds off any cpuset_attach()
918  *    calls.  Therefore we don't need to take task_lock around the
919  *    call to guarantee_online_mems(), as we know no one is changing
920  *    our task's cpuset.
921  *
922  *    While the mm_struct we are migrating is typically from some
923  *    other task, the task_struct mems_allowed that we are hacking
924  *    is for our current task, which must allocate new pages for that
925  *    migrating memory region.
926  */
927
928 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
929                                                         const nodemask_t *to)
930 {
931         struct task_struct *tsk = current;
932
933         tsk->mems_allowed = *to;
934
935         do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
936
937         guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
938 }
939
940 /*
941  * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
942  * @tsk: the task to change
943  * @newmems: new nodes that the task will be set
944  *
945  * In order to avoid seeing no nodes if the old and new nodes are disjoint,
946  * we structure updates as setting all new allowed nodes, then clearing newly
947  * disallowed ones.
948  */
949 static void cpuset_change_task_nodemask(struct task_struct *tsk,
950                                         nodemask_t *newmems)
951 {
952 repeat:
953         /*
954          * Allow tasks that have access to memory reserves because they have
955          * been OOM killed to get memory anywhere.
956          */
957         if (unlikely(test_thread_flag(TIF_MEMDIE)))
958                 return;
959         if (current->flags & PF_EXITING) /* Let dying task have memory */
960                 return;
961
962         task_lock(tsk);
963         nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
964         mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
965
966
967         /*
968          * ensure checking ->mems_allowed_change_disable after setting all new
969          * allowed nodes.
970          *
971          * the read-side task can see an nodemask with new allowed nodes and
972          * old allowed nodes. and if it allocates page when cpuset clears newly
973          * disallowed ones continuous, it can see the new allowed bits.
974          *
975          * And if setting all new allowed nodes is after the checking, setting
976          * all new allowed nodes and clearing newly disallowed ones will be done
977          * continuous, and the read-side task may find no node to alloc page.
978          */
979         smp_mb();
980
981         /*
982          * Allocation of memory is very fast, we needn't sleep when waiting
983          * for the read-side.
984          */
985         while (ACCESS_ONCE(tsk->mems_allowed_change_disable)) {
986                 task_unlock(tsk);
987                 if (!task_curr(tsk))
988                         yield();
989                 goto repeat;
990         }
991
992         /*
993          * ensure checking ->mems_allowed_change_disable before clearing all new
994          * disallowed nodes.
995          *
996          * if clearing newly disallowed bits before the checking, the read-side
997          * task may find no node to alloc page.
998          */
999         smp_mb();
1000
1001         mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
1002         tsk->mems_allowed = *newmems;
1003         task_unlock(tsk);
1004 }
1005
1006 /*
1007  * Update task's mems_allowed and rebind its mempolicy and vmas' mempolicy
1008  * of it to cpuset's new mems_allowed, and migrate pages to new nodes if
1009  * memory_migrate flag is set. Called with cgroup_mutex held.
1010  */
1011 static void cpuset_change_nodemask(struct task_struct *p,
1012                                    struct cgroup_scanner *scan)
1013 {
1014         struct mm_struct *mm;
1015         struct cpuset *cs;
1016         int migrate;
1017         const nodemask_t *oldmem = scan->data;
1018         static nodemask_t newmems;      /* protected by cgroup_mutex */
1019
1020         cs = cgroup_cs(scan->cg);
1021         guarantee_online_mems(cs, &newmems);
1022
1023         cpuset_change_task_nodemask(p, &newmems);
1024
1025         mm = get_task_mm(p);
1026         if (!mm)
1027                 return;
1028
1029         migrate = is_memory_migrate(cs);
1030
1031         mpol_rebind_mm(mm, &cs->mems_allowed);
1032         if (migrate)
1033                 cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed);
1034         mmput(mm);
1035 }
1036
1037 static void *cpuset_being_rebound;
1038
1039 /**
1040  * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1041  * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1042  * @oldmem: old mems_allowed of cpuset cs
1043  * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
1044  *
1045  * Called with cgroup_mutex held
1046  * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1047  * if @heap != NULL.
1048  */
1049 static void update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem,
1050                                  struct ptr_heap *heap)
1051 {
1052         struct cgroup_scanner scan;
1053
1054         cpuset_being_rebound = cs;              /* causes mpol_dup() rebind */
1055
1056         scan.cg = cs->css.cgroup;
1057         scan.test_task = NULL;
1058         scan.process_task = cpuset_change_nodemask;
1059         scan.heap = heap;
1060         scan.data = (nodemask_t *)oldmem;
1061
1062         /*
1063          * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1064          * take while holding tasklist_lock.  Forks can happen - the
1065          * mpol_dup() cpuset_being_rebound check will catch such forks,
1066          * and rebind their vma mempolicies too.  Because we still hold
1067          * the global cgroup_mutex, we know that no other rebind effort
1068          * will be contending for the global variable cpuset_being_rebound.
1069          * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1070          * is idempotent.  Also migrate pages in each mm to new nodes.
1071          */
1072         cgroup_scan_tasks(&scan);
1073
1074         /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1075         cpuset_being_rebound = NULL;
1076 }
1077
1078 /*
1079  * Handle user request to change the 'mems' memory placement
1080  * of a cpuset.  Needs to validate the request, update the
1081  * cpusets mems_allowed, and for each task in the cpuset,
1082  * update mems_allowed and rebind task's mempolicy and any vma
1083  * mempolicies and if the cpuset is marked 'memory_migrate',
1084  * migrate the tasks pages to the new memory.
1085  *
1086  * Call with cgroup_mutex held.  May take callback_mutex during call.
1087  * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1088  * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1089  * their mempolicies to the cpusets new mems_allowed.
1090  */
1091 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1092                            const char *buf)
1093 {
1094         NODEMASK_ALLOC(nodemask_t, oldmem, GFP_KERNEL);
1095         int retval;
1096         struct ptr_heap heap;
1097
1098         if (!oldmem)
1099                 return -ENOMEM;
1100
1101         /*
1102          * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY];
1103          * it's read-only
1104          */
1105         if (cs == &top_cpuset) {
1106                 retval = -EACCES;
1107                 goto done;
1108         }
1109
1110         /*
1111          * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1112          * Since nodelist_parse() fails on an empty mask, we special case
1113          * that parsing.  The validate_change() call ensures that cpusets
1114          * with tasks have memory.
