]> nv-tegra.nvidia Code Review - linux-2.6.git/blob - include/linux/sched.h
prctl: add PR_{SET,GET}_CHILD_SUBREAPER to allow simple process supervision
[linux-2.6.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 /*
5  * cloning flags:
6  */
7 #define CSIGNAL         0x000000ff      /* signal mask to be sent at exit */
8 #define CLONE_VM        0x00000100      /* set if VM shared between processes */
9 #define CLONE_FS        0x00000200      /* set if fs info shared between processes */
10 #define CLONE_FILES     0x00000400      /* set if open files shared between processes */
11 #define CLONE_SIGHAND   0x00000800      /* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE    0x00002000      /* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK     0x00004000      /* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT    0x00008000      /* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD    0x00010000      /* Same thread group? */
16 #define CLONE_NEWNS     0x00020000      /* New namespace group? */
17 #define CLONE_SYSVSEM   0x00040000      /* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS    0x00080000      /* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID     0x00100000      /* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID    0x00200000      /* clear the TID in the child */
21 #define CLONE_DETACHED          0x00400000      /* Unused, ignored */
22 #define CLONE_UNTRACED          0x00800000      /* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID      0x01000000      /* set the TID in the child */
24 /* 0x02000000 was previously the unused CLONE_STOPPED (Start in stopped state)
25    and is now available for re-use. */
26 #define CLONE_NEWUTS            0x04000000      /* New utsname group? */
27 #define CLONE_NEWIPC            0x08000000      /* New ipcs */
28 #define CLONE_NEWUSER           0x10000000      /* New user namespace */
29 #define CLONE_NEWPID            0x20000000      /* New pid namespace */
30 #define CLONE_NEWNET            0x40000000      /* New network namespace */
31 #define CLONE_IO                0x80000000      /* Clone io context */
32
33 /*
34  * Scheduling policies
35  */
36 #define SCHED_NORMAL            0
37 #define SCHED_FIFO              1
38 #define SCHED_RR                2
39 #define SCHED_BATCH             3
40 /* SCHED_ISO: reserved but not implemented yet */
41 #define SCHED_IDLE              5
42 /* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */
43 #define SCHED_RESET_ON_FORK     0x40000000
44
45 #ifdef __KERNEL__
46
47 struct sched_param {
48         int sched_priority;
49 };
50
51 #include <asm/param.h>  /* for HZ */
52
53 #include <linux/capability.h>
54 #include <linux/threads.h>
55 #include <linux/kernel.h>
56 #include <linux/types.h>
57 #include <linux/timex.h>
58 #include <linux/jiffies.h>
59 #include <linux/rbtree.h>
60 #include <linux/thread_info.h>
61 #include <linux/cpumask.h>
62 #include <linux/errno.h>
63 #include <linux/nodemask.h>
64 #include <linux/mm_types.h>
65
66 #include <asm/system.h>
67 #include <asm/page.h>
68 #include <asm/ptrace.h>
69 #include <asm/cputime.h>
70
71 #include <linux/smp.h>
72 #include <linux/sem.h>
73 #include <linux/signal.h>
74 #include <linux/compiler.h>
75 #include <linux/completion.h>
76 #include <linux/pid.h>
77 #include <linux/percpu.h>
78 #include <linux/topology.h>
79 #include <linux/proportions.h>
80 #include <linux/seccomp.h>
81 #include <linux/rcupdate.h>
82 #include <linux/rculist.h>
83 #include <linux/rtmutex.h>
84
85 #include <linux/time.h>
86 #include <linux/param.h>
87 #include <linux/resource.h>
88 #include <linux/timer.h>
89 #include <linux/hrtimer.h>
90 #include <linux/task_io_accounting.h>
91 #include <linux/latencytop.h>
92 #include <linux/cred.h>
93 #include <linux/llist.h>
94
95 #include <asm/processor.h>
96
97 struct exec_domain;
98 struct futex_pi_state;
99 struct robust_list_head;
100 struct bio_list;
101 struct fs_struct;
102 struct perf_event_context;
103 struct blk_plug;
104
105 /*
106  * List of flags we want to share for kernel threads,
107  * if only because they are not used by them anyway.
108  */
109 #define CLONE_KERNEL    (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
110
111 /*
112  * These are the constant used to fake the fixed-point load-average
113  * counting. Some notes:
114  *  - 11 bit fractions expand to 22 bits by the multiplies: this gives
115  *    a load-average precision of 10 bits integer + 11 bits fractional
116  *  - if you want to count load-averages more often, you need more
117  *    precision, or rounding will get you. With 2-second counting freq,
118  *    the EXP_n values would be 1981, 2034 and 2043 if still using only
119  *    11 bit fractions.
120  */
121 extern unsigned long avenrun[];         /* Load averages */
122 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
123
124 #define FSHIFT          11              /* nr of bits of precision */
125 #define FIXED_1         (1<<FSHIFT)     /* 1.0 as fixed-point */
126 #define LOAD_FREQ       (5*HZ+1)        /* 5 sec intervals */
127 #define EXP_1           1884            /* 1/exp(5sec/1min) as fixed-point */
128 #define EXP_5           2014            /* 1/exp(5sec/5min) */
129 #define EXP_15          2037            /* 1/exp(5sec/15min) */
130
131 #define CALC_LOAD(load,exp,n) \
132         load *= exp; \
133         load += n*(FIXED_1-exp); \
134         load >>= FSHIFT;
135
136 extern unsigned long total_forks;
137 extern int nr_threads;
138 DECLARE_PER_CPU(unsigned long, process_counts);
139 extern int nr_processes(void);
140 extern unsigned long nr_running(void);
141 extern unsigned long nr_uninterruptible(void);
142 extern unsigned long nr_iowait(void);
143 extern unsigned long nr_iowait_cpu(int cpu);
144 extern unsigned long this_cpu_load(void);
145
146
147 extern void calc_global_load(unsigned long ticks);
148
149 extern unsigned long get_parent_ip(unsigned long addr);
150
151 struct seq_file;
152 struct cfs_rq;
153 struct task_group;
154 #ifdef CONFIG_SCHED_DEBUG
155 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
156 extern void proc_sched_set_task(struct task_struct *p);
157 extern void
158 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
159 #else
160 static inline void
161 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
162 {
163 }
164 static inline void proc_sched_set_task(struct task_struct *p)
165 {
166 }
167 static inline void
168 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
169 {
170 }
171 #endif
172
173 /*
174  * Task state bitmask. NOTE! These bits are also
175  * encoded in fs/proc/array.c: get_task_state().
176  *
177  * We have two separate sets of flags: task->state
178  * is about runnability, while task->exit_state are
179  * about the task exiting. Confusing, but this way
180  * modifying one set can't modify the other one by
181  * mistake.
182  */
183 #define TASK_RUNNING            0
184 #define TASK_INTERRUPTIBLE      1
185 #define TASK_UNINTERRUPTIBLE    2
186 #define __TASK_STOPPED          4
187 #define __TASK_TRACED           8
188 /* in tsk->exit_state */
189 #define EXIT_ZOMBIE             16
190 #define EXIT_DEAD               32
191 /* in tsk->state again */
192 #define TASK_DEAD               64
193 #define TASK_WAKEKILL           128
194 #define TASK_WAKING             256
195 #define TASK_STATE_MAX          512
196
197 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW"
198
199 extern char ___assert_task_state[1 - 2*!!(
200                 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
201
202 /* Convenience macros for the sake of set_task_state */
203 #define TASK_KILLABLE           (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
204 #define TASK_STOPPED            (TASK_WAKEKILL | __TASK_STOPPED)
205 #define TASK_TRACED             (TASK_WAKEKILL | __TASK_TRACED)
206
207 /* Convenience macros for the sake of wake_up */
208 #define TASK_NORMAL             (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
209 #define TASK_ALL                (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
210
211 /* get_task_state() */
212 #define TASK_REPORT             (TASK_RUNNING | TASK_INTERRUPTIBLE | \
213                                  TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
214                                  __TASK_TRACED)
215
216 #define task_is_traced(task)    ((task->state & __TASK_TRACED) != 0)
217 #define task_is_stopped(task)   ((task->state & __TASK_STOPPED) != 0)
218 #define task_is_dead(task)      ((task)->exit_state != 0)
219 #define task_is_stopped_or_traced(task) \
220                         ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
221 #define task_contributes_to_load(task)  \
222                                 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
223                                  (task->flags & PF_FROZEN) == 0)
224
225 #define __set_task_state(tsk, state_value)              \
226         do { (tsk)->state = (state_value); } while (0)
227 #define set_task_state(tsk, state_value)                \
228         set_mb((tsk)->state, (state_value))
229
230 /*
231  * set_current_state() includes a barrier so that the write of current->state
232  * is correctly serialised wrt the caller's subsequent test of whether to
233  * actually sleep:
234  *
235  *      set_current_state(TASK_UNINTERRUPTIBLE);
236  *      if (do_i_need_to_sleep())
237  *              schedule();
238  *
239  * If the caller does not need such serialisation then use __set_current_state()
240  */
241 #define __set_current_state(state_value)                        \
242         do { current->state = (state_value); } while (0)
243 #define set_current_state(state_value)          \
244         set_mb(current->state, (state_value))
245
246 /* Task command name length */
247 #define TASK_COMM_LEN 16
248
249 #include <linux/spinlock.h>
250
251 /*
252  * This serializes "schedule()" and also protects
253  * the run-queue from deletions/modifications (but
254  * _adding_ to the beginning of the run-queue has
255  * a separate lock).
256  */
257 extern rwlock_t tasklist_lock;
258 extern spinlock_t mmlist_lock;
259
260 struct task_struct;
261
262 #ifdef CONFIG_PROVE_RCU
263 extern int lockdep_tasklist_lock_is_held(void);
264 #endif /* #ifdef CONFIG_PROVE_RCU */
265
266 extern void sched_init(void);
267 extern void sched_init_smp(void);
268 extern asmlinkage void schedule_tail(struct task_struct *prev);
269 extern void init_idle(struct task_struct *idle, int cpu);
270 extern void init_idle_bootup_task(struct task_struct *idle);
271
272 extern int runqueue_is_locked(int cpu);
273
274 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
275 extern void select_nohz_load_balancer(int stop_tick);
276 extern void set_cpu_sd_state_idle(void);
277 extern int get_nohz_timer_target(void);
278 #else
279 static inline void select_nohz_load_balancer(int stop_tick) { }
280 static inline void set_cpu_sd_state_idle(void) { }
281 #endif
282
283 /*
284  * Only dump TASK_* tasks. (0 for all tasks)
285  */
286 extern void show_state_filter(unsigned long state_filter);
287
288 static inline void show_state(void)
289 {
290         show_state_filter(0);
291 }
292
293 extern void show_regs(struct pt_regs *);
294
295 /*
296  * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
297  * task), SP is the stack pointer of the first frame that should be shown in the back
298  * trace (or NULL if the entire call-chain of the task should be shown).
