c66b34f75eea5f82662cbe3dcba81198248ee56e
[linux-2.6.git] / include / linux / perf_event.h
1 /*
2  * Performance events:
3  *
4  *    Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5  *    Copyright (C) 2008-2009, Red Hat, Inc., Ingo Molnar
6  *    Copyright (C) 2008-2009, Red Hat, Inc., Peter Zijlstra
7  *
8  * Data type definitions, declarations, prototypes.
9  *
10  *    Started by: Thomas Gleixner and Ingo Molnar
11  *
12  * For licencing details see kernel-base/COPYING
13  */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16
17 #include <linux/types.h>
18 #include <linux/ioctl.h>
19 #include <asm/byteorder.h>
20
21 /*
22  * User-space ABI bits:
23  */
24
25 /*
26  * attr.type
27  */
28 enum perf_type_id {
29         PERF_TYPE_HARDWARE                      = 0,
30         PERF_TYPE_SOFTWARE                      = 1,
31         PERF_TYPE_TRACEPOINT                    = 2,
32         PERF_TYPE_HW_CACHE                      = 3,
33         PERF_TYPE_RAW                           = 4,
34         PERF_TYPE_BREAKPOINT                    = 5,
35
36         PERF_TYPE_MAX,                          /* non-ABI */
37 };
38
39 /*
40  * Generalized performance event event_id types, used by the
41  * attr.event_id parameter of the sys_perf_event_open()
42  * syscall:
43  */
44 enum perf_hw_id {
45         /*
46          * Common hardware events, generalized by the kernel:
47          */
48         PERF_COUNT_HW_CPU_CYCLES                = 0,
49         PERF_COUNT_HW_INSTRUCTIONS              = 1,
50         PERF_COUNT_HW_CACHE_REFERENCES          = 2,
51         PERF_COUNT_HW_CACHE_MISSES              = 3,
52         PERF_COUNT_HW_BRANCH_INSTRUCTIONS       = 4,
53         PERF_COUNT_HW_BRANCH_MISSES             = 5,
54         PERF_COUNT_HW_BUS_CYCLES                = 6,
55
56         PERF_COUNT_HW_MAX,                      /* non-ABI */
57 };
58
59 /*
60  * Generalized hardware cache events:
61  *
62  *       { L1-D, L1-I, LLC, ITLB, DTLB, BPU } x
63  *       { read, write, prefetch } x
64  *       { accesses, misses }
65  */
66 enum perf_hw_cache_id {
67         PERF_COUNT_HW_CACHE_L1D                 = 0,
68         PERF_COUNT_HW_CACHE_L1I                 = 1,
69         PERF_COUNT_HW_CACHE_LL                  = 2,
70         PERF_COUNT_HW_CACHE_DTLB                = 3,
71         PERF_COUNT_HW_CACHE_ITLB                = 4,
72         PERF_COUNT_HW_CACHE_BPU                 = 5,
73
74         PERF_COUNT_HW_CACHE_MAX,                /* non-ABI */
75 };
76
77 enum perf_hw_cache_op_id {
78         PERF_COUNT_HW_CACHE_OP_READ             = 0,
79         PERF_COUNT_HW_CACHE_OP_WRITE            = 1,
80         PERF_COUNT_HW_CACHE_OP_PREFETCH         = 2,
81
82         PERF_COUNT_HW_CACHE_OP_MAX,             /* non-ABI */
83 };
84
85 enum perf_hw_cache_op_result_id {
86         PERF_COUNT_HW_CACHE_RESULT_ACCESS       = 0,
87         PERF_COUNT_HW_CACHE_RESULT_MISS         = 1,
88
89         PERF_COUNT_HW_CACHE_RESULT_MAX,         /* non-ABI */
90 };
91
92 /*
93  * Special "software" events provided by the kernel, even if the hardware
94  * does not support performance events. These events measure various
95  * physical and sw events of the kernel (and allow the profiling of them as
96  * well):
97  */
98 enum perf_sw_ids {
99         PERF_COUNT_SW_CPU_CLOCK                 = 0,
100         PERF_COUNT_SW_TASK_CLOCK                = 1,
101         PERF_COUNT_SW_PAGE_FAULTS               = 2,
102         PERF_COUNT_SW_CONTEXT_SWITCHES          = 3,
103         PERF_COUNT_SW_CPU_MIGRATIONS            = 4,
104         PERF_COUNT_SW_PAGE_FAULTS_MIN           = 5,
105         PERF_COUNT_SW_PAGE_FAULTS_MAJ           = 6,
106         PERF_COUNT_SW_ALIGNMENT_FAULTS          = 7,
107         PERF_COUNT_SW_EMULATION_FAULTS          = 8,
108
109         PERF_COUNT_SW_MAX,                      /* non-ABI */
110 };
111
112 /*
113  * Bits that can be set in attr.sample_type to request information
114  * in the overflow packets.
