f6486273267351f70e880c882e83dcd3f3aea616
[linux-2.6.git] / include / linux / perf_counter.h
1 /*
2  *  Performance counters:
3  *
4  *    Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5  *    Copyright (C) 2008-2009, Red Hat, Inc., Ingo Molnar
6  *    Copyright (C) 2008-2009, Red Hat, Inc., Peter Zijlstra
7  *
8  *  Data type definitions, declarations, prototypes.
9  *
10  *    Started by: Thomas Gleixner and Ingo Molnar
11  *
12  *  For licencing details see kernel-base/COPYING
13  */
14 #ifndef _LINUX_PERF_COUNTER_H
15 #define _LINUX_PERF_COUNTER_H
16
17 #include <linux/types.h>
18 #include <linux/ioctl.h>
19 #include <asm/byteorder.h>
20
21 /*
22  * User-space ABI bits:
23  */
24
25 /*
26  * attr.type
27  */
28 enum perf_type_id {
29         PERF_TYPE_HARDWARE                      = 0,
30         PERF_TYPE_SOFTWARE                      = 1,
31         PERF_TYPE_TRACEPOINT                    = 2,
32         PERF_TYPE_HW_CACHE                      = 3,
33         PERF_TYPE_RAW                           = 4,
34
35         PERF_TYPE_MAX,                          /* non-ABI */
36 };
37
38 /*
39  * Generalized performance counter event types, used by the
40  * attr.event_id parameter of the sys_perf_counter_open()
41  * syscall:
42  */
43 enum perf_hw_id {
44         /*
45          * Common hardware events, generalized by the kernel:
46          */
47         PERF_COUNT_HW_CPU_CYCLES                = 0,
48         PERF_COUNT_HW_INSTRUCTIONS              = 1,
49         PERF_COUNT_HW_CACHE_REFERENCES          = 2,
50         PERF_COUNT_HW_CACHE_MISSES              = 3,
51         PERF_COUNT_HW_BRANCH_INSTRUCTIONS       = 4,
52         PERF_COUNT_HW_BRANCH_MISSES             = 5,
53         PERF_COUNT_HW_BUS_CYCLES                = 6,
54
55         PERF_COUNT_HW_MAX,                      /* non-ABI */
56 };
57
58 /*
59  * Generalized hardware cache counters:
60  *
61  *       { L1-D, L1-I, LLC, ITLB, DTLB, BPU } x
62  *       { read, write, prefetch } x
63  *       { accesses, misses }
64  */
65 enum perf_hw_cache_id {
66         PERF_COUNT_HW_CACHE_L1D                 = 0,
67         PERF_COUNT_HW_CACHE_L1I                 = 1,
68         PERF_COUNT_HW_CACHE_LL                  = 2,
69         PERF_COUNT_HW_CACHE_DTLB                = 3,
70         PERF_COUNT_HW_CACHE_ITLB                = 4,
71         PERF_COUNT_HW_CACHE_BPU                 = 5,
72
73         PERF_COUNT_HW_CACHE_MAX,                /* non-ABI */
74 };
75
76 enum perf_hw_cache_op_id {
77         PERF_COUNT_HW_CACHE_OP_READ             = 0,
78         PERF_COUNT_HW_CACHE_OP_WRITE            = 1,
79         PERF_COUNT_HW_CACHE_OP_PREFETCH         = 2,
80
81         PERF_COUNT_HW_CACHE_OP_MAX,             /* non-ABI */
82 };
83
84 enum perf_hw_cache_op_result_id {
85         PERF_COUNT_HW_CACHE_RESULT_ACCESS       = 0,
86         PERF_COUNT_HW_CACHE_RESULT_MISS         = 1,
87
88         PERF_COUNT_HW_CACHE_RESULT_MAX,         /* non-ABI */
89 };
90
91 /*
92  * Special "software" counters provided by the kernel, even if the hardware
93  * does not support performance counters. These counters measure various
94  * physical and sw events of the kernel (and allow the profiling of them as
95  * well):
96  */
97 enum perf_sw_ids {
98         PERF_COUNT_SW_CPU_CLOCK                 = 0,
99         PERF_COUNT_SW_TASK_CLOCK                = 1,
100         PERF_COUNT_SW_PAGE_FAULTS               = 2,
101         PERF_COUNT_SW_CONTEXT_SWITCHES          = 3,
102         PERF_COUNT_SW_CPU_MIGRATIONS            = 4,
103         PERF_COUNT_SW_PAGE_FAULTS_MIN           = 5,
104         PERF_COUNT_SW_PAGE_FAULTS_MAJ           = 6,
105
106         PERF_COUNT_SW_MAX,                      /* non-ABI */
107 };
108
109 /*
110  * Bits that can be set in attr.sample_type to request information
111  * in the overflow packets.
