c3c17fb675eedb1e5c7ca5c10c697a7e40c8e797
[linux-2.6.git] / include / linux / mmzone.h
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
3
4 #ifndef __ASSEMBLY__
5 #ifndef __GENERATING_BOUNDS_H
6
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/bitops.h>
11 #include <linux/cache.h>
12 #include <linux/threads.h>
13 #include <linux/numa.h>
14 #include <linux/init.h>
15 #include <linux/seqlock.h>
16 #include <linux/nodemask.h>
17 #include <linux/pageblock-flags.h>
18 #include <generated/bounds.h>
19 #include <asm/atomic.h>
20 #include <asm/page.h>
21
22 /* Free memory management - zoned buddy allocator.  */
23 #ifndef CONFIG_FORCE_MAX_ZONEORDER
24 #define MAX_ORDER 11
25 #else
26 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27 #endif
28 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
29
30 /*
31  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32  * costly to service.  That is between allocation orders which should
33  * coelesce naturally under reasonable reclaim pressure and those which
34  * will not.
35  */
36 #define PAGE_ALLOC_COSTLY_ORDER 3
37
38 #define MIGRATE_UNMOVABLE     0
39 #define MIGRATE_RECLAIMABLE   1
40 #define MIGRATE_MOVABLE       2
41 #define MIGRATE_PCPTYPES      3 /* the number of types on the pcp lists */
42 #define MIGRATE_RESERVE       3
43 #define MIGRATE_ISOLATE       4 /* can't allocate from here */
44 #define MIGRATE_TYPES         5
45
46 #define for_each_migratetype_order(order, type) \
47         for (order = 0; order < MAX_ORDER; order++) \
48                 for (type = 0; type < MIGRATE_TYPES; type++)
49
50 extern int page_group_by_mobility_disabled;
51
52 static inline int get_pageblock_migratetype(struct page *page)
53 {
54         return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
55 }
56
57 struct free_area {
58         struct list_head        free_list[MIGRATE_TYPES];
59         unsigned long           nr_free;
60 };
61
62 struct pglist_data;
63
64 /*
65  * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
66  * So add a wild amount of padding here to ensure that they fall into separate
67  * cachelines.  There are very few zone structures in the machine, so space
68  * consumption is not a concern here.
69  */
70 #if defined(CONFIG_SMP)
71 struct zone_padding {
72         char x[0];
73 } ____cacheline_internodealigned_in_smp;
74 #define ZONE_PADDING(name)      struct zone_padding name;
75 #else
76 #define ZONE_PADDING(name)
77 #endif
78
79 enum zone_stat_item {
80         /* First 128 byte cacheline (assuming 64 bit words) */
81         NR_FREE_PAGES,
82         NR_LRU_BASE,
83         NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
84         NR_ACTIVE_ANON,         /*  "     "     "   "       "         */
85         NR_INACTIVE_FILE,       /*  "     "     "   "       "         */
86         NR_ACTIVE_FILE,         /*  "     "     "   "       "         */
87         NR_UNEVICTABLE,         /*  "     "     "   "       "         */
88         NR_MLOCK,               /* mlock()ed pages found and moved off LRU */
89         NR_ANON_PAGES,  /* Mapped anonymous pages */
90         NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
91                            only modified from process context */
92         NR_FILE_PAGES,
93         NR_FILE_DIRTY,
94         NR_WRITEBACK,
95         NR_SLAB_RECLAIMABLE,
96         NR_SLAB_UNRECLAIMABLE,
97         NR_PAGETABLE,           /* used for pagetables */
98         NR_KERNEL_STACK,
99         /* Second 128 byte cacheline */
100         NR_UNSTABLE_NFS,        /* NFS unstable pages */
101         NR_BOUNCE,
102         NR_VMSCAN_WRITE,
103         NR_WRITEBACK_TEMP,      /* Writeback using temporary buffers */
104         NR_ISOLATED_ANON,       /* Temporary isolated pages from anon lru */
105         NR_ISOLATED_FILE,       /* Temporary isolated pages from file lru */
106         NR_SHMEM,               /* shmem pages (included tmpfs/GEM pages) */
107         NR_DIRTIED,             /* page dirtyings since bootup */
108         NR_WRITTEN,             /* page writings since bootup */
109 #ifdef CONFIG_NUMA
110         NUMA_HIT,               /* allocated in intended node */
111         NUMA_MISS,              /* allocated in non intended node */
112         NUMA_FOREIGN,           /* was intended here, hit elsewhere */
113         NUMA_INTERLEAVE_HIT,    /* interleaver preferred this zone */
114         NUMA_LOCAL,             /* allocation from local node */
115         NUMA_OTHER,             /* allocation from other node */
116 #endif
117         NR_VM_ZONE_STAT_ITEMS };
118
119 /*
120  * We do arithmetic on the LRU lists in various places in the code,
121  * so it is important to keep the active lists LRU_ACTIVE higher in
122  * the array than the corresponding inactive lists, and to keep
123  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
124  *