115  */
116 enum perf_event_sample_format {
117         PERF_SAMPLE_IP                          = 1U << 0,
118         PERF_SAMPLE_TID                         = 1U << 1,
119         PERF_SAMPLE_TIME                        = 1U << 2,
120         PERF_SAMPLE_ADDR                        = 1U << 3,
121         PERF_SAMPLE_READ                        = 1U << 4,
122         PERF_SAMPLE_CALLCHAIN                   = 1U << 5,
123         PERF_SAMPLE_ID                          = 1U << 6,
124         PERF_SAMPLE_CPU                         = 1U << 7,
125         PERF_SAMPLE_PERIOD                      = 1U << 8,
126         PERF_SAMPLE_STREAM_ID                   = 1U << 9,
127         PERF_SAMPLE_RAW                         = 1U << 10,
128
129         PERF_SAMPLE_MAX = 1U << 11,             /* non-ABI */
130 };
131
132 /*
133  * The format of the data returned by read() on a perf event fd,
134  * as specified by attr.read_format:
135  *
136  * struct read_format {
137  *      { u64           value;
138  *        { u64         time_enabled; } && PERF_FORMAT_ENABLED
139  *        { u64         time_running; } && PERF_FORMAT_RUNNING
140  *        { u64         id;           } && PERF_FORMAT_ID
141  *      } && !PERF_FORMAT_GROUP
142  *
143  *      { u64           nr;
144  *        { u64         time_enabled; } && PERF_FORMAT_ENABLED
145  *        { u64         time_running; } && PERF_FORMAT_RUNNING
146  *        { u64         value;
147  *          { u64       id;           } && PERF_FORMAT_ID
148  *        }             cntr[nr];
149  *      } && PERF_FORMAT_GROUP
150  * };
151  */
152 enum perf_event_read_format {
153         PERF_FORMAT_TOTAL_TIME_ENABLED          = 1U << 0,
154         PERF_FORMAT_TOTAL_TIME_RUNNING          = 1U << 1,
155         PERF_FORMAT_ID                          = 1U << 2,
156         PERF_FORMAT_GROUP                       = 1U << 3,
157
158         PERF_FORMAT_MAX = 1U << 4,              /* non-ABI */
159 };
160
161 #define PERF_ATTR_SIZE_VER0     64      /* sizeof first published struct */
162
163 /*
164  * Hardware event_id to monitor via a performance monitoring event:
165  */
166 struct perf_event_attr {
167
168         /*
169          * Major type: hardware/software/tracepoint/etc.
170          */
171         __u32                   type;
172
173         /*
174          * Size of the attr structure, for fwd/bwd compat.
175          */
176         __u32                   size;
177
178         /*
179          * Type specific configuration information.