112  */
113 enum perf_counter_sample_format {
114         PERF_SAMPLE_IP                          = 1U << 0,
115         PERF_SAMPLE_TID                         = 1U << 1,
116         PERF_SAMPLE_TIME                        = 1U << 2,
117         PERF_SAMPLE_ADDR                        = 1U << 3,
118         PERF_SAMPLE_READ                        = 1U << 4,
119         PERF_SAMPLE_CALLCHAIN                   = 1U << 5,
120         PERF_SAMPLE_ID                          = 1U << 6,
121         PERF_SAMPLE_CPU                         = 1U << 7,
122         PERF_SAMPLE_PERIOD                      = 1U << 8,
123         PERF_SAMPLE_STREAM_ID                   = 1U << 9,
124         PERF_SAMPLE_RAW                         = 1U << 10,
125
126         PERF_SAMPLE_MAX = 1U << 11,             /* non-ABI */
127 };
128
129 /*
130  * The format of the data returned by read() on a perf counter fd,
131  * as specified by attr.read_format:
132  *
133  * struct read_format {
134  *      { u64           value;
135  *        { u64         time_enabled; } && PERF_FORMAT_ENABLED
136  *        { u64         time_running; } && PERF_FORMAT_RUNNING
137  *        { u64         id;           } && PERF_FORMAT_ID
138  *      } && !PERF_FORMAT_GROUP
139  *
140  *      { u64           nr;
141  *        { u64         time_enabled; } && PERF_FORMAT_ENABLED
142  *        { u64         time_running; } && PERF_FORMAT_RUNNING
143  *        { u64         value;
144  *          { u64       id;           } && PERF_FORMAT_ID
145  *        }             cntr[nr];
146  *      } && PERF_FORMAT_GROUP
147  * };
148  */
149 enum perf_counter_read_format {
150         PERF_FORMAT_TOTAL_TIME_ENABLED          = 1U << 0,
151         PERF_FORMAT_TOTAL_TIME_RUNNING          = 1U << 1,
152         PERF_FORMAT_ID                          = 1U << 2,
153         PERF_FORMAT_GROUP                       = 1U << 3,
154
155         PERF_FORMAT_MAX = 1U << 4,              /* non-ABI */
156 };
157
158 #define PERF_ATTR_SIZE_VER0     64      /* sizeof first published struct */
159
160 /*
161  * Hardware event to monitor via a performance monitoring counter:
162  */
163 struct perf_counter_attr {
164
165         /*
166          * Major type: hardware/software/tracepoint/etc.
167          */
168         __u32                   type;
169
170         /*
171          * Size of the attr structure, for fwd/bwd compat.
172          */
173         __u32                   size;
174
175         /*
176          * Type specific configuration information.