299  */
300 extern void show_stack(struct task_struct *task, unsigned long *sp);
301
302 void io_schedule(void);
303 long io_schedule_timeout(long timeout);
304
305 extern void cpu_init (void);
306 extern void trap_init(void);
307 extern void update_process_times(int user);
308 extern void scheduler_tick(void);
309
310 extern void sched_show_task(struct task_struct *p);
311
312 #ifdef CONFIG_LOCKUP_DETECTOR
313 extern void touch_softlockup_watchdog(void);
314 extern void touch_softlockup_watchdog_sync(void);
315 extern void touch_all_softlockup_watchdogs(void);
316 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
317                                   void __user *buffer,
318                                   size_t *lenp, loff_t *ppos);
319 extern unsigned int  softlockup_panic;
320 void lockup_detector_init(void);
321 #else
322 static inline void touch_softlockup_watchdog(void)
323 {
324 }
325 static inline void touch_softlockup_watchdog_sync(void)
326 {
327 }
328 static inline void touch_all_softlockup_watchdogs(void)
329 {
330 }
331 static inline void lockup_detector_init(void)
332 {
333 }
334 #endif
335
336 #ifdef CONFIG_DETECT_HUNG_TASK
337 extern unsigned int  sysctl_hung_task_panic;
338 extern unsigned long sysctl_hung_task_check_count;
339 extern unsigned long sysctl_hung_task_timeout_secs;
340 extern unsigned long sysctl_hung_task_warnings;
341 extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write,
342                                          void __user *buffer,
343                                          size_t *lenp, loff_t *ppos);
344 #else
345 /* Avoid need for ifdefs elsewhere in the code */
346 enum { sysctl_hung_task_timeout_secs = 0 };
347 #endif
348
349 /* Attach to any functions which should be ignored in wchan output. */
350 #define __sched         __attribute__((__section__(".sched.text")))
351
352 /* Linker adds these: start and end of __sched functions */
353 extern char __sched_text_start[], __sched_text_end[];
354
355 /* Is this address in the __sched functions? */
356 extern int in_sched_functions(unsigned long addr);
357
358 #define MAX_SCHEDULE_TIMEOUT    LONG_MAX
359 extern signed long schedule_timeout(signed long timeout);
360 extern signed long schedule_timeout_interruptible(signed long timeout);
361 extern signed long schedule_timeout_killable(signed long timeout);
362 extern signed long schedule_timeout_uninterruptible(signed long timeout);
363 asmlinkage void schedule(void);
364 extern void schedule_preempt_disabled(void);
365 extern int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner);
366
367 struct nsproxy;
368 struct user_namespace;
369
370 /*
371  * Default maximum number of active map areas, this limits the number of vmas
372  * per mm struct. Users can overwrite this number by sysctl but there is a
373  * problem.
374  *
375  * When a program's coredump is generated as ELF format, a section is created
376  * per a vma. In ELF, the number of sections is represented in unsigned short.
377  * This means the number of sections should be smaller than 65535 at coredump.
378  * Because the kernel adds some informative sections to a image of program at
379  * generating coredump, we need some margin. The number of extra sections is
380  * 1-3 now and depends on arch. We use "5" as safe margin, here.
381  */
382 #define MAPCOUNT_ELF_CORE_MARGIN        (5)
383 #define DEFAULT_MAX_MAP_COUNT   (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
384
385 extern int sysctl_max_map_count;
386
387 #include <linux/aio.h>
388
389 #ifdef CONFIG_MMU
390 extern void arch_pick_mmap_layout(struct mm_struct *mm);
391 extern unsigned long
392 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
393                        unsigned long, unsigned long);
394 extern unsigned long
395 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
396                           unsigned long len, unsigned long pgoff,
397                           unsigned long flags);
398 extern void arch_unmap_area(struct mm_struct *, unsigned long);
399 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
400 #else
401 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
402 #endif
403
404
405 extern void set_dumpable(struct mm_struct *mm, int value);
406 extern int get_dumpable(struct mm_struct *mm);
407
408 /* mm flags */
409 /* dumpable bits */
410 #define MMF_DUMPABLE      0  /* core dump is permitted */
411 #define MMF_DUMP_SECURELY 1  /* core file is readable only by root */
412
413 #define MMF_DUMPABLE_BITS 2
414 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
415
416 /* coredump filter bits */
417 #define MMF_DUMP_ANON_PRIVATE   2
418 #define MMF_DUMP_ANON_SHARED    3
419 #define MMF_DUMP_MAPPED_PRIVATE 4
420 #define MMF_DUMP_MAPPED_SHARED  5
421 #define MMF_DUMP_ELF_HEADERS    6
422 #define MMF_DUMP_HUGETLB_PRIVATE 7
423 #define MMF_DUMP_HUGETLB_SHARED  8
424
425 #define MMF_DUMP_FILTER_SHIFT   MMF_DUMPABLE_BITS
426 #define MMF_DUMP_FILTER_BITS    7
427 #define MMF_DUMP_FILTER_MASK \
428         (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
429 #define MMF_DUMP_FILTER_DEFAULT \
430         ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
431          (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
432
433 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
434 # define MMF_DUMP_MASK_DEFAULT_ELF      (1 << MMF_DUMP_ELF_HEADERS)
435 #else
436 # define MMF_DUMP_MASK_DEFAULT_ELF      0
437 #endif
438                                         /* leave room for more dump flags */
439 #define MMF_VM_MERGEABLE        16      /* KSM may merge identical pages */
440 #define MMF_VM_HUGEPAGE         17      /* set when VM_HUGEPAGE is set on vma */
441
442 #define MMF_INIT_MASK           (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
443
444 struct sighand_struct {
445         atomic_t                count;
446         struct k_sigaction      action[_NSIG];
447         spinlock_t              siglock;
448         wait_queue_head_t       signalfd_wqh;
449 };
450
451 struct pacct_struct {
452         int                     ac_flag;
453         long                    ac_exitcode;
454         unsigned long           ac_mem;
455         cputime_t               ac_utime, ac_stime;
456         unsigned long           ac_minflt, ac_majflt;
457 };
458
459 struct cpu_itimer {
460         cputime_t expires;
461         cputime_t incr;
462         u32 error;
463         u32 incr_error;
464 };
465
466 /**
467  * struct task_cputime - collected CPU time counts
468  * @utime:              time spent in user mode, in &cputime_t units
469  * @stime:              time spent in kernel mode, in &cputime_t units
470  * @sum_exec_runtime:   total time spent on the CPU, in nanoseconds
471  *
472  * This structure groups together three kinds of CPU time that are
473  * tracked for threads and thread groups.  Most things considering
474  * CPU time want to group these counts together and treat all three
475  * of them in parallel.
476  */
477 struct task_cputime {
478         cputime_t utime;
479         cputime_t stime;
480         unsigned long long sum_exec_runtime;
481 };
482 /* Alternate field names when used to cache expirations. */
483 #define prof_exp        stime
484 #define virt_exp        utime
485 #define sched_exp       sum_exec_runtime
486
487 #define INIT_CPUTIME    \
488         (struct task_cputime) {                                 \
489                 .utime = 0,                                     \
490                 .stime = 0,                                     \
491                 .sum_exec_runtime = 0,                          \
492         }
493
494 /*
495  * Disable preemption until the scheduler is running.
496  * Reset by start_kernel()->sched_init()->init_idle().
497  *
498  * We include PREEMPT_ACTIVE to avoid cond_resched() from working
499  * before the scheduler is active -- see should_resched().
500  */
501 #define INIT_PREEMPT_COUNT      (1 + PREEMPT_ACTIVE)
502
503 /**
504  * struct thread_group_cputimer - thread group interval timer counts
505  * @cputime:            thread group interval timers.
506  * @running:            non-zero when there are timers running and
507  *                      @cputime receives updates.
508  * @lock:               lock for fields in this struct.
509  *
510  * This structure contains the version of task_cputime, above, that is
511  * used for thread group CPU timer calculations.
512  */
513 struct thread_group_cputimer {
514         struct task_cputime cputime;
515         int running;
516         raw_spinlock_t lock;
517 };
518
519 #include <linux/rwsem.h>
520 struct autogroup;
521
522 /*
523  * NOTE! "signal_struct" does not have its own
524  * locking, because a shared signal_struct always
525  * implies a shared sighand_struct, so locking
526  * sighand_struct is always a proper superset of
527  * the locking of signal_struct.
528  */
529 struct signal_struct {
530         atomic_t                sigcnt;
531         atomic_t                live;
532         int                     nr_threads;
533
534         wait_queue_head_t       wait_chldexit;  /* for wait4() */
535
536         /* current thread group signal load-balancing target: */
537         struct task_struct      *curr_target;
538
539         /* shared signal handling: */
540         struct sigpending       shared_pending;
541
542         /* thread group exit support */
543         int                     group_exit_code;
544         /* overloaded:
545          * - notify group_exit_task when ->count is equal to notify_count
546          * - everyone except group_exit_task is stopped during signal delivery
547          *   of fatal signals, group_exit_task processes the signal.
548          */
549         int                     notify_count;
550         struct task_struct      *group_exit_task;
551
552         /* thread group stop support, overloads group_exit_code too */
553         int                     group_stop_count;
554         unsigned int            flags; /* see SIGNAL_* flags below */
555
556         /*
557          * PR_SET_CHILD_SUBREAPER marks a process, like a service
558          * manager, to re-parent orphan (double-forking) child processes
559          * to this process instead of 'init'. The service manager is
560          * able to receive SIGCHLD signals and is able to investigate
561          * the process until it calls wait(). All children of this
562          * process will inherit a flag if they should look for a
563          * child_subreaper process at exit.
564          */
565         unsigned int            is_child_subreaper:1;
566         unsigned int            has_child_subreaper:1;
567
568         /* POSIX.1b Interval Timers */
569         struct list_head posix_timers;
570
571         /* ITIMER_REAL timer for the process */
572         struct hrtimer real_timer;
573         struct pid *leader_pid;
574         ktime_t it_real_incr;
575
576         /*
577          * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
578          * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
579          * values are defined to 0 and 1 respectively
580          */
581         struct cpu_itimer it[2];
582
583         /*
584          * Thread group totals for process CPU timers.
585          * See thread_group_cputimer(), et al, for details.
586          */
587         struct thread_group_cputimer cputimer;
588
589         /* Earliest-expiration cache. */
590         struct task_cputime cputime_expires;
591
592         struct list_head cpu_timers[3];
593
594         struct pid *tty_old_pgrp;
595
596         /* boolean value for session group leader */
597         int leader;
598
599         struct tty_struct *tty; /* NULL if no tty */
600
601 #ifdef CONFIG_SCHED_AUTOGROUP
602         struct autogroup *autogroup;
603 #endif
604         /*
605          * Cumulative resource counters for dead threads in the group,
606          * and for reaped dead child processes forked by this group.
607          * Live threads maintain their own counters and add to these
608          * in __exit_signal, except for the group leader.
609          */
610         cputime_t utime, stime, cutime, cstime;
611         cputime_t gtime;
612         cputime_t cgtime;
613 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
614         cputime_t prev_utime, prev_stime;
615 #endif
616         unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
617         unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
618         unsigned long inblock, oublock, cinblock, coublock;
619         unsigned long maxrss, cmaxrss;
620         struct task_io_accounting ioac;
621
622         /*
623          * Cumulative ns of schedule CPU time fo dead threads in the
624          * group, not including a zombie group leader, (This only differs
625          * from jiffies_to_ns(utime + stime) if sched_clock uses something
626          * other than jiffies.)
627          */
628         unsigned long long sum_sched_runtime;
629
630         /*
631          * We don't bother to synchronize most readers of this at all,
632          * because there is no reader checking a limit that actually needs
633          * to get both rlim_cur and rlim_max atomically, and either one
634          * alone is a single word that can safely be read normally.
635          * getrlimit/setrlimit use task_lock(current->group_leader) to
636          * protect this instead of the siglock, because they really
637          * have no need to disable irqs.
638          */
639         struct rlimit rlim[RLIM_NLIMITS];
640
641 #ifdef CONFIG_BSD_PROCESS_ACCT
642         struct pacct_struct pacct;      /* per-process accounting information */
643 #endif
644 #ifdef CONFIG_TASKSTATS
645         struct taskstats *stats;
646 #endif
647 #ifdef CONFIG_AUDIT
648         unsigned audit_tty;
649         struct tty_audit_buf *tty_audit_buf;
650 #endif
651 #ifdef CONFIG_CGROUPS
652         /*
653          * group_rwsem prevents new tasks from entering the threadgroup and
654          * member tasks from exiting,a more specifically, setting of
655          * PF_EXITING.  fork and exit paths are protected with this rwsem
656          * using threadgroup_change_begin/end().  Users which require
657          * threadgroup to remain stable should use threadgroup_[un]lock()
658          * which also takes care of exec path.  Currently, cgroup is the
659          * only user.
660          */
661         struct rw_semaphore group_rwsem;
662 #endif
663
664         int oom_adj;            /* OOM kill score adjustment (bit shift) */
665         int oom_score_adj;      /* OOM kill score adjustment */
666         int oom_score_adj_min;  /* OOM kill score adjustment minimum value.
667                                  * Only settable by CAP_SYS_RESOURCE. */
668
669         struct mutex cred_guard_mutex;  /* guard against foreign influences on
670                                          * credential calculations
671                                          * (notably. ptrace) */
672 };
673
674 /* Context switch must be unlocked if interrupts are to be enabled */
675 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
676 # define __ARCH_WANT_UNLOCKED_CTXSW
677 #endif
678
679 /*
680  * Bits in flags field of signal_struct.
