netlink: fix NETLINK_RECV_NO_ENOBUFS in netlink_set_err()
[linux-2.6.git] / include / linux / percpu.h
1 #ifndef __LINUX_PERCPU_H
2 #define __LINUX_PERCPU_H
3
4 #include <linux/preempt.h>
5 #include <linux/slab.h> /* For kmalloc() */
6 #include <linux/smp.h>
7 #include <linux/cpumask.h>
8 #include <linux/pfn.h>
9
10 #include <asm/percpu.h>
11
12 /* enough to cover all DEFINE_PER_CPUs in modules */
13 #ifdef CONFIG_MODULES
14 #define PERCPU_MODULE_RESERVE           (8 << 10)
15 #else
16 #define PERCPU_MODULE_RESERVE           0
17 #endif
18
19 #ifndef PERCPU_ENOUGH_ROOM
20 #define PERCPU_ENOUGH_ROOM                                              \
21         (ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES) +      \
22          PERCPU_MODULE_RESERVE)
23 #endif
24
25 /*
26  * Must be an lvalue. Since @var must be a simple identifier,
27  * we force a syntax error here if it isn't.
28  */
29 #define get_cpu_var(var) (*({                           \
30         preempt_disable();                              \
31         &__get_cpu_var(var); }))
32
33 /*
34  * The weird & is necessary because sparse considers (void)(var) to be
35  * a direct dereference of percpu variable (var).
36  */
37 #define put_cpu_var(var) do {                           \
38         (void)&(var);                                   \
39         preempt_enable();                               \
40 } while (0)
41
42 #ifdef CONFIG_SMP
43
44 /* minimum unit size, also is the maximum supported allocation size */
45 #define PCPU_MIN_UNIT_SIZE              PFN_ALIGN(64 << 10)
46
47 /*
48  * PERCPU_DYNAMIC_RESERVE indicates the amount of free area to piggy
49  * back on the first chunk for dynamic percpu allocation if arch is
50  * manually allocating and mapping it for faster access (as a part of
51  * large page mapping for example).
52  *
53  * The following values give between one and two pages of free space
54  * after typical minimal boot (2-way SMP, single disk and NIC) with
55  * both defconfig and a distro config on x86_64 and 32.  More
56  * intelligent way to determine this would be nice.
57  */
58 #if BITS_PER_LONG > 32
59 #define PERCPU_DYNAMIC_RESERVE          (20 << 10)
60 #else
61 #define PERCPU_DYNAMIC_RESERVE          (12 << 10)
62 #endif
63
64 extern void *pcpu_base_addr;
65 extern const unsigned long *pcpu_unit_offsets;
66
67 struct pcpu_group_info {
68         int                     nr_units;       /* aligned # of units */
69         unsigned long           base_offset;    /* base address offset */
70         unsigned int            *cpu_map;       /* unit->cpu map, empty
71                                                  * entries contain NR_CPUS */
72 };
73
74 struct pcpu_alloc_info {
75         size_t                  static_size;
76         size_t                  reserved_size;
77         size_t                  dyn_size;
78         size_t                  unit_size;
79         size_t                  atom_size;
80         size_t                  alloc_size;
81         size_t                  __ai_size;      /* internal, don't use */
82         int                     nr_groups;      /* 0 if grouping unnecessary */
83         struct pcpu_group_info  groups[];
84 };
85
86 enum pcpu_fc {
87         PCPU_FC_AUTO,
88         PCPU_FC_EMBED,
89         PCPU_FC_PAGE,
90
91         PCPU_FC_NR,
92 };
93 extern const char *pcpu_fc_names[PCPU_FC_NR];
94
95 extern enum pcpu_fc pcpu_chosen_fc;
96
97 typedef void * (*pcpu_fc_alloc_fn_t)(unsigned int cpu, size_t size,
98                                      size_t align);
99 typedef void (*pcpu_fc_free_fn_t)(void *ptr, size_t size);
100 typedef void (*pcpu_fc_populate_pte_fn_t)(unsigned long addr);