177          */
178         __u64                   config;
179
180         union {
181                 __u64           sample_period;
182                 __u64           sample_freq;
183         };
184
185         __u64                   sample_type;
186         __u64                   read_format;
187
188         __u64                   disabled       :  1, /* off by default        */
189                                 inherit        :  1, /* children inherit it   */
190                                 pinned         :  1, /* must always be on PMU */
191                                 exclusive      :  1, /* only group on PMU     */
192                                 exclude_user   :  1, /* don't count user      */
193                                 exclude_kernel :  1, /* ditto kernel          */
194                                 exclude_hv     :  1, /* ditto hypervisor      */
195                                 exclude_idle   :  1, /* don't count when idle */
196                                 mmap           :  1, /* include mmap data     */
197                                 comm           :  1, /* include comm data     */
198                                 freq           :  1, /* use freq, not period  */
199                                 inherit_stat   :  1, /* per task counts       */
200                                 enable_on_exec :  1, /* next exec enables     */
201                                 task           :  1, /* trace fork/exit       */
202                                 watermark      :  1, /* wakeup_watermark      */
203
204                                 __reserved_1   : 49;
205
206         union {
207                 __u32           wakeup_events;    /* wakeup every n events */
208                 __u32           wakeup_watermark; /* bytes before wakeup   */
209         };
210         __u32                   __reserved_2;
211
212         __u64                   __reserved_3;
213 };
214
215 /*
216  * Ioctls that can be done on a perf counter fd:
217  */
218 #define PERF_COUNTER_IOC_ENABLE         _IO ('$', 0)
219 #define PERF_COUNTER_IOC_DISABLE        _IO ('$', 1)
220 #define PERF_COUNTER_IOC_REFRESH        _IO ('$', 2)
221 #define PERF_COUNTER_IOC_RESET          _IO ('$', 3)
222 #define PERF_COUNTER_IOC_PERIOD         _IOW('$', 4, u64)
223 #define PERF_COUNTER_IOC_SET_OUTPUT     _IO ('$', 5)
224
225 enum perf_counter_ioc_flags {
226         PERF_IOC_FLAG_GROUP             = 1U << 0,
227 };
228
229 /*
230  * Structure of the page that can be mapped via mmap
231  */
232 struct perf_counter_mmap_page {
233         __u32   version;                /* version number of this structure */
234         __u32   compat_version;         /* lowest version this is compat with */
235
236         /*
237          * Bits needed to read the hw counters in user-space.
238          *
239          *   u32 seq;
240          *   s64 count;
241          *
242          *   do {
243          *     seq = pc->lock;
244          *
245          *     barrier()
246          *     if (pc->index) {
247          *       count = pmc_read(pc->index - 1);
248          *       count += pc->offset;
249          *     } else
250          *       goto regular_read;
251          *
252          *     barrier();
253          *   } while (pc->lock != seq);
254          *
255          * NOTE: for obvious reason this only works on self-monitoring
256          *       processes.
257          */
258         __u32   lock;                   /* seqlock for synchronization */
259         __u32   index;                  /* hardware counter identifier */
260         __s64   offset;                 /* add to hardware counter value */
261         __u64   time_enabled;           /* time counter active */
262         __u64   time_running;           /* time counter on cpu */
263
264                 /*
265                  * Hole for extension of the self monitor capabilities
266                  */
267
268         __u64   __reserved[123];        /* align to 1k */
269
270         /*
271          * Control data for the mmap() data buffer.
272          *
273          * User-space reading the @data_head value should issue an rmb(), on
274          * SMP capable platforms, after reading this value -- see
275          * perf_counter_wakeup().
276          *
277          * When the mapping is PROT_WRITE the @data_tail value should be
278          * written by userspace to reflect the last read data. In this case
279          * the kernel will not over-write unread data.