681  */
682 #define SIGNAL_STOP_STOPPED     0x00000001 /* job control stop in effect */
683 #define SIGNAL_STOP_CONTINUED   0x00000002 /* SIGCONT since WCONTINUED reap */
684 #define SIGNAL_GROUP_EXIT       0x00000004 /* group exit in progress */
685 /*
686  * Pending notifications to parent.
687  */
688 #define SIGNAL_CLD_STOPPED      0x00000010
689 #define SIGNAL_CLD_CONTINUED    0x00000020
690 #define SIGNAL_CLD_MASK         (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
691
692 #define SIGNAL_UNKILLABLE       0x00000040 /* for init: ignore fatal signals */
693
694 /* If true, all threads except ->group_exit_task have pending SIGKILL */
695 static inline int signal_group_exit(const struct signal_struct *sig)
696 {
697         return  (sig->flags & SIGNAL_GROUP_EXIT) ||
698                 (sig->group_exit_task != NULL);
699 }
700
701 /*
702  * Some day this will be a full-fledged user tracking system..
703  */
704 struct user_struct {
705         atomic_t __count;       /* reference count */
706         atomic_t processes;     /* How many processes does this user have? */
707         atomic_t files;         /* How many open files does this user have? */
708         atomic_t sigpending;    /* How many pending signals does this user have? */
709 #ifdef CONFIG_INOTIFY_USER
710         atomic_t inotify_watches; /* How many inotify watches does this user have? */
711         atomic_t inotify_devs;  /* How many inotify devs does this user have opened? */
712 #endif
713 #ifdef CONFIG_FANOTIFY
714         atomic_t fanotify_listeners;
715 #endif
716 #ifdef CONFIG_EPOLL
717         atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
718 #endif
719 #ifdef CONFIG_POSIX_MQUEUE
720         /* protected by mq_lock */
721         unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
722 #endif
723         unsigned long locked_shm; /* How many pages of mlocked shm ? */
724
725 #ifdef CONFIG_KEYS
726         struct key *uid_keyring;        /* UID specific keyring */
727         struct key *session_keyring;    /* UID's default session keyring */
728 #endif
729
730         /* Hash table maintenance information */
731         struct hlist_node uidhash_node;
732         uid_t uid;
733         struct user_namespace *user_ns;
734
735 #ifdef CONFIG_PERF_EVENTS
736         atomic_long_t locked_vm;
737 #endif
738 };
739
740 extern int uids_sysfs_init(void);
741
742 extern struct user_struct *find_user(uid_t);
743
744 extern struct user_struct root_user;
745 #define INIT_USER (&root_user)
746
747
748 struct backing_dev_info;
749 struct reclaim_state;
750
751 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
752 struct sched_info {
753         /* cumulative counters */
754         unsigned long pcount;         /* # of times run on this cpu */
755         unsigned long long run_delay; /* time spent waiting on a runqueue */
756
757         /* timestamps */
758         unsigned long long last_arrival,/* when we last ran on a cpu */
759                            last_queued; /* when we were last queued to run */
760 };
761 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
762
763 #ifdef CONFIG_TASK_DELAY_ACCT
764 struct task_delay_info {
765         spinlock_t      lock;
766         unsigned int    flags;  /* Private per-task flags */
767
768         /* For each stat XXX, add following, aligned appropriately
769          *
770          * struct timespec XXX_start, XXX_end;
771          * u64 XXX_delay;
772          * u32 XXX_count;
773          *
774          * Atomicity of updates to XXX_delay, XXX_count protected by
775          * single lock above (split into XXX_lock if contention is an issue).
776          */
777
778         /*
779          * XXX_count is incremented on every XXX operation, the delay
780          * associated with the operation is added to XXX_delay.
781          * XXX_delay contains the accumulated delay time in nanoseconds.
782          */
783         struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
784         u64 blkio_delay;        /* wait for sync block io completion */
785         u64 swapin_delay;       /* wait for swapin block io completion */
786         u32 blkio_count;        /* total count of the number of sync block */
787                                 /* io operations performed */
788         u32 swapin_count;       /* total count of the number of swapin block */
789                                 /* io operations performed */
790
791         struct timespec freepages_start, freepages_end;
792         u64 freepages_delay;    /* wait for memory reclaim */
793         u32 freepages_count;    /* total count of memory reclaim */
794 };
795 #endif  /* CONFIG_TASK_DELAY_ACCT */
796
797 static inline int sched_info_on(void)
798 {
799 #ifdef CONFIG_SCHEDSTATS
800         return 1;
801 #elif defined(CONFIG_TASK_DELAY_ACCT)
802         extern int delayacct_on;
803         return delayacct_on;
804 #else
805         return 0;
806 #endif
807 }
808
809 enum cpu_idle_type {
810         CPU_IDLE,
811         CPU_NOT_IDLE,
812         CPU_NEWLY_IDLE,
813         CPU_MAX_IDLE_TYPES
814 };
815
816 /*
817  * Increase resolution of nice-level calculations for 64-bit architectures.
818  * The extra resolution improves shares distribution and load balancing of
819  * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
820  * hierarchies, especially on larger systems. This is not a user-visible change
821  * and does not change the user-interface for setting shares/weights.
822  *
823  * We increase resolution only if we have enough bits to allow this increased
824  * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
825  * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
826  * increased costs.
827  */
828 #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load  */
829 # define SCHED_LOAD_RESOLUTION  10
830 # define scale_load(w)          ((w) << SCHED_LOAD_RESOLUTION)
831 # define scale_load_down(w)     ((w) >> SCHED_LOAD_RESOLUTION)
832 #else
833 # define SCHED_LOAD_RESOLUTION  0
834 # define scale_load(w)          (w)
835 # define scale_load_down(w)     (w)
836 #endif
837
838 #define SCHED_LOAD_SHIFT        (10 + SCHED_LOAD_RESOLUTION)
839 #define SCHED_LOAD_SCALE        (1L << SCHED_LOAD_SHIFT)
840
841 /*
842  * Increase resolution of cpu_power calculations
843  */
844 #define SCHED_POWER_SHIFT       10
845 #define SCHED_POWER_SCALE       (1L << SCHED_POWER_SHIFT)
846
847 /*
848  * sched-domains (multiprocessor balancing) declarations:
849  */
850 #ifdef CONFIG_SMP
851 #define SD_LOAD_BALANCE         0x0001  /* Do load balancing on this domain. */
852 #define SD_BALANCE_NEWIDLE      0x0002  /* Balance when about to become idle */
853 #define SD_BALANCE_EXEC         0x0004  /* Balance on exec */
854 #define SD_BALANCE_FORK         0x0008  /* Balance on fork, clone */
855 #define SD_BALANCE_WAKE         0x0010  /* Balance on wakeup */
856 #define SD_WAKE_AFFINE          0x0020  /* Wake task to waking CPU */
857 #define SD_PREFER_LOCAL         0x0040  /* Prefer to keep tasks local to this domain */
858 #define SD_SHARE_CPUPOWER       0x0080  /* Domain members share cpu power */
859 #define SD_POWERSAVINGS_BALANCE 0x0100  /* Balance for power savings */
860 #define SD_SHARE_PKG_RESOURCES  0x0200  /* Domain members share cpu pkg resources */
861 #define SD_SERIALIZE            0x0400  /* Only a single load balancing instance */
862 #define SD_ASYM_PACKING         0x0800  /* Place busy groups earlier in the domain */
863 #define SD_PREFER_SIBLING       0x1000  /* Prefer to place tasks in a sibling domain */
864 #define SD_OVERLAP              0x2000  /* sched_domains of this level overlap */
865
866 enum powersavings_balance_level {
867         POWERSAVINGS_BALANCE_NONE = 0,  /* No power saving load balance */
868         POWERSAVINGS_BALANCE_BASIC,     /* Fill one thread/core/package
869                                          * first for long running threads
870                                          */
871         POWERSAVINGS_BALANCE_WAKEUP,    /* Also bias task wakeups to semi-idle
872                                          * cpu package for power savings
873                                          */
874         MAX_POWERSAVINGS_BALANCE_LEVELS
875 };
876
877 extern int sched_mc_power_savings, sched_smt_power_savings;
878
879 static inline int sd_balance_for_mc_power(void)
880 {
881         if (sched_smt_power_savings)
882                 return SD_POWERSAVINGS_BALANCE;
883
884         if (!sched_mc_power_savings)
885                 return SD_PREFER_SIBLING;
886
887         return 0;
888 }
889
890 static inline int sd_balance_for_package_power(void)
891 {
892         if (sched_mc_power_savings | sched_smt_power_savings)
893                 return SD_POWERSAVINGS_BALANCE;
894
895         return SD_PREFER_SIBLING;
896 }
897
898 extern int __weak arch_sd_sibiling_asym_packing(void);
899
900 /*
901  * Optimise SD flags for power savings:
902  * SD_BALANCE_NEWIDLE helps aggressive task consolidation and power savings.
903  * Keep default SD flags if sched_{smt,mc}_power_saving=0
904  */
905
906 static inline int sd_power_saving_flags(void)
907 {
908         if (sched_mc_power_savings | sched_smt_power_savings)
909                 return SD_BALANCE_NEWIDLE;
910
911         return 0;
912 }
913
914 struct sched_group_power {
915         atomic_t ref;
916         /*
917          * CPU power of this group, SCHED_LOAD_SCALE being max power for a
918          * single CPU.
919          */
920         unsigned int power, power_orig;
921         unsigned long next_update;
922         /*
923          * Number of busy cpus in this group.
924          */
925         atomic_t nr_busy_cpus;
926 };
927
928 struct sched_group {
929         struct sched_group *next;       /* Must be a circular list */
930         atomic_t ref;
931
932         unsigned int group_weight;
933         struct sched_group_power *sgp;
934
935         /*
936          * The CPUs this group covers.
937          *
938          * NOTE: this field is variable length. (Allocated dynamically
939          * by attaching extra space to the end of the structure,
940          * depending on how many CPUs the kernel has booted up with)
941          */
942         unsigned long cpumask[0];
943 };
944
945 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
946 {
947         return to_cpumask(sg->cpumask);
948 }
949
950 /**
951  * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
952  * @group: The group whose first cpu is to be returned.
953  */
954 static inline unsigned int group_first_cpu(struct sched_group *group)
955 {
956         return cpumask_first(sched_group_cpus(group));
957 }
958
959 struct sched_domain_attr {
960         int relax_domain_level;
961 };
962
963 #define SD_ATTR_INIT    (struct sched_domain_attr) {    \
964         .relax_domain_level = -1,                       \
965 }
966
967 extern int sched_domain_level_max;
968
969 struct sched_domain {
970         /* These fields must be setup */
971         struct sched_domain *parent;    /* top domain must be null terminated */
972         struct sched_domain *child;     /* bottom domain must be null terminated */
973         struct sched_group *groups;     /* the balancing groups of the domain */
974         unsigned long min_interval;     /* Minimum balance interval ms */
975         unsigned long max_interval;     /* Maximum balance interval ms */
976         unsigned int busy_factor;       /* less balancing by factor if busy */
977         unsigned int imbalance_pct;     /* No balance until over watermark */
978         unsigned int cache_nice_tries;  /* Leave cache hot tasks for # tries */
979         unsigned int busy_idx;
980         unsigned int idle_idx;
981         unsigned int newidle_idx;
982         unsigned int wake_idx;
983         unsigned int forkexec_idx;
984         unsigned int smt_gain;
985         int flags;                      /* See SD_* */
986         int level;
987
988         /* Runtime fields. */
989         unsigned long last_balance;     /* init to jiffies. units in jiffies */
990         unsigned int balance_interval;  /* initialise to 1. units in ms. */
991         unsigned int nr_balance_failed; /* initialise to 0 */
992
993         u64 last_update;
994
995 #ifdef CONFIG_SCHEDSTATS
996         /* load_balance() stats */
997         unsigned int lb_count[CPU_MAX_IDLE_TYPES];
998         unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
999         unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
1000         unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
1001         unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
1002         unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
1003         unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
1004         unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
1005
1006         /* Active load balancing */
1007         unsigned int alb_count;
1008         unsigned int alb_failed;
1009         unsigned int alb_pushed;
1010
1011         /* SD_BALANCE_EXEC stats */
1012         unsigned int sbe_count;
1013         unsigned int sbe_balanced;
1014         unsigned int sbe_pushed;
1015
1016         /* SD_BALANCE_FORK stats */
1017         unsigned int sbf_count;
1018         unsigned int sbf_balanced;
1019         unsigned int sbf_pushed;
1020
1021         /* try_to_wake_up() stats */
1022         unsigned int ttwu_wake_remote;
1023         unsigned int ttwu_move_affine;
1024         unsigned int ttwu_move_balance;
1025 #endif
1026 #ifdef CONFIG_SCHED_DEBUG
1027         char *name;
1028 #endif
1029         union {
1030                 void *private;          /* used during construction */
1031                 struct rcu_head rcu;    /* used during destruction */
1032         };
1033
1034         unsigned int span_weight;
1035         /*
1036          * Span of all CPUs in this domain.