125  * This has to be kept in sync with the statistics in zone_stat_item
126  * above and the descriptions in vmstat_text in mm/vmstat.c
127  */
128 #define LRU_BASE 0
129 #define LRU_ACTIVE 1
130 #define LRU_FILE 2
131
132 enum lru_list {
133         LRU_INACTIVE_ANON = LRU_BASE,
134         LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
135         LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
136         LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
137         LRU_UNEVICTABLE,
138         NR_LRU_LISTS
139 };
140
141 #define for_each_lru(l) for (l = 0; l < NR_LRU_LISTS; l++)
142
143 #define for_each_evictable_lru(l) for (l = 0; l <= LRU_ACTIVE_FILE; l++)
144
145 static inline int is_file_lru(enum lru_list l)
146 {
147         return (l == LRU_INACTIVE_FILE || l == LRU_ACTIVE_FILE);
148 }
149
150 static inline int is_active_lru(enum lru_list l)
151 {
152         return (l == LRU_ACTIVE_ANON || l == LRU_ACTIVE_FILE);
153 }
154
155 static inline int is_unevictable_lru(enum lru_list l)
156 {
157         return (l == LRU_UNEVICTABLE);
158 }
159
160 enum zone_watermarks {
161         WMARK_MIN,
162         WMARK_LOW,
163         WMARK_HIGH,
164         NR_WMARK
165 };
166
167 #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
168 #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
169 #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
170
171 struct per_cpu_pages {
172         int count;              /* number of pages in the list */
173         int high;               /* high watermark, emptying needed */
174         int batch;              /* chunk size for buddy add/remove */
175
176         /* Lists of pages, one per migrate type stored on the pcp-lists */
177         struct list_head lists[MIGRATE_PCPTYPES];
178 };
179
180 struct per_cpu_pageset {
181         struct per_cpu_pages pcp;
182 #ifdef CONFIG_NUMA
183         s8 expire;
184 #endif
185 #ifdef CONFIG_SMP
186         s8 stat_threshold;
187         s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
188 #endif
189 };
190
191 #endif /* !__GENERATING_BOUNDS.H */
192
193 enum zone_type {
194 #ifdef CONFIG_ZONE_DMA
195         /*
196          * ZONE_DMA is used when there are devices that are not able
197          * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
198          * carve out the portion of memory that is needed for these devices.
199          * The range is arch specific.
200          *
201          * Some examples
202          *
203          * Architecture         Limit
204          * ---------------------------
205          * parisc, ia64, sparc  <4G
206          * s390                 <2G
207          * arm                  Various
208          * alpha                Unlimited or 0-16MB.
209          *
210          * i386, x86_64 and multiple other arches
211          *                      <16M.
212          */
213         ZONE_DMA,
214 #endif
215 #ifdef CONFIG_ZONE_DMA32
216         /*
217          * x86_64 needs two ZONE_DMAs because it supports devices that are
218          * only able to do DMA to the lower 16M but also 32 bit devices that
219          * can only do DMA areas below 4G.
220          */
221         ZONE_DMA32,
222 #endif
223         /*
224          * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
225          * performed on pages in ZONE_NORMAL if the DMA devices support
226          * transfers to all addressable memory.
227          */
228         ZONE_NORMAL,
229 #ifdef CONFIG_HIGHMEM
230         /*
231          * A memory area that is only addressable by the kernel through
232          * mapping portions into its own address space. This is for example
233          * used by i386 to allow the kernel to address the memory beyond
234          * 900MB. The kernel will set up special mappings (page
235          * table entries on i386) for each page that the kernel needs to
236          * access.
237          */
238         ZONE_HIGHMEM,
239 #endif
240         ZONE_MOVABLE,
241         __MAX_NR_ZONES
242 };
243
244 #ifndef __GENERATING_BOUNDS_H
245
246 /*
247  * When a memory allocation must conform to specific limitations (such
248  * as being suitable for DMA) the caller will pass in hints to the
249  * allocator in the gfp_mask, in the zone modifier bits.  These bits
250  * are used to select a priority ordered list of memory zones which
251  * match the requested limits. See gfp_zone() in include/linux/gfp.h
252  */
253
254 #if MAX_NR_ZONES < 2
255 #define ZONES_SHIFT 0
256 #elif MAX_NR_ZONES <= 2
257 #define ZONES_SHIFT 1
258 #elif MAX_NR_ZONES <= 4
259 #define ZONES_SHIFT 2
260 #else
261 #error ZONES_SHIFT -- too many zones configured adjust calculation
262 #endif
263
264 struct zone_reclaim_stat {
265         /*
266          * The pageout code in vmscan.c keeps track of how many of the
267          * mem/swap backed and file backed pages are refeferenced.