280          */
281         __u64   data_head;              /* head in the data section */
282         __u64   data_tail;              /* user-space written tail */
283 };
284
285 #define PERF_EVENT_MISC_CPUMODE_MASK            (3 << 0)
286 #define PERF_EVENT_MISC_CPUMODE_UNKNOWN         (0 << 0)
287 #define PERF_EVENT_MISC_KERNEL                  (1 << 0)
288 #define PERF_EVENT_MISC_USER                    (2 << 0)
289 #define PERF_EVENT_MISC_HYPERVISOR              (3 << 0)
290
291 struct perf_event_header {
292         __u32   type;
293         __u16   misc;
294         __u16   size;
295 };
296
297 enum perf_event_type {
298
299         /*
300          * The MMAP events record the PROT_EXEC mappings so that we can
301          * correlate userspace IPs to code. They have the following structure:
302          *
303          * struct {
304          *      struct perf_event_header        header;
305          *
306          *      u32                             pid, tid;
307          *      u64                             addr;
308          *      u64                             len;
309          *      u64                             pgoff;
310          *      char                            filename[];
311          * };
312          */
313         PERF_EVENT_MMAP                 = 1,
314
315         /*
316          * struct {
317          *      struct perf_event_header        header;
318          *      u64                             id;
319          *      u64                             lost;
320          * };
321          */
322         PERF_EVENT_LOST                 = 2,
323
324         /*
325          * struct {
326          *      struct perf_event_header        header;
327          *
328          *      u32                             pid, tid;
329          *      char                            comm[];
330          * };
331          */
332         PERF_EVENT_COMM                 = 3,
333
334         /*
335          * struct {
336          *      struct perf_event_header        header;
337          *      u32                             pid, ppid;
338          *      u32                             tid, ptid;
339          *      u64                             time;
340          * };
341          */
342         PERF_EVENT_EXIT                 = 4,
343
344         /*
345          * struct {
346          *      struct perf_event_header        header;
347          *      u64                             time;
348          *      u64                             id;
349          *      u64                             stream_id;
350          * };
351          */
352         PERF_EVENT_THROTTLE             = 5,
353         PERF_EVENT_UNTHROTTLE           = 6,
354
355         /*
356          * struct {
357          *      struct perf_event_header        header;
358          *      u32                             pid, ppid;
359          *      u32                             tid, ptid;
360          *      { u64                           time;     } && PERF_SAMPLE_TIME
361          * };
362          */
363         PERF_EVENT_FORK                 = 7,
364
365         /*
366          * struct {
367          *      struct perf_event_header        header;
368          *      u32                             pid, tid;
369          *
370          *      struct read_format              values;
371          * };
372          */
373         PERF_EVENT_READ                 = 8,
374
375         /*
376          * struct {
377          *      struct perf_event_header        header;
378          *
379          *      { u64                   ip;       } && PERF_SAMPLE_IP
380          *      { u32                   pid, tid; } && PERF_SAMPLE_TID
381          *      { u64                   time;     } && PERF_SAMPLE_TIME
382          *      { u64                   addr;     } && PERF_SAMPLE_ADDR
383          *      { u64                   id;       } && PERF_SAMPLE_ID
384          *      { u64                   stream_id;} && PERF_SAMPLE_STREAM_ID
385          *      { u32                   cpu, res; } && PERF_SAMPLE_CPU
386          *      { u64                   period;   } && PERF_SAMPLE_PERIOD
387          *
388          *      { struct read_format    values;   } && PERF_SAMPLE_READ
389          *
390          *      { u64                   nr,
391          *        u64                   ips[nr];  } && PERF_SAMPLE_CALLCHAIN
392          *
393          *      #
394          *      # The RAW record below is opaque data wrt the ABI
395          *      #
396          *      # That is, the ABI doesn't make any promises wrt to
397          *      # the stability of its content, it may vary depending
398          *      # on event, hardware, kernel version and phase of
399          *      # the moon.
400          *      #
401          *      # In other words, PERF_SAMPLE_RAW contents are not an ABI.
