perf events: Fix swevent hrtimer sampling by keeping track of remaining time when...
[linux-2.6.git] / include / linux / perf_event.h
1 /*
2  * Performance events:
3  *
4  *    Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5  *    Copyright (C) 2008-2009, Red Hat, Inc., Ingo Molnar
6  *    Copyright (C) 2008-2009, Red Hat, Inc., Peter Zijlstra
7  *
8  * Data type definitions, declarations, prototypes.
9  *
10  *    Started by: Thomas Gleixner and Ingo Molnar
11  *
12  * For licencing details see kernel-base/COPYING
13  */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16
17 #include <linux/types.h>
18 #include <linux/ioctl.h>
19 #include <asm/byteorder.h>
20
21 /*
22  * User-space ABI bits:
23  */
24
25 /*
26  * attr.type
27  */
28 enum perf_type_id {
29         PERF_TYPE_HARDWARE                      = 0,
30         PERF_TYPE_SOFTWARE                      = 1,
31         PERF_TYPE_TRACEPOINT                    = 2,
32         PERF_TYPE_HW_CACHE                      = 3,
33         PERF_TYPE_RAW                           = 4,
34
35         PERF_TYPE_MAX,                          /* non-ABI */
36 };
37
38 /*
39  * Generalized performance event event_id types, used by the
40  * attr.event_id parameter of the sys_perf_event_open()
41  * syscall:
42  */
43 enum perf_hw_id {
44         /*
45          * Common hardware events, generalized by the kernel:
46          */
47         PERF_COUNT_HW_CPU_CYCLES                = 0,
48         PERF_COUNT_HW_INSTRUCTIONS              = 1,
49         PERF_COUNT_HW_CACHE_REFERENCES          = 2,
50         PERF_COUNT_HW_CACHE_MISSES              = 3,
51         PERF_COUNT_HW_BRANCH_INSTRUCTIONS       = 4,
52         PERF_COUNT_HW_BRANCH_MISSES             = 5,
53         PERF_COUNT_HW_BUS_CYCLES                = 6,
54
55         PERF_COUNT_HW_MAX,                      /* non-ABI */
56 };
57
58 /*
59  * Generalized hardware cache events:
60  *
61  *       { L1-D, L1-I, LLC, ITLB, DTLB, BPU } x
62  *       { read, write, prefetch } x
63  *       { accesses, misses }
64  */
65 enum perf_hw_cache_id {
66         PERF_COUNT_HW_CACHE_L1D                 = 0,
67         PERF_COUNT_HW_CACHE_L1I                 = 1,
68         PERF_COUNT_HW_CACHE_LL                  = 2,
69         PERF_COUNT_HW_CACHE_DTLB                = 3,
70         PERF_COUNT_HW_CACHE_ITLB                = 4,
71         PERF_COUNT_HW_CACHE_BPU                 = 5,
72
73         PERF_COUNT_HW_CACHE_MAX,                /* non-ABI */
74 };
75
76 enum perf_hw_cache_op_id {
77         PERF_COUNT_HW_CACHE_OP_READ             = 0,
78         PERF_COUNT_HW_CACHE_OP_WRITE            = 1,
79         PERF_COUNT_HW_CACHE_OP_PREFETCH         = 2,
80
81         PERF_COUNT_HW_CACHE_OP_MAX,             /* non-ABI */
82 };
83
84 enum perf_hw_cache_op_result_id {
85         PERF_COUNT_HW_CACHE_RESULT_ACCESS       = 0,
86         PERF_COUNT_HW_CACHE_RESULT_MISS         = 1,
87
88         PERF_COUNT_HW_CACHE_RESULT_MAX,         /* non-ABI */
89 };
90
91 /*
92  * Special "software" events provided by the kernel, even if the hardware
93  * does not support performance events. These events measure various
94  * physical and sw events of the kernel (and allow the profiling of them as
95  * well):
96  */
97 enum perf_sw_ids {
98         PERF_COUNT_SW_CPU_CLOCK                 = 0,
99         PERF_COUNT_SW_TASK_CLOCK                = 1,
100         PERF_COUNT_SW_PAGE_FAULTS               = 2,
101         PERF_COUNT_SW_CONTEXT_SWITCHES          = 3,
102         PERF_COUNT_SW_CPU_MIGRATIONS            = 4,
103         PERF_COUNT_SW_PAGE_FAULTS_MIN           = 5,
104         PERF_COUNT_SW_PAGE_FAULTS_MAJ           = 6,
105
106         PERF_COUNT_SW_MAX,                      /* non-ABI */
107 };
108
109 /*
110  * Bits that can be set in attr.sample_type to request information
111  * in the overflow packets.