268          * The higher the rotated/scanned ratio, the more valuable
269          * that cache is.
270          *
271          * The anon LRU stats live in [0], file LRU stats in [1]
272          */
273         unsigned long           recent_rotated[2];
274         unsigned long           recent_scanned[2];
275
276         /*
277          * accumulated for batching
278          */
279         unsigned long           nr_saved_scan[NR_LRU_LISTS];
280 };
281
282 struct zone {
283         /* Fields commonly accessed by the page allocator */
284
285         /* zone watermarks, access with *_wmark_pages(zone) macros */
286         unsigned long watermark[NR_WMARK];
287
288         /*
289          * When free pages are below this point, additional steps are taken
290          * when reading the number of free pages to avoid per-cpu counter
291          * drift allowing watermarks to be breached
292          */
293         unsigned long percpu_drift_mark;
294
295         /*
296          * We don't know if the memory that we're going to allocate will be freeable
297          * or/and it will be released eventually, so to avoid totally wasting several
298          * GB of ram we must reserve some of the lower zone memory (otherwise we risk
299          * to run OOM on the lower zones despite there's tons of freeable ram
300          * on the higher zones). This array is recalculated at runtime if the
301          * sysctl_lowmem_reserve_ratio sysctl changes.
302          */
303         unsigned long           lowmem_reserve[MAX_NR_ZONES];
304
305 #ifdef CONFIG_NUMA
306         int node;
307         /*
308          * zone reclaim becomes active if more unmapped pages exist.
309          */
310         unsigned long           min_unmapped_pages;
311         unsigned long           min_slab_pages;
312 #endif
313         struct per_cpu_pageset __percpu *pageset;
314         /*
315          * free areas of different sizes
316          */
317         spinlock_t              lock;
318         int                     all_unreclaimable; /* All pages pinned */
319 #ifdef CONFIG_MEMORY_HOTPLUG
320         /* see spanned/present_pages for more description */
321         seqlock_t               span_seqlock;
322 #endif
323         struct free_area        free_area[MAX_ORDER];
324
325 #ifndef CONFIG_SPARSEMEM
326         /*
327          * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
328          * In SPARSEMEM, this map is stored in struct mem_section
329          */
330         unsigned long           *pageblock_flags;
331 #endif /* CONFIG_SPARSEMEM */
332
333 #ifdef CONFIG_COMPACTION
334         /*
335          * On compaction failure, 1<<compact_defer_shift compactions
336          * are skipped before trying again. The number attempted since
337          * last failure is tracked with compact_considered.
338          */
339         unsigned int            compact_considered;
340         unsigned int            compact_defer_shift;
341 #endif
342
343         ZONE_PADDING(_pad1_)
344
345         /* Fields commonly accessed by the page reclaim scanner */
346         spinlock_t              lru_lock;       
347         struct zone_lru {
348                 struct list_head list;
349         } lru[NR_LRU_LISTS];
350
351         struct zone_reclaim_stat reclaim_stat;
352
353         unsigned long           pages_scanned;     /* since last reclaim */
354         unsigned long           flags;             /* zone flags, see below */
355
356         /* Zone statistics */
357         atomic_long_t           vm_stat[NR_VM_ZONE_STAT_ITEMS];
358
359         /*
360          * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
361          * this zone's LRU.  Maintained by the pageout code.
362          */
363         unsigned int inactive_ratio;
364
365
366         ZONE_PADDING(_pad2_)
367         /* Rarely used or read-mostly fields */
368
369         /*
370          * wait_table           -- the array holding the hash table
371          * wait_table_hash_nr_entries   -- the size of the hash table array
372          * wait_table_bits      -- wait_table_size == (1 << wait_table_bits)
373          *
374          * The purpose of all these is to keep track of the people
375          * waiting for a page to become available and make them
376          * runnable again when possible. The trouble is that this
377          * consumes a lot of space, especially when so few things
378          * wait on pages at a given time. So instead of using
379          * per-page waitqueues, we use a waitqueue hash table.
380          *
381          * The bucket discipline is to sleep on the same queue when
382          * colliding and wake all in that wait queue when removing.
383          * When something wakes, it must check to be sure its page is
384          * truly available, a la thundering herd. The cost of a
385          * collision is great, but given the expected load of the
386          * table, they should be so rare as to be outweighed by the
387          * benefits from the saved space.
388          *
389          * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
390          * primary users of these fields, and in mm/page_alloc.c
391          * free_area_init_core() performs the initialization of them.
392          */
393         wait_queue_head_t       * wait_table;
394         unsigned long           wait_table_hash_nr_entries;
395         unsigned long           wait_table_bits;
396
397         /*
398          * Discontig memory support fields.
399          */
400         struct pglist_data      *zone_pgdat;
401         /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
402         unsigned long           zone_start_pfn;
403
404         /*
405          * zone_start_pfn, spanned_pages and present_pages are all
406          * protected by span_seqlock.  It is a seqlock because it has
407          * to be read outside of zone->lock, and it is done in the main
408          * allocator path.  But, it is written quite infrequently.