402          *      #
403          *
404          *      { u32                   size;
405          *        char                  data[size];}&& PERF_SAMPLE_RAW
406          * };
407          */
408         PERF_EVENT_SAMPLE               = 9,
409
410         PERF_EVENT_MAX,                 /* non-ABI */
411 };
412
413 enum perf_callchain_context {
414         PERF_CONTEXT_HV                 = (__u64)-32,
415         PERF_CONTEXT_KERNEL             = (__u64)-128,
416         PERF_CONTEXT_USER               = (__u64)-512,
417
418         PERF_CONTEXT_GUEST              = (__u64)-2048,
419         PERF_CONTEXT_GUEST_KERNEL       = (__u64)-2176,
420         PERF_CONTEXT_GUEST_USER         = (__u64)-2560,
421
422         PERF_CONTEXT_MAX                = (__u64)-4095,
423 };
424
425 #define PERF_FLAG_FD_NO_GROUP   (1U << 0)
426 #define PERF_FLAG_FD_OUTPUT     (1U << 1)
427
428 #ifdef __KERNEL__
429 /*
430  * Kernel-internal data types and definitions:
431  */
432
433 #ifdef CONFIG_PERF_COUNTERS
434 # include <asm/perf_counter.h>
435 #endif
436
437 #include <linux/list.h>
438 #include <linux/mutex.h>
439 #include <linux/rculist.h>
440 #include <linux/rcupdate.h>
441 #include <linux/spinlock.h>
442 #include <linux/hrtimer.h>
443 #include <linux/fs.h>
444 #include <linux/pid_namespace.h>
445 #include <asm/atomic.h>
446
447 #define PERF_MAX_STACK_DEPTH            255
448
449 struct perf_callchain_entry {
450         __u64                           nr;
451         __u64                           ip[PERF_MAX_STACK_DEPTH];
452 };
453
454 struct perf_raw_record {
455         u32                             size;
456         void                            *data;
457 };
458
459 struct task_struct;
460
461 /**
462  * struct hw_perf_counter - performance counter hardware details:
463  */
464 struct hw_perf_counter {
465 #ifdef CONFIG_PERF_COUNTERS
466         union {
467                 struct { /* hardware */
468                         u64             config;
469                         unsigned long   config_base;
470                         unsigned long   counter_base;
471                         int             idx;
472                 };
473                 union { /* software */
474                         atomic64_t      count;
475                         struct hrtimer  hrtimer;
476                 };
477         };
478         atomic64_t                      prev_count;
479         u64                             sample_period;
480         u64                             last_period;
481         atomic64_t                      period_left;
482         u64                             interrupts;
483
484         u64                             freq_count;
485         u64                             freq_interrupts;
486         u64                             freq_stamp;
487 #endif
488 };
489
490 struct perf_counter;
491
492 /**
493  * struct pmu - generic performance monitoring unit
494  */
495 struct pmu {
496         int (*enable)                   (struct perf_counter *counter);
497         void (*disable)                 (struct perf_counter *counter);
498         void (*read)                    (struct perf_counter *counter);
499         void (*unthrottle)              (struct perf_counter *counter);
500 };
501
502 /**
503  * enum perf_counter_active_state - the states of a counter
504  */
505 enum perf_counter_active_state {
506         PERF_COUNTER_STATE_ERROR        = -2,
507         PERF_COUNTER_STATE_OFF          = -1,
508         PERF_COUNTER_STATE_INACTIVE     =  0,
509         PERF_COUNTER_STATE_ACTIVE       =  1,
510 };
511
512 struct file;
513
514 struct perf_mmap_data {
515         struct rcu_head                 rcu_head;
516         int                             nr_pages;       /* nr of data pages  */
517         int                             writable;       /* are we writable   */
518         int                             nr_locked;      /* nr pages mlocked  */
519
520         atomic_t                        poll;           /* POLL_ for wakeups */
521         atomic_t                        events;         /* event limit       */
522
523         atomic_long_t                   head;           /* write position    */
524         atomic_long_t                   done_head;      /* completed head    */
525
526         atomic_t                        lock;           /* concurrent writes */
527         atomic_t                        wakeup;         /* needs a wakeup    */
528         atomic_t                        lost;           /* nr records lost   */
529
530         long                            watermark;      /* wakeup watermark  */
531
532         struct perf_counter_mmap_page   *user_page;
533         void                            *data_pages[0];
534 };
535
536 struct perf_pending_entry {
537         struct perf_pending_entry *next;
538         void (*func)(struct perf_pending_entry *);
539 };
540
541 /**
542  * struct perf_counter - performance counter kernel representation:
543  */
544 struct perf_counter {
545 #ifdef CONFIG_PERF_COUNTERS
546         struct list_head                group_entry;
547         struct list_head                event_entry;
548         struct list_head                sibling_list;
549         int                             nr_siblings;
550         struct perf_counter             *group_leader;
551         struct perf_counter             *output;
552         const struct pmu                *pmu;
553
554         enum perf_counter_active_state  state;
555         atomic64_t                      count;
556
557         /*
558          * These are the total time in nanoseconds that the counter
559          * has been enabled (i.e. eligible to run, and the task has
560          * been scheduled in, if this is a per-task counter)
561          * and running (scheduled onto the CPU), respectively.