1115          */
1116         if (!*buf) {
1117                 nodes_clear(trialcs->mems_allowed);
1118         } else {
1119                 retval = nodelist_parse(buf, trialcs->mems_allowed);
1120                 if (retval < 0)
1121                         goto done;
1122
1123                 if (!nodes_subset(trialcs->mems_allowed,
1124                                 node_states[N_HIGH_MEMORY])) {
1125                         retval =  -EINVAL;
1126                         goto done;
1127                 }
1128         }
1129         *oldmem = cs->mems_allowed;
1130         if (nodes_equal(*oldmem, trialcs->mems_allowed)) {
1131                 retval = 0;             /* Too easy - nothing to do */
1132                 goto done;
1133         }
1134         retval = validate_change(cs, trialcs);
1135         if (retval < 0)
1136                 goto done;
1137
1138         retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1139         if (retval < 0)
1140                 goto done;
1141
1142         mutex_lock(&callback_mutex);
1143         cs->mems_allowed = trialcs->mems_allowed;
1144         mutex_unlock(&callback_mutex);
1145
1146         update_tasks_nodemask(cs, oldmem, &heap);
1147
1148         heap_free(&heap);
1149 done:
1150         NODEMASK_FREE(oldmem);
1151         return retval;
1152 }
1153
1154 int current_cpuset_is_being_rebound(void)
1155 {
1156         return task_cs(current) == cpuset_being_rebound;
1157 }
1158
1159 static int update_relax_domain_level(struct cpuset *cs, s64 val)
1160 {
1161 #ifdef CONFIG_SMP
1162         if (val < -1 || val >= sched_domain_level_max)
1163                 return -EINVAL;
1164 #endif
1165
1166         if (val != cs->relax_domain_level) {
1167                 cs->relax_domain_level = val;
1168                 if (!cpumask_empty(cs->cpus_allowed) &&
1169                     is_sched_load_balance(cs))
1170                         async_rebuild_sched_domains();
1171         }
1172
1173         return 0;
1174 }
1175
1176 /*
1177  * cpuset_change_flag - make a task's spread flags the same as its cpuset's
1178  * @tsk: task to be updated
1179  * @scan: struct cgroup_scanner containing the cgroup of the task
1180  *
1181  * Called by cgroup_scan_tasks() for each task in a cgroup.
1182  *
1183  * We don't need to re-check for the cgroup/cpuset membership, since we're
1184  * holding cgroup_lock() at this point.
1185  */
1186 static void cpuset_change_flag(struct task_struct *tsk,
1187                                 struct cgroup_scanner *scan)
1188 {
1189         cpuset_update_task_spread_flag(cgroup_cs(scan->cg), tsk);
1190 }
1191
1192 /*
1193  * update_tasks_flags - update the spread flags of tasks in the cpuset.
1194  * @cs: the cpuset in which each task's spread flags needs to be changed
1195  * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
1196  *
1197  * Called with cgroup_mutex held
1198  *
1199  * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1200  * calling callback functions for each.
1201  *
1202  * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1203  * if @heap != NULL.
1204  */
1205 static void update_tasks_flags(struct cpuset *cs, struct ptr_heap *heap)
1206 {
1207         struct cgroup_scanner scan;
1208
1209         scan.cg = cs->css.cgroup;
1210         scan.test_task = NULL;
1211         scan.process_task = cpuset_change_flag;
1212         scan.heap = heap;
1213         cgroup_scan_tasks(&scan);
1214 }
1215
1216 /*
1217  * update_flag - read a 0 or a 1 in a file and update associated flag
1218  * bit:         the bit to update (see cpuset_flagbits_t)
1219  * cs:          the cpuset to update
1220  * turning_on:  whether the flag is being set or cleared
1221  *
1222  * Call with cgroup_mutex held.
1223  */
1224
1225 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1226                        int turning_on)
1227 {
1228         struct cpuset *trialcs;
1229         int balance_flag_changed;
1230         int spread_flag_changed;
1231         struct ptr_heap heap;
1232         int err;
1233
1234         trialcs = alloc_trial_cpuset(cs);
1235         if (!trialcs)
1236                 return -ENOMEM;
1237
1238         if (turning_on)
1239                 set_bit(bit, &trialcs->flags);
1240         else
1241                 clear_bit(bit, &trialcs->flags);
1242
1243         err = validate_change(cs, trialcs);
1244         if (err < 0)
1245                 goto out;
1246
1247         err = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1248         if (err < 0)
1249                 goto out;
1250
1251         balance_flag_changed = (is_sched_load_balance(cs) !=
1252                                 is_sched_load_balance(trialcs));
1253
1254         spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1255                         || (is_spread_page(cs) != is_spread_page(trialcs)));
1256
1257         mutex_lock(&callback_mutex);
1258         cs->flags = trialcs->flags;
1259         mutex_unlock(&callback_mutex);
1260
1261         if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1262                 async_rebuild_sched_domains();
1263
1264         if (spread_flag_changed)
1265                 update_tasks_flags(cs, &heap);
1266         heap_free(&heap);
1267 out:
1268         free_trial_cpuset(trialcs);
1269         return err;
1270 }
1271
1272 /*
1273  * Frequency meter - How fast is some event occurring?
1274  *
1275  * These routines manage a digitally filtered, constant time based,
1276  * event frequency meter.  There are four routines:
1277  *   fmeter_init() - initialize a frequency meter.
1278  *   fmeter_markevent() - called each time the event happens.
1279  *   fmeter_getrate() - returns the recent rate of such events.
1280  *   fmeter_update() - internal routine used to update fmeter.
1281  *
1282  * A common data structure is passed to each of these routines,
1283  * which is used to keep track of the state required to manage the
1284  * frequency meter and its digital filter.
1285  *
1286  * The filter works on the number of events marked per unit time.
1287  * The filter is single-pole low-pass recursive (IIR).  The time unit
1288  * is 1 second.  Arithmetic is done using 32-bit integers scaled to
1289  * simulate 3 decimal digits of precision (multiplied by 1000).
1290  *
1291  * With an FM_COEF of 933, and a time base of 1 second, the filter
1292  * has a half-life of 10 seconds, meaning that if the events quit
1293  * happening, then the rate returned from the fmeter_getrate()
1294  * will be cut in half each 10 seconds, until it converges to zero.
1295  *
1296  * It is not worth doing a real infinitely recursive filter.  If more
1297  * than FM_MAXTICKS ticks have elapsed since the last filter event,
1298  * just compute FM_MAXTICKS ticks worth, by which point the level
1299  * will be stable.
1300  *
1301  * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1302  * arithmetic overflow in the fmeter_update() routine.
1303  *
1304  * Given the simple 32 bit integer arithmetic used, this meter works
1305  * best for reporting rates between one per millisecond (msec) and
1306  * one per 32 (approx) seconds.  At constant rates faster than one
1307  * per msec it maxes out at values just under 1,000,000.  At constant
1308  * rates between one per msec, and one per second it will stabilize
1309  * to a value N*1000, where N is the rate of events per second.
1310  * At constant rates between one per second and one per 32 seconds,
1311  * it will be choppy, moving up on the seconds that have an event,
1312  * and then decaying until the next event.  At rates slower than
1313  * about one in 32 seconds, it decays all the way back to zero between
1314  * each event.