409          *
410          * The lock is declared along with zone->lock because it is
411          * frequently read in proximity to zone->lock.  It's good to
412          * give them a chance of being in the same cacheline.
413          */
414         unsigned long           spanned_pages;  /* total size, including holes */
415         unsigned long           present_pages;  /* amount of memory (excluding holes) */
416
417         /*
418          * rarely used fields:
419          */
420         const char              *name;
421 } ____cacheline_internodealigned_in_smp;
422
423 typedef enum {
424         ZONE_RECLAIM_LOCKED,            /* prevents concurrent reclaim */
425         ZONE_OOM_LOCKED,                /* zone is in OOM killer zonelist */
426 } zone_flags_t;
427
428 static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
429 {
430         set_bit(flag, &zone->flags);
431 }
432
433 static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
434 {
435         return test_and_set_bit(flag, &zone->flags);
436 }
437
438 static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
439 {
440         clear_bit(flag, &zone->flags);
441 }
442
443 static inline int zone_is_reclaim_locked(const struct zone *zone)
444 {
445         return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
446 }
447
448 static inline int zone_is_oom_locked(const struct zone *zone)
449 {
450         return test_bit(ZONE_OOM_LOCKED, &zone->flags);
451 }
452
453 #ifdef CONFIG_SMP
454 unsigned long zone_nr_free_pages(struct zone *zone);
455 #else
456 #define zone_nr_free_pages(zone) zone_page_state(zone, NR_FREE_PAGES)
457 #endif /* CONFIG_SMP */
458
459 /*
460  * The "priority" of VM scanning is how much of the queues we will scan in one
461  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
462  * queues ("queue_length >> 12") during an aging round.
463  */
464 #define DEF_PRIORITY 12
465
466 /* Maximum number of zones on a zonelist */
467 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
468
469 #ifdef CONFIG_NUMA
470
471 /*
472  * The NUMA zonelists are doubled becausse we need zonelists that restrict the
473  * allocations to a single node for GFP_THISNODE.
474  *
475  * [0]  : Zonelist with fallback
476  * [1]  : No fallback (GFP_THISNODE)
477  */
478 #define MAX_ZONELISTS 2
479
480
481 /*
482  * We cache key information from each zonelist for smaller cache
483  * footprint when scanning for free pages in get_page_from_freelist().
484  *
485  * 1) The BITMAP fullzones tracks which zones in a zonelist have come
486  *    up short of free memory since the last time (last_fullzone_zap)
487  *    we zero'd fullzones.
488  * 2) The array z_to_n[] maps each zone in the zonelist to its node
489  *    id, so that we can efficiently evaluate whether that node is
490  *    set in the current tasks mems_allowed.
491  *
492  * Both fullzones and z_to_n[] are one-to-one with the zonelist,
493  * indexed by a zones offset in the zonelist zones[] array.
494  *
495  * The get_page_from_freelist() routine does two scans.  During the
496  * first scan, we skip zones whose corresponding bit in 'fullzones'
497  * is set or whose corresponding node in current->mems_allowed (which
498  * comes from cpusets) is not set.  During the second scan, we bypass
499  * this zonelist_cache, to ensure we look methodically at each zone.
500  *
501  * Once per second, we zero out (zap) fullzones, forcing us to
502  * reconsider nodes that might have regained more free memory.
503  * The field last_full_zap is the time we last zapped fullzones.
504  *
505  * This mechanism reduces the amount of time we waste repeatedly
506  * reexaming zones for free memory when they just came up low on
507  * memory momentarilly ago.
508  *
509  * The zonelist_cache struct members logically belong in struct
510  * zonelist.  However, the mempolicy zonelists constructed for
511  * MPOL_BIND are intentionally variable length (and usually much
512  * shorter).  A general purpose mechanism for handling structs with
513  * multiple variable length members is more mechanism than we want
514  * here.  We resort to some special case hackery instead.
515  *
516  * The MPOL_BIND zonelists don't need this zonelist_cache (in good
517  * part because they are shorter), so we put the fixed length stuff
518  * at the front of the zonelist struct, ending in a variable length
519  * zones[], as is needed by MPOL_BIND.
520  *
521  * Then we put the optional zonelist cache on the end of the zonelist
522  * struct.  This optional stuff is found by a 'zlcache_ptr' pointer in
523  * the fixed length portion at the front of the struct.  This pointer
524  * both enables us to find the zonelist cache, and in the case of
525  * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
526  * to know that the zonelist cache is not there.
527  *
528  * The end result is that struct zonelists come in two flavors:
529  *  1) The full, fixed length version, shown below, and
530  *  2) The custom zonelists for MPOL_BIND.