562          *
563          * They are computed from tstamp_enabled, tstamp_running and
564          * tstamp_stopped when the counter is in INACTIVE or ACTIVE state.
565          */
566         u64                             total_time_enabled;
567         u64                             total_time_running;
568
569         /*
570          * These are timestamps used for computing total_time_enabled
571          * and total_time_running when the counter is in INACTIVE or
572          * ACTIVE state, measured in nanoseconds from an arbitrary point
573          * in time.
574          * tstamp_enabled: the notional time when the counter was enabled
575          * tstamp_running: the notional time when the counter was scheduled on
576          * tstamp_stopped: in INACTIVE state, the notional time when the
577          *      counter was scheduled off.
578          */
579         u64                             tstamp_enabled;
580         u64                             tstamp_running;
581         u64                             tstamp_stopped;
582
583         struct perf_counter_attr        attr;
584         struct hw_perf_counter          hw;
585
586         struct perf_counter_context     *ctx;
587         struct file                     *filp;
588
589         /*
590          * These accumulate total time (in nanoseconds) that children
591          * counters have been enabled and running, respectively.
592          */
593         atomic64_t                      child_total_time_enabled;
594         atomic64_t                      child_total_time_running;
595
596         /*
597          * Protect attach/detach and child_list:
598          */
599         struct mutex                    child_mutex;
600         struct list_head                child_list;
601         struct perf_counter             *parent;
602
603         int                             oncpu;
604         int                             cpu;
605
606         struct list_head                owner_entry;
607         struct task_struct              *owner;
608
609         /* mmap bits */
610         struct mutex                    mmap_mutex;
611         atomic_t                        mmap_count;
612         struct perf_mmap_data           *data;
613
614         /* poll related */
615         wait_queue_head_t               waitq;
616         struct fasync_struct            *fasync;
617
618         /* delayed work for NMIs and such */
619         int                             pending_wakeup;
620         int                             pending_kill;
621         int                             pending_disable;
622         struct perf_pending_entry       pending;
623
624         atomic_t                        event_limit;
625
626         void (*destroy)(struct perf_counter *);
627         struct rcu_head                 rcu_head;
628
629         struct pid_namespace            *ns;
630         u64                             id;
631 #endif
632 };
633
634 /**
635  * struct perf_counter_context - counter context structure
636  *
637  * Used as a container for task counters and CPU counters as well:
638  */
639 struct perf_counter_context {
640         /*
641          * Protect the states of the counters in the list,
642          * nr_active, and the list:
643          */
644         spinlock_t                      lock;
645         /*
646          * Protect the list of counters.  Locking either mutex or lock
647          * is sufficient to ensure the list doesn't change; to change
648          * the list you need to lock both the mutex and the spinlock.