1315  */
1316
1317 #define FM_COEF 933             /* coefficient for half-life of 10 secs */
1318 #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1319 #define FM_MAXCNT 1000000       /* limit cnt to avoid overflow */
1320 #define FM_SCALE 1000           /* faux fixed point scale */
1321
1322 /* Initialize a frequency meter */
1323 static void fmeter_init(struct fmeter *fmp)
1324 {
1325         fmp->cnt = 0;
1326         fmp->val = 0;
1327         fmp->time = 0;
1328         spin_lock_init(&fmp->lock);
1329 }
1330
1331 /* Internal meter update - process cnt events and update value */
1332 static void fmeter_update(struct fmeter *fmp)
1333 {
1334         time_t now = get_seconds();
1335         time_t ticks = now - fmp->time;
1336
1337         if (ticks == 0)
1338                 return;
1339
1340         ticks = min(FM_MAXTICKS, ticks);
1341         while (ticks-- > 0)
1342                 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1343         fmp->time = now;
1344
1345         fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1346         fmp->cnt = 0;
1347 }
1348
1349 /* Process any previous ticks, then bump cnt by one (times scale). */
1350 static void fmeter_markevent(struct fmeter *fmp)
1351 {
1352         spin_lock(&fmp->lock);
1353         fmeter_update(fmp);
1354         fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1355         spin_unlock(&fmp->lock);
1356 }
1357
1358 /* Process any previous ticks, then return current value. */
1359 static int fmeter_getrate(struct fmeter *fmp)
1360 {
1361         int val;
1362
1363         spin_lock(&fmp->lock);
1364         fmeter_update(fmp);
1365         val = fmp->val;
1366         spin_unlock(&fmp->lock);
1367         return val;
1368 }
1369
1370 /* Protected by cgroup_lock */
1371 static cpumask_var_t cpus_attach;
1372
1373 /* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */
1374 static int cpuset_can_attach(struct cgroup_subsys *ss, struct cgroup *cont,
1375                              struct task_struct *tsk, bool threadgroup)
1376 {
1377         int ret;
1378         struct cpuset *cs = cgroup_cs(cont);
1379
1380         if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
1381                 return -ENOSPC;
1382
1383         /*
1384          * Kthreads bound to specific cpus cannot be moved to a new cpuset; we
1385          * cannot change their cpu affinity and isolating such threads by their
1386          * set of allowed nodes is unnecessary.  Thus, cpusets are not
1387          * applicable for such threads.  This prevents checking for success of
1388          * set_cpus_allowed_ptr() on all attached tasks before cpus_allowed may
1389          * be changed.
1390          */
1391         if (tsk->flags & PF_THREAD_BOUND)
1392                 return -EINVAL;
1393
1394         ret = security_task_setscheduler(tsk);
1395         if (ret)
1396                 return ret;
1397         if (threadgroup) {
1398                 struct task_struct *c;
1399
1400                 rcu_read_lock();
1401                 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
1402                         ret = security_task_setscheduler(c);
1403                         if (ret) {
1404                                 rcu_read_unlock();
1405                                 return ret;
1406                         }
1407                 }
1408                 rcu_read_unlock();
1409         }
1410         return 0;
1411 }
1412
1413 static void cpuset_attach_task(struct task_struct *tsk, nodemask_t *to,
1414                                struct cpuset *cs)
1415 {
1416         int err;
1417         /*
1418          * can_attach beforehand should guarantee that this doesn't fail.
1419          * TODO: have a better way to handle failure here
1420          */
1421         err = set_cpus_allowed_ptr(tsk, cpus_attach);
1422         WARN_ON_ONCE(err);
1423
1424         cpuset_change_task_nodemask(tsk, to);
1425         cpuset_update_task_spread_flag(cs, tsk);
1426
1427 }
1428
1429 static void cpuset_attach(struct cgroup_subsys *ss, struct cgroup *cont,
1430                           struct cgroup *oldcont, struct task_struct *tsk,
1431                           bool threadgroup)
1432 {
1433         struct mm_struct *mm;
1434         struct cpuset *cs = cgroup_cs(cont);
1435         struct cpuset *oldcs = cgroup_cs(oldcont);
1436         static nodemask_t to;           /* protected by cgroup_mutex */
1437
1438         if (cs == &top_cpuset) {
1439                 cpumask_copy(cpus_attach, cpu_possible_mask);
1440         } else {
1441                 guarantee_online_cpus(cs, cpus_attach);
1442         }
1443         guarantee_online_mems(cs, &to);
1444
1445         /* do per-task migration stuff possibly for each in the threadgroup */
1446         cpuset_attach_task(tsk, &to, cs);
1447         if (threadgroup) {
1448                 struct task_struct *c;
1449                 rcu_read_lock();
1450                 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
1451                         cpuset_attach_task(c, &to, cs);
1452                 }
1453                 rcu_read_unlock();
1454         }
1455
1456         /* change mm; only needs to be done once even if threadgroup */
1457         to = cs->mems_allowed;
1458         mm = get_task_mm(tsk);
1459         if (mm) {
1460                 mpol_rebind_mm(mm, &to);
1461                 if (is_memory_migrate(cs))
1462                         cpuset_migrate_mm(mm, &oldcs->mems_allowed, &to);
1463                 mmput(mm);
1464         }
1465 }
1466
1467 /* The various types of files and directories in a cpuset file system */
1468
1469 typedef enum {
1470         FILE_MEMORY_MIGRATE,
1471         FILE_CPULIST,
1472         FILE_MEMLIST,
1473         FILE_CPU_EXCLUSIVE,
1474         FILE_MEM_EXCLUSIVE,
1475         FILE_MEM_HARDWALL,
1476         FILE_SCHED_LOAD_BALANCE,
1477         FILE_SCHED_RELAX_DOMAIN_LEVEL,
1478         FILE_MEMORY_PRESSURE_ENABLED,
1479         FILE_MEMORY_PRESSURE,
1480         FILE_SPREAD_PAGE,
1481         FILE_SPREAD_SLAB,
1482 } cpuset_filetype_t;
1483
1484 static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
1485 {
1486         int retval = 0;
1487         struct cpuset *cs = cgroup_cs(cgrp);
1488         cpuset_filetype_t type = cft->private;
1489
1490         if (!cgroup_lock_live_group(cgrp))
1491                 return -ENODEV;
1492
1493         switch (type) {
1494         case FILE_CPU_EXCLUSIVE:
1495                 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1496                 break;
1497         case FILE_MEM_EXCLUSIVE:
1498                 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1499                 break;
1500         case FILE_MEM_HARDWALL:
1501                 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1502                 break;
1503         case FILE_SCHED_LOAD_BALANCE:
1504                 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1505                 break;
1506         case FILE_MEMORY_MIGRATE:
1507                 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1508                 break;
1509         case FILE_MEMORY_PRESSURE_ENABLED:
1510                 cpuset_memory_pressure_enabled = !!val;
1511                 break;
1512         case FILE_MEMORY_PRESSURE:
1513                 retval = -EACCES;
1514                 break;
1515         case FILE_SPREAD_PAGE:
1516                 retval = update_flag(CS_SPREAD_PAGE, cs, val);
1517                 break;
1518         case FILE_SPREAD_SLAB:
1519                 retval = update_flag(CS_SPREAD_SLAB, cs, val);
1520                 break;
1521         default:
1522                 retval = -EINVAL;
1523                 break;
1524         }
1525         cgroup_unlock();
1526         return retval;
1527 }
1528
1529 static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
1530 {
1531         int retval = 0;
1532         struct cpuset *cs = cgroup_cs(cgrp);
1533         cpuset_filetype_t type = cft->private;
1534
1535         if (!cgroup_lock_live_group(cgrp))
1536                 return -ENODEV;
1537
1538         switch (type) {
1539         case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1540                 retval = update_relax_domain_level(cs, val);
1541                 break;
1542         default:
1543                 retval = -EINVAL;
1544                 break;
1545         }
1546         cgroup_unlock();
1547         return retval;
1548 }
1549
1550 /*
1551  * Common handling for a write to a "cpus" or "mems" file.