531  * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
532  *
533  * Even though there may be multiple CPU cores on a node modifying
534  * fullzones or last_full_zap in the same zonelist_cache at the same
535  * time, we don't lock it.  This is just hint data - if it is wrong now
536  * and then, the allocator will still function, perhaps a bit slower.
537  */
538
539
540 struct zonelist_cache {
541         unsigned short z_to_n[MAX_ZONES_PER_ZONELIST];          /* zone->nid */
542         DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST);      /* zone full? */
543         unsigned long last_full_zap;            /* when last zap'd (jiffies) */
544 };
545 #else
546 #define MAX_ZONELISTS 1
547 struct zonelist_cache;
548 #endif
549
550 /*
551  * This struct contains information about a zone in a zonelist. It is stored
552  * here to avoid dereferences into large structures and lookups of tables
553  */
554 struct zoneref {
555         struct zone *zone;      /* Pointer to actual zone */
556         int zone_idx;           /* zone_idx(zoneref->zone) */
557 };
558
559 /*
560  * One allocation request operates on a zonelist. A zonelist
561  * is a list of zones, the first one is the 'goal' of the
562  * allocation, the other zones are fallback zones, in decreasing
563  * priority.
564  *
565  * If zlcache_ptr is not NULL, then it is just the address of zlcache,
566  * as explained above.  If zlcache_ptr is NULL, there is no zlcache.
567  * *
568  * To speed the reading of the zonelist, the zonerefs contain the zone index
569  * of the entry being read. Helper functions to access information given
570  * a struct zoneref are
571  *
572  * zonelist_zone()      - Return the struct zone * for an entry in _zonerefs
573  * zonelist_zone_idx()  - Return the index of the zone for an entry
574  * zonelist_node_idx()  - Return the index of the node for an entry
575  */
576 struct zonelist {
577         struct zonelist_cache *zlcache_ptr;                  // NULL or &zlcache
578         struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
579 #ifdef CONFIG_NUMA
580         struct zonelist_cache zlcache;                       // optional ...
581 #endif
582 };
583
584 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
585 struct node_active_region {
586         unsigned long start_pfn;
587         unsigned long end_pfn;
588         int nid;
589 };
590 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
591
592 #ifndef CONFIG_DISCONTIGMEM
593 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
594 extern struct page *mem_map;
595 #endif
596
597 /*
598  * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
599  * (mostly NUMA machines?) to denote a higher-level memory zone than the
600  * zone denotes.
601  *
602  * On NUMA machines, each NUMA node would have a pg_data_t to describe
603  * it's memory layout.
604  *
605  * Memory statistics and page replacement data structures are maintained on a
606  * per-zone basis.
607  */
608 struct bootmem_data;
609 typedef struct pglist_data {
610         struct zone node_zones[MAX_NR_ZONES];
611         struct zonelist node_zonelists[MAX_ZONELISTS];
612         int nr_zones;
613 #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
614         struct page *node_mem_map;
615 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
616         struct page_cgroup *node_page_cgroup;
617 #endif
618 #endif
619 #ifndef CONFIG_NO_BOOTMEM
620         struct bootmem_data *bdata;
621 #endif
622 #ifdef CONFIG_MEMORY_HOTPLUG
623         /*
624          * Must be held any time you expect node_start_pfn, node_present_pages
625          * or node_spanned_pages stay constant.  Holding this will also
626          * guarantee that any pfn_valid() stays that way.
627          *
628          * Nests above zone->lock and zone->size_seqlock.