180          */
181         __u64                   config;
182
183         union {
184                 __u64           sample_period;
185                 __u64           sample_freq;
186         };
187
188         __u64                   sample_type;
189         __u64                   read_format;
190
191         __u64                   disabled       :  1, /* off by default        */
192                                 inherit        :  1, /* children inherit it   */
193                                 pinned         :  1, /* must always be on PMU */
194                                 exclusive      :  1, /* only group on PMU     */
195                                 exclude_user   :  1, /* don't count user      */
196                                 exclude_kernel :  1, /* ditto kernel          */
197                                 exclude_hv     :  1, /* ditto hypervisor      */
198                                 exclude_idle   :  1, /* don't count when idle */
199                                 mmap           :  1, /* include mmap data     */
200                                 comm           :  1, /* include comm data     */
201                                 freq           :  1, /* use freq, not period  */
202                                 inherit_stat   :  1, /* per task counts       */
203                                 enable_on_exec :  1, /* next exec enables     */
204                                 task           :  1, /* trace fork/exit       */
205                                 watermark      :  1, /* wakeup_watermark      */
206
207                                 __reserved_1   : 49;
208
209         union {
210                 __u32           wakeup_events;    /* wakeup every n events */
211                 __u32           wakeup_watermark; /* bytes before wakeup   */
212         };
213
214         __u32                   __reserved_2;
215
216         __u64                   bp_addr;
217         __u32                   bp_type;
218         __u32                   bp_len;
219 };
220
221 /*
222  * Ioctls that can be done on a perf event fd:
223  */
224 #define PERF_EVENT_IOC_ENABLE           _IO ('$', 0)
225 #define PERF_EVENT_IOC_DISABLE          _IO ('$', 1)
226 #define PERF_EVENT_IOC_REFRESH          _IO ('$', 2)
227 #define PERF_EVENT_IOC_RESET            _IO ('$', 3)
228 #define PERF_EVENT_IOC_PERIOD           _IOW('$', 4, __u64)
229 #define PERF_EVENT_IOC_SET_OUTPUT       _IO ('$', 5)
230 #define PERF_EVENT_IOC_SET_FILTER       _IOW('$', 6, char *)
231
232 enum perf_event_ioc_flags {
233         PERF_IOC_FLAG_GROUP             = 1U << 0,
234 };
235
236 /*
237  * Structure of the page that can be mapped via mmap
238  */
239 struct perf_event_mmap_page {
240         __u32   version;                /* version number of this structure */
241         __u32   compat_version;         /* lowest version this is compat with */
242
243         /*
244          * Bits needed to read the hw events in user-space.
245          *
246          *   u32 seq;
247          *   s64 count;
248          *
249          *   do {
250          *     seq = pc->lock;
251          *
252          *     barrier()
253          *     if (pc->index) {
254          *       count = pmc_read(pc->index - 1);
255          *       count += pc->offset;
256          *     } else
257          *       goto regular_read;
258          *
259          *     barrier();
260          *   } while (pc->lock != seq);
261          *
262          * NOTE: for obvious reason this only works on self-monitoring
263          *       processes.
264          */
265         __u32   lock;                   /* seqlock for synchronization */
266         __u32   index;                  /* hardware event identifier */
267         __s64   offset;                 /* add to hardware event value */
268         __u64   time_enabled;           /* time event active */
269         __u64   time_running;           /* time event on cpu */
270
271                 /*
272                  * Hole for extension of the self monitor capabilities
273                  */
274
275         __u64   __reserved[123];        /* align to 1k */
276
277         /*
278          * Control data for the mmap() data buffer.
279          *
280          * User-space reading the @data_head value should issue an rmb(), on
281          * SMP capable platforms, after reading this value -- see
282          * perf_event_wakeup().
283          *
284          * When the mapping is PROT_WRITE the @data_tail value should be
285          * written by userspace to reflect the last read data. In this case
286          * the kernel will not over-write unread data.