1552  */
1553 static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
1554                                 const char *buf)
1555 {
1556         int retval = 0;
1557         struct cpuset *cs = cgroup_cs(cgrp);
1558         struct cpuset *trialcs;
1559
1560         if (!cgroup_lock_live_group(cgrp))
1561                 return -ENODEV;
1562
1563         trialcs = alloc_trial_cpuset(cs);
1564         if (!trialcs) {
1565                 retval = -ENOMEM;
1566                 goto out;
1567         }
1568
1569         switch (cft->private) {
1570         case FILE_CPULIST:
1571                 retval = update_cpumask(cs, trialcs, buf);
1572                 break;
1573         case FILE_MEMLIST:
1574                 retval = update_nodemask(cs, trialcs, buf);
1575                 break;
1576         default:
1577                 retval = -EINVAL;
1578                 break;
1579         }
1580
1581         free_trial_cpuset(trialcs);
1582 out:
1583         cgroup_unlock();
1584         return retval;
1585 }
1586
1587 /*
1588  * These ascii lists should be read in a single call, by using a user
1589  * buffer large enough to hold the entire map.  If read in smaller
1590  * chunks, there is no guarantee of atomicity.  Since the display format
1591  * used, list of ranges of sequential numbers, is variable length,
1592  * and since these maps can change value dynamically, one could read
1593  * gibberish by doing partial reads while a list was changing.
1594  * A single large read to a buffer that crosses a page boundary is
1595  * ok, because the result being copied to user land is not recomputed
1596  * across a page fault.
1597  */
1598
1599 static size_t cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
1600 {
1601         size_t count;
1602
1603         mutex_lock(&callback_mutex);
1604         count = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed);
1605         mutex_unlock(&callback_mutex);
1606
1607         return count;
1608 }
1609
1610 static size_t cpuset_sprintf_memlist(char *page, struct cpuset *cs)
1611 {
1612         size_t count;
1613
1614         mutex_lock(&callback_mutex);
1615         count = nodelist_scnprintf(page, PAGE_SIZE, cs->mems_allowed);
1616         mutex_unlock(&callback_mutex);
1617
1618         return count;
1619 }
1620
1621 static ssize_t cpuset_common_file_read(struct cgroup *cont,
1622                                        struct cftype *cft,
1623                                        struct file *file,
1624                                        char __user *buf,
1625                                        size_t nbytes, loff_t *ppos)
1626 {
1627         struct cpuset *cs = cgroup_cs(cont);
1628         cpuset_filetype_t type = cft->private;
1629         char *page;
1630         ssize_t retval = 0;
1631         char *s;
1632
1633         if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
1634                 return -ENOMEM;
1635
1636         s = page;
1637
1638         switch (type) {
1639         case FILE_CPULIST:
1640                 s += cpuset_sprintf_cpulist(s, cs);
1641                 break;
1642         case FILE_MEMLIST:
1643                 s += cpuset_sprintf_memlist(s, cs);
1644                 break;
1645         default:
1646                 retval = -EINVAL;
1647                 goto out;
1648         }
1649         *s++ = '\n';
1650
1651         retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1652 out:
1653         free_page((unsigned long)page);
1654         return retval;
1655 }
1656
1657 static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
1658 {
1659         struct cpuset *cs = cgroup_cs(cont);
1660         cpuset_filetype_t type = cft->private;
1661         switch (type) {
1662         case FILE_CPU_EXCLUSIVE:
1663                 return is_cpu_exclusive(cs);
1664         case FILE_MEM_EXCLUSIVE:
1665                 return is_mem_exclusive(cs);
1666         case FILE_MEM_HARDWALL:
1667                 return is_mem_hardwall(cs);
1668         case FILE_SCHED_LOAD_BALANCE:
1669                 return is_sched_load_balance(cs);
1670         case FILE_MEMORY_MIGRATE:
1671                 return is_memory_migrate(cs);
1672         case FILE_MEMORY_PRESSURE_ENABLED:
1673                 return cpuset_memory_pressure_enabled;
1674         case FILE_MEMORY_PRESSURE:
1675                 return fmeter_getrate(&cs->fmeter);
1676         case FILE_SPREAD_PAGE:
1677                 return is_spread_page(cs);
1678         case FILE_SPREAD_SLAB:
1679                 return is_spread_slab(cs);
1680         default:
1681                 BUG();
1682         }
1683
1684         /* Unreachable but makes gcc happy */
1685         return 0;
1686 }
1687
1688 static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
1689 {
1690         struct cpuset *cs = cgroup_cs(cont);
1691         cpuset_filetype_t type = cft->private;
1692         switch (type) {
1693         case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1694                 return cs->relax_domain_level;
1695         default:
1696                 BUG();
1697         }
1698
1699         /* Unrechable but makes gcc happy */
1700         return 0;
1701 }
1702
1703
1704 /*
1705  * for the common functions, 'private' gives the type of file
1706  */
1707
1708 static struct cftype files[] = {
1709         {
1710                 .name = "cpus",
1711                 .read = cpuset_common_file_read,
1712                 .write_string = cpuset_write_resmask,
1713                 .max_write_len = (100U + 6 * NR_CPUS),
1714                 .private = FILE_CPULIST,
1715         },
1716
1717         {
1718                 .name = "mems",
1719                 .read = cpuset_common_file_read,
1720                 .write_string = cpuset_write_resmask,
1721                 .max_write_len = (100U + 6 * MAX_NUMNODES),
1722                 .private = FILE_MEMLIST,
1723         },
1724
1725         {
1726                 .name = "cpu_exclusive",
1727                 .read_u64 = cpuset_read_u64,
1728                 .write_u64 = cpuset_write_u64,
1729                 .private = FILE_CPU_EXCLUSIVE,
1730         },
1731
1732         {
1733                 .name = "mem_exclusive",
1734                 .read_u64 = cpuset_read_u64,
1735                 .write_u64 = cpuset_write_u64,
1736                 .private = FILE_MEM_EXCLUSIVE,
1737         },
1738
1739         {
1740                 .name = "mem_hardwall",
1741                 .read_u64 = cpuset_read_u64,
1742                 .write_u64 = cpuset_write_u64,
1743                 .private = FILE_MEM_HARDWALL,
1744         },
1745
1746         {
1747                 .name = "sched_load_balance",
1748                 .read_u64 = cpuset_read_u64,
1749                 .write_u64 = cpuset_write_u64,
1750                 .private = FILE_SCHED_LOAD_BALANCE,
1751         },
1752
1753         {
1754                 .name = "sched_relax_domain_level",
1755                 .read_s64 = cpuset_read_s64,
1756                 .write_s64 = cpuset_write_s64,
1757                 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1758         },
1759
1760         {
1761                 .name = "memory_migrate",
1762                 .read_u64 = cpuset_read_u64,
1763                 .write_u64 = cpuset_write_u64,
1764                 .private = FILE_MEMORY_MIGRATE,
1765         },
1766
1767         {
1768                 .name = "memory_pressure",
1769                 .read_u64 = cpuset_read_u64,
1770                 .write_u64 = cpuset_write_u64,
1771                 .private = FILE_MEMORY_PRESSURE,
1772                 .mode = S_IRUGO,
1773         },
1774
1775         {
1776                 .name = "memory_spread_page",
1777                 .read_u64 = cpuset_read_u64,
1778                 .write_u64 = cpuset_write_u64,
1779                 .private = FILE_SPREAD_PAGE,
1780         },
1781
1782         {
1783                 .name = "memory_spread_slab",
1784                 .read_u64 = cpuset_read_u64,
1785                 .write_u64 = cpuset_write_u64,
1786                 .private = FILE_SPREAD_SLAB,
1787         },
1788 };
1789
1790 static struct cftype cft_memory_pressure_enabled = {
1791         .name = "memory_pressure_enabled",
1792         .read_u64 = cpuset_read_u64,
1793         .write_u64 = cpuset_write_u64,
1794         .private = FILE_MEMORY_PRESSURE_ENABLED,
1795 };
1796
1797 static int cpuset_populate(struct cgroup_subsys *ss, struct cgroup *cont)
1798 {
1799         int err;
1800
1801         err = cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
1802         if (err)
1803                 return err;
1804         /* memory_pressure_enabled is in root cpuset only */
1805         if (!cont->parent)
1806                 err = cgroup_add_file(cont, ss,
1807                                       &cft_memory_pressure_enabled);
1808         return err;
1809 }
1810
1811 /*
1812  * post_clone() is called at the end of cgroup_clone().