101 typedef int (pcpu_fc_cpu_distance_fn_t)(unsigned int from, unsigned int to);
102
103 extern struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
104                                                              int nr_units);
105 extern void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai);
106
107 extern struct pcpu_alloc_info * __init pcpu_build_alloc_info(
108                                 size_t reserved_size, ssize_t dyn_size,
109                                 size_t atom_size,
110                                 pcpu_fc_cpu_distance_fn_t cpu_distance_fn);
111
112 extern int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
113                                          void *base_addr);
114
115 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
116 extern int __init pcpu_embed_first_chunk(size_t reserved_size, ssize_t dyn_size,
117                                 size_t atom_size,
118                                 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
119                                 pcpu_fc_alloc_fn_t alloc_fn,
120                                 pcpu_fc_free_fn_t free_fn);
121 #endif
122
123 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
124 extern int __init pcpu_page_first_chunk(size_t reserved_size,
125                                 pcpu_fc_alloc_fn_t alloc_fn,
126                                 pcpu_fc_free_fn_t free_fn,
127                                 pcpu_fc_populate_pte_fn_t populate_pte_fn);
128 #endif
129
130 /*
131  * Use this to get to a cpu's version of the per-cpu object
132  * dynamically allocated. Non-atomic access to the current CPU's
133  * version should probably be combined with get_cpu()/put_cpu().
134  */
135 #define per_cpu_ptr(ptr, cpu)   SHIFT_PERCPU_PTR((ptr), per_cpu_offset((cpu)))
136
137 extern void __percpu *__alloc_reserved_percpu(size_t size, size_t align);
138 extern void __percpu *__alloc_percpu(size_t size, size_t align);
139 extern void free_percpu(void __percpu *__pdata);
140 extern phys_addr_t per_cpu_ptr_to_phys(void *addr);
141
142 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
143 extern void __init setup_per_cpu_areas(void);
144 #endif
145
146 #else /* CONFIG_SMP */
147
148 #define per_cpu_ptr(ptr, cpu) ({ (void)(cpu); (ptr); })
149
150 static inline void __percpu *__alloc_percpu(size_t size, size_t align)
151 {
152         /*
153          * Can't easily make larger alignment work with kmalloc.  WARN
154          * on it.  Larger alignment should only be used for module
155          * percpu sections on SMP for which this path isn't used.
156          */
157         WARN_ON_ONCE(align > SMP_CACHE_BYTES);
158         return kzalloc(size, GFP_KERNEL);
159 }
160
161 static inline void free_percpu(void __percpu *p)
162 {
163         kfree(p);
164 }
165
166 static inline phys_addr_t per_cpu_ptr_to_phys(void *addr)
167 {
168         return __pa(addr);
169 }
170
171 static inline void __init setup_per_cpu_areas(void) { }
172
173 static inline void *pcpu_lpage_remapped(void *kaddr)
174 {
175         return NULL;
176 }
177
178 #endif /* CONFIG_SMP */
179
180 #define alloc_percpu(type)      \
181         (typeof(type) __percpu *)__alloc_percpu(sizeof(type), __alignof__(type))
182
183 /*
184  * Optional methods for optimized non-lvalue per-cpu variable access.
185  *
186  * @var can be a percpu variable or a field of it and its size should
187  * equal char, int or long.  percpu_read() evaluates to a lvalue and
188  * all others to void.
189  *
190  * These operations are guaranteed to be atomic w.r.t. preemption.
191  * The generic versions use plain get/put_cpu_var().  Archs are
192  * encouraged to implement single-instruction alternatives which don't
193  * require preemption protection.