287          */
288         __u64   data_head;              /* head in the data section */
289         __u64   data_tail;              /* user-space written tail */
290 };
291
292 #define PERF_RECORD_MISC_CPUMODE_MASK           (3 << 0)
293 #define PERF_RECORD_MISC_CPUMODE_UNKNOWN                (0 << 0)
294 #define PERF_RECORD_MISC_KERNEL                 (1 << 0)
295 #define PERF_RECORD_MISC_USER                   (2 << 0)
296 #define PERF_RECORD_MISC_HYPERVISOR             (3 << 0)
297
298 struct perf_event_header {
299         __u32   type;
300         __u16   misc;
301         __u16   size;
302 };
303
304 enum perf_event_type {
305
306         /*
307          * The MMAP events record the PROT_EXEC mappings so that we can
308          * correlate userspace IPs to code. They have the following structure:
309          *
310          * struct {
311          *      struct perf_event_header        header;
312          *
313          *      u32                             pid, tid;
314          *      u64                             addr;
315          *      u64                             len;
316          *      u64                             pgoff;
317          *      char                            filename[];
318          * };
319          */
320         PERF_RECORD_MMAP                        = 1,
321
322         /*
323          * struct {
324          *      struct perf_event_header        header;
325          *      u64                             id;
326          *      u64                             lost;
327          * };
328          */
329         PERF_RECORD_LOST                        = 2,
330
331         /*
332          * struct {
333          *      struct perf_event_header        header;
334          *
335          *      u32                             pid, tid;
336          *      char                            comm[];
337          * };
338          */
339         PERF_RECORD_COMM                        = 3,
340
341         /*
342          * struct {
343          *      struct perf_event_header        header;
344          *      u32                             pid, ppid;
345          *      u32                             tid, ptid;
346          *      u64                             time;
347          * };
348          */
349         PERF_RECORD_EXIT                        = 4,
350
351         /*
352          * struct {
353          *      struct perf_event_header        header;
354          *      u64                             time;
355          *      u64                             id;
356          *      u64                             stream_id;
357          * };
358          */
359         PERF_RECORD_THROTTLE            = 5,
360         PERF_RECORD_UNTHROTTLE          = 6,
361
362         /*
363          * struct {
364          *      struct perf_event_header        header;
365          *      u32                             pid, ppid;
366          *      u32                             tid, ptid;
367          *      u64                             time;
368          * };
369          */
370         PERF_RECORD_FORK                        = 7,
371
372         /*
373          * struct {
374          *      struct perf_event_header        header;
375          *      u32                             pid, tid;
376          *
377          *      struct read_format              values;
378          * };
379          */
380         PERF_RECORD_READ                        = 8,
381
382         /*
383          * struct {
384          *      struct perf_event_header        header;
385          *
386          *      { u64                   ip;       } && PERF_SAMPLE_IP
387          *      { u32                   pid, tid; } && PERF_SAMPLE_TID
388          *      { u64                   time;     } && PERF_SAMPLE_TIME
389          *      { u64                   addr;     } && PERF_SAMPLE_ADDR
390          *      { u64                   id;       } && PERF_SAMPLE_ID
391          *      { u64                   stream_id;} && PERF_SAMPLE_STREAM_ID
392          *      { u32                   cpu, res; } && PERF_SAMPLE_CPU
393          *      { u64                   period;   } && PERF_SAMPLE_PERIOD
394          *
395          *      { struct read_format    values;   } && PERF_SAMPLE_READ
396          *
397          *      { u64                   nr,
398          *        u64                   ips[nr];  } && PERF_SAMPLE_CALLCHAIN
399          *
400          *      #
401          *      # The RAW record below is opaque data wrt the ABI
402          *      #
403          *      # That is, the ABI doesn't make any promises wrt to
404          *      # the stability of its content, it may vary depending
405          *      # on event, hardware, kernel version and phase of
406          *      # the moon.
407          *      #
408          *      # In other words, PERF_SAMPLE_RAW contents are not an ABI.