649          */
650         struct mutex                    mutex;
651
652         struct list_head                group_list;
653         struct list_head                event_list;
654         int                             nr_counters;
655         int                             nr_active;
656         int                             is_active;
657         int                             nr_stat;
658         atomic_t                        refcount;
659         struct task_struct              *task;
660
661         /*
662          * Context clock, runs when context enabled.
663          */
664         u64                             time;
665         u64                             timestamp;
666
667         /*
668          * These fields let us detect when two contexts have both
669          * been cloned (inherited) from a common ancestor.
670          */
671         struct perf_counter_context     *parent_ctx;
672         u64                             parent_gen;
673         u64                             generation;
674         int                             pin_count;
675         struct rcu_head                 rcu_head;
676 };
677
678 /**
679  * struct perf_counter_cpu_context - per cpu counter context structure
680  */
681 struct perf_cpu_context {
682         struct perf_counter_context     ctx;
683         struct perf_counter_context     *task_ctx;
684         int                             active_oncpu;
685         int                             max_pertask;
686         int                             exclusive;
687
688         /*
689          * Recursion avoidance:
690          *
691          * task, softirq, irq, nmi context
692          */
693         int                             recursion[4];
694 };
695
696 struct perf_output_handle {
697         struct perf_counter     *counter;
698         struct perf_mmap_data   *data;
699         unsigned long           head;
700         unsigned long           offset;
701         int                     nmi;
702         int                     sample;
703         int                     locked;
704         unsigned long           flags;
705 };
706
707 #ifdef CONFIG_PERF_COUNTERS
708
709 /*
710  * Set by architecture code:
711  */
712 extern int perf_max_counters;
713
714 extern const struct pmu *hw_perf_counter_init(struct perf_counter *counter);
715
716 extern void perf_counter_task_sched_in(struct task_struct *task, int cpu);
717 extern void perf_counter_task_sched_out(struct task_struct *task,
718                                         struct task_struct *next, int cpu);
719 extern void perf_counter_task_tick(struct task_struct *task, int cpu);
720 extern int perf_counter_init_task(struct task_struct *child);
721 extern void perf_counter_exit_task(struct task_struct *child);
722 extern void perf_counter_free_task(struct task_struct *task);
723 extern void set_perf_counter_pending(void);
724 extern void perf_counter_do_pending(void);
725 extern void perf_counter_print_debug(void);
726 extern void __perf_disable(void);
727 extern bool __perf_enable(void);
728 extern void perf_disable(void);
729 extern void perf_enable(void);
730 extern int perf_counter_task_disable(void);
731 extern int perf_counter_task_enable(void);
732 extern int hw_perf_group_sched_in(struct perf_counter *group_leader,
733                struct perf_cpu_context *cpuctx,
734                struct perf_counter_context *ctx, int cpu);
735 extern void perf_counter_update_userpage(struct perf_counter *counter);
736
737 struct perf_sample_data {
738         u64                             type;
739
740         u64                             ip;
741         struct {
742                 u32     pid;
743                 u32     tid;
744         }                               tid_entry;
745         u64                             time;
746         u64                             addr;
747         u64                             id;
748         u64                             stream_id;
749         struct {
750                 u32     cpu;
751                 u32     reserved;
752         }                               cpu_entry;
753         u64                             period;
754         struct perf_callchain_entry     *callchain;
755         struct perf_raw_record          *raw;
756 };
757
758 extern void perf_output_sample(struct perf_output_handle *handle,
759                                struct perf_event_header *header,
760                                struct perf_sample_data *data,