112  */
113 enum perf_event_sample_format {
114         PERF_SAMPLE_IP                          = 1U << 0,
115         PERF_SAMPLE_TID                         = 1U << 1,
116         PERF_SAMPLE_TIME                        = 1U << 2,
117         PERF_SAMPLE_ADDR                        = 1U << 3,
118         PERF_SAMPLE_READ                        = 1U << 4,
119         PERF_SAMPLE_CALLCHAIN                   = 1U << 5,
120         PERF_SAMPLE_ID                          = 1U << 6,
121         PERF_SAMPLE_CPU                         = 1U << 7,
122         PERF_SAMPLE_PERIOD                      = 1U << 8,
123         PERF_SAMPLE_STREAM_ID                   = 1U << 9,
124         PERF_SAMPLE_RAW                         = 1U << 10,
125
126         PERF_SAMPLE_MAX = 1U << 11,             /* non-ABI */
127 };
128
129 /*
130  * The format of the data returned by read() on a perf event fd,
131  * as specified by attr.read_format:
132  *
133  * struct read_format {
134  *      { u64           value;
135  *        { u64         time_enabled; } && PERF_FORMAT_ENABLED
136  *        { u64         time_running; } && PERF_FORMAT_RUNNING
137  *        { u64         id;           } && PERF_FORMAT_ID
138  *      } && !PERF_FORMAT_GROUP
139  *
140  *      { u64           nr;
141  *        { u64         time_enabled; } && PERF_FORMAT_ENABLED
142  *        { u64         time_running; } && PERF_FORMAT_RUNNING
143  *        { u64         value;
144  *          { u64       id;           } && PERF_FORMAT_ID
145  *        }             cntr[nr];
146  *      } && PERF_FORMAT_GROUP
147  * };
148  */
149 enum perf_event_read_format {
150         PERF_FORMAT_TOTAL_TIME_ENABLED          = 1U << 0,
151         PERF_FORMAT_TOTAL_TIME_RUNNING          = 1U << 1,
152         PERF_FORMAT_ID                          = 1U << 2,
153         PERF_FORMAT_GROUP                       = 1U << 3,
154
155         PERF_FORMAT_MAX = 1U << 4,              /* non-ABI */
156 };
157
158 #define PERF_ATTR_SIZE_VER0     64      /* sizeof first published struct */
159
160 /*
161  * Hardware event_id to monitor via a performance monitoring event:
162  */
163 struct perf_event_attr {
164
165         /*
166          * Major type: hardware/software/tracepoint/etc.
167          */
168         __u32                   type;
169
170         /*
171          * Size of the attr structure, for fwd/bwd compat.
172          */
173         __u32                   size;
174
175         /*
176          * Type specific configuration information.
177          */
178         __u64                   config;
179
180         union {
181                 __u64           sample_period;
182                 __u64           sample_freq;
183         };
184
185         __u64                   sample_type;
186         __u64                   read_format;
187
188         __u64                   disabled       :  1, /* off by default        */
189                                 inherit        :  1, /* children inherit it   */
190                                 pinned         :  1, /* must always be on PMU */
191                                 exclusive      :  1, /* only group on PMU     */
192                                 exclude_user   :  1, /* don't count user      */
193                                 exclude_kernel :  1, /* ditto kernel          */
194                                 exclude_hv     :  1, /* ditto hypervisor      */
195                                 exclude_idle   :  1, /* don't count when idle */
196                                 mmap           :  1, /* include mmap data     */
197                                 comm           :  1, /* include comm data     */
198                                 freq           :  1, /* use freq, not period  */
199                                 inherit_stat   :  1, /* per task counts       */
200                                 enable_on_exec :  1, /* next exec enables     */
201                                 task           :  1, /* trace fork/exit       */
202                                 watermark      :  1, /* wakeup_watermark      */
203
204                                 __reserved_1   : 49;
205
206         union {
207                 __u32           wakeup_events;    /* wakeup every n events */
208                 __u32           wakeup_watermark; /* bytes before wakeup   */
209         };
210         __u32                   __reserved_2;
211
212         __u64                   __reserved_3;
213 };
214
215 /*
216  * Ioctls that can be done on a perf event fd:
217  */
218 #define PERF_EVENT_IOC_ENABLE           _IO ('$', 0)
219 #define PERF_EVENT_IOC_DISABLE          _IO ('$', 1)
220 #define PERF_EVENT_IOC_REFRESH          _IO ('$', 2)
221 #define PERF_EVENT_IOC_RESET            _IO ('$', 3)
222 #define PERF_EVENT_IOC_PERIOD           _IOW('$', 4, u64)
223 #define PERF_EVENT_IOC_SET_OUTPUT       _IO ('$', 5)
224
225 enum perf_event_ioc_flags {
226         PERF_IOC_FLAG_GROUP             = 1U << 0,
227 };
228
229 /*
230  * Structure of the page that can be mapped via mmap
231  */
232 struct perf_event_mmap_page {
233         __u32   version;                /* version number of this structure */
234         __u32   compat_version;         /* lowest version this is compat with */
235
236         /*
237          * Bits needed to read the hw events in user-space.