629          */
630         spinlock_t node_size_lock;
631 #endif
632         unsigned long node_start_pfn;
633         unsigned long node_present_pages; /* total number of physical pages */
634         unsigned long node_spanned_pages; /* total size of physical page
635                                              range, including holes */
636         int node_id;
637         wait_queue_head_t kswapd_wait;
638         struct task_struct *kswapd;
639         int kswapd_max_order;
640 } pg_data_t;
641
642 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
643 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
644 #ifdef CONFIG_FLAT_NODE_MEM_MAP
645 #define pgdat_page_nr(pgdat, pagenr)    ((pgdat)->node_mem_map + (pagenr))
646 #else
647 #define pgdat_page_nr(pgdat, pagenr)    pfn_to_page((pgdat)->node_start_pfn + (pagenr))
648 #endif
649 #define nid_page_nr(nid, pagenr)        pgdat_page_nr(NODE_DATA(nid),(pagenr))
650
651 #include <linux/memory_hotplug.h>
652
653 extern struct mutex zonelists_mutex;
654 void build_all_zonelists(void *data);
655 void wakeup_kswapd(struct zone *zone, int order);
656 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
657                 int classzone_idx, int alloc_flags);
658 enum memmap_context {
659         MEMMAP_EARLY,
660         MEMMAP_HOTPLUG,
661 };
662 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
663                                      unsigned long size,
664                                      enum memmap_context context);
665
666 #ifdef CONFIG_HAVE_MEMORY_PRESENT
667 void memory_present(int nid, unsigned long start, unsigned long end);
668 #else
669 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
670 #endif
671
672 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
673 int local_memory_node(int node_id);
674 #else
675 static inline int local_memory_node(int node_id) { return node_id; };
676 #endif
677
678 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
679 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
680 #endif
681
682 /*
683  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
684  */
685 #define zone_idx(zone)          ((zone) - (zone)->zone_pgdat->node_zones)
686
687 static inline int populated_zone(struct zone *zone)
688 {
689         return (!!zone->present_pages);
690 }
691
692 extern int movable_zone;
693
694 static inline int zone_movable_is_highmem(void)
695 {
696 #if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP)
697         return movable_zone == ZONE_HIGHMEM;
698 #else
699         return 0;
700 #endif
701 }
702
703 static inline int is_highmem_idx(enum zone_type idx)
704 {
705 #ifdef CONFIG_HIGHMEM
706         return (idx == ZONE_HIGHMEM ||
707                 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
708 #else
709         return 0;
710 #endif
711 }
712
713 static inline int is_normal_idx(enum zone_type idx)
714 {
715         return (idx == ZONE_NORMAL);
716 }
717
718 /**
719  * is_highmem - helper function to quickly check if a struct zone is a 
720  *              highmem zone or not.  This is an attempt to keep references
721  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
722  * @zone - pointer to struct zone variable
723  */
724 static inline int is_highmem(struct zone *zone)
725 {
726 #ifdef CONFIG_HIGHMEM
727         int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
728         return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
729                (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
730                 zone_movable_is_highmem());
731 #else
732         return 0;
733 #endif
734 }
735
736 static inline int is_normal(struct zone *zone)
737 {
738         return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
739 }
740
741 static inline int is_dma32(struct zone *zone)
742 {
743 #ifdef CONFIG_ZONE_DMA32
744         return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
745 #else
746         return 0;
747 #endif
748 }
749
750 static inline int is_dma(struct zone *zone)
751 {
752 #ifdef CONFIG_ZONE_DMA
753         return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
754 #else
755         return 0;
756 #endif
757 }
758
759 /* These two functions are used to setup the per zone pages min values */
760 struct ctl_table;
761 int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
762                                         void __user *, size_t *, loff_t *);
763 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
764 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
765                                         void __user *, size_t *, loff_t *);
766 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
767                                         void __user *, size_t *, loff_t *);
768 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
769                         void __user *, size_t *, loff_t *);
770 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
771                         void __user *, size_t *, loff_t *);
772
773 extern int numa_zonelist_order_handler(struct ctl_table *, int,
774                         void __user *, size_t *, loff_t *);
775 extern char numa_zonelist_order[];
776 #define NUMA_ZONELIST_ORDER_LEN 16      /* string buffer size */
777
778 #ifndef CONFIG_NEED_MULTIPLE_NODES
779
780 extern struct pglist_data contig_page_data;
781 #define NODE_DATA(nid)          (&contig_page_data)
782 #define NODE_MEM_MAP(nid)       mem_map
783
784 #else /* CONFIG_NEED_MULTIPLE_NODES */
785
786 #include <asm/mmzone.h>
787
788 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
789
790 extern struct pglist_data *first_online_pgdat(void);
791 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
792 extern struct zone *next_zone(struct zone *zone);
793
794 /**
795  * for_each_online_pgdat - helper macro to iterate over all online nodes
796  * @pgdat - pointer to a pg_data_t variable
797  */
798 #define for_each_online_pgdat(pgdat)                    \
799         for (pgdat = first_online_pgdat();              \
800              pgdat;                                     \
801              pgdat = next_online_pgdat(pgdat))
802 /**
803  * for_each_zone - helper macro to iterate over all memory zones
804  * @zone - pointer to struct zone variable
805  *
806  * The user only needs to declare the zone variable, for_each_zone
807  * fills it in.
808  */
809 #define for_each_zone(zone)                             \
810         for (zone = (first_online_pgdat())->node_zones; \
811              zone;                                      \
812              zone = next_zone(zone))
813
814 #define for_each_populated_zone(zone)                   \
815         for (zone = (first_online_pgdat())->node_zones; \
816              zone;                                      \
817              zone = next_zone(zone))                    \
818                 if (!populated_zone(zone))              \
819                         ; /* do nothing */              \
820                 else
821
822 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
823 {
824         return zoneref->zone;
825 }
826
827 static inline int zonelist_zone_idx(struct zoneref *zoneref)
828 {
829         return zoneref->zone_idx;
830 }
831
832 static inline int zonelist_node_idx(struct zoneref *zoneref)
833 {
834 #ifdef CONFIG_NUMA
835         /* zone_to_nid not available in this context */
836         return zoneref->zone->node;
837 #else
838         return 0;
839 #endif /* CONFIG_NUMA */
840 }
841
842 /**
843  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
844  * @z - The cursor used as a starting point for the search
845  * @highest_zoneidx - The zone index of the highest zone to return
846  * @nodes - An optional nodemask to filter the zonelist with
847  * @zone - The first suitable zone found is returned via this parameter
848  *
849  * This function returns the next zone at or below a given zone index that is
850  * within the allowed nodemask using a cursor as the starting point for the
851  * search. The zoneref returned is a cursor that represents the current zone
852  * being examined. It should be advanced by one before calling
853  * next_zones_zonelist again.