194  */
195 #ifndef percpu_read
196 # define percpu_read(var)                                               \
197   ({                                                                    \
198         typeof(var) *pr_ptr__ = &(var);                                 \
199         typeof(var) pr_ret__;                                           \
200         pr_ret__ = get_cpu_var(*pr_ptr__);                              \
201         put_cpu_var(*pr_ptr__);                                         \
202         pr_ret__;                                                       \
203   })
204 #endif
205
206 #define __percpu_generic_to_op(var, val, op)                            \
207 do {                                                                    \
208         typeof(var) *pgto_ptr__ = &(var);                               \
209         get_cpu_var(*pgto_ptr__) op val;                                \
210         put_cpu_var(*pgto_ptr__);                                       \
211 } while (0)
212
213 #ifndef percpu_write
214 # define percpu_write(var, val)         __percpu_generic_to_op(var, (val), =)
215 #endif
216
217 #ifndef percpu_add
218 # define percpu_add(var, val)           __percpu_generic_to_op(var, (val), +=)
219 #endif
220
221 #ifndef percpu_sub
222 # define percpu_sub(var, val)           __percpu_generic_to_op(var, (val), -=)
223 #endif
224
225 #ifndef percpu_and
226 # define percpu_and(var, val)           __percpu_generic_to_op(var, (val), &=)
227 #endif
228
229 #ifndef percpu_or
230 # define percpu_or(var, val)            __percpu_generic_to_op(var, (val), |=)
231 #endif
232
233 #ifndef percpu_xor
234 # define percpu_xor(var, val)           __percpu_generic_to_op(var, (val), ^=)
235 #endif
236
237 /*
238  * Branching function to split up a function into a set of functions that
239  * are called for different scalar sizes of the objects handled.
240  */
241
242 extern void __bad_size_call_parameter(void);
243
244 #define __pcpu_size_call_return(stem, variable)                         \
245 ({      typeof(variable) pscr_ret__;                                    \
246         __verify_pcpu_ptr(&(variable));                                 \
247         switch(sizeof(variable)) {                                      \
248         case 1: pscr_ret__ = stem##1(variable);break;                   \
249         case 2: pscr_ret__ = stem##2(variable);break;                   \
250         case 4: pscr_ret__ = stem##4(variable);break;                   \
251         case 8: pscr_ret__ = stem##8(variable);break;                   \
252         default:                                                        \
253                 __bad_size_call_parameter();break;                      \
254         }                                                               \
255         pscr_ret__;                                                     \
256 })
257
258 #define __pcpu_size_call(stem, variable, ...)                           \
259 do {                                                                    \
260         __verify_pcpu_ptr(&(variable));                                 \
261         switch(sizeof(variable)) {                                      \
262                 case 1: stem##1(variable, __VA_ARGS__);break;           \
263                 case 2: stem##2(variable, __VA_ARGS__);break;           \
264                 case 4: stem##4(variable, __VA_ARGS__);break;           \
265                 case 8: stem##8(variable, __VA_ARGS__);break;           \
266                 default:                                                \
267                         __bad_size_call_parameter();break;              \
268         }                                                               \
269 } while (0)
270
271 /*
272  * Optimized manipulation for memory allocated through the per cpu
273  * allocator or for addresses of per cpu variables.
274  *
275  * These operation guarantee exclusivity of access for other operations
276  * on the *same* processor. The assumption is that per cpu data is only
277  * accessed by a single processor instance (the current one).
278  *
279  * The first group is used for accesses that must be done in a
280  * preemption safe way since we know that the context is not preempt
281  * safe. Interrupts may occur. If the interrupt modifies the variable
282  * too then RMW actions will not be reliable.
283  *
284  * The arch code can provide optimized functions in two ways:
285  *
286  * 1. Override the function completely. F.e. define this_cpu_add().
287  *    The arch must then ensure that the various scalar format passed
288  *    are handled correctly.
289  *
290  * 2. Provide functions for certain scalar sizes. F.e. provide
291  *    this_cpu_add_2() to provide per cpu atomic operations for 2 byte
292  *    sized RMW actions. If arch code does not provide operations for
293  *    a scalar size then the fallback in the generic code will be
294  *    used.