238          *
239          *   u32 seq;
240          *   s64 count;
241          *
242          *   do {
243          *     seq = pc->lock;
244          *
245          *     barrier()
246          *     if (pc->index) {
247          *       count = pmc_read(pc->index - 1);
248          *       count += pc->offset;
249          *     } else
250          *       goto regular_read;
251          *
252          *     barrier();
253          *   } while (pc->lock != seq);
254          *
255          * NOTE: for obvious reason this only works on self-monitoring
256          *       processes.
257          */
258         __u32   lock;                   /* seqlock for synchronization */
259         __u32   index;                  /* hardware event identifier */
260         __s64   offset;                 /* add to hardware event value */
261         __u64   time_enabled;           /* time event active */
262         __u64   time_running;           /* time event on cpu */
263
264                 /*
265                  * Hole for extension of the self monitor capabilities
266                  */
267
268         __u64   __reserved[123];        /* align to 1k */
269
270         /*
271          * Control data for the mmap() data buffer.
272          *
273          * User-space reading the @data_head value should issue an rmb(), on
274          * SMP capable platforms, after reading this value -- see
275          * perf_event_wakeup().
276          *
277          * When the mapping is PROT_WRITE the @data_tail value should be
278          * written by userspace to reflect the last read data. In this case
279          * the kernel will not over-write unread data.
280          */
281         __u64   data_head;              /* head in the data section */
282         __u64   data_tail;              /* user-space written tail */
283 };
284
285 #define PERF_RECORD_MISC_CPUMODE_MASK           (3 << 0)
286 #define PERF_RECORD_MISC_CPUMODE_UNKNOWN                (0 << 0)
287 #define PERF_RECORD_MISC_KERNEL                 (1 << 0)
288 #define PERF_RECORD_MISC_USER                   (2 << 0)
289 #define PERF_RECORD_MISC_HYPERVISOR             (3 << 0)
290
291 struct perf_event_header {
292         __u32   type;
293         __u16   misc;
294         __u16   size;
295 };
296
297 enum perf_event_type {
298
299         /*
300          * The MMAP events record the PROT_EXEC mappings so that we can
301          * correlate userspace IPs to code. They have the following structure:
302          *
303          * struct {
304          *      struct perf_event_header        header;
305          *
306          *      u32                             pid, tid;
307          *      u64                             addr;
308          *      u64                             len;
309          *      u64                             pgoff;
310          *      char                            filename[];
311          * };
312          */
313         PERF_RECORD_MMAP                        = 1,
314
315         /*
316          * struct {
317          *      struct perf_event_header        header;
318          *      u64                             id;
319          *      u64                             lost;
320          * };
321          */
322         PERF_RECORD_LOST                        = 2,
323
324         /*
325          * struct {
326          *      struct perf_event_header        header;
327          *
328          *      u32                             pid, tid;
329          *      char                            comm[];
330          * };
331          */
332         PERF_RECORD_COMM                        = 3,
333
334         /*
335          * struct {
336          *      struct perf_event_header        header;
337          *      u32                             pid, ppid;
338          *      u32                             tid, ptid;
339          *      u64                             time;
340          * };
341          */
342         PERF_RECORD_EXIT                        = 4,
343
344         /*
345          * struct {
346          *      struct perf_event_header        header;
347          *      u64                             time;
348          *      u64                             id;
349          *      u64                             stream_id;
350          * };
351          */
352         PERF_RECORD_THROTTLE            = 5,
353         PERF_RECORD_UNTHROTTLE          = 6,
354
355         /*
356          * struct {
357          *      struct perf_event_header        header;
358          *      u32                             pid, ppid;
359          *      u32                             tid, ptid;