409          *      #
410          *
411          *      { u32                   size;
412          *        char                  data[size];}&& PERF_SAMPLE_RAW
413          * };
414          */
415         PERF_RECORD_SAMPLE              = 9,
416
417         PERF_RECORD_MAX,                        /* non-ABI */
418 };
419
420 enum perf_callchain_context {
421         PERF_CONTEXT_HV                 = (__u64)-32,
422         PERF_CONTEXT_KERNEL             = (__u64)-128,
423         PERF_CONTEXT_USER               = (__u64)-512,
424
425         PERF_CONTEXT_GUEST              = (__u64)-2048,
426         PERF_CONTEXT_GUEST_KERNEL       = (__u64)-2176,
427         PERF_CONTEXT_GUEST_USER         = (__u64)-2560,
428
429         PERF_CONTEXT_MAX                = (__u64)-4095,
430 };
431
432 #define PERF_FLAG_FD_NO_GROUP   (1U << 0)
433 #define PERF_FLAG_FD_OUTPUT     (1U << 1)
434
435 #ifdef __KERNEL__
436 /*
437  * Kernel-internal data types and definitions:
438  */
439
440 #ifdef CONFIG_PERF_EVENTS
441 # include <asm/perf_event.h>
442 #endif
443
444 #ifdef CONFIG_HAVE_HW_BREAKPOINT
445 #include <asm/hw_breakpoint.h>
446 #endif
447
448 #include <linux/list.h>
449 #include <linux/mutex.h>
450 #include <linux/rculist.h>
451 #include <linux/rcupdate.h>
452 #include <linux/spinlock.h>
453 #include <linux/hrtimer.h>
454 #include <linux/fs.h>
455 #include <linux/pid_namespace.h>
456 #include <linux/workqueue.h>
457 #include <asm/atomic.h>
458
459 #define PERF_MAX_STACK_DEPTH            255
460
461 struct perf_callchain_entry {
462         __u64                           nr;
463         __u64                           ip[PERF_MAX_STACK_DEPTH];
464 };
465
466 struct perf_raw_record {
467         u32                             size;
468         void                            *data;
469 };
470
471 struct task_struct;
472
473 /**
474  * struct hw_perf_event - performance event hardware details:
475  */
476 struct hw_perf_event {
477 #ifdef CONFIG_PERF_EVENTS
478         union {
479                 struct { /* hardware */
480                         u64             config;
481                         unsigned long   config_base;
482                         unsigned long   event_base;
483                         int             idx;
484                 };
485                 struct { /* software */
486                         s64             remaining;
487                         struct hrtimer  hrtimer;
488                 };
489 #ifdef CONFIG_HAVE_HW_BREAKPOINT
490                 union { /* breakpoint */
491                         struct arch_hw_breakpoint       info;
492                 };
493 #endif
494         };
495         atomic64_t                      prev_count;
496         u64                             sample_period;
497         u64                             last_period;
498         atomic64_t                      period_left;
499         u64                             interrupts;
500
501         u64                             freq_count;
502         u64                             freq_interrupts;
503         u64                             freq_stamp;
504 #endif
505 };
506
507 struct perf_event;
508
509 /**
510  * struct pmu - generic performance monitoring unit
511  */
512 struct pmu {
513         int (*enable)                   (struct perf_event *event);
514         void (*disable)                 (struct perf_event *event);
515         void (*read)                    (struct perf_event *event);
516         void (*unthrottle)              (struct perf_event *event);
517 };
518
519 /**
520  * enum perf_event_active_state - the states of a event
521  */
522 enum perf_event_active_state {
523         PERF_EVENT_STATE_ERROR          = -2,
524         PERF_EVENT_STATE_OFF            = -1,
525         PERF_EVENT_STATE_INACTIVE       =  0,
526         PERF_EVENT_STATE_ACTIVE         =  1,
527 };
528
529 struct file;
530
531 struct perf_mmap_data {
532         struct rcu_head                 rcu_head;
533 #ifdef CONFIG_PERF_USE_VMALLOC
534         struct work_struct              work;
535 #endif
536         int                             data_order;
537         int                             nr_pages;       /* nr of data pages  */
538         int                             writable;       /* are we writable   */
539         int                             nr_locked;      /* nr pages mlocked  */
540
541         atomic_t                        poll;           /* POLL_ for wakeups */
542         atomic_t                        events;         /* event_id limit       */
543
544         atomic_long_t                   head;           /* write position    */
545         atomic_long_t                   done_head;      /* completed head    */
546
547         atomic_t                        lock;           /* concurrent writes */
548         atomic_t                        wakeup;         /* needs a wakeup    */
549         atomic_t                        lost;           /* nr records lost   */
550
551         long                            watermark;      /* wakeup watermark  */
552
553         struct perf_event_mmap_page     *user_page;
554         void                            *data_pages[0];
555 };
556
557 struct perf_pending_entry {
558         struct perf_pending_entry *next;
559         void (*func)(struct perf_pending_entry *);
560 };
561
562 struct perf_sample_data;
563
564 typedef void (*perf_overflow_handler_t)(struct perf_event *, int,
565                                         struct perf_sample_data *,
566                                         struct pt_regs *regs);
567
568 /**
569  * struct perf_event - performance event kernel representation:
570  */
571 struct perf_event {
572 #ifdef CONFIG_PERF_EVENTS
573         struct list_head                group_entry;
574         struct list_head                event_entry;
575         struct list_head                sibling_list;
576         int                             nr_siblings;
577         struct perf_event               *group_leader;
578         struct perf_event               *output;
579         const struct pmu                *pmu;
580
581         enum perf_event_active_state    state;
582         atomic64_t                      count;
583
584         /*
585          * These are the total time in nanoseconds that the event
586          * has been enabled (i.e. eligible to run, and the task has
587          * been scheduled in, if this is a per-task event)
588          * and running (scheduled onto the CPU), respectively.