1813  * 'cgroup' was just created automatically as a result of
1814  * a cgroup_clone(), and the current task is about to
1815  * be moved into 'cgroup'.
1816  *
1817  * Currently we refuse to set up the cgroup - thereby
1818  * refusing the task to be entered, and as a result refusing
1819  * the sys_unshare() or clone() which initiated it - if any
1820  * sibling cpusets have exclusive cpus or mem.
1821  *
1822  * If this becomes a problem for some users who wish to
1823  * allow that scenario, then cpuset_post_clone() could be
1824  * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1825  * (and likewise for mems) to the new cgroup. Called with cgroup_mutex
1826  * held.
1827  */
1828 static void cpuset_post_clone(struct cgroup_subsys *ss,
1829                               struct cgroup *cgroup)
1830 {
1831         struct cgroup *parent, *child;
1832         struct cpuset *cs, *parent_cs;
1833
1834         parent = cgroup->parent;
1835         list_for_each_entry(child, &parent->children, sibling) {
1836                 cs = cgroup_cs(child);
1837                 if (is_mem_exclusive(cs) || is_cpu_exclusive(cs))
1838                         return;
1839         }
1840         cs = cgroup_cs(cgroup);
1841         parent_cs = cgroup_cs(parent);
1842
1843         mutex_lock(&callback_mutex);
1844         cs->mems_allowed = parent_cs->mems_allowed;
1845         cpumask_copy(cs->cpus_allowed, parent_cs->cpus_allowed);
1846         mutex_unlock(&callback_mutex);
1847         return;
1848 }
1849
1850 /*
1851  *      cpuset_create - create a cpuset
1852  *      ss:     cpuset cgroup subsystem
1853  *      cont:   control group that the new cpuset will be part of
1854  */
1855
1856 static struct cgroup_subsys_state *cpuset_create(
1857         struct cgroup_subsys *ss,
1858         struct cgroup *cont)
1859 {
1860         struct cpuset *cs;
1861         struct cpuset *parent;
1862
1863         if (!cont->parent) {
1864                 return &top_cpuset.css;
1865         }
1866         parent = cgroup_cs(cont->parent);
1867         cs = kmalloc(sizeof(*cs), GFP_KERNEL);
1868         if (!cs)
1869                 return ERR_PTR(-ENOMEM);
1870         if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
1871                 kfree(cs);
1872                 return ERR_PTR(-ENOMEM);
1873         }
1874
1875         cs->flags = 0;
1876         if (is_spread_page(parent))
1877                 set_bit(CS_SPREAD_PAGE, &cs->flags);
1878         if (is_spread_slab(parent))
1879                 set_bit(CS_SPREAD_SLAB, &cs->flags);
1880         set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1881         cpumask_clear(cs->cpus_allowed);
1882         nodes_clear(cs->mems_allowed);
1883         fmeter_init(&cs->fmeter);
1884         cs->relax_domain_level = -1;
1885
1886         cs->parent = parent;
1887         number_of_cpusets++;
1888         return &cs->css ;
1889 }
1890
1891 /*
1892  * If the cpuset being removed has its flag 'sched_load_balance'
1893  * enabled, then simulate turning sched_load_balance off, which
1894  * will call async_rebuild_sched_domains().
1895  */
1896
1897 static void cpuset_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
1898 {
1899         struct cpuset *cs = cgroup_cs(cont);
1900
1901         if (is_sched_load_balance(cs))
1902                 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
1903
1904         number_of_cpusets--;
1905         free_cpumask_var(cs->cpus_allowed);
1906         kfree(cs);
1907 }
1908
1909 struct cgroup_subsys cpuset_subsys = {
1910         .name = "cpuset",
1911         .create = cpuset_create,
1912         .destroy = cpuset_destroy,
1913         .can_attach = cpuset_can_attach,
1914         .attach = cpuset_attach,
1915         .populate = cpuset_populate,
1916         .post_clone = cpuset_post_clone,
1917         .subsys_id = cpuset_subsys_id,
1918         .early_init = 1,
1919 };
1920
1921 /**
1922  * cpuset_init - initialize cpusets at system boot
1923  *
1924  * Description: Initialize top_cpuset and the cpuset internal file system,
1925  **/
1926
1927 int __init cpuset_init(void)
1928 {
1929         int err = 0;
1930
1931         if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
1932                 BUG();
1933
1934         cpumask_setall(top_cpuset.cpus_allowed);
1935         nodes_setall(top_cpuset.mems_allowed);
1936
1937         fmeter_init(&top_cpuset.fmeter);
1938         set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1939         top_cpuset.relax_domain_level = -1;
1940
1941         err = register_filesystem(&cpuset_fs_type);
1942         if (err < 0)
1943                 return err;
1944
1945         if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
1946                 BUG();
1947
1948         number_of_cpusets = 1;
1949         return 0;
1950 }
1951
1952 /**
1953  * cpuset_do_move_task - move a given task to another cpuset
1954  * @tsk: pointer to task_struct the task to move
1955  * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
1956  *
1957  * Called by cgroup_scan_tasks() for each task in a cgroup.
1958  * Return nonzero to stop the walk through the tasks.
1959  */
1960 static void cpuset_do_move_task(struct task_struct *tsk,
1961                                 struct cgroup_scanner *scan)
1962 {
1963         struct cgroup *new_cgroup = scan->data;
1964
1965         cgroup_attach_task(new_cgroup, tsk);
1966 }
1967
1968 /**
1969  * move_member_tasks_to_cpuset - move tasks from one cpuset to another
1970  * @from: cpuset in which the tasks currently reside
1971  * @to: cpuset to which the tasks will be moved
1972  *
1973  * Called with cgroup_mutex held
1974  * callback_mutex must not be held, as cpuset_attach() will take it.
1975  *
1976  * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1977  * calling callback functions for each.
1978  */
1979 static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to)
1980 {
1981         struct cgroup_scanner scan;
1982
1983         scan.cg = from->css.cgroup;
1984         scan.test_task = NULL; /* select all tasks in cgroup */
1985         scan.process_task = cpuset_do_move_task;
1986         scan.heap = NULL;
1987         scan.data = to->css.cgroup;
1988
1989         if (cgroup_scan_tasks(&scan))
1990                 printk(KERN_ERR "move_member_tasks_to_cpuset: "
1991                                 "cgroup_scan_tasks failed\n");
1992 }
1993
1994 /*
1995  * If CPU and/or memory hotplug handlers, below, unplug any CPUs
1996  * or memory nodes, we need to walk over the cpuset hierarchy,
1997  * removing that CPU or node from all cpusets.  If this removes the
1998  * last CPU or node from a cpuset, then move the tasks in the empty
1999  * cpuset to its next-highest non-empty parent.
2000  *
2001  * Called with cgroup_mutex held
2002  * callback_mutex must not be held, as cpuset_attach() will take it.
2003  */
2004 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2005 {
2006         struct cpuset *parent;
2007
2008         /*
2009          * The cgroup's css_sets list is in use if there are tasks
2010          * in the cpuset; the list is empty if there are none;
2011          * the cs->css.refcnt seems always 0.