1037          *
1038          * NOTE: this field is variable length. (Allocated dynamically
1039          * by attaching extra space to the end of the structure,
1040          * depending on how many CPUs the kernel has booted up with)
1041          */
1042         unsigned long span[0];
1043 };
1044
1045 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1046 {
1047         return to_cpumask(sd->span);
1048 }
1049
1050 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1051                                     struct sched_domain_attr *dattr_new);
1052
1053 /* Allocate an array of sched domains, for partition_sched_domains(). */
1054 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1055 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1056
1057 /* Test a flag in parent sched domain */
1058 static inline int test_sd_parent(struct sched_domain *sd, int flag)
1059 {
1060         if (sd->parent && (sd->parent->flags & flag))
1061                 return 1;
1062
1063         return 0;
1064 }
1065
1066 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu);
1067 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu);
1068
1069 bool cpus_share_cache(int this_cpu, int that_cpu);
1070
1071 #else /* CONFIG_SMP */
1072
1073 struct sched_domain_attr;
1074
1075 static inline void
1076 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1077                         struct sched_domain_attr *dattr_new)
1078 {
1079 }
1080
1081 static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1082 {
1083         return true;
1084 }
1085
1086 #endif  /* !CONFIG_SMP */
1087
1088
1089 struct io_context;                      /* See blkdev.h */
1090
1091
1092 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1093 extern void prefetch_stack(struct task_struct *t);
1094 #else
1095 static inline void prefetch_stack(struct task_struct *t) { }
1096 #endif
1097
1098 struct audit_context;           /* See audit.c */
1099 struct mempolicy;
1100 struct pipe_inode_info;
1101 struct uts_namespace;
1102
1103 struct rq;
1104 struct sched_domain;
1105
1106 /*
1107  * wake flags
1108  */
1109 #define WF_SYNC         0x01            /* waker goes to sleep after wakup */
1110 #define WF_FORK         0x02            /* child wakeup after fork */
1111 #define WF_MIGRATED     0x04            /* internal use, task got migrated */
1112
1113 #define ENQUEUE_WAKEUP          1
1114 #define ENQUEUE_HEAD            2
1115 #ifdef CONFIG_SMP
1116 #define ENQUEUE_WAKING          4       /* sched_class::task_waking was called */
1117 #else
1118 #define ENQUEUE_WAKING          0
1119 #endif
1120
1121 #define DEQUEUE_SLEEP           1
1122
1123 struct sched_class {
1124         const struct sched_class *next;
1125
1126         void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1127         void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1128         void (*yield_task) (struct rq *rq);
1129         bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1130
1131         void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1132
1133         struct task_struct * (*pick_next_task) (struct rq *rq);
1134         void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1135
1136 #ifdef CONFIG_SMP
1137         int  (*select_task_rq)(struct task_struct *p, int sd_flag, int flags);
1138
1139         void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1140         void (*post_schedule) (struct rq *this_rq);
1141         void (*task_waking) (struct task_struct *task);
1142         void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1143
1144         void (*set_cpus_allowed)(struct task_struct *p,
1145                                  const struct cpumask *newmask);
1146
1147         void (*rq_online)(struct rq *rq);
1148         void (*rq_offline)(struct rq *rq);
1149 #endif
1150
1151         void (*set_curr_task) (struct rq *rq);
1152         void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1153         void (*task_fork) (struct task_struct *p);
1154
1155         void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1156         void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1157         void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1158                              int oldprio);
1159
1160         unsigned int (*get_rr_interval) (struct rq *rq,
1161                                          struct task_struct *task);
1162
1163 #ifdef CONFIG_FAIR_GROUP_SCHED
1164         void (*task_move_group) (struct task_struct *p, int on_rq);
1165 #endif
1166 };
1167
1168 struct load_weight {
1169         unsigned long weight, inv_weight;
1170 };
1171
1172 #ifdef CONFIG_SCHEDSTATS
1173 struct sched_statistics {
1174         u64                     wait_start;
1175         u64                     wait_max;
1176         u64                     wait_count;
1177         u64                     wait_sum;
1178         u64                     iowait_count;
1179         u64                     iowait_sum;
1180
1181         u64                     sleep_start;
1182         u64                     sleep_max;
1183         s64                     sum_sleep_runtime;
1184
1185         u64                     block_start;
1186         u64                     block_max;
1187         u64                     exec_max;
1188         u64                     slice_max;
1189
1190         u64                     nr_migrations_cold;
1191         u64                     nr_failed_migrations_affine;
1192         u64                     nr_failed_migrations_running;
1193         u64                     nr_failed_migrations_hot;
1194         u64                     nr_forced_migrations;
1195
1196         u64                     nr_wakeups;
1197         u64                     nr_wakeups_sync;
1198         u64                     nr_wakeups_migrate;
1199         u64                     nr_wakeups_local;
1200         u64                     nr_wakeups_remote;
1201         u64                     nr_wakeups_affine;
1202         u64                     nr_wakeups_affine_attempts;
1203         u64                     nr_wakeups_passive;
1204         u64                     nr_wakeups_idle;
1205 };
1206 #endif
1207
1208 struct sched_entity {
1209         struct load_weight      load;           /* for load-balancing */
1210         struct rb_node          run_node;
1211         struct list_head        group_node;
1212         unsigned int            on_rq;
1213
1214         u64                     exec_start;
1215         u64                     sum_exec_runtime;
1216         u64                     vruntime;
1217         u64                     prev_sum_exec_runtime;
1218
1219         u64                     nr_migrations;
1220
1221 #ifdef CONFIG_SCHEDSTATS
1222         struct sched_statistics statistics;
1223 #endif
1224
1225 #ifdef CONFIG_FAIR_GROUP_SCHED
1226         struct sched_entity     *parent;
1227         /* rq on which this entity is (to be) queued: */
1228         struct cfs_rq           *cfs_rq;
1229         /* rq "owned" by this entity/group: */
1230         struct cfs_rq           *my_q;
1231 #endif
1232 };
1233
1234 struct sched_rt_entity {
1235         struct list_head run_list;
1236         unsigned long timeout;
1237         unsigned int time_slice;
1238         int nr_cpus_allowed;
1239
1240         struct sched_rt_entity *back;
1241 #ifdef CONFIG_RT_GROUP_SCHED
1242         struct sched_rt_entity  *parent;
1243         /* rq on which this entity is (to be) queued: */
1244         struct rt_rq            *rt_rq;
1245         /* rq "owned" by this entity/group: */
1246         struct rt_rq            *my_q;
1247 #endif
1248 };
1249
1250 /*
1251  * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1252  * Timeslices get refilled after they expire.
1253  */
1254 #define RR_TIMESLICE            (100 * HZ / 1000)
1255
1256 struct rcu_node;
1257
1258 enum perf_event_task_context {
1259         perf_invalid_context = -1,
1260         perf_hw_context = 0,
1261         perf_sw_context,
1262         perf_nr_task_contexts,
1263 };
1264
1265 struct task_struct {
1266         volatile long state;    /* -1 unrunnable, 0 runnable, >0 stopped */
1267         void *stack;
1268         atomic_t usage;
1269         unsigned int flags;     /* per process flags, defined below */
1270         unsigned int ptrace;
1271
1272 #ifdef CONFIG_SMP
1273         struct llist_node wake_entry;
1274         int on_cpu;
1275 #endif
1276         int on_rq;
1277
1278         int prio, static_prio, normal_prio;
1279         unsigned int rt_priority;
1280         const struct sched_class *sched_class;
1281         struct sched_entity se;
1282         struct sched_rt_entity rt;
1283
1284 #ifdef CONFIG_PREEMPT_NOTIFIERS
1285         /* list of struct preempt_notifier: */
1286         struct hlist_head preempt_notifiers;
1287 #endif
1288
1289         /*
1290          * fpu_counter contains the number of consecutive context switches
1291          * that the FPU is used. If this is over a threshold, the lazy fpu
1292          * saving becomes unlazy to save the trap. This is an unsigned char
1293          * so that after 256 times the counter wraps and the behavior turns
1294          * lazy again; this to deal with bursty apps that only use FPU for
1295          * a short time
1296          */
1297         unsigned char fpu_counter;
1298 #ifdef CONFIG_BLK_DEV_IO_TRACE
1299         unsigned int btrace_seq;
1300 #endif
1301
1302         unsigned int policy;
1303         cpumask_t cpus_allowed;
1304
1305 #ifdef CONFIG_PREEMPT_RCU
1306         int rcu_read_lock_nesting;
1307         char rcu_read_unlock_special;
1308         struct list_head rcu_node_entry;
1309 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1310 #ifdef CONFIG_TREE_PREEMPT_RCU
1311         struct rcu_node *rcu_blocked_node;
1312 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1313 #ifdef CONFIG_RCU_BOOST
1314         struct rt_mutex *rcu_boost_mutex;
1315 #endif /* #ifdef CONFIG_RCU_BOOST */
1316
1317 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1318         struct sched_info sched_info;
1319 #endif
1320
1321         struct list_head tasks;
1322 #ifdef CONFIG_SMP
1323         struct plist_node pushable_tasks;
1324 #endif
1325
1326         struct mm_struct *mm, *active_mm;
1327 #ifdef CONFIG_COMPAT_BRK
1328         unsigned brk_randomized:1;
1329 #endif
1330 #if defined(SPLIT_RSS_COUNTING)
1331         struct task_rss_stat    rss_stat;
1332 #endif
1333 /* task state */
1334         int exit_state;
1335         int exit_code, exit_signal;
1336         int pdeath_signal;  /*  The signal sent when the parent dies  */
1337         unsigned int jobctl;    /* JOBCTL_*, siglock protected */
1338         /* ??? */
1339         unsigned int personality;
1340         unsigned did_exec:1;
1341         unsigned in_execve:1;   /* Tell the LSMs that the process is doing an
1342                                  * execve */
1343         unsigned in_iowait:1;
1344
1345
1346         /* Revert to default priority/policy when forking */
1347         unsigned sched_reset_on_fork:1;
1348         unsigned sched_contributes_to_load:1;
1349
1350 #ifdef CONFIG_GENERIC_HARDIRQS
1351         /* IRQ handler threads */
1352         unsigned irq_thread:1;
1353 #endif
1354
1355         pid_t pid;
1356         pid_t tgid;
1357
1358 #ifdef CONFIG_CC_STACKPROTECTOR
1359         /* Canary value for the -fstack-protector gcc feature */
1360         unsigned long stack_canary;
1361 #endif
1362
1363         /* 
1364          * pointers to (original) parent process, youngest child, younger sibling,
1365          * older sibling, respectively.  (p->father can be replaced with 
1366          * p->real_parent->pid)
1367          */
1368         struct task_struct __rcu *real_parent; /* real parent process */
1369         struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1370         /*
1371          * children/sibling forms the list of my natural children
1372          */
1373         struct list_head children;      /* list of my children */
1374         struct list_head sibling;       /* linkage in my parent's children list */
1375         struct task_struct *group_leader;       /* threadgroup leader */
1376
1377         /*
1378          * ptraced is the list of tasks this task is using ptrace on.
1379          * This includes both natural children and PTRACE_ATTACH targets.
1380          * p->ptrace_entry is p's link on the p->parent->ptraced list.