589          *
590          * They are computed from tstamp_enabled, tstamp_running and
591          * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
592          */
593         u64                             total_time_enabled;
594         u64                             total_time_running;
595
596         /*
597          * These are timestamps used for computing total_time_enabled
598          * and total_time_running when the event is in INACTIVE or
599          * ACTIVE state, measured in nanoseconds from an arbitrary point
600          * in time.
601          * tstamp_enabled: the notional time when the event was enabled
602          * tstamp_running: the notional time when the event was scheduled on
603          * tstamp_stopped: in INACTIVE state, the notional time when the
604          *      event was scheduled off.
605          */
606         u64                             tstamp_enabled;
607         u64                             tstamp_running;
608         u64                             tstamp_stopped;
609
610         struct perf_event_attr          attr;
611         struct hw_perf_event            hw;
612
613         struct perf_event_context       *ctx;
614         struct file                     *filp;
615
616         /*
617          * These accumulate total time (in nanoseconds) that children
618          * events have been enabled and running, respectively.
619          */
620         atomic64_t                      child_total_time_enabled;
621         atomic64_t                      child_total_time_running;
622
623         /*
624          * Protect attach/detach and child_list:
625          */
626         struct mutex                    child_mutex;
627         struct list_head                child_list;
628         struct perf_event               *parent;
629
630         int                             oncpu;
631         int                             cpu;
632
633         struct list_head                owner_entry;
634         struct task_struct              *owner;
635
636         /* mmap bits */
637         struct mutex                    mmap_mutex;
638         atomic_t                        mmap_count;
639         struct perf_mmap_data           *data;
640
641         /* poll related */
642         wait_queue_head_t               waitq;
643         struct fasync_struct            *fasync;
644
645         /* delayed work for NMIs and such */
646         int                             pending_wakeup;
647         int                             pending_kill;
648         int                             pending_disable;
649         struct perf_pending_entry       pending;
650
651         atomic_t                        event_limit;
652
653         void (*destroy)(struct perf_event *);
654         struct rcu_head                 rcu_head;
655
656         struct pid_namespace            *ns;
657         u64                             id;
658
659         perf_overflow_handler_t         overflow_handler;
660
661 #ifdef CONFIG_EVENT_PROFILE
662         struct event_filter             *filter;
663 #endif
664
665 #endif /* CONFIG_PERF_EVENTS */
666 };
667
668 /**
669  * struct perf_event_context - event context structure
670  *
671  * Used as a container for task events and CPU events as well:
672  */
673 struct perf_event_context {
674         /*
675          * Protect the states of the events in the list,
676          * nr_active, and the list:
677          */
678         raw_spinlock_t                  lock;
679         /*
680          * Protect the list of events.  Locking either mutex or lock
681          * is sufficient to ensure the list doesn't change; to change
682          * the list you need to lock both the mutex and the spinlock.
683          */
684         struct mutex                    mutex;
685
686         struct list_head                group_list;
687         struct list_head                event_list;
688         int                             nr_events;
689         int                             nr_active;
690         int                             is_active;
691         int                             nr_stat;
692         atomic_t                        refcount;
693         struct task_struct              *task;
694
695         /*
696          * Context clock, runs when context enabled.
697          */
698         u64                             time;
699         u64                             timestamp;
700
701         /*
702          * These fields let us detect when two contexts have both
703          * been cloned (inherited) from a common ancestor.