360          *      u64                             time;
361          * };
362          */
363         PERF_RECORD_FORK                        = 7,
364
365         /*
366          * struct {
367          *      struct perf_event_header        header;
368          *      u32                             pid, tid;
369          *
370          *      struct read_format              values;
371          * };
372          */
373         PERF_RECORD_READ                        = 8,
374
375         /*
376          * struct {
377          *      struct perf_event_header        header;
378          *
379          *      { u64                   ip;       } && PERF_SAMPLE_IP
380          *      { u32                   pid, tid; } && PERF_SAMPLE_TID
381          *      { u64                   time;     } && PERF_SAMPLE_TIME
382          *      { u64                   addr;     } && PERF_SAMPLE_ADDR
383          *      { u64                   id;       } && PERF_SAMPLE_ID
384          *      { u64                   stream_id;} && PERF_SAMPLE_STREAM_ID
385          *      { u32                   cpu, res; } && PERF_SAMPLE_CPU
386          *      { u64                   period;   } && PERF_SAMPLE_PERIOD
387          *
388          *      { struct read_format    values;   } && PERF_SAMPLE_READ
389          *
390          *      { u64                   nr,
391          *        u64                   ips[nr];  } && PERF_SAMPLE_CALLCHAIN
392          *
393          *      #
394          *      # The RAW record below is opaque data wrt the ABI
395          *      #
396          *      # That is, the ABI doesn't make any promises wrt to
397          *      # the stability of its content, it may vary depending
398          *      # on event, hardware, kernel version and phase of
399          *      # the moon.
400          *      #
401          *      # In other words, PERF_SAMPLE_RAW contents are not an ABI.
402          *      #
403          *
404          *      { u32                   size;
405          *        char                  data[size];}&& PERF_SAMPLE_RAW
406          * };
407          */
408         PERF_RECORD_SAMPLE              = 9,
409
410         PERF_RECORD_MAX,                        /* non-ABI */
411 };
412
413 enum perf_callchain_context {
414         PERF_CONTEXT_HV                 = (__u64)-32,
415         PERF_CONTEXT_KERNEL             = (__u64)-128,
416         PERF_CONTEXT_USER               = (__u64)-512,
417
418         PERF_CONTEXT_GUEST              = (__u64)-2048,
419         PERF_CONTEXT_GUEST_KERNEL       = (__u64)-2176,
420         PERF_CONTEXT_GUEST_USER         = (__u64)-2560,
421
422         PERF_CONTEXT_MAX                = (__u64)-4095,
423 };
424
425 #define PERF_FLAG_FD_NO_GROUP   (1U << 0)
426 #define PERF_FLAG_FD_OUTPUT     (1U << 1)
427
428 #ifdef __KERNEL__
429 /*
430  * Kernel-internal data types and definitions:
431  */
432
433 #ifdef CONFIG_PERF_EVENTS
434 # include <asm/perf_event.h>
435 #endif
436
437 #include <linux/list.h>
438 #include <linux/mutex.h>
439 #include <linux/rculist.h>
440 #include <linux/rcupdate.h>
441 #include <linux/spinlock.h>
442 #include <linux/hrtimer.h>
443 #include <linux/fs.h>
444 #include <linux/pid_namespace.h>
445 #include <linux/workqueue.h>
446 #include <asm/atomic.h>
447
448 #define PERF_MAX_STACK_DEPTH            255
449
450 struct perf_callchain_entry {
451         __u64                           nr;
452         __u64                           ip[PERF_MAX_STACK_DEPTH];
453 };
454
455 struct perf_raw_record {
456         u32                             size;
457         void                            *data;
458 };
459
460 struct task_struct;
461
462 /**
463  * struct hw_perf_event - performance event hardware details:
464  */
465 struct hw_perf_event {
466 #ifdef CONFIG_PERF_EVENTS
467         union {
468                 struct { /* hardware */
469                         u64             config;
470                         unsigned long   config_base;
471                         unsigned long   event_base;
472                         int             idx;
473                 };
474                 struct { /* software */
475                         s64             remaining;
476                         struct hrtimer  hrtimer;
477                 };
478         };
479         atomic64_t                      prev_count;
480         u64                             sample_period;
481         u64                             last_period;
482         atomic64_t                      period_left;
483         u64                             interrupts;
484
485         u64                             freq_count;