1381          */
1382         struct list_head ptraced;
1383         struct list_head ptrace_entry;
1384
1385         /* PID/PID hash table linkage. */
1386         struct pid_link pids[PIDTYPE_MAX];
1387         struct list_head thread_group;
1388
1389         struct completion *vfork_done;          /* for vfork() */
1390         int __user *set_child_tid;              /* CLONE_CHILD_SETTID */
1391         int __user *clear_child_tid;            /* CLONE_CHILD_CLEARTID */
1392
1393         cputime_t utime, stime, utimescaled, stimescaled;
1394         cputime_t gtime;
1395 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1396         cputime_t prev_utime, prev_stime;
1397 #endif
1398         unsigned long nvcsw, nivcsw; /* context switch counts */
1399         struct timespec start_time;             /* monotonic time */
1400         struct timespec real_start_time;        /* boot based time */
1401 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1402         unsigned long min_flt, maj_flt;
1403
1404         struct task_cputime cputime_expires;
1405         struct list_head cpu_timers[3];
1406
1407 /* process credentials */
1408         const struct cred __rcu *real_cred; /* objective and real subjective task
1409                                          * credentials (COW) */
1410         const struct cred __rcu *cred;  /* effective (overridable) subjective task
1411                                          * credentials (COW) */
1412         struct cred *replacement_session_keyring; /* for KEYCTL_SESSION_TO_PARENT */
1413
1414         char comm[TASK_COMM_LEN]; /* executable name excluding path
1415                                      - access with [gs]et_task_comm (which lock
1416                                        it with task_lock())
1417                                      - initialized normally by setup_new_exec */
1418 /* file system info */
1419         int link_count, total_link_count;
1420 #ifdef CONFIG_SYSVIPC
1421 /* ipc stuff */
1422         struct sysv_sem sysvsem;
1423 #endif
1424 #ifdef CONFIG_DETECT_HUNG_TASK
1425 /* hung task detection */
1426         unsigned long last_switch_count;
1427 #endif
1428 /* CPU-specific state of this task */
1429         struct thread_struct thread;
1430 /* filesystem information */
1431         struct fs_struct *fs;
1432 /* open file information */
1433         struct files_struct *files;
1434 /* namespaces */
1435         struct nsproxy *nsproxy;
1436 /* signal handlers */
1437         struct signal_struct *signal;
1438         struct sighand_struct *sighand;
1439
1440         sigset_t blocked, real_blocked;
1441         sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1442         struct sigpending pending;
1443
1444         unsigned long sas_ss_sp;
1445         size_t sas_ss_size;
1446         int (*notifier)(void *priv);
1447         void *notifier_data;
1448         sigset_t *notifier_mask;
1449         struct audit_context *audit_context;
1450 #ifdef CONFIG_AUDITSYSCALL
1451         uid_t loginuid;
1452         unsigned int sessionid;
1453 #endif
1454         seccomp_t seccomp;
1455
1456 /* Thread group tracking */
1457         u32 parent_exec_id;
1458         u32 self_exec_id;
1459 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1460  * mempolicy */
1461         spinlock_t alloc_lock;
1462
1463         /* Protection of the PI data structures: */
1464         raw_spinlock_t pi_lock;
1465
1466 #ifdef CONFIG_RT_MUTEXES
1467         /* PI waiters blocked on a rt_mutex held by this task */
1468         struct plist_head pi_waiters;
1469         /* Deadlock detection and priority inheritance handling */
1470         struct rt_mutex_waiter *pi_blocked_on;
1471 #endif
1472
1473 #ifdef CONFIG_DEBUG_MUTEXES
1474         /* mutex deadlock detection */
1475         struct mutex_waiter *blocked_on;
1476 #endif
1477 #ifdef CONFIG_TRACE_IRQFLAGS
1478         unsigned int irq_events;
1479         unsigned long hardirq_enable_ip;
1480         unsigned long hardirq_disable_ip;
1481         unsigned int hardirq_enable_event;
1482         unsigned int hardirq_disable_event;
1483         int hardirqs_enabled;
1484         int hardirq_context;
1485         unsigned long softirq_disable_ip;
1486         unsigned long softirq_enable_ip;
1487         unsigned int softirq_disable_event;
1488         unsigned int softirq_enable_event;
1489         int softirqs_enabled;
1490         int softirq_context;
1491 #endif
1492 #ifdef CONFIG_LOCKDEP
1493 # define MAX_LOCK_DEPTH 48UL
1494         u64 curr_chain_key;
1495         int lockdep_depth;
1496         unsigned int lockdep_recursion;
1497         struct held_lock held_locks[MAX_LOCK_DEPTH];
1498         gfp_t lockdep_reclaim_gfp;
1499 #endif
1500
1501 /* journalling filesystem info */
1502         void *journal_info;
1503
1504 /* stacked block device info */
1505         struct bio_list *bio_list;
1506
1507 #ifdef CONFIG_BLOCK
1508 /* stack plugging */
1509         struct blk_plug *plug;
1510 #endif
1511
1512 /* VM state */
1513         struct reclaim_state *reclaim_state;
1514
1515         struct backing_dev_info *backing_dev_info;
1516
1517         struct io_context *io_context;
1518
1519         unsigned long ptrace_message;
1520         siginfo_t *last_siginfo; /* For ptrace use.  */
1521         struct task_io_accounting ioac;
1522 #if defined(CONFIG_TASK_XACCT)
1523         u64 acct_rss_mem1;      /* accumulated rss usage */
1524         u64 acct_vm_mem1;       /* accumulated virtual memory usage */
1525         cputime_t acct_timexpd; /* stime + utime since last update */
1526 #endif
1527 #ifdef CONFIG_CPUSETS
1528         nodemask_t mems_allowed;        /* Protected by alloc_lock */
1529         seqcount_t mems_allowed_seq;    /* Seqence no to catch updates */
1530         int cpuset_mem_spread_rotor;
1531         int cpuset_slab_spread_rotor;
1532 #endif
1533 #ifdef CONFIG_CGROUPS
1534         /* Control Group info protected by css_set_lock */
1535         struct css_set __rcu *cgroups;
1536         /* cg_list protected by css_set_lock and tsk->alloc_lock */
1537         struct list_head cg_list;
1538 #endif
1539 #ifdef CONFIG_FUTEX
1540         struct robust_list_head __user *robust_list;
1541 #ifdef CONFIG_COMPAT
1542         struct compat_robust_list_head __user *compat_robust_list;
1543 #endif
1544         struct list_head pi_state_list;
1545         struct futex_pi_state *pi_state_cache;
1546 #endif
1547 #ifdef CONFIG_PERF_EVENTS
1548         struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1549         struct mutex perf_event_mutex;
1550         struct list_head perf_event_list;
1551 #endif
1552 #ifdef CONFIG_NUMA
1553         struct mempolicy *mempolicy;    /* Protected by alloc_lock */
1554         short il_next;
1555         short pref_node_fork;
1556 #endif
1557         struct rcu_head rcu;
1558
1559         /*
1560          * cache last used pipe for splice
1561          */
1562         struct pipe_inode_info *splice_pipe;
1563 #ifdef  CONFIG_TASK_DELAY_ACCT
1564         struct task_delay_info *delays;
1565 #endif
1566 #ifdef CONFIG_FAULT_INJECTION
1567         int make_it_fail;
1568 #endif
1569         /*
1570          * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1571          * balance_dirty_pages() for some dirty throttling pause
1572          */
1573         int nr_dirtied;
1574         int nr_dirtied_pause;
1575         unsigned long dirty_paused_when; /* start of a write-and-pause period */
1576
1577 #ifdef CONFIG_LATENCYTOP
1578         int latency_record_count;
1579         struct latency_record latency_record[LT_SAVECOUNT];
1580 #endif
1581         /*
1582          * time slack values; these are used to round up poll() and
1583          * select() etc timeout values. These are in nanoseconds.
1584          */
1585         unsigned long timer_slack_ns;
1586         unsigned long default_timer_slack_ns;
1587
1588         struct list_head        *scm_work_list;
1589 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1590         /* Index of current stored address in ret_stack */
1591         int curr_ret_stack;
1592         /* Stack of return addresses for return function tracing */
1593         struct ftrace_ret_stack *ret_stack;
1594         /* time stamp for last schedule */
1595         unsigned long long ftrace_timestamp;
1596         /*
1597          * Number of functions that haven't been traced
1598          * because of depth overrun.
1599          */
1600         atomic_t trace_overrun;
1601         /* Pause for the tracing */
1602         atomic_t tracing_graph_pause;
1603 #endif
1604 #ifdef CONFIG_TRACING
1605         /* state flags for use by tracers */
1606         unsigned long trace;
1607         /* bitmask and counter of trace recursion */
1608         unsigned long trace_recursion;
1609 #endif /* CONFIG_TRACING */
1610 #ifdef CONFIG_CGROUP_MEM_RES_CTLR /* memcg uses this to do batch job */
1611         struct memcg_batch_info {
1612                 int do_batch;   /* incremented when batch uncharge started */
1613                 struct mem_cgroup *memcg; /* target memcg of uncharge */
1614                 unsigned long nr_pages; /* uncharged usage */
1615                 unsigned long memsw_nr_pages; /* uncharged mem+swap usage */
1616         } memcg_batch;
1617 #endif
1618 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1619         atomic_t ptrace_bp_refcnt;
1620 #endif
1621 };
1622
1623 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1624 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1625
1626 /*
1627  * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1628  * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1629  * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1630  * values are inverted: lower p->prio value means higher priority.
1631  *
1632  * The MAX_USER_RT_PRIO value allows the actual maximum
1633  * RT priority to be separate from the value exported to
1634  * user-space.  This allows kernel threads to set their
1635  * priority to a value higher than any user task. Note:
1636  * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1637  */
1638
1639 #define MAX_USER_RT_PRIO        100
1640 #define MAX_RT_PRIO             MAX_USER_RT_PRIO
1641
1642 #define MAX_PRIO                (MAX_RT_PRIO + 40)
1643 #define DEFAULT_PRIO            (MAX_RT_PRIO + 20)
1644
1645 static inline int rt_prio(int prio)
1646 {
1647         if (unlikely(prio < MAX_RT_PRIO))
1648                 return 1;
1649         return 0;
1650 }
1651
1652 static inline int rt_task(struct task_struct *p)
1653 {
1654         return rt_prio(p->prio);
1655 }
1656
1657 static inline struct pid *task_pid(struct task_struct *task)
1658 {
1659         return task->pids[PIDTYPE_PID].pid;
1660 }
1661
1662 static inline struct pid *task_tgid(struct task_struct *task)
1663 {
1664         return task->group_leader->pids[PIDTYPE_PID].pid;
1665 }
1666
1667 /*
1668  * Without tasklist or rcu lock it is not safe to dereference
1669  * the result of task_pgrp/task_session even if task == current,
1670  * we can race with another thread doing sys_setsid/sys_setpgid.
1671  */
1672 static inline struct pid *task_pgrp(struct task_struct *task)
1673 {
1674         return task->group_leader->pids[PIDTYPE_PGID].pid;
1675 }
1676
1677 static inline struct pid *task_session(struct task_struct *task)
1678 {
1679         return task->group_leader->pids[PIDTYPE_SID].pid;
1680 }
1681
1682 struct pid_namespace;
1683
1684 /*
1685  * the helpers to get the task's different pids as they are seen
1686  * from various namespaces
1687  *
1688  * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1689  * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1690  *                     current.
1691  * task_xid_nr_ns()  : id seen from the ns specified;
1692  *
1693  * set_task_vxid()   : assigns a virtual id to a task;
1694  *
1695  * see also pid_nr() etc in include/linux/pid.h
1696  */
1697 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1698                         struct pid_namespace *ns);
1699
1700 static inline pid_t task_pid_nr(struct task_struct *tsk)
1701 {
1702         return tsk->pid;
1703 }
1704
1705 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1706                                         struct pid_namespace *ns)
1707 {
1708         return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1709 }
1710
1711 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1712 {
1713         return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1714 }
1715
1716
1717 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1718 {
1719         return tsk->tgid;
1720 }
1721
1722 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1723
1724 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1725 {
1726         return pid_vnr(task_tgid(tsk));
1727 }
1728
1729
1730 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1731                                         struct pid_namespace *ns)
1732 {
1733         return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1734 }
1735
1736 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1737 {
1738         return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1739 }
1740
1741
1742 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1743                                         struct pid_namespace *ns)
1744 {
1745         return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1746 }
1747
1748 static inline pid_t task_session_vnr(struct task_struct *tsk)
1749 {
1750         return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1751 }
1752
1753 /* obsolete, do not use */
1754 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1755 {
1756         return task_pgrp_nr_ns(tsk, &init_pid_ns);
1757 }
1758
1759 /**
1760  * pid_alive - check that a task structure is not stale
1761  * @p: Task structure to be checked.