704          */
705         struct perf_event_context       *parent_ctx;
706         u64                             parent_gen;
707         u64                             generation;
708         int                             pin_count;
709         struct rcu_head                 rcu_head;
710 };
711
712 /**
713  * struct perf_event_cpu_context - per cpu event context structure
714  */
715 struct perf_cpu_context {
716         struct perf_event_context       ctx;
717         struct perf_event_context       *task_ctx;
718         int                             active_oncpu;
719         int                             max_pertask;
720         int                             exclusive;
721
722         /*
723          * Recursion avoidance:
724          *
725          * task, softirq, irq, nmi context
726          */
727         int                             recursion[4];
728 };
729
730 struct perf_output_handle {
731         struct perf_event               *event;
732         struct perf_mmap_data           *data;
733         unsigned long                   head;
734         unsigned long                   offset;
735         int                             nmi;
736         int                             sample;
737         int                             locked;
738 };
739
740 #ifdef CONFIG_PERF_EVENTS
741
742 /*
743  * Set by architecture code:
744  */
745 extern int perf_max_events;
746
747 extern const struct pmu *hw_perf_event_init(struct perf_event *event);
748
749 extern void perf_event_task_sched_in(struct task_struct *task, int cpu);
750 extern void perf_event_task_sched_out(struct task_struct *task,
751                                         struct task_struct *next, int cpu);
752 extern void perf_event_task_tick(struct task_struct *task, int cpu);
753 extern int perf_event_init_task(struct task_struct *child);
754 extern void perf_event_exit_task(struct task_struct *child);
755 extern void perf_event_free_task(struct task_struct *task);
756 extern void set_perf_event_pending(void);
757 extern void perf_event_do_pending(void);
758 extern void perf_event_print_debug(void);
759 extern void __perf_disable(void);
760 extern bool __perf_enable(void);
761 extern void perf_disable(void);
762 extern void perf_enable(void);
763 extern int perf_event_task_disable(void);
764 extern int perf_event_task_enable(void);
765 extern int hw_perf_group_sched_in(struct perf_event *group_leader,
766                struct perf_cpu_context *cpuctx,
767                struct perf_event_context *ctx, int cpu);
768 extern void perf_event_update_userpage(struct perf_event *event);
769 extern int perf_event_release_kernel(struct perf_event *event);
770 extern struct perf_event *
771 perf_event_create_kernel_counter(struct perf_event_attr *attr,
772                                 int cpu,
773                                 pid_t pid,
774                                 perf_overflow_handler_t callback);
775 extern u64 perf_event_read_value(struct perf_event *event,
776                                  u64 *enabled, u64 *running);
777
778 struct perf_sample_data {
779         u64                             type;
780
781         u64                             ip;
782         struct {
783                 u32     pid;
784                 u32     tid;
785         }                               tid_entry;
786         u64                             time;
787         u64                             addr;
788         u64                             id;
789         u64                             stream_id;
790         struct {
791                 u32     cpu;
792                 u32     reserved;
793         }                               cpu_entry;
794         u64                             period;
795         struct perf_callchain_entry     *callchain;
796         struct perf_raw_record          *raw;
797 };
798
799 extern void perf_output_sample(struct perf_output_handle *handle,
800                                struct perf_event_header *header,
801                                struct perf_sample_data *data,
802                                struct perf_event *event);
803 extern void perf_prepare_sample(struct perf_event_header *header,
804                                 struct perf_sample_data *data,
805                                 struct perf_event *event,
806                                 struct pt_regs *regs);
807
808 extern int perf_event_overflow(struct perf_event *event, int nmi,
809                                  struct perf_sample_data *data,
810                                  struct pt_regs *regs);
811
812 /*