2012          */
2013         if (list_empty(&cs->css.cgroup->css_sets))
2014                 return;
2015
2016         /*
2017          * Find its next-highest non-empty parent, (top cpuset
2018          * has online cpus, so can't be empty).
2019          */
2020         parent = cs->parent;
2021         while (cpumask_empty(parent->cpus_allowed) ||
2022                         nodes_empty(parent->mems_allowed))
2023                 parent = parent->parent;
2024
2025         move_member_tasks_to_cpuset(cs, parent);
2026 }
2027
2028 /*
2029  * Walk the specified cpuset subtree and look for empty cpusets.
2030  * The tasks of such cpuset must be moved to a parent cpuset.
2031  *
2032  * Called with cgroup_mutex held.  We take callback_mutex to modify
2033  * cpus_allowed and mems_allowed.
2034  *
2035  * This walk processes the tree from top to bottom, completing one layer
2036  * before dropping down to the next.  It always processes a node before
2037  * any of its children.
2038  *
2039  * For now, since we lack memory hot unplug, we'll never see a cpuset
2040  * that has tasks along with an empty 'mems'.  But if we did see such
2041  * a cpuset, we'd handle it just like we do if its 'cpus' was empty.
2042  */
2043 static void scan_for_empty_cpusets(struct cpuset *root)
2044 {
2045         LIST_HEAD(queue);
2046         struct cpuset *cp;      /* scans cpusets being updated */
2047         struct cpuset *child;   /* scans child cpusets of cp */
2048         struct cgroup *cont;
2049         static nodemask_t oldmems;      /* protected by cgroup_mutex */
2050
2051         list_add_tail((struct list_head *)&root->stack_list, &queue);
2052
2053         while (!list_empty(&queue)) {
2054                 cp = list_first_entry(&queue, struct cpuset, stack_list);
2055                 list_del(queue.next);
2056                 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
2057                         child = cgroup_cs(cont);
2058                         list_add_tail(&child->stack_list, &queue);
2059                 }
2060
2061                 /* Continue past cpusets with all cpus, mems online */
2062                 if (cpumask_subset(cp->cpus_allowed, cpu_active_mask) &&
2063                     nodes_subset(cp->mems_allowed, node_states[N_HIGH_MEMORY]))
2064                         continue;
2065
2066                 oldmems = cp->mems_allowed;
2067
2068                 /* Remove offline cpus and mems from this cpuset. */
2069                 mutex_lock(&callback_mutex);
2070                 cpumask_and(cp->cpus_allowed, cp->cpus_allowed,
2071                             cpu_active_mask);
2072                 nodes_and(cp->mems_allowed, cp->mems_allowed,
2073                                                 node_states[N_HIGH_MEMORY]);
2074                 mutex_unlock(&callback_mutex);
2075
2076                 /* Move tasks from the empty cpuset to a parent */
2077                 if (cpumask_empty(cp->cpus_allowed) ||
2078                      nodes_empty(cp->mems_allowed))
2079                         remove_tasks_in_empty_cpuset(cp);
2080                 else {
2081                         update_tasks_cpumask(cp, NULL);
2082                         update_tasks_nodemask(cp, &oldmems, NULL);
2083                 }
2084         }
2085 }
2086
2087 /*
2088  * The top_cpuset tracks what CPUs and Memory Nodes are online,
2089  * period.  This is necessary in order to make cpusets transparent
2090  * (of no affect) on systems that are actively using CPU hotplug
2091  * but making no active use of cpusets.
2092  *
2093  * This routine ensures that top_cpuset.cpus_allowed tracks
2094  * cpu_active_mask on each CPU hotplug (cpuhp) event.
2095  *
2096  * Called within get_online_cpus().  Needs to call cgroup_lock()
2097  * before calling generate_sched_domains().
2098  */
2099 void cpuset_update_active_cpus(void)
2100 {
2101         struct sched_domain_attr *attr;
2102         cpumask_var_t *doms;
2103         int ndoms;
2104
2105         cgroup_lock();
2106         mutex_lock(&callback_mutex);
2107         cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2108         mutex_unlock(&callback_mutex);
2109         scan_for_empty_cpusets(&top_cpuset);
2110         ndoms = generate_sched_domains(&doms, &attr);
2111         cgroup_unlock();
2112
2113         /* Have scheduler rebuild the domains */
2114         partition_sched_domains(ndoms, doms, attr);
2115 }
2116
2117 #ifdef CONFIG_MEMORY_HOTPLUG
2118 /*
2119  * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY].
2120  * Call this routine anytime after node_states[N_HIGH_MEMORY] changes.
2121  * See also the previous routine cpuset_track_online_cpus().
2122  */
2123 static int cpuset_track_online_nodes(struct notifier_block *self,
2124                                 unsigned long action, void *arg)
2125 {
2126         static nodemask_t oldmems;      /* protected by cgroup_mutex */
2127
2128         cgroup_lock();
2129         switch (action) {
2130         case MEM_ONLINE:
2131                 oldmems = top_cpuset.mems_allowed;
2132                 mutex_lock(&callback_mutex);
2133                 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
2134                 mutex_unlock(&callback_mutex);
2135                 update_tasks_nodemask(&top_cpuset, &oldmems, NULL);
2136                 break;
2137         case MEM_OFFLINE:
2138                 /*
2139                  * needn't update top_cpuset.mems_allowed explicitly because
2140                  * scan_for_empty_cpusets() will update it.
2141                  */
2142                 scan_for_empty_cpusets(&top_cpuset);
2143                 break;
2144         default:
2145                 break;
2146         }
2147         cgroup_unlock();
2148
2149         return NOTIFY_OK;
2150 }
2151 #endif
2152
2153 /**
2154  * cpuset_init_smp - initialize cpus_allowed
2155  *
2156  * Description: Finish top cpuset after cpu, node maps are initialized
2157  **/
2158
2159 void __init cpuset_init_smp(void)
2160 {
2161         cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2162         top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
2163
2164         hotplug_memory_notifier(cpuset_track_online_nodes, 10);
2165
2166         cpuset_wq = create_singlethread_workqueue("cpuset");
2167         BUG_ON(!cpuset_wq);
2168 }
2169
2170 /**
2171  * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2172  * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2173  * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
2174  *
2175  * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
2176  * attached to the specified @tsk.  Guaranteed to return some non-empty
2177  * subset of cpu_online_map, even if this means going outside the
2178  * tasks cpuset.
2179  **/
2180
2181 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
2182 {
2183         mutex_lock(&callback_mutex);
2184         task_lock(tsk);
2185         guarantee_online_cpus(task_cs(tsk), pmask);
2186         task_unlock(tsk);
2187         mutex_unlock(&callback_mutex);
2188 }
2189
2190 int cpuset_cpus_allowed_fallback(struct task_struct *tsk)
2191 {
2192         const struct cpuset *cs;
2193         int cpu;
2194
2195         rcu_read_lock();
2196         cs = task_cs(tsk);
2197         if (cs)
2198                 cpumask_copy(&tsk->cpus_allowed, cs->cpus_allowed);
2199         rcu_read_unlock();
2200
2201         /*
2202          * We own tsk->cpus_allowed, nobody can change it under us.
2203          *
2204          * But we used cs && cs->cpus_allowed lockless and thus can
2205          * race with cgroup_attach_task() or update_cpumask() and get
2206          * the wrong tsk->cpus_allowed. However, both cases imply the
2207          * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2208          * which takes task_rq_lock().