486         u64                             freq_interrupts;
487         u64                             freq_stamp;
488 #endif
489 };
490
491 struct perf_event;
492
493 /**
494  * struct pmu - generic performance monitoring unit
495  */
496 struct pmu {
497         int (*enable)                   (struct perf_event *event);
498         void (*disable)                 (struct perf_event *event);
499         void (*read)                    (struct perf_event *event);
500         void (*unthrottle)              (struct perf_event *event);
501 };
502
503 /**
504  * enum perf_event_active_state - the states of a event
505  */
506 enum perf_event_active_state {
507         PERF_EVENT_STATE_ERROR          = -2,
508         PERF_EVENT_STATE_OFF            = -1,
509         PERF_EVENT_STATE_INACTIVE       =  0,
510         PERF_EVENT_STATE_ACTIVE         =  1,
511 };
512
513 struct file;
514
515 struct perf_mmap_data {
516         struct rcu_head                 rcu_head;
517 #ifdef CONFIG_PERF_USE_VMALLOC
518         struct work_struct              work;
519 #endif
520         int                             data_order;
521         int                             nr_pages;       /* nr of data pages  */
522         int                             writable;       /* are we writable   */
523         int                             nr_locked;      /* nr pages mlocked  */
524
525         atomic_t                        poll;           /* POLL_ for wakeups */
526         atomic_t                        events;         /* event_id limit       */
527
528         atomic_long_t                   head;           /* write position    */
529         atomic_long_t                   done_head;      /* completed head    */
530
531         atomic_t                        lock;           /* concurrent writes */
532         atomic_t                        wakeup;         /* needs a wakeup    */
533         atomic_t                        lost;           /* nr records lost   */
534
535         long                            watermark;      /* wakeup watermark  */
536
537         struct perf_event_mmap_page     *user_page;
538         void                            *data_pages[0];
539 };
540
541 struct perf_pending_entry {
542         struct perf_pending_entry *next;
543         void (*func)(struct perf_pending_entry *);
544 };
545
546 /**
547  * struct perf_event - performance event kernel representation:
548  */
549 struct perf_event {
550 #ifdef CONFIG_PERF_EVENTS
551         struct list_head                group_entry;
552         struct list_head                event_entry;
553         struct list_head                sibling_list;
554         int                             nr_siblings;
555         struct perf_event               *group_leader;
556         struct perf_event               *output;
557         const struct pmu                *pmu;
558
559         enum perf_event_active_state    state;
560         atomic64_t                      count;
561
562         /*
563          * These are the total time in nanoseconds that the event
564          * has been enabled (i.e. eligible to run, and the task has
565          * been scheduled in, if this is a per-task event)
566          * and running (scheduled onto the CPU), respectively.
567          *
568          * They are computed from tstamp_enabled, tstamp_running and
569          * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
570          */
571         u64                             total_time_enabled;
572         u64                             total_time_running;
573
574         /*
575          * These are timestamps used for computing total_time_enabled
576          * and total_time_running when the event is in INACTIVE or
577          * ACTIVE state, measured in nanoseconds from an arbitrary point
578          * in time.
579          * tstamp_enabled: the notional time when the event was enabled
580          * tstamp_running: the notional time when the event was scheduled on
581          * tstamp_stopped: in INACTIVE state, the notional time when the
582          *      event was scheduled off.
583          */
584         u64                             tstamp_enabled;
585         u64                             tstamp_running;
586         u64                             tstamp_stopped;
587
588         struct perf_event_attr  attr;
589         struct hw_perf_event            hw;
590
591         struct perf_event_context       *ctx;
592         struct file                     *filp;
593
594         /*
595          * These accumulate total time (in nanoseconds) that children
596          * events have been enabled and running, respectively.