295  */
296
297 #define _this_cpu_generic_read(pcp)                                     \
298 ({      typeof(pcp) ret__;                                              \
299         preempt_disable();                                              \
300         ret__ = *this_cpu_ptr(&(pcp));                                  \
301         preempt_enable();                                               \
302         ret__;                                                          \
303 })
304
305 #ifndef this_cpu_read
306 # ifndef this_cpu_read_1
307 #  define this_cpu_read_1(pcp)  _this_cpu_generic_read(pcp)
308 # endif
309 # ifndef this_cpu_read_2
310 #  define this_cpu_read_2(pcp)  _this_cpu_generic_read(pcp)
311 # endif
312 # ifndef this_cpu_read_4
313 #  define this_cpu_read_4(pcp)  _this_cpu_generic_read(pcp)
314 # endif
315 # ifndef this_cpu_read_8
316 #  define this_cpu_read_8(pcp)  _this_cpu_generic_read(pcp)
317 # endif
318 # define this_cpu_read(pcp)     __pcpu_size_call_return(this_cpu_read_, (pcp))
319 #endif
320
321 #define _this_cpu_generic_to_op(pcp, val, op)                           \
322 do {                                                                    \
323         preempt_disable();                                              \
324         *__this_cpu_ptr(&(pcp)) op val;                                 \
325         preempt_enable();                                               \
326 } while (0)
327
328 #ifndef this_cpu_write
329 # ifndef this_cpu_write_1
330 #  define this_cpu_write_1(pcp, val)    _this_cpu_generic_to_op((pcp), (val), =)
331 # endif
332 # ifndef this_cpu_write_2
333 #  define this_cpu_write_2(pcp, val)    _this_cpu_generic_to_op((pcp), (val), =)
334 # endif
335 # ifndef this_cpu_write_4
336 #  define this_cpu_write_4(pcp, val)    _this_cpu_generic_to_op((pcp), (val), =)
337 # endif
338 # ifndef this_cpu_write_8
339 #  define this_cpu_write_8(pcp, val)    _this_cpu_generic_to_op((pcp), (val), =)
340 # endif
341 # define this_cpu_write(pcp, val)       __pcpu_size_call(this_cpu_write_, (pcp), (val))
342 #endif
343
344 #ifndef this_cpu_add
345 # ifndef this_cpu_add_1
346 #  define this_cpu_add_1(pcp, val)      _this_cpu_generic_to_op((pcp), (val), +=)
347 # endif
348 # ifndef this_cpu_add_2
349 #  define this_cpu_add_2(pcp, val)      _this_cpu_generic_to_op((pcp), (val), +=)
350 # endif
351 # ifndef this_cpu_add_4
352 #  define this_cpu_add_4(pcp, val)      _this_cpu_generic_to_op((pcp), (val), +=)
353 # endif
354 # ifndef this_cpu_add_8
355 #  define this_cpu_add_8(pcp, val)      _this_cpu_generic_to_op((pcp), (val), +=)
356 # endif
357 # define this_cpu_add(pcp, val)         __pcpu_size_call(this_cpu_add_, (pcp), (val))
358 #endif
359
360 #ifndef this_cpu_sub
361 # define this_cpu_sub(pcp, val)         this_cpu_add((pcp), -(val))
362 #endif
363
364 #ifndef this_cpu_inc
365 # define this_cpu_inc(pcp)              this_cpu_add((pcp), 1)
366 #endif
367
368 #ifndef this_cpu_dec
369 # define this_cpu_dec(pcp)              this_cpu_sub((pcp), 1)
370 #endif
371
372 #ifndef this_cpu_and
373 # ifndef this_cpu_and_1
374 #  define this_cpu_and_1(pcp, val)      _this_cpu_generic_to_op((pcp), (val), &=)
375 # endif
376 # ifndef this_cpu_and_2
377 #  define this_cpu_and_2(pcp, val)      _this_cpu_generic_to_op((pcp), (val), &=)
378 # endif
379 # ifndef this_cpu_and_4
380 #  define this_cpu_and_4(pcp, val)      _this_cpu_generic_to_op((pcp), (val), &=)
381 # endif
382 # ifndef this_cpu_and_8