2209          *
2210          * If we are called after it dropped the lock we must see all
2211          * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2212          * set any mask even if it is not right from task_cs() pov,
2213          * the pending set_cpus_allowed_ptr() will fix things.
2214          */
2215
2216         cpu = cpumask_any_and(&tsk->cpus_allowed, cpu_active_mask);
2217         if (cpu >= nr_cpu_ids) {
2218                 /*
2219                  * Either tsk->cpus_allowed is wrong (see above) or it
2220                  * is actually empty. The latter case is only possible
2221                  * if we are racing with remove_tasks_in_empty_cpuset().
2222                  * Like above we can temporary set any mask and rely on
2223                  * set_cpus_allowed_ptr() as synchronization point.
2224                  */
2225                 cpumask_copy(&tsk->cpus_allowed, cpu_possible_mask);
2226                 cpu = cpumask_any(cpu_active_mask);
2227         }
2228
2229         return cpu;
2230 }
2231
2232 void cpuset_init_current_mems_allowed(void)
2233 {
2234         nodes_setall(current->mems_allowed);
2235 }
2236
2237 /**
2238  * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2239  * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2240  *
2241  * Description: Returns the nodemask_t mems_allowed of the cpuset
2242  * attached to the specified @tsk.  Guaranteed to return some non-empty
2243  * subset of node_states[N_HIGH_MEMORY], even if this means going outside the
2244  * tasks cpuset.
2245  **/
2246
2247 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2248 {
2249         nodemask_t mask;
2250
2251         mutex_lock(&callback_mutex);
2252         task_lock(tsk);
2253         guarantee_online_mems(task_cs(tsk), &mask);
2254         task_unlock(tsk);
2255         mutex_unlock(&callback_mutex);
2256
2257         return mask;
2258 }
2259
2260 /**
2261  * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2262  * @nodemask: the nodemask to be checked
2263  *
2264  * Are any of the nodes in the nodemask allowed in current->mems_allowed?
2265  */
2266 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
2267 {
2268         return nodes_intersects(*nodemask, current->mems_allowed);
2269 }
2270
2271 /*
2272  * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2273  * mem_hardwall ancestor to the specified cpuset.  Call holding
2274  * callback_mutex.  If no ancestor is mem_exclusive or mem_hardwall
2275  * (an unusual configuration), then returns the root cpuset.
2276  */
2277 static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
2278 {
2279         while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && cs->parent)
2280                 cs = cs->parent;
2281         return cs;
2282 }
2283
2284 /**
2285  * cpuset_node_allowed_softwall - Can we allocate on a memory node?
2286  * @node: is this an allowed node?
2287  * @gfp_mask: memory allocation flags
2288  *
2289  * If we're in interrupt, yes, we can always allocate.  If __GFP_THISNODE is
2290  * set, yes, we can always allocate.  If node is in our task's mems_allowed,
2291  * yes.  If it's not a __GFP_HARDWALL request and this node is in the nearest
2292  * hardwalled cpuset ancestor to this task's cpuset, yes.  If the task has been
2293  * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
2294  * flag, yes.
2295  * Otherwise, no.
2296  *
2297  * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
2298  * cpuset_node_allowed_hardwall().  Otherwise, cpuset_node_allowed_softwall()
2299  * might sleep, and might allow a node from an enclosing cpuset.
2300  *
2301  * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
2302  * cpusets, and never sleeps.
2303  *
2304  * The __GFP_THISNODE placement logic is really handled elsewhere,
2305  * by forcibly using a zonelist starting at a specified node, and by
2306  * (in get_page_from_freelist()) refusing to consider the zones for
2307  * any node on the zonelist except the first.  By the time any such
2308  * calls get to this routine, we should just shut up and say 'yes'.
2309  *
2310  * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2311  * and do not allow allocations outside the current tasks cpuset
2312  * unless the task has been OOM killed as is marked TIF_MEMDIE.
2313  * GFP_KERNEL allocations are not so marked, so can escape to the
2314  * nearest enclosing hardwalled ancestor cpuset.
2315  *
2316  * Scanning up parent cpusets requires callback_mutex.  The
2317  * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2318  * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2319  * current tasks mems_allowed came up empty on the first pass over
2320  * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
2321  * cpuset are short of memory, might require taking the callback_mutex
2322  * mutex.
2323  *
2324  * The first call here from mm/page_alloc:get_page_from_freelist()
2325  * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2326  * so no allocation on a node outside the cpuset is allowed (unless
2327  * in interrupt, of course).
2328  *
2329  * The second pass through get_page_from_freelist() doesn't even call
2330  * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
2331  * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2332  * in alloc_flags.  That logic and the checks below have the combined
2333  * affect that:
2334  *      in_interrupt - any node ok (current task context irrelevant)
2335  *      GFP_ATOMIC   - any node ok
2336  *      TIF_MEMDIE   - any node ok
2337  *      GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
2338  *      GFP_USER     - only nodes in current tasks mems allowed ok.
2339  *
2340  * Rule:
2341  *    Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
2342  *    pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2343  *    the code that might scan up ancestor cpusets and sleep.
2344  */
2345 int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
2346 {
2347         const struct cpuset *cs;        /* current cpuset ancestors */
2348         int allowed;                    /* is allocation in zone z allowed? */
2349
2350         if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2351                 return 1;
2352         might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
2353         if (node_isset(node, current->mems_allowed))
2354                 return 1;
2355         /*
2356          * Allow tasks that have access to memory reserves because they have
2357          * been OOM killed to get memory anywhere.
2358          */
2359         if (unlikely(test_thread_flag(TIF_MEMDIE)))
2360                 return 1;
2361         if (gfp_mask & __GFP_HARDWALL)  /* If hardwall request, stop here */
2362                 return 0;
2363
2364         if (current->flags & PF_EXITING) /* Let dying task have memory */
2365                 return 1;
2366
2367         /* Not hardwall and node outside mems_allowed: scan up cpusets */
2368         mutex_lock(&callback_mutex);
2369
2370         task_lock(current);
2371         cs = nearest_hardwall_ancestor(task_cs(current));
2372         task_unlock(current);
2373
2374         allowed = node_isset(node, cs->mems_allowed);
2375         mutex_unlock(&callback_mutex);
2376         return allowed;
2377 }
2378
2379 /*
2380  * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
2381  * @node: is this an allowed node?
2382  * @gfp_mask: memory allocation flags
2383  *
2384  * If we're in interrupt, yes, we can always allocate.  If __GFP_THISNODE is
2385  * set, yes, we can always allocate.  If node is in our task's mems_allowed,
2386  * yes.  If the task has been OOM killed and has access to memory reserves as
2387  * specified by the TIF_MEMDIE flag, yes.
2388  * Otherwise, no.
2389  *
2390  * The __GFP_THISNODE placement logic is really handled elsewhere,
2391  * by forcibly using a zonelist starting at a specified node, and by
2392  * (in get_page_from_freelist()) refusing to consider the zones for
2393  * any node on the zonelist except the first.  By the time any such
2394  * calls get to this routine, we should just shut up and say 'yes'.
2395  *
2396  * Unlike the cpuset_node_allowed_softwall() variant, above,
2397  * this variant requires that the node be in the current task's
2398  * mems_allowed or that we're in interrupt.  It does not scan up the
2399  * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2400  * It never sleeps.