854  */
855 struct zoneref *next_zones_zonelist(struct zoneref *z,
856                                         enum zone_type highest_zoneidx,
857                                         nodemask_t *nodes,
858                                         struct zone **zone);
859
860 /**
861  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
862  * @zonelist - The zonelist to search for a suitable zone
863  * @highest_zoneidx - The zone index of the highest zone to return
864  * @nodes - An optional nodemask to filter the zonelist with
865  * @zone - The first suitable zone found is returned via this parameter
866  *
867  * This function returns the first zone at or below a given zone index that is
868  * within the allowed nodemask. The zoneref returned is a cursor that can be
869  * used to iterate the zonelist with next_zones_zonelist by advancing it by
870  * one before calling.
871  */
872 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
873                                         enum zone_type highest_zoneidx,
874                                         nodemask_t *nodes,
875                                         struct zone **zone)
876 {
877         return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
878                                                                 zone);
879 }
880
881 /**
882  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
883  * @zone - The current zone in the iterator
884  * @z - The current pointer within zonelist->zones being iterated
885  * @zlist - The zonelist being iterated
886  * @highidx - The zone index of the highest zone to return
887  * @nodemask - Nodemask allowed by the allocator
888  *
889  * This iterator iterates though all zones at or below a given zone index and
890  * within a given nodemask
891  */
892 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
893         for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \
894                 zone;                                                   \
895                 z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \
896
897 /**
898  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
899  * @zone - The current zone in the iterator
900  * @z - The current pointer within zonelist->zones being iterated
901  * @zlist - The zonelist being iterated
902  * @highidx - The zone index of the highest zone to return
903  *
904  * This iterator iterates though all zones at or below a given zone index.
905  */
906 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
907         for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
908
909 #ifdef CONFIG_SPARSEMEM
910 #include <asm/sparsemem.h>
911 #endif
912
913 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
914         !defined(CONFIG_ARCH_POPULATES_NODE_MAP)
915 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
916 {
917         return 0;
918 }
919 #endif
920
921 #ifdef CONFIG_FLATMEM
922 #define pfn_to_nid(pfn)         (0)
923 #endif
924
925 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
926 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
927
928 #ifdef CONFIG_SPARSEMEM
929
930 /*
931  * SECTION_SHIFT                #bits space required to store a section #
932  *
933  * PA_SECTION_SHIFT             physical address to/from section number
934  * PFN_SECTION_SHIFT            pfn to/from section number
935  */
936 #define SECTIONS_SHIFT          (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
937
938 #define PA_SECTION_SHIFT        (SECTION_SIZE_BITS)
939 #define PFN_SECTION_SHIFT       (SECTION_SIZE_BITS - PAGE_SHIFT)
940
941 #define NR_MEM_SECTIONS         (1UL << SECTIONS_SHIFT)
942
943 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
944 #define PAGE_SECTION_MASK       (~(PAGES_PER_SECTION-1))
945
946 #define SECTION_BLOCKFLAGS_BITS \
947         ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
948
949 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
950 #error Allocator MAX_ORDER exceeds SECTION_SIZE
951 #endif
952
953 struct page;
954 struct page_cgroup;
955 struct mem_section {
956         /*
957          * This is, logically, a pointer to an array of struct
958          * pages.  However, it is stored with some other magic.
959          * (see sparse.c::sparse_init_one_section())
960          *
961          * Additionally during early boot we encode node id of
962          * the location of the section here to guide allocation.
963          * (see sparse.c::memory_present())
964          *
965          * Making it a UL at least makes someone do a cast
966          * before using it wrong.
967          */
968         unsigned long section_mem_map;
969
970         /* See declaration of similar field in struct zone */
971         unsigned long *pageblock_flags;
972 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
973         /*
974          * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
975          * section. (see memcontrol.h/page_cgroup.h about this.)
976          */
977         struct page_cgroup *page_cgroup;
978         unsigned long pad;
979 #endif
980 };
981
982 #ifdef CONFIG_SPARSEMEM_EXTREME
983 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
984 #else
985 #define SECTIONS_PER_ROOT       1
986 #endif
987
988 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
989 #define NR_SECTION_ROOTS        DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
990 #define SECTION_ROOT_MASK       (SECTIONS_PER_ROOT - 1)
991
992 #ifdef CONFIG_SPARSEMEM_EXTREME
993 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
994 #else
995 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
996 #endif
997
998 static inline struct mem_section *__nr_to_section(unsigned long nr)
999 {
1000         if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1001                 return NULL;
1002         return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1003 }
1004 extern int __section_nr(struct mem_section* ms);
1005 extern unsigned long usemap_size(void);
1006
1007 /*
1008  * We use the lower bits of the mem_map pointer to store
1009  * a little bit of information.  There should be at least
1010  * 3 bits here due to 32-bit alignment.