761                                struct perf_counter *counter);
762 extern void perf_prepare_sample(struct perf_event_header *header,
763                                 struct perf_sample_data *data,
764                                 struct perf_counter *counter,
765                                 struct pt_regs *regs);
766
767 extern int perf_counter_overflow(struct perf_counter *counter, int nmi,
768                                  struct perf_sample_data *data,
769                                  struct pt_regs *regs);
770
771 /*
772  * Return 1 for a software counter, 0 for a hardware counter
773  */
774 static inline int is_software_counter(struct perf_counter *counter)
775 {
776         return (counter->attr.type != PERF_TYPE_RAW) &&
777                 (counter->attr.type != PERF_TYPE_HARDWARE) &&
778                 (counter->attr.type != PERF_TYPE_HW_CACHE);
779 }
780
781 extern atomic_t perf_swcounter_enabled[PERF_COUNT_SW_MAX];
782
783 extern void __perf_swcounter_event(u32, u64, int, struct pt_regs *, u64);
784
785 static inline void
786 perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
787 {
788         if (atomic_read(&perf_swcounter_enabled[event]))
789                 __perf_swcounter_event(event, nr, nmi, regs, addr);
790 }
791
792 extern void __perf_counter_mmap(struct vm_area_struct *vma);
793
794 static inline void perf_counter_mmap(struct vm_area_struct *vma)
795 {
796         if (vma->vm_flags & VM_EXEC)
797                 __perf_counter_mmap(vma);
798 }
799
800 extern void perf_counter_comm(struct task_struct *tsk);
801 extern void perf_counter_fork(struct task_struct *tsk);
802
803 extern struct perf_callchain_entry *perf_callchain(struct pt_regs *regs);
804
805 extern int sysctl_perf_counter_paranoid;
806 extern int sysctl_perf_counter_mlock;
807 extern int sysctl_perf_counter_sample_rate;
808
809 extern void perf_counter_init(void);
810 extern void perf_tpcounter_event(int event_id, u64 addr, u64 count,
811                                  void *record, int entry_size);
812
813 #ifndef perf_misc_flags
814 #define perf_misc_flags(regs)   (user_mode(regs) ? PERF_EVENT_MISC_USER : \
815                                  PERF_EVENT_MISC_KERNEL)
816 #define perf_instruction_pointer(regs)  instruction_pointer(regs)
817 #endif
818
819 extern int perf_output_begin(struct perf_output_handle *handle,
820                              struct perf_counter *counter, unsigned int size,
821                              int nmi, int sample);
822 extern void perf_output_end(struct perf_output_handle *handle);
823 extern void perf_output_copy(struct perf_output_handle *handle,
824                              const void *buf, unsigned int len);
825 #else
826 static inline void
827 perf_counter_task_sched_in(struct task_struct *task, int cpu)           { }
828 static inline void
829 perf_counter_task_sched_out(struct task_struct *task,
830                             struct task_struct *next, int cpu)          { }
831 static inline void
832 perf_counter_task_tick(struct task_struct *task, int cpu)               { }
833 static inline int perf_counter_init_task(struct task_struct *child)     { return 0; }
834 static inline void perf_counter_exit_task(struct task_struct *child)    { }
835 static inline void perf_counter_free_task(struct task_struct *task)     { }
836 static inline void perf_counter_do_pending(void)                        { }
837 static inline void perf_counter_print_debug(void)                       { }
838 static inline void perf_disable(void)                                   { }
839 static inline void perf_enable(void)                                    { }
840 static inline int perf_counter_task_disable(void)       { return -EINVAL; }
841 static inline int perf_counter_task_enable(void)        { return -EINVAL; }
842
843 static inline void
844 perf_swcounter_event(u32 event, u64 nr, int nmi,
845                      struct pt_regs *regs, u64 addr)                    { }
846
847 static inline void perf_counter_mmap(struct vm_area_struct *vma)        { }
848 static inline void perf_counter_comm(struct task_struct *tsk)           { }
849 static inline void perf_counter_fork(struct task_struct *tsk)           { }
850 static inline void perf_counter_init(void)                              { }
851
852 #endif
853
854 #define perf_output_put(handle, x) \
855         perf_output_copy((handle), &(x), sizeof(x))
856
857 #endif /* __KERNEL__ */
858 #endif /* _LINUX_PERF_COUNTER_H */