383 #  define this_cpu_and_8(pcp, val)      _this_cpu_generic_to_op((pcp), (val), &=)
384 # endif
385 # define this_cpu_and(pcp, val)         __pcpu_size_call(this_cpu_and_, (pcp), (val))
386 #endif
387
388 #ifndef this_cpu_or
389 # ifndef this_cpu_or_1
390 #  define this_cpu_or_1(pcp, val)       _this_cpu_generic_to_op((pcp), (val), |=)
391 # endif
392 # ifndef this_cpu_or_2
393 #  define this_cpu_or_2(pcp, val)       _this_cpu_generic_to_op((pcp), (val), |=)
394 # endif
395 # ifndef this_cpu_or_4
396 #  define this_cpu_or_4(pcp, val)       _this_cpu_generic_to_op((pcp), (val), |=)
397 # endif
398 # ifndef this_cpu_or_8
399 #  define this_cpu_or_8(pcp, val)       _this_cpu_generic_to_op((pcp), (val), |=)
400 # endif
401 # define this_cpu_or(pcp, val)          __pcpu_size_call(this_cpu_or_, (pcp), (val))
402 #endif
403
404 #ifndef this_cpu_xor
405 # ifndef this_cpu_xor_1
406 #  define this_cpu_xor_1(pcp, val)      _this_cpu_generic_to_op((pcp), (val), ^=)
407 # endif
408 # ifndef this_cpu_xor_2
409 #  define this_cpu_xor_2(pcp, val)      _this_cpu_generic_to_op((pcp), (val), ^=)
410 # endif
411 # ifndef this_cpu_xor_4
412 #  define this_cpu_xor_4(pcp, val)      _this_cpu_generic_to_op((pcp), (val), ^=)
413 # endif
414 # ifndef this_cpu_xor_8
415 #  define this_cpu_xor_8(pcp, val)      _this_cpu_generic_to_op((pcp), (val), ^=)
416 # endif
417 # define this_cpu_xor(pcp, val)         __pcpu_size_call(this_cpu_or_, (pcp), (val))
418 #endif
419
420 /*
421  * Generic percpu operations that do not require preemption handling.
422  * Either we do not care about races or the caller has the
423  * responsibility of handling preemptions issues. Arch code can still
424  * override these instructions since the arch per cpu code may be more
425  * efficient and may actually get race freeness for free (that is the
426  * case for x86 for example).
427  *
428  * If there is no other protection through preempt disable and/or
429  * disabling interupts then one of these RMW operations can show unexpected
430  * behavior because the execution thread was rescheduled on another processor
431  * or an interrupt occurred and the same percpu variable was modified from
432  * the interrupt context.
433  */
434 #ifndef __this_cpu_read
435 # ifndef __this_cpu_read_1
436 #  define __this_cpu_read_1(pcp)        (*__this_cpu_ptr(&(pcp)))
437 # endif
438 # ifndef __this_cpu_read_2
439 #  define __this_cpu_read_2(pcp)        (*__this_cpu_ptr(&(pcp)))
440 # endif
441 # ifndef __this_cpu_read_4
442 #  define __this_cpu_read_4(pcp)        (*__this_cpu_ptr(&(pcp)))
443 # endif
444 # ifndef __this_cpu_read_8
445 #  define __this_cpu_read_8(pcp)        (*__this_cpu_ptr(&(pcp)))
446 # endif
447 # define __this_cpu_read(pcp)   __pcpu_size_call_return(__this_cpu_read_, (pcp))
448 #endif
449
450 #define __this_cpu_generic_to_op(pcp, val, op)                          \
451 do {                                                                    \
452         *__this_cpu_ptr(&(pcp)) op val;                                 \
453 } while (0)
454
455 #ifndef __this_cpu_write
456 # ifndef __this_cpu_write_1
457 #  define __this_cpu_write_1(pcp, val)  __this_cpu_generic_to_op((pcp), (val), =)
458 # endif
459 # ifndef __this_cpu_write_2
460 #  define __this_cpu_write_2(pcp, val)  __this_cpu_generic_to_op((pcp), (val), =)
461 # endif
462 # ifndef __this_cpu_write_4
463 #  define __this_cpu_write_4(pcp, val)  __this_cpu_generic_to_op((pcp), (val), =)
464 # endif