1011  */
1012 #define SECTION_MARKED_PRESENT  (1UL<<0)
1013 #define SECTION_HAS_MEM_MAP     (1UL<<1)
1014 #define SECTION_MAP_LAST_BIT    (1UL<<2)
1015 #define SECTION_MAP_MASK        (~(SECTION_MAP_LAST_BIT-1))
1016 #define SECTION_NID_SHIFT       2
1017
1018 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1019 {
1020         unsigned long map = section->section_mem_map;
1021         map &= SECTION_MAP_MASK;
1022         return (struct page *)map;
1023 }
1024
1025 static inline int present_section(struct mem_section *section)
1026 {
1027         return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1028 }
1029
1030 static inline int present_section_nr(unsigned long nr)
1031 {
1032         return present_section(__nr_to_section(nr));
1033 }
1034
1035 static inline int valid_section(struct mem_section *section)
1036 {
1037         return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1038 }
1039
1040 static inline int valid_section_nr(unsigned long nr)
1041 {
1042         return valid_section(__nr_to_section(nr));
1043 }
1044
1045 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1046 {
1047         return __nr_to_section(pfn_to_section_nr(pfn));
1048 }
1049
1050 static inline int pfn_valid(unsigned long pfn)
1051 {
1052         if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1053                 return 0;
1054         return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1055 }
1056
1057 static inline int pfn_present(unsigned long pfn)
1058 {
1059         if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1060                 return 0;
1061         return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1062 }
1063
1064 /*
1065  * These are _only_ used during initialisation, therefore they
1066  * can use __initdata ...  They could have names to indicate
1067  * this restriction.
1068  */
1069 #ifdef CONFIG_NUMA
1070 #define pfn_to_nid(pfn)                                                 \
1071 ({                                                                      \
1072         unsigned long __pfn_to_nid_pfn = (pfn);                         \
1073         page_to_nid(pfn_to_page(__pfn_to_nid_pfn));                     \
1074 })
1075 #else
1076 #define pfn_to_nid(pfn)         (0)
1077 #endif
1078
1079 #define early_pfn_valid(pfn)    pfn_valid(pfn)
1080 void sparse_init(void);
1081 #else
1082 #define sparse_init()   do {} while (0)
1083 #define sparse_index_init(_sec, _nid)  do {} while (0)
1084 #endif /* CONFIG_SPARSEMEM */
1085
1086 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1087 bool early_pfn_in_nid(unsigned long pfn, int nid);
1088 #else
1089 #define early_pfn_in_nid(pfn, nid)      (1)
1090 #endif
1091
1092 #ifndef early_pfn_valid
1093 #define early_pfn_valid(pfn)    (1)
1094 #endif
1095
1096 void memory_present(int nid, unsigned long start, unsigned long end);
1097 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1098
1099 /*
1100  * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1101  * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1102  * pfn_valid_within() should be used in this case; we optimise this away
1103  * when we have no holes within a MAX_ORDER_NR_PAGES block.
1104  */
1105 #ifdef CONFIG_HOLES_IN_ZONE
1106 #define pfn_valid_within(pfn) pfn_valid(pfn)
1107 #else
1108 #define pfn_valid_within(pfn) (1)
1109 #endif
1110
1111 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1112 /*
1113  * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1114  * associated with it or not. In FLATMEM, it is expected that holes always
1115  * have valid memmap as long as there is valid PFNs either side of the hole.
1116  * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1117  * entire section.
1118  *
1119  * However, an ARM, and maybe other embedded architectures in the future
1120  * free memmap backing holes to save memory on the assumption the memmap is
1121  * never used. The page_zone linkages are then broken even though pfn_valid()
1122  * returns true. A walker of the full memmap must then do this additional
1123  * check to ensure the memmap they are looking at is sane by making sure
1124  * the zone and PFN linkages are still valid. This is expensive, but walkers
1125  * of the full memmap are extremely rare.
1126  */
1127 int memmap_valid_within(unsigned long pfn,
1128                                         struct page *page, struct zone *zone);
1129 #else
1130 static inline int memmap_valid_within(unsigned long pfn,
1131                                         struct page *page, struct zone *zone)
1132 {
1133         return 1;
1134 }
1135 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1136
1137 #endif /* !__GENERATING_BOUNDS.H */
1138 #endif /* !__ASSEMBLY__ */
1139 #endif /* _LINUX_MMZONE_H */