1762  *
1763  * Test if a process is not yet dead (at most zombie state)
1764  * If pid_alive fails, then pointers within the task structure
1765  * can be stale and must not be dereferenced.
1766  */
1767 static inline int pid_alive(struct task_struct *p)
1768 {
1769         return p->pids[PIDTYPE_PID].pid != NULL;
1770 }
1771
1772 /**
1773  * is_global_init - check if a task structure is init
1774  * @tsk: Task structure to be checked.
1775  *
1776  * Check if a task structure is the first user space task the kernel created.
1777  */
1778 static inline int is_global_init(struct task_struct *tsk)
1779 {
1780         return tsk->pid == 1;
1781 }
1782
1783 /*
1784  * is_container_init:
1785  * check whether in the task is init in its own pid namespace.
1786  */
1787 extern int is_container_init(struct task_struct *tsk);
1788
1789 extern struct pid *cad_pid;
1790
1791 extern void free_task(struct task_struct *tsk);
1792 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1793
1794 extern void __put_task_struct(struct task_struct *t);
1795
1796 static inline void put_task_struct(struct task_struct *t)
1797 {
1798         if (atomic_dec_and_test(&t->usage))
1799                 __put_task_struct(t);
1800 }
1801
1802 extern void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1803 extern void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1804
1805 /*
1806  * Per process flags
1807  */
1808 #define PF_EXITING      0x00000004      /* getting shut down */
1809 #define PF_EXITPIDONE   0x00000008      /* pi exit done on shut down */
1810 #define PF_VCPU         0x00000010      /* I'm a virtual CPU */
1811 #define PF_WQ_WORKER    0x00000020      /* I'm a workqueue worker */
1812 #define PF_FORKNOEXEC   0x00000040      /* forked but didn't exec */
1813 #define PF_MCE_PROCESS  0x00000080      /* process policy on mce errors */
1814 #define PF_SUPERPRIV    0x00000100      /* used super-user privileges */
1815 #define PF_DUMPCORE     0x00000200      /* dumped core */
1816 #define PF_SIGNALED     0x00000400      /* killed by a signal */
1817 #define PF_MEMALLOC     0x00000800      /* Allocating memory */
1818 #define PF_NPROC_EXCEEDED 0x00001000    /* set_user noticed that RLIMIT_NPROC was exceeded */
1819 #define PF_USED_MATH    0x00002000      /* if unset the fpu must be initialized before use */
1820 #define PF_NOFREEZE     0x00008000      /* this thread should not be frozen */
1821 #define PF_FROZEN       0x00010000      /* frozen for system suspend */
1822 #define PF_FSTRANS      0x00020000      /* inside a filesystem transaction */
1823 #define PF_KSWAPD       0x00040000      /* I am kswapd */
1824 #define PF_LESS_THROTTLE 0x00100000     /* Throttle me less: I clean memory */
1825 #define PF_KTHREAD      0x00200000      /* I am a kernel thread */
1826 #define PF_RANDOMIZE    0x00400000      /* randomize virtual address space */
1827 #define PF_SWAPWRITE    0x00800000      /* Allowed to write to swap */
1828 #define PF_SPREAD_PAGE  0x01000000      /* Spread page cache over cpuset */
1829 #define PF_SPREAD_SLAB  0x02000000      /* Spread some slab caches over cpuset */
1830 #define PF_THREAD_BOUND 0x04000000      /* Thread bound to specific cpu */
1831 #define PF_MCE_EARLY    0x08000000      /* Early kill for mce process policy */
1832 #define PF_MEMPOLICY    0x10000000      /* Non-default NUMA mempolicy */
1833 #define PF_MUTEX_TESTER 0x20000000      /* Thread belongs to the rt mutex tester */
1834 #define PF_FREEZER_SKIP 0x40000000      /* Freezer should not count it as freezable */
1835
1836 /*
1837  * Only the _current_ task can read/write to tsk->flags, but other
1838  * tasks can access tsk->flags in readonly mode for example
1839  * with tsk_used_math (like during threaded core dumping).
1840  * There is however an exception to this rule during ptrace
1841  * or during fork: the ptracer task is allowed to write to the
1842  * child->flags of its traced child (same goes for fork, the parent
1843  * can write to the child->flags), because we're guaranteed the
1844  * child is not running and in turn not changing child->flags
1845  * at the same time the parent does it.
1846  */
1847 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1848 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1849 #define clear_used_math() clear_stopped_child_used_math(current)
1850 #define set_used_math() set_stopped_child_used_math(current)
1851 #define conditional_stopped_child_used_math(condition, child) \
1852         do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1853 #define conditional_used_math(condition) \
1854         conditional_stopped_child_used_math(condition, current)
1855 #define copy_to_stopped_child_used_math(child) \
1856         do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1857 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1858 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1859 #define used_math() tsk_used_math(current)
1860
1861 /*
1862  * task->jobctl flags
1863  */
1864 #define JOBCTL_STOP_SIGMASK     0xffff  /* signr of the last group stop */
1865
1866 #define JOBCTL_STOP_DEQUEUED_BIT 16     /* stop signal dequeued */
1867 #define JOBCTL_STOP_PENDING_BIT 17      /* task should stop for group stop */
1868 #define JOBCTL_STOP_CONSUME_BIT 18      /* consume group stop count */
1869 #define JOBCTL_TRAP_STOP_BIT    19      /* trap for STOP */
1870 #define JOBCTL_TRAP_NOTIFY_BIT  20      /* trap for NOTIFY */
1871 #define JOBCTL_TRAPPING_BIT     21      /* switching to TRACED */
1872 #define JOBCTL_LISTENING_BIT    22      /* ptracer is listening for events */
1873
1874 #define JOBCTL_STOP_DEQUEUED    (1 << JOBCTL_STOP_DEQUEUED_BIT)
1875 #define JOBCTL_STOP_PENDING     (1 << JOBCTL_STOP_PENDING_BIT)
1876 #define JOBCTL_STOP_CONSUME     (1 << JOBCTL_STOP_CONSUME_BIT)
1877 #define JOBCTL_TRAP_STOP        (1 << JOBCTL_TRAP_STOP_BIT)
1878 #define JOBCTL_TRAP_NOTIFY      (1 << JOBCTL_TRAP_NOTIFY_BIT)
1879 #define JOBCTL_TRAPPING         (1 << JOBCTL_TRAPPING_BIT)
1880 #define JOBCTL_LISTENING        (1 << JOBCTL_LISTENING_BIT)
1881
1882 #define JOBCTL_TRAP_MASK        (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
1883 #define JOBCTL_PENDING_MASK     (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
1884
1885 extern bool task_set_jobctl_pending(struct task_struct *task,
1886                                     unsigned int mask);
1887 extern void task_clear_jobctl_trapping(struct task_struct *task);
1888 extern void task_clear_jobctl_pending(struct task_struct *task,
1889                                       unsigned int mask);
1890
1891 #ifdef CONFIG_PREEMPT_RCU
1892
1893 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1894 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1895
1896 static inline void rcu_copy_process(struct task_struct *p)
1897 {
1898         p->rcu_read_lock_nesting = 0;
1899         p->rcu_read_unlock_special = 0;
1900 #ifdef CONFIG_TREE_PREEMPT_RCU
1901         p->rcu_blocked_node = NULL;
1902 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1903 #ifdef CONFIG_RCU_BOOST
1904         p->rcu_boost_mutex = NULL;
1905 #endif /* #ifdef CONFIG_RCU_BOOST */
1906         INIT_LIST_HEAD(&p->rcu_node_entry);
1907 }
1908
1909 #else
1910
1911 static inline void rcu_copy_process(struct task_struct *p)
1912 {
1913 }
1914
1915 #endif
1916
1917 #ifdef CONFIG_SMP
1918 extern void do_set_cpus_allowed(struct task_struct *p,
1919                                const struct cpumask *new_mask);
1920
1921 extern int set_cpus_allowed_ptr(struct task_struct *p,
1922                                 const struct cpumask *new_mask);
1923 #else
1924 static inline void do_set_cpus_allowed(struct task_struct *p,
1925                                       const struct cpumask *new_mask)
1926 {
1927 }
1928 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1929                                        const struct cpumask *new_mask)
1930 {
1931         if (!cpumask_test_cpu(0, new_mask))
1932                 return -EINVAL;
1933         return 0;
1934 }
1935 #endif
1936
1937 #ifndef CONFIG_CPUMASK_OFFSTACK
1938 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1939 {
1940         return set_cpus_allowed_ptr(p, &new_mask);
1941 }
1942 #endif
1943
1944 /*
1945  * Do not use outside of architecture code which knows its limitations.
1946  *
1947  * sched_clock() has no promise of monotonicity or bounded drift between
1948  * CPUs, use (which you should not) requires disabling IRQs.
1949  *
1950  * Please use one of the three interfaces below.
1951  */
1952 extern unsigned long long notrace sched_clock(void);
1953 /*
1954  * See the comment in kernel/sched_clock.c
1955  */
1956 extern u64 cpu_clock(int cpu);
1957 extern u64 local_clock(void);
1958 extern u64 sched_clock_cpu(int cpu);
1959
1960
1961 extern void sched_clock_init(void);
1962
1963 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1964 static inline void sched_clock_tick(void)
1965 {
1966 }
1967
1968 static inline void sched_clock_idle_sleep_event(void)
1969 {
1970 }
1971
1972 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1973 {
1974 }
1975 #else
1976 /*
1977  * Architectures can set this to 1 if they have specified
1978  * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1979  * but then during bootup it turns out that sched_clock()
1980  * is reliable after all:
1981  */
1982 extern int sched_clock_stable;
1983
1984 extern void sched_clock_tick(void);
1985 extern void sched_clock_idle_sleep_event(void);
1986 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1987 #endif
1988
1989 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1990 /*
1991  * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
1992  * The reason for this explicit opt-in is not to have perf penalty with
1993  * slow sched_clocks.