597          */
598         atomic64_t                      child_total_time_enabled;
599         atomic64_t                      child_total_time_running;
600
601         /*
602          * Protect attach/detach and child_list:
603          */
604         struct mutex                    child_mutex;
605         struct list_head                child_list;
606         struct perf_event               *parent;
607
608         int                             oncpu;
609         int                             cpu;
610
611         struct list_head                owner_entry;
612         struct task_struct              *owner;
613
614         /* mmap bits */
615         struct mutex                    mmap_mutex;
616         atomic_t                        mmap_count;
617         struct perf_mmap_data           *data;
618
619         /* poll related */
620         wait_queue_head_t               waitq;
621         struct fasync_struct            *fasync;
622
623         /* delayed work for NMIs and such */
624         int                             pending_wakeup;
625         int                             pending_kill;
626         int                             pending_disable;
627         struct perf_pending_entry       pending;
628
629         atomic_t                        event_limit;
630
631         void (*destroy)(struct perf_event *);
632         struct rcu_head                 rcu_head;
633
634         struct pid_namespace            *ns;
635         u64                             id;
636 #endif
637 };
638
639 /**
640  * struct perf_event_context - event context structure
641  *
642  * Used as a container for task events and CPU events as well:
643  */
644 struct perf_event_context {
645         /*
646          * Protect the states of the events in the list,
647          * nr_active, and the list:
648          */
649         spinlock_t                      lock;
650         /*
651          * Protect the list of events.  Locking either mutex or lock
652          * is sufficient to ensure the list doesn't change; to change
653          * the list you need to lock both the mutex and the spinlock.
654          */
655         struct mutex                    mutex;
656
657         struct list_head                group_list;
658         struct list_head                event_list;
659         int                             nr_events;
660         int                             nr_active;
661         int                             is_active;
662         int                             nr_stat;
663         atomic_t                        refcount;
664         struct task_struct              *task;
665
666         /*
667          * Context clock, runs when context enabled.
668          */
669         u64                             time;
670         u64                             timestamp;
671
672         /*
673          * These fields let us detect when two contexts have both
674          * been cloned (inherited) from a common ancestor.
675          */
676         struct perf_event_context       *parent_ctx;
677         u64                             parent_gen;
678         u64                             generation;
679         int                             pin_count;
680         struct rcu_head                 rcu_head;
681 };
682
683 /**
684  * struct perf_event_cpu_context - per cpu event context structure
685  */
686 struct perf_cpu_context {
687         struct perf_event_context       ctx;
688         struct perf_event_context       *task_ctx;
689         int                             active_oncpu;
690         int                             max_pertask;
691         int                             exclusive;
692
693         /*
694          * Recursion avoidance:
695          *
696          * task, softirq, irq, nmi context
697          */
698         int                             recursion[4];
699 };
700
701 struct perf_output_handle {
702         struct perf_event               *event;
703         struct perf_mmap_data           *data;
704         unsigned long                   head;
705         unsigned long                   offset;
706         int                             nmi;
707         int                             sample;
708         int                             locked;
709         unsigned long                   flags;
710 };
711
712 #ifdef CONFIG_PERF_EVENTS
713
714 /*
715  * Set by architecture code:
716  */
717 extern int perf_max_events;
718
719 extern const struct pmu *hw_perf_event_init(struct perf_event *event);
720
721 extern void perf_event_task_sched_in(struct task_struct *task, int cpu);
722 extern void perf_event_task_sched_out(struct task_struct *task,
723                                         struct task_struct *next, int cpu);
724 extern void perf_event_task_tick(struct task_struct *task, int cpu);
725 extern int perf_event_init_task(struct task_struct *child);
726 extern void perf_event_exit_task(struct task_struct *child);
727 extern void perf_event_free_task(struct task_struct *task);
728 extern void set_perf_event_pending(void);
729 extern void perf_event_do_pending(void);
730 extern void perf_event_print_debug(void);
731 extern void __perf_disable(void);
732 extern bool __perf_enable(void);
733 extern void perf_disable(void);
734 extern void perf_enable(void);
735 extern int perf_event_task_disable(void);
736 extern int perf_event_task_enable(void);
737 extern int hw_perf_group_sched_in(struct perf_event *group_leader,
738                struct perf_cpu_context *cpuctx,
739                struct perf_event_context *ctx, int cpu);