465 # ifndef __this_cpu_write_8
466 #  define __this_cpu_write_8(pcp, val)  __this_cpu_generic_to_op((pcp), (val), =)
467 # endif
468 # define __this_cpu_write(pcp, val)     __pcpu_size_call(__this_cpu_write_, (pcp), (val))
469 #endif
470
471 #ifndef __this_cpu_add
472 # ifndef __this_cpu_add_1
473 #  define __this_cpu_add_1(pcp, val)    __this_cpu_generic_to_op((pcp), (val), +=)
474 # endif
475 # ifndef __this_cpu_add_2
476 #  define __this_cpu_add_2(pcp, val)    __this_cpu_generic_to_op((pcp), (val), +=)
477 # endif
478 # ifndef __this_cpu_add_4
479 #  define __this_cpu_add_4(pcp, val)    __this_cpu_generic_to_op((pcp), (val), +=)
480 # endif
481 # ifndef __this_cpu_add_8
482 #  define __this_cpu_add_8(pcp, val)    __this_cpu_generic_to_op((pcp), (val), +=)
483 # endif
484 # define __this_cpu_add(pcp, val)       __pcpu_size_call(__this_cpu_add_, (pcp), (val))
485 #endif
486
487 #ifndef __this_cpu_sub
488 # define __this_cpu_sub(pcp, val)       __this_cpu_add((pcp), -(val))
489 #endif
490
491 #ifndef __this_cpu_inc
492 # define __this_cpu_inc(pcp)            __this_cpu_add((pcp), 1)
493 #endif
494
495 #ifndef __this_cpu_dec
496 # define __this_cpu_dec(pcp)            __this_cpu_sub((pcp), 1)
497 #endif
498
499 #ifndef __this_cpu_and
500 # ifndef __this_cpu_and_1
501 #  define __this_cpu_and_1(pcp, val)    __this_cpu_generic_to_op((pcp), (val), &=)
502 # endif
503 # ifndef __this_cpu_and_2
504 #  define __this_cpu_and_2(pcp, val)    __this_cpu_generic_to_op((pcp), (val), &=)
505 # endif
506 # ifndef __this_cpu_and_4
507 #  define __this_cpu_and_4(pcp, val)    __this_cpu_generic_to_op((pcp), (val), &=)
508 # endif
509 # ifndef __this_cpu_and_8
510 #  define __this_cpu_and_8(pcp, val)    __this_cpu_generic_to_op((pcp), (val), &=)
511 # endif
512 # define __this_cpu_and(pcp, val)       __pcpu_size_call(__this_cpu_and_, (pcp), (val))
513 #endif
514
515 #ifndef __this_cpu_or
516 # ifndef __this_cpu_or_1
517 #  define __this_cpu_or_1(pcp, val)     __this_cpu_generic_to_op((pcp), (val), |=)
518 # endif
519 # ifndef __this_cpu_or_2
520 #  define __this_cpu_or_2(pcp, val)     __this_cpu_generic_to_op((pcp), (val), |=)
521 # endif
522 # ifndef __this_cpu_or_4
523 #  define __this_cpu_or_4(pcp, val)     __this_cpu_generic_to_op((pcp), (val), |=)
524 # endif
525 # ifndef __this_cpu_or_8
526 #  define __this_cpu_or_8(pcp, val)     __this_cpu_generic_to_op((pcp), (val), |=)
527 # endif
528 # define __this_cpu_or(pcp, val)        __pcpu_size_call(__this_cpu_or_, (pcp), (val))
529 #endif
530
531 #ifndef __this_cpu_xor
532 # ifndef __this_cpu_xor_1
533 #  define __this_cpu_xor_1(pcp, val)    __this_cpu_generic_to_op((pcp), (val), ^=)
534 # endif
535 # ifndef __this_cpu_xor_2
536 #  define __this_cpu_xor_2(pcp, val)    __this_cpu_generic_to_op((pcp), (val), ^=)
537 # endif
538 # ifndef __this_cpu_xor_4
539 #  define __this_cpu_xor_4(pcp, val)    __this_cpu_generic_to_op((pcp), (val), ^=)
540 # endif
541 # ifndef __this_cpu_xor_8
542 #  define __this_cpu_xor_8(pcp, val)    __this_cpu_generic_to_op((pcp), (val), ^=)
543 # endif
544 # define __this_cpu_xor(pcp, val)       __pcpu_size_call(__this_cpu_xor_, (pcp), (val))
545 #endif
546
547 /*
548  * IRQ safe versions of the per cpu RMW operations. Note that these operations
549  * are *not* safe against modification of the same variable from another
550  * processors (which one gets when using regular atomic operations)
551  . They are guaranteed to be atomic vs. local interrupts and
552  * preemption only.