2401  */
2402 int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
2403 {
2404         if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2405                 return 1;
2406         if (node_isset(node, current->mems_allowed))
2407                 return 1;
2408         /*
2409          * Allow tasks that have access to memory reserves because they have
2410          * been OOM killed to get memory anywhere.
2411          */
2412         if (unlikely(test_thread_flag(TIF_MEMDIE)))
2413                 return 1;
2414         return 0;
2415 }
2416
2417 /**
2418  * cpuset_unlock - release lock on cpuset changes
2419  *
2420  * Undo the lock taken in a previous cpuset_lock() call.
2421  */
2422
2423 void cpuset_unlock(void)
2424 {
2425         mutex_unlock(&callback_mutex);
2426 }
2427
2428 /**
2429  * cpuset_mem_spread_node() - On which node to begin search for a file page
2430  * cpuset_slab_spread_node() - On which node to begin search for a slab page
2431  *
2432  * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2433  * tasks in a cpuset with is_spread_page or is_spread_slab set),
2434  * and if the memory allocation used cpuset_mem_spread_node()
2435  * to determine on which node to start looking, as it will for
2436  * certain page cache or slab cache pages such as used for file
2437  * system buffers and inode caches, then instead of starting on the
2438  * local node to look for a free page, rather spread the starting
2439  * node around the tasks mems_allowed nodes.
2440  *
2441  * We don't have to worry about the returned node being offline
2442  * because "it can't happen", and even if it did, it would be ok.
2443  *
2444  * The routines calling guarantee_online_mems() are careful to
2445  * only set nodes in task->mems_allowed that are online.  So it
2446  * should not be possible for the following code to return an
2447  * offline node.  But if it did, that would be ok, as this routine
2448  * is not returning the node where the allocation must be, only
2449  * the node where the search should start.  The zonelist passed to
2450  * __alloc_pages() will include all nodes.  If the slab allocator
2451  * is passed an offline node, it will fall back to the local node.
2452  * See kmem_cache_alloc_node().
2453  */
2454
2455 static int cpuset_spread_node(int *rotor)
2456 {
2457         int node;
2458
2459         node = next_node(*rotor, current->mems_allowed);
2460         if (node == MAX_NUMNODES)
2461                 node = first_node(current->mems_allowed);
2462         *rotor = node;
2463         return node;
2464 }
2465
2466 int cpuset_mem_spread_node(void)
2467 {
2468         return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
2469 }
2470
2471 int cpuset_slab_spread_node(void)
2472 {
2473         return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
2474 }
2475
2476 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2477
2478 /**
2479  * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2480  * @tsk1: pointer to task_struct of some task.
2481  * @tsk2: pointer to task_struct of some other task.
2482  *
2483  * Description: Return true if @tsk1's mems_allowed intersects the
2484  * mems_allowed of @tsk2.  Used by the OOM killer to determine if
2485  * one of the task's memory usage might impact the memory available
2486  * to the other.
2487  **/
2488
2489 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2490                                    const struct task_struct *tsk2)
2491 {
2492         return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2493 }
2494
2495 /**
2496  * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
2497  * @task: pointer to task_struct of some task.
2498  *
2499  * Description: Prints @task's name, cpuset name, and cached copy of its
2500  * mems_allowed to the kernel log.  Must hold task_lock(task) to allow
2501  * dereferencing task_cs(task).
2502  */
2503 void cpuset_print_task_mems_allowed(struct task_struct *tsk)
2504 {
2505         struct dentry *dentry;
2506
2507         dentry = task_cs(tsk)->css.cgroup->dentry;
2508         spin_lock(&cpuset_buffer_lock);
2509         snprintf(cpuset_name, CPUSET_NAME_LEN,
2510                  dentry ? (const char *)dentry->d_name.name : "/");
2511         nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
2512                            tsk->mems_allowed);
2513         printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
2514                tsk->comm, cpuset_name, cpuset_nodelist);
2515         spin_unlock(&cpuset_buffer_lock);
2516 }
2517
2518 /*
2519  * Collection of memory_pressure is suppressed unless
2520  * this flag is enabled by writing "1" to the special
2521  * cpuset file 'memory_pressure_enabled' in the root cpuset.
2522  */
2523
2524 int cpuset_memory_pressure_enabled __read_mostly;
2525
2526 /**
2527  * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2528  *
2529  * Keep a running average of the rate of synchronous (direct)
2530  * page reclaim efforts initiated by tasks in each cpuset.
2531  *
2532  * This represents the rate at which some task in the cpuset
2533  * ran low on memory on all nodes it was allowed to use, and
2534  * had to enter the kernels page reclaim code in an effort to
2535  * create more free memory by tossing clean pages or swapping
2536  * or writing dirty pages.
2537  *
2538  * Display to user space in the per-cpuset read-only file
2539  * "memory_pressure".  Value displayed is an integer
2540  * representing the recent rate of entry into the synchronous
2541  * (direct) page reclaim by any task attached to the cpuset.
2542  **/
2543
2544 void __cpuset_memory_pressure_bump(void)
2545 {
2546         task_lock(current);
2547         fmeter_markevent(&task_cs(current)->fmeter);
2548         task_unlock(current);
2549 }
2550
2551 #ifdef CONFIG_PROC_PID_CPUSET
2552 /*
2553  * proc_cpuset_show()
2554  *  - Print tasks cpuset path into seq_file.
2555  *  - Used for /proc/<pid>/cpuset.
2556  *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2557  *    doesn't really matter if tsk->cpuset changes after we read it,
2558  *    and we take cgroup_mutex, keeping cpuset_attach() from changing it
2559  *    anyway.
2560  */
2561 static int proc_cpuset_show(struct seq_file *m, void *unused_v)
2562 {
2563         struct pid *pid;
2564         struct task_struct *tsk;
2565         char *buf;
2566         struct cgroup_subsys_state *css;
2567         int retval;
2568
2569         retval = -ENOMEM;
2570         buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2571         if (!buf)
2572                 goto out;
2573
2574         retval = -ESRCH;
2575         pid = m->private;
2576         tsk = get_pid_task(pid, PIDTYPE_PID);
2577         if (!tsk)
2578                 goto out_free;
2579
2580         retval = -EINVAL;
2581         cgroup_lock();
2582         css = task_subsys_state(tsk, cpuset_subsys_id);
2583         retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
2584         if (retval < 0)
2585                 goto out_unlock;
2586         seq_puts(m, buf);
2587         seq_putc(m, '\n');
2588 out_unlock:
2589         cgroup_unlock();
2590         put_task_struct(tsk);
2591 out_free:
2592         kfree(buf);
2593 out:
2594         return retval;
2595 }
2596
2597 static int cpuset_open(struct inode *inode, struct file *file)
2598 {
2599         struct pid *pid = PROC_I(inode)->pid;
2600         return single_open(file, proc_cpuset_show, pid);
2601 }
2602
2603 const struct file_operations proc_cpuset_operations = {
2604         .open           = cpuset_open,
2605         .read           = seq_read,
2606         .llseek         = seq_lseek,
2607         .release        = single_release,
2608 };
2609 #endif /* CONFIG_PROC_PID_CPUSET */
2610
2611 /* Display task mems_allowed in /proc/<pid>/status file. */
2612 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2613 {
2614         seq_printf(m, "Mems_allowed:\t");
2615         seq_nodemask(m, &task->mems_allowed);
2616         seq_printf(m, "\n");
2617         seq_printf(m, "Mems_allowed_list:\t");
2618         seq_nodemask_list(m, &task->mems_allowed);
2619         seq_printf(m, "\n");
2620 }