740 extern void perf_event_update_userpage(struct perf_event *event);
741
742 struct perf_sample_data {
743         u64                             type;
744
745         u64                             ip;
746         struct {
747                 u32     pid;
748                 u32     tid;
749         }                               tid_entry;
750         u64                             time;
751         u64                             addr;
752         u64                             id;
753         u64                             stream_id;
754         struct {
755                 u32     cpu;
756                 u32     reserved;
757         }                               cpu_entry;
758         u64                             period;
759         struct perf_callchain_entry     *callchain;
760         struct perf_raw_record          *raw;
761 };
762
763 extern void perf_output_sample(struct perf_output_handle *handle,
764                                struct perf_event_header *header,
765                                struct perf_sample_data *data,
766                                struct perf_event *event);
767 extern void perf_prepare_sample(struct perf_event_header *header,
768                                 struct perf_sample_data *data,
769                                 struct perf_event *event,
770                                 struct pt_regs *regs);
771
772 extern int perf_event_overflow(struct perf_event *event, int nmi,
773                                  struct perf_sample_data *data,
774                                  struct pt_regs *regs);
775
776 /*
777  * Return 1 for a software event, 0 for a hardware event
778  */
779 static inline int is_software_event(struct perf_event *event)
780 {
781         return (event->attr.type != PERF_TYPE_RAW) &&
782                 (event->attr.type != PERF_TYPE_HARDWARE) &&
783                 (event->attr.type != PERF_TYPE_HW_CACHE);
784 }
785
786 extern atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
787
788 extern void __perf_sw_event(u32, u64, int, struct pt_regs *, u64);
789
790 static inline void
791 perf_sw_event(u32 event_id, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
792 {
793         if (atomic_read(&perf_swevent_enabled[event_id]))
794                 __perf_sw_event(event_id, nr, nmi, regs, addr);
795 }
796
797 extern void __perf_event_mmap(struct vm_area_struct *vma);
798
799 static inline void perf_event_mmap(struct vm_area_struct *vma)
800 {
801         if (vma->vm_flags & VM_EXEC)
802                 __perf_event_mmap(vma);
803 }
804
805 extern void perf_event_comm(struct task_struct *tsk);
806 extern void perf_event_fork(struct task_struct *tsk);
807
808 extern struct perf_callchain_entry *perf_callchain(struct pt_regs *regs);
809
810 extern int sysctl_perf_event_paranoid;
811 extern int sysctl_perf_event_mlock;
812 extern int sysctl_perf_event_sample_rate;
813
814 extern void perf_event_init(void);
815 extern void perf_tp_event(int event_id, u64 addr, u64 count,
816                                  void *record, int entry_size);
817
818 #ifndef perf_misc_flags
819 #define perf_misc_flags(regs)   (user_mode(regs) ? PERF_RECORD_MISC_USER : \
820                                  PERF_RECORD_MISC_KERNEL)
821 #define perf_instruction_pointer(regs)  instruction_pointer(regs)
822 #endif
823
824 extern int perf_output_begin(struct perf_output_handle *handle,
825                              struct perf_event *event, unsigned int size,
826                              int nmi, int sample);
827 extern void perf_output_end(struct perf_output_handle *handle);
828 extern void perf_output_copy(struct perf_output_handle *handle,
829                              const void *buf, unsigned int len);
830 #else
831 static inline void
832 perf_event_task_sched_in(struct task_struct *task, int cpu)             { }
833 static inline void
834 perf_event_task_sched_out(struct task_struct *task,
835                             struct task_struct *next, int cpu)          { }
836 static inline void
837 perf_event_task_tick(struct task_struct *task, int cpu)                 { }
838 static inline int perf_event_init_task(struct task_struct *child)       { return 0; }
839 static inline void perf_event_exit_task(struct task_struct *child)      { }
840 static inline void perf_event_free_task(struct task_struct *task)       { }
841 static inline void perf_event_do_pending(void)                          { }
842 static inline void perf_event_print_debug(void)                         { }
843 static inline void perf_disable(void)                                   { }
844 static inline void perf_enable(void)                                    { }
845 static inline int perf_event_task_disable(void)                         { return -EINVAL; }
846 static inline int perf_event_task_enable(void)                          { return -EINVAL; }
847
848 static inline void
849 perf_sw_event(u32 event_id, u64 nr, int nmi,
850                      struct pt_regs *regs, u64 addr)                    { }
851
852 static inline void perf_event_mmap(struct vm_area_struct *vma)          { }
853 static inline void perf_event_comm(struct task_struct *tsk)             { }
854 static inline void perf_event_fork(struct task_struct *tsk)             { }
855 static inline void perf_event_init(void)                                { }
856
857 #endif
858
859 #define perf_output_put(handle, x) \
860         perf_output_copy((handle), &(x), sizeof(x))
861
862 #endif /* __KERNEL__ */
863 #endif /* _LINUX_PERF_EVENT_H */