1994  */
1995 extern void enable_sched_clock_irqtime(void);
1996 extern void disable_sched_clock_irqtime(void);
1997 #else
1998 static inline void enable_sched_clock_irqtime(void) {}
1999 static inline void disable_sched_clock_irqtime(void) {}
2000 #endif
2001
2002 extern unsigned long long
2003 task_sched_runtime(struct task_struct *task);
2004
2005 /* sched_exec is called by processes performing an exec */
2006 #ifdef CONFIG_SMP
2007 extern void sched_exec(void);
2008 #else
2009 #define sched_exec()   {}
2010 #endif
2011
2012 extern void sched_clock_idle_sleep_event(void);
2013 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2014
2015 #ifdef CONFIG_HOTPLUG_CPU
2016 extern void idle_task_exit(void);
2017 #else
2018 static inline void idle_task_exit(void) {}
2019 #endif
2020
2021 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
2022 extern void wake_up_idle_cpu(int cpu);
2023 #else
2024 static inline void wake_up_idle_cpu(int cpu) { }
2025 #endif
2026
2027 extern unsigned int sysctl_sched_latency;
2028 extern unsigned int sysctl_sched_min_granularity;
2029 extern unsigned int sysctl_sched_wakeup_granularity;
2030 extern unsigned int sysctl_sched_child_runs_first;
2031
2032 enum sched_tunable_scaling {
2033         SCHED_TUNABLESCALING_NONE,
2034         SCHED_TUNABLESCALING_LOG,
2035         SCHED_TUNABLESCALING_LINEAR,
2036         SCHED_TUNABLESCALING_END,
2037 };
2038 extern enum sched_tunable_scaling sysctl_sched_tunable_scaling;
2039
2040 #ifdef CONFIG_SCHED_DEBUG
2041 extern unsigned int sysctl_sched_migration_cost;
2042 extern unsigned int sysctl_sched_nr_migrate;
2043 extern unsigned int sysctl_sched_time_avg;
2044 extern unsigned int sysctl_timer_migration;
2045 extern unsigned int sysctl_sched_shares_window;
2046
2047 int sched_proc_update_handler(struct ctl_table *table, int write,
2048                 void __user *buffer, size_t *length,
2049                 loff_t *ppos);
2050 #endif
2051 #ifdef CONFIG_SCHED_DEBUG
2052 static inline unsigned int get_sysctl_timer_migration(void)
2053 {
2054         return sysctl_timer_migration;
2055 }
2056 #else
2057 static inline unsigned int get_sysctl_timer_migration(void)
2058 {
2059         return 1;
2060 }
2061 #endif
2062 extern unsigned int sysctl_sched_rt_period;
2063 extern int sysctl_sched_rt_runtime;
2064
2065 int sched_rt_handler(struct ctl_table *table, int write,
2066                 void __user *buffer, size_t *lenp,
2067                 loff_t *ppos);
2068
2069 #ifdef CONFIG_SCHED_AUTOGROUP
2070 extern unsigned int sysctl_sched_autogroup_enabled;
2071
2072 extern void sched_autogroup_create_attach(struct task_struct *p);
2073 extern void sched_autogroup_detach(struct task_struct *p);
2074 extern void sched_autogroup_fork(struct signal_struct *sig);
2075 extern void sched_autogroup_exit(struct signal_struct *sig);
2076 #ifdef CONFIG_PROC_FS
2077 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2078 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
2079 #endif
2080 #else
2081 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2082 static inline void sched_autogroup_detach(struct task_struct *p) { }
2083 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2084 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2085 #endif
2086
2087 #ifdef CONFIG_CFS_BANDWIDTH
2088 extern unsigned int sysctl_sched_cfs_bandwidth_slice;
2089 #endif
2090
2091 #ifdef CONFIG_RT_MUTEXES
2092 extern int rt_mutex_getprio(struct task_struct *p);
2093 extern void rt_mutex_setprio(struct task_struct *p, int prio);
2094 extern void rt_mutex_adjust_pi(struct task_struct *p);
2095 static inline bool tsk_is_pi_blocked(struct task_struct *tsk)
2096 {
2097         return tsk->pi_blocked_on != NULL;
2098 }
2099 #else
2100 static inline int rt_mutex_getprio(struct task_struct *p)
2101 {
2102         return p->normal_prio;
2103 }
2104 # define rt_mutex_adjust_pi(p)          do { } while (0)
2105 static inline bool tsk_is_pi_blocked(struct task_struct *tsk)
2106 {
2107         return false;
2108 }
2109 #endif
2110
2111 extern bool yield_to(struct task_struct *p, bool preempt);
2112 extern void set_user_nice(struct task_struct *p, long nice);
2113 extern int task_prio(const struct task_struct *p);
2114 extern int task_nice(const struct task_struct *p);
2115 extern int can_nice(const struct task_struct *p, const int nice);
2116 extern int task_curr(const struct task_struct *p);
2117 extern int idle_cpu(int cpu);
2118 extern int sched_setscheduler(struct task_struct *, int,
2119                               const struct sched_param *);
2120 extern int sched_setscheduler_nocheck(struct task_struct *, int,
2121                                       const struct sched_param *);
2122 extern struct task_struct *idle_task(int cpu);
2123 /**
2124  * is_idle_task - is the specified task an idle task?
2125  * @p: the task in question.
2126  */
2127 static inline bool is_idle_task(const struct task_struct *p)
2128 {
2129         return p->pid == 0;
2130 }
2131 extern struct task_struct *curr_task(int cpu);
2132 extern void set_curr_task(int cpu, struct task_struct *p);
2133
2134 void yield(void);
2135
2136 /*
2137  * The default (Linux) execution domain.
2138  */
2139 extern struct exec_domain       default_exec_domain;
2140
2141 union thread_union {
2142         struct thread_info thread_info;
2143         unsigned long stack[THREAD_SIZE/sizeof(long)];
2144 };
2145
2146 #ifndef __HAVE_ARCH_KSTACK_END
2147 static inline int kstack_end(void *addr)
2148 {
2149         /* Reliable end of stack detection:
2150          * Some APM bios versions misalign the stack
2151          */
2152         return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2153 }
2154 #endif
2155
2156 extern union thread_union init_thread_union;
2157 extern struct task_struct init_task;
2158
2159 extern struct   mm_struct init_mm;
2160
2161 extern struct pid_namespace init_pid_ns;
2162
2163 /*
2164  * find a task by one of its numerical ids
2165  *
2166  * find_task_by_pid_ns():
2167  *      finds a task by its pid in the specified namespace
2168  * find_task_by_vpid():
2169  *      finds a task by its virtual pid
2170  *
2171  * see also find_vpid() etc in include/linux/pid.h
2172  */
2173
2174 extern struct task_struct *find_task_by_vpid(pid_t nr);
2175 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2176                 struct pid_namespace *ns);
2177
2178 extern void __set_special_pids(struct pid *pid);
2179
2180 /* per-UID process charging. */
2181 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
2182 static inline struct user_struct *get_uid(struct user_struct *u)
2183 {
2184         atomic_inc(&u->__count);
2185         return u;
2186 }
2187 extern void free_uid(struct user_struct *);
2188 extern void release_uids(struct user_namespace *ns);
2189
2190 #include <asm/current.h>
2191
2192 extern void xtime_update(unsigned long ticks);
2193
2194 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2195 extern int wake_up_process(struct task_struct *tsk);
2196 extern void wake_up_new_task(struct task_struct *tsk);
2197 #ifdef CONFIG_SMP
2198  extern void kick_process(struct task_struct *tsk);
2199 #else
2200  static inline void kick_process(struct task_struct *tsk) { }
2201 #endif
2202 extern void sched_fork(struct task_struct *p);
2203 extern void sched_dead(struct task_struct *p);
2204
2205 extern void proc_caches_init(void);
2206 extern void flush_signals(struct task_struct *);
2207 extern void __flush_signals(struct task_struct *);
2208 extern void ignore_signals(struct task_struct *);
2209 extern void flush_signal_handlers(struct task_struct *, int force_default);
2210 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2211
2212 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2213 {
2214         unsigned long flags;
2215         int ret;
2216
2217         spin_lock_irqsave(&tsk->sighand->siglock, flags);
2218         ret = dequeue_signal(tsk, mask, info);
2219         spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2220
2221         return ret;
2222 }
2223
2224 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2225                               sigset_t *mask);
2226 extern void unblock_all_signals(void);
2227 extern void release_task(struct task_struct * p);
2228 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2229 extern int force_sigsegv(int, struct task_struct *);
2230 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2231 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2232 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2233 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2234                                 const struct cred *, u32);
2235 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2236 extern int kill_pid(struct pid *pid, int sig, int priv);
2237 extern int kill_proc_info(int, struct siginfo *, pid_t);
2238 extern __must_check bool do_notify_parent(struct task_struct *, int);
2239 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2240 extern void force_sig(int, struct task_struct *);
2241 extern int send_sig(int, struct task_struct *, int);
2242 extern int zap_other_threads(struct task_struct *p);
2243 extern struct sigqueue *sigqueue_alloc(void);
2244 extern void sigqueue_free(struct sigqueue *);
2245 extern int send_sigqueue(struct sigqueue *,  struct task_struct *, int group);
2246 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2247 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
2248
2249 static inline int kill_cad_pid(int sig, int priv)
2250 {
2251         return kill_pid(cad_pid, sig, priv);
2252 }
2253
2254 /* These can be the second arg to send_sig_info/send_group_sig_info.  */
2255 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2256 #define SEND_SIG_PRIV   ((struct siginfo *) 1)
2257 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2258
2259 /*
2260  * True if we are on the alternate signal stack.
2261  */
2262 static inline int on_sig_stack(unsigned long sp)
2263 {
2264 #ifdef CONFIG_STACK_GROWSUP
2265         return sp >= current->sas_ss_sp &&
2266                 sp - current->sas_ss_sp < current->sas_ss_size;
2267 #else
2268         return sp > current->sas_ss_sp &&
2269                 sp - current->sas_ss_sp <= current->sas_ss_size;
2270 #endif
2271 }
2272
2273 static inline int sas_ss_flags(unsigned long sp)
2274 {
2275         return (current->sas_ss_size == 0 ? SS_DISABLE
2276                 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2277 }
2278
2279 /*
2280  * Routines for handling mm_structs
2281  */
2282 extern struct mm_struct * mm_alloc(void);
2283
2284 /* mmdrop drops the mm and the page tables */
2285 extern void __mmdrop(struct mm_struct *);
2286 static inline void mmdrop(struct mm_struct * mm)
2287 {
2288         if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2289                 __mmdrop(mm);
2290 }
2291
2292 /* mmput gets rid of the mappings and all user-space */
2293 extern void mmput(struct mm_struct *);
2294 /* Grab a reference to a task's mm, if it is not already going away */
2295 extern struct mm_struct *get_task_mm(struct task_struct *task);
2296 /*
2297  * Grab a reference to a task's mm, if it is not already going away
2298  * and ptrace_may_access with the mode parameter passed to it
2299  * succeeds.
2300  */
2301 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2302 /* Remove the current tasks stale references to the old mm_struct */
2303 extern void mm_release(struct task_struct *, struct mm_struct *);
2304 /* Allocate a new mm structure and copy contents from tsk->mm */
2305 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2306
2307 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2308                         struct task_struct *, struct pt_regs *);
2309 extern void flush_thread(void);
2310 extern void exit_thread(void);
2311
2312 extern void exit_files(struct task_struct *);
2313 extern void __cleanup_sighand(struct sighand_struct *);
2314
2315 extern void exit_itimers(struct signal_struct *);
2316 extern void flush_itimer_signals(void);
2317
2318 extern void do_group_exit(int);
2319
2320 extern void daemonize(const char *, ...);
2321 extern int allow_signal(int);
2322 extern int disallow_signal(int);
2323
2324 extern int do_execve(const char *,
2325                      const char __user * const __user *,
2326                      const char __user * const __user *, struct pt_regs *);
2327 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
2328 struct task_struct *fork_idle(int);
2329
2330 extern void set_task_comm(struct task_struct *tsk, char *from);
2331 extern char *get_task_comm(char *to, struct task_struct *tsk);
2332
2333 #ifdef CONFIG_SMP
2334 void scheduler_ipi(void);
2335 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2336 #else
2337 static inline void scheduler_ipi(void) { }
2338 static inline unsigned long wait_task_inactive(struct task_struct *p,
2339                                                long match_state)
2340 {
2341         return 1;
2342 }
2343 #endif
2344
2345 #define next_task(p) \
2346         list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2347
2348 #define for_each_process(p) \
2349         for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2350
2351 extern bool current_is_single_threaded(void);
2352
2353 /*
2354  * Careful: do_each_thread/while_each_thread is a double loop so
2355  *          'break' will not work as expected - use goto instead.
2356  */
2357 #define do_each_thread(g, t) \
2358         for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2359
2360 #define while_each_thread(g, t) \
2361         while ((t = next_thread(t)) != g)
2362
2363 static inline int get_nr_threads(struct task_struct *tsk)
2364 {
2365         return tsk->signal->nr_threads;
2366 }
2367
2368 static inline bool thread_group_leader(struct task_struct *p)
2369 {
2370         return p->exit_signal >= 0;
2371 }
2372
2373 /* Do to the insanities of de_thread it is possible for a process
2374  * to have the pid of the thread group leader without actually being
2375  * the thread group leader.  For iteration through the pids in proc
2376  * all we care about is that we have a task with the appropriate
2377  * pid, we don't actually care if we have the right task.
2378  */
2379 static inline int has_group_leader_pid(struct task_struct *p)
2380 {
2381         return p->pid == p->tgid;
2382 }
2383
2384 static inline
2385 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2386 {
2387         return p1->tgid == p2->tgid;
2388 }
2389
2390 static inline struct task_struct *next_thread(const struct task_struct *p)
2391 {
2392         return list_entry_rcu(p->thread_group.next,
2393                               struct task_struct, thread_group);
2394 }
2395
2396 static inline int thread_group_empty(struct task_struct *p)
2397 {
2398         return list_empty(&p->thread_group);
2399 }
2400
2401 #define delay_group_leader(p) \
2402                 (thread_group_leader(p) && !thread_group_empty(p))
2403
2404 /*
2405  * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2406  * subscriptions and synchronises with wait4().  Also used in procfs.  Also
2407  * pins the final release of task.io_context.  Also protects ->cpuset and
2408  * ->cgroup.subsys[]. And ->vfork_done.