813  * Return 1 for a software event, 0 for a hardware event
814  */
815 static inline int is_software_event(struct perf_event *event)
816 {
817         return (event->attr.type != PERF_TYPE_RAW) &&
818                 (event->attr.type != PERF_TYPE_HARDWARE) &&
819                 (event->attr.type != PERF_TYPE_HW_CACHE);
820 }
821
822 extern atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
823
824 extern void __perf_sw_event(u32, u64, int, struct pt_regs *, u64);
825
826 static inline void
827 perf_sw_event(u32 event_id, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
828 {
829         if (atomic_read(&perf_swevent_enabled[event_id]))
830                 __perf_sw_event(event_id, nr, nmi, regs, addr);
831 }
832
833 extern void __perf_event_mmap(struct vm_area_struct *vma);
834
835 static inline void perf_event_mmap(struct vm_area_struct *vma)
836 {
837         if (vma->vm_flags & VM_EXEC)
838                 __perf_event_mmap(vma);
839 }
840
841 extern void perf_event_comm(struct task_struct *tsk);
842 extern void perf_event_fork(struct task_struct *tsk);
843
844 extern struct perf_callchain_entry *perf_callchain(struct pt_regs *regs);
845
846 extern int sysctl_perf_event_paranoid;
847 extern int sysctl_perf_event_mlock;
848 extern int sysctl_perf_event_sample_rate;
849
850 extern void perf_event_init(void);
851 extern void perf_tp_event(int event_id, u64 addr, u64 count,
852                                  void *record, int entry_size);
853 extern void perf_bp_event(struct perf_event *event, void *data);
854
855 #ifndef perf_misc_flags
856 #define perf_misc_flags(regs)   (user_mode(regs) ? PERF_RECORD_MISC_USER : \
857                                  PERF_RECORD_MISC_KERNEL)
858 #define perf_instruction_pointer(regs)  instruction_pointer(regs)
859 #endif
860
861 extern int perf_output_begin(struct perf_output_handle *handle,
862                              struct perf_event *event, unsigned int size,
863                              int nmi, int sample);
864 extern void perf_output_end(struct perf_output_handle *handle);
865 extern void perf_output_copy(struct perf_output_handle *handle,
866                              const void *buf, unsigned int len);
867 extern int perf_swevent_get_recursion_context(void);
868 extern void perf_swevent_put_recursion_context(int rctx);
869 extern void perf_event_enable(struct perf_event *event);
870 extern void perf_event_disable(struct perf_event *event);
871 #else
872 static inline void
873 perf_event_task_sched_in(struct task_struct *task, int cpu)             { }
874 static inline void
875 perf_event_task_sched_out(struct task_struct *task,
876                             struct task_struct *next, int cpu)          { }
877 static inline void
878 perf_event_task_tick(struct task_struct *task, int cpu)                 { }
879 static inline int perf_event_init_task(struct task_struct *child)       { return 0; }
880 static inline void perf_event_exit_task(struct task_struct *child)      { }
881 static inline void perf_event_free_task(struct task_struct *task)       { }
882 static inline void perf_event_do_pending(void)                          { }
883 static inline void perf_event_print_debug(void)                         { }
884 static inline void perf_disable(void)                                   { }
885 static inline void perf_enable(void)                                    { }
886 static inline int perf_event_task_disable(void)                         { return -EINVAL; }
887 static inline int perf_event_task_enable(void)                          { return -EINVAL; }
888
889 static inline void
890 perf_sw_event(u32 event_id, u64 nr, int nmi,
891                      struct pt_regs *regs, u64 addr)                    { }
892 static inline void
893 perf_bp_event(struct perf_event *event, void *data)             { }
894
895 static inline void perf_event_mmap(struct vm_area_struct *vma)          { }
896 static inline void perf_event_comm(struct task_struct *tsk)             { }
897 static inline void perf_event_fork(struct task_struct *tsk)             { }
898 static inline void perf_event_init(void)                                { }
899 static inline int  perf_swevent_get_recursion_context(void)  { return -1; }
900 static inline void perf_swevent_put_recursion_context(int rctx)         { }
901 static inline void perf_event_enable(struct perf_event *event)          { }
902 static inline void perf_event_disable(struct perf_event *event)         { }
903 #endif
904
905 #define perf_output_put(handle, x) \
906         perf_output_copy((handle), &(x), sizeof(x))
907
908 #endif /* __KERNEL__ */
909 #endif /* _LINUX_PERF_EVENT_H */