553  */
554 #define irqsafe_cpu_generic_to_op(pcp, val, op)                         \
555 do {                                                                    \
556         unsigned long flags;                                            \
557         local_irq_save(flags);                                          \
558         *__this_cpu_ptr(&(pcp)) op val;                                 \
559         local_irq_restore(flags);                                       \
560 } while (0)
561
562 #ifndef irqsafe_cpu_add
563 # ifndef irqsafe_cpu_add_1
564 #  define irqsafe_cpu_add_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=)
565 # endif
566 # ifndef irqsafe_cpu_add_2
567 #  define irqsafe_cpu_add_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=)
568 # endif
569 # ifndef irqsafe_cpu_add_4
570 #  define irqsafe_cpu_add_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=)
571 # endif
572 # ifndef irqsafe_cpu_add_8
573 #  define irqsafe_cpu_add_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=)
574 # endif
575 # define irqsafe_cpu_add(pcp, val) __pcpu_size_call(irqsafe_cpu_add_, (pcp), (val))
576 #endif
577
578 #ifndef irqsafe_cpu_sub
579 # define irqsafe_cpu_sub(pcp, val)      irqsafe_cpu_add((pcp), -(val))
580 #endif
581
582 #ifndef irqsafe_cpu_inc
583 # define irqsafe_cpu_inc(pcp)   irqsafe_cpu_add((pcp), 1)
584 #endif
585
586 #ifndef irqsafe_cpu_dec
587 # define irqsafe_cpu_dec(pcp)   irqsafe_cpu_sub((pcp), 1)
588 #endif
589
590 #ifndef irqsafe_cpu_and
591 # ifndef irqsafe_cpu_and_1
592 #  define irqsafe_cpu_and_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=)
593 # endif
594 # ifndef irqsafe_cpu_and_2
595 #  define irqsafe_cpu_and_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=)
596 # endif
597 # ifndef irqsafe_cpu_and_4
598 #  define irqsafe_cpu_and_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=)
599 # endif
600 # ifndef irqsafe_cpu_and_8
601 #  define irqsafe_cpu_and_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=)
602 # endif
603 # define irqsafe_cpu_and(pcp, val) __pcpu_size_call(irqsafe_cpu_and_, (val))
604 #endif
605
606 #ifndef irqsafe_cpu_or
607 # ifndef irqsafe_cpu_or_1
608 #  define irqsafe_cpu_or_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=)
609 # endif
610 # ifndef irqsafe_cpu_or_2
611 #  define irqsafe_cpu_or_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=)
612 # endif
613 # ifndef irqsafe_cpu_or_4
614 #  define irqsafe_cpu_or_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=)
615 # endif
616 # ifndef irqsafe_cpu_or_8
617 #  define irqsafe_cpu_or_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=)
618 # endif
619 # define irqsafe_cpu_or(pcp, val) __pcpu_size_call(irqsafe_cpu_or_, (val))
620 #endif
621
622 #ifndef irqsafe_cpu_xor
623 # ifndef irqsafe_cpu_xor_1
624 #  define irqsafe_cpu_xor_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=)
625 # endif
626 # ifndef irqsafe_cpu_xor_2
627 #  define irqsafe_cpu_xor_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=)
628 # endif
629 # ifndef irqsafe_cpu_xor_4
630 #  define irqsafe_cpu_xor_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=)
631 # endif
632 # ifndef irqsafe_cpu_xor_8
633 #  define irqsafe_cpu_xor_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=)
634 # endif
635 # define irqsafe_cpu_xor(pcp, val) __pcpu_size_call(irqsafe_cpu_xor_, (val))
636 #endif
637
638 #endif /* __LINUX_PERCPU_H */