2409  *
2410  * Nests both inside and outside of read_lock(&tasklist_lock).
2411  * It must not be nested with write_lock_irq(&tasklist_lock),
2412  * neither inside nor outside.
2413  */
2414 static inline void task_lock(struct task_struct *p)
2415 {
2416         spin_lock(&p->alloc_lock);
2417 }
2418
2419 static inline void task_unlock(struct task_struct *p)
2420 {
2421         spin_unlock(&p->alloc_lock);
2422 }
2423
2424 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2425                                                         unsigned long *flags);
2426
2427 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2428                                                        unsigned long *flags)
2429 {
2430         struct sighand_struct *ret;
2431
2432         ret = __lock_task_sighand(tsk, flags);
2433         (void)__cond_lock(&tsk->sighand->siglock, ret);
2434         return ret;
2435 }
2436
2437 static inline void unlock_task_sighand(struct task_struct *tsk,
2438                                                 unsigned long *flags)
2439 {
2440         spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2441 }
2442
2443 #ifdef CONFIG_CGROUPS
2444 static inline void threadgroup_change_begin(struct task_struct *tsk)
2445 {
2446         down_read(&tsk->signal->group_rwsem);
2447 }
2448 static inline void threadgroup_change_end(struct task_struct *tsk)
2449 {
2450         up_read(&tsk->signal->group_rwsem);
2451 }
2452
2453 /**
2454  * threadgroup_lock - lock threadgroup
2455  * @tsk: member task of the threadgroup to lock
2456  *
2457  * Lock the threadgroup @tsk belongs to.  No new task is allowed to enter
2458  * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or
2459  * perform exec.  This is useful for cases where the threadgroup needs to
2460  * stay stable across blockable operations.
2461  *
2462  * fork and exit paths explicitly call threadgroup_change_{begin|end}() for
2463  * synchronization.  While held, no new task will be added to threadgroup
2464  * and no existing live task will have its PF_EXITING set.
2465  *
2466  * During exec, a task goes and puts its thread group through unusual
2467  * changes.  After de-threading, exclusive access is assumed to resources
2468  * which are usually shared by tasks in the same group - e.g. sighand may
2469  * be replaced with a new one.  Also, the exec'ing task takes over group
2470  * leader role including its pid.  Exclude these changes while locked by
2471  * grabbing cred_guard_mutex which is used to synchronize exec path.
2472  */
2473 static inline void threadgroup_lock(struct task_struct *tsk)
2474 {
2475         /*
2476          * exec uses exit for de-threading nesting group_rwsem inside
2477          * cred_guard_mutex. Grab cred_guard_mutex first.
2478          */
2479         mutex_lock(&tsk->signal->cred_guard_mutex);
2480         down_write(&tsk->signal->group_rwsem);
2481 }
2482
2483 /**
2484  * threadgroup_unlock - unlock threadgroup
2485  * @tsk: member task of the threadgroup to unlock
2486  *
2487  * Reverse threadgroup_lock().
2488  */
2489 static inline void threadgroup_unlock(struct task_struct *tsk)
2490 {
2491         up_write(&tsk->signal->group_rwsem);
2492         mutex_unlock(&tsk->signal->cred_guard_mutex);
2493 }
2494 #else
2495 static inline void threadgroup_change_begin(struct task_struct *tsk) {}
2496 static inline void threadgroup_change_end(struct task_struct *tsk) {}
2497 static inline void threadgroup_lock(struct task_struct *tsk) {}
2498 static inline void threadgroup_unlock(struct task_struct *tsk) {}
2499 #endif
2500
2501 #ifndef __HAVE_THREAD_FUNCTIONS
2502
2503 #define task_thread_info(task)  ((struct thread_info *)(task)->stack)
2504 #define task_stack_page(task)   ((task)->stack)
2505
2506 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2507 {
2508         *task_thread_info(p) = *task_thread_info(org);
2509         task_thread_info(p)->task = p;
2510 }
2511
2512 static inline unsigned long *end_of_stack(struct task_struct *p)
2513 {
2514         return (unsigned long *)(task_thread_info(p) + 1);
2515 }
2516
2517 #endif
2518
2519 static inline int object_is_on_stack(void *obj)
2520 {
2521         void *stack = task_stack_page(current);
2522
2523         return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2524 }
2525
2526 extern void thread_info_cache_init(void);
2527
2528 #ifdef CONFIG_DEBUG_STACK_USAGE
2529 static inline unsigned long stack_not_used(struct task_struct *p)
2530 {
2531         unsigned long *n = end_of_stack(p);
2532
2533         do {    /* Skip over canary */
2534                 n++;
2535         } while (!*n);
2536
2537         return (unsigned long)n - (unsigned long)end_of_stack(p);
2538 }
2539 #endif
2540
2541 /* set thread flags in other task's structures
2542  * - see asm/thread_info.h for TIF_xxxx flags available
2543  */
2544 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2545 {
2546         set_ti_thread_flag(task_thread_info(tsk), flag);
2547 }
2548
2549 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2550 {
2551         clear_ti_thread_flag(task_thread_info(tsk), flag);
2552 }
2553
2554 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2555 {
2556         return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2557 }
2558
2559 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2560 {
2561         return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2562 }
2563
2564 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2565 {
2566         return test_ti_thread_flag(task_thread_info(tsk), flag);
2567 }
2568
2569 static inline void set_tsk_need_resched(struct task_struct *tsk)
2570 {
2571         set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2572 }
2573
2574 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2575 {
2576         clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2577 }
2578
2579 static inline int test_tsk_need_resched(struct task_struct *tsk)
2580 {
2581         return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2582 }
2583
2584 static inline int restart_syscall(void)
2585 {
2586         set_tsk_thread_flag(current, TIF_SIGPENDING);
2587         return -ERESTARTNOINTR;
2588 }
2589
2590 static inline int signal_pending(struct task_struct *p)
2591 {
2592         return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2593 }
2594
2595 static inline int __fatal_signal_pending(struct task_struct *p)
2596 {
2597         return unlikely(sigismember(&p->pending.signal, SIGKILL));
2598 }
2599
2600 static inline int fatal_signal_pending(struct task_struct *p)
2601 {
2602         return signal_pending(p) && __fatal_signal_pending(p);
2603 }
2604
2605 static inline int signal_pending_state(long state, struct task_struct *p)
2606 {
2607         if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2608                 return 0;
2609         if (!signal_pending(p))
2610                 return 0;
2611
2612         return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2613 }
2614
2615 static inline int need_resched(void)
2616 {
2617         return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2618 }
2619
2620 /*
2621  * cond_resched() and cond_resched_lock(): latency reduction via
2622  * explicit rescheduling in places that are safe. The return
2623  * value indicates whether a reschedule was done in fact.
2624  * cond_resched_lock() will drop the spinlock before scheduling,
2625  * cond_resched_softirq() will enable bhs before scheduling.
2626  */
2627 extern int _cond_resched(void);
2628
2629 #define cond_resched() ({                       \
2630         __might_sleep(__FILE__, __LINE__, 0);   \
2631         _cond_resched();                        \
2632 })
2633
2634 extern int __cond_resched_lock(spinlock_t *lock);
2635
2636 #ifdef CONFIG_PREEMPT_COUNT
2637 #define PREEMPT_LOCK_OFFSET     PREEMPT_OFFSET
2638 #else
2639 #define PREEMPT_LOCK_OFFSET     0
2640 #endif
2641
2642 #define cond_resched_lock(lock) ({                              \
2643         __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2644         __cond_resched_lock(lock);                              \
2645 })
2646
2647 extern int __cond_resched_softirq(void);
2648
2649 #define cond_resched_softirq() ({                                       \
2650         __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET);      \
2651         __cond_resched_softirq();                                       \
2652 })
2653
2654 /*
2655  * Does a critical section need to be broken due to another
2656  * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2657  * but a general need for low latency)
2658  */
2659 static inline int spin_needbreak(spinlock_t *lock)
2660 {
2661 #ifdef CONFIG_PREEMPT
2662         return spin_is_contended(lock);
2663 #else
2664         return 0;
2665 #endif
2666 }
2667
2668 /*
2669  * Thread group CPU time accounting.
2670  */
2671 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2672 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2673
2674 static inline void thread_group_cputime_init(struct signal_struct *sig)
2675 {
2676         raw_spin_lock_init(&sig->cputimer.lock);
2677 }
2678
2679 /*
2680  * Reevaluate whether the task has signals pending delivery.
2681  * Wake the task if so.
2682  * This is required every time the blocked sigset_t changes.
2683  * callers must hold sighand->siglock.
2684  */
2685 extern void recalc_sigpending_and_wake(struct task_struct *t);
2686 extern void recalc_sigpending(void);
2687
2688 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2689
2690 /*
2691  * Wrappers for p->thread_info->cpu access. No-op on UP.
2692  */
2693 #ifdef CONFIG_SMP
2694
2695 static inline unsigned int task_cpu(const struct task_struct *p)
2696 {
2697         return task_thread_info(p)->cpu;
2698 }
2699
2700 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2701
2702 #else
2703
2704 static inline unsigned int task_cpu(const struct task_struct *p)
2705 {
2706         return 0;
2707 }
2708
2709 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2710 {
2711 }
2712
2713 #endif /* CONFIG_SMP */
2714
2715 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2716 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2717
2718 extern void normalize_rt_tasks(void);
2719
2720 #ifdef CONFIG_CGROUP_SCHED
2721
2722 extern struct task_group root_task_group;
2723
2724 extern struct task_group *sched_create_group(struct task_group *parent);
2725 extern void sched_destroy_group(struct task_group *tg);
2726 extern void sched_move_task(struct task_struct *tsk);
2727 #ifdef CONFIG_FAIR_GROUP_SCHED
2728 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2729 extern unsigned long sched_group_shares(struct task_group *tg);
2730 #endif
2731 #ifdef CONFIG_RT_GROUP_SCHED
2732 extern int sched_group_set_rt_runtime(struct task_group *tg,
2733                                       long rt_runtime_us);
2734 extern long sched_group_rt_runtime(struct task_group *tg);
2735 extern int sched_group_set_rt_period(struct task_group *tg,
2736                                       long rt_period_us);
2737 extern long sched_group_rt_period(struct task_group *tg);
2738 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
2739 #endif
2740 #endif
2741
2742 extern int task_can_switch_user(struct user_struct *up,
2743                                         struct task_struct *tsk);
2744
2745 #ifdef CONFIG_TASK_XACCT
2746 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2747 {
2748         tsk->ioac.rchar += amt;
2749 }
2750
2751 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2752 {
2753         tsk->ioac.wchar += amt;
2754 }
2755
2756 static inline void inc_syscr(struct task_struct *tsk)
2757 {
2758         tsk->ioac.syscr++;
2759 }
2760
2761 static inline void inc_syscw(struct task_struct *tsk)
2762 {
2763         tsk->ioac.syscw++;
2764 }
2765 #else
2766 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2767 {
2768 }
2769
2770 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2771 {
2772 }
2773
2774 static inline void inc_syscr(struct task_struct *tsk)
2775 {
2776 }
2777
2778 static inline void inc_syscw(struct task_struct *tsk)
2779 {
2780 }
2781 #endif
2782
2783 #ifndef TASK_SIZE_OF
2784 #define TASK_SIZE_OF(tsk)       TASK_SIZE
2785 #endif
2786
2787 #ifdef CONFIG_MM_OWNER
2788 extern void mm_update_next_owner(struct mm_struct *mm);
2789 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2790 #else
2791 static inline void mm_update_next_owner(struct mm_struct *mm)
2792 {
2793 }
2794
2795 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2796 {
2797 }
2798 #endif /* CONFIG_MM_OWNER */
2799
2800 static inline unsigned long task_rlimit(const struct task_struct *tsk,
2801                 unsigned int limit)
2802 {
2803         return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2804 }
2805
2806 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2807                 unsigned int limit)
2808 {
2809         return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2810 }
2811
2812 static inline unsigned long rlimit(unsigned int limit)
2813 {
2814         return task_rlimit(current, limit);
2815 }
2816
2817 static inline unsigned long rlimit_max(unsigned int limit)
2818 {
2819         return task_rlimit_max(current, limit);
2820 }
2821
2822 #endif /* __KERNEL__ */
2823
2824 #endif