6e1c79c8b6bfd0eebc33187804169d47caa2b92e
[linux-2.6.git] / include / linux / bio.h
1 /*
2  * 2.5 block I/O model
3  *
4  * Copyright (C) 2001 Jens Axboe <axboe@suse.de>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public Licens
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
19  */
20 #ifndef __LINUX_BIO_H
21 #define __LINUX_BIO_H
22
23 #include <linux/highmem.h>
24 #include <linux/mempool.h>
25 #include <linux/ioprio.h>
26
27 /* Platforms may set this to teach the BIO layer about IOMMU hardware. */
28 #include <asm/io.h>
29
30 #if defined(BIO_VMERGE_MAX_SIZE) && defined(BIO_VMERGE_BOUNDARY)
31 #define BIOVEC_VIRT_START_SIZE(x) (bvec_to_phys(x) & (BIO_VMERGE_BOUNDARY - 1))
32 #define BIOVEC_VIRT_OVERSIZE(x) ((x) > BIO_VMERGE_MAX_SIZE)
33 #else
34 #define BIOVEC_VIRT_START_SIZE(x)       0
35 #define BIOVEC_VIRT_OVERSIZE(x)         0
36 #endif
37
38 #ifndef BIO_VMERGE_BOUNDARY
39 #define BIO_VMERGE_BOUNDARY     0
40 #endif
41
42 #define BIO_DEBUG
43
44 #ifdef BIO_DEBUG
45 #define BIO_BUG_ON      BUG_ON
46 #else
47 #define BIO_BUG_ON
48 #endif
49
50 #define BIO_MAX_PAGES           (256)
51 #define BIO_MAX_SIZE            (BIO_MAX_PAGES << PAGE_CACHE_SHIFT)
52 #define BIO_MAX_SECTORS         (BIO_MAX_SIZE >> 9)
53
54 /*
55  * was unsigned short, but we might as well be ready for > 64kB I/O pages
56  */
57 struct bio_vec {
58         struct page     *bv_page;
59         unsigned int    bv_len;
60         unsigned int    bv_offset;
61 };
62
63 struct bio_set;
64 struct bio;
65 typedef int (bio_end_io_t) (struct bio *, unsigned int, int);
66 typedef void (bio_destructor_t) (struct bio *);
67
68 /*
69  * main unit of I/O for the block layer and lower layers (ie drivers and
70  * stacking drivers)
71  */
72 struct bio {
73         sector_t                bi_sector;
74         struct bio              *bi_next;       /* request queue link */
75         struct block_device     *bi_bdev;
76         unsigned long           bi_flags;       /* status, command, etc */
77         unsigned long           bi_rw;          /* bottom bits READ/WRITE,
78                                                  * top bits priority
79                                                  */
80
81         unsigned short          bi_vcnt;        /* how many bio_vec's */
82         unsigned short          bi_idx;         /* current index into bvl_vec */
83
84         /* Number of segments in this BIO after
85          * physical address coalescing is performed.
86          */
87         unsigned short          bi_phys_segments;
88
89         /* Number of segments after physical and DMA remapping
90          * hardware coalescing is performed.
91          */
92         unsigned short          bi_hw_segments;
93
94         unsigned int            bi_size;        /* residual I/O count */
95
96         /*
97          * To keep track of the max hw size, we account for the
98          * sizes of the first and last virtually mergeable segments
99          * in this bio
100          */
101         unsigned int            bi_hw_front_size;
102         unsigned int            bi_hw_back_size;
103
104         unsigned int            bi_max_vecs;    /* max bvl_vecs we can hold */
105
106         struct bio_vec          *bi_io_vec;     /* the actual vec list */
107
108         bio_end_io_t            *bi_end_io;
109         atomic_t                bi_cnt;         /* pin count */
110
111         void                    *bi_private;
112
113         bio_destructor_t        *bi_destructor; /* destructor */
114 };
115
116 /*
117  * bio flags
118  */
119 #define BIO_UPTODATE    0       /* ok after I/O completion */
120 #define BIO_RW_BLOCK    1       /* RW_AHEAD set, and read/write would block */
121 #define BIO_EOF         2       /* out-out-bounds error */
122 #define BIO_SEG_VALID   3       /* nr_hw_seg valid */
123 #define BIO_CLONED      4       /* doesn't own data */
124 #define BIO_BOUNCED     5       /* bio is a bounce bio */
125 #define BIO_USER_MAPPED 6       /* contains user pages */
126 #define BIO_EOPNOTSUPP  7       /* not supported */
127 #define bio_flagged(bio, flag)  ((bio)->bi_flags & (1 << (flag)))
128
129 /*
130  * top 4 bits of bio flags indicate the pool this bio came from
131  */
132 #define BIO_POOL_BITS           (4)
133 #define BIO_POOL_OFFSET         (BITS_PER_LONG - BIO_POOL_BITS)
134 #define BIO_POOL_MASK           (1UL << BIO_POOL_OFFSET)
135 #define BIO_POOL_IDX(bio)       ((bio)->bi_flags >> BIO_POOL_OFFSET)    
136
137 /*
138  * bio bi_rw flags
139  *
140  * bit 0 -- read (not set) or write (set)
141  * bit 1 -- rw-ahead when set
142  * bit 2 -- barrier
143  * bit 3 -- fail fast, don't want low level driver retries
144  * bit 4 -- synchronous I/O hint: the block layer will unplug immediately
145  */
146 #define BIO_RW          0
147 #define BIO_RW_AHEAD    1
148 #define BIO_RW_BARRIER  2
149 #define BIO_RW_FAILFAST 3
150 #define BIO_RW_SYNC     4
151
152 /*
153  * upper 16 bits of bi_rw define the io priority of this bio
154  */
155 #define BIO_PRIO_SHIFT  (8 * sizeof(unsigned long) - IOPRIO_BITS)
156 #define bio_prio(bio)   ((bio)->bi_rw >> BIO_PRIO_SHIFT)
157 #define bio_prio_valid(bio)     ioprio_valid(bio_prio(bio))
158
159 #define bio_set_prio(bio, prio)         do {                    \
160         WARN_ON(prio >= (1 << IOPRIO_BITS));                    \
161         (bio)->bi_rw &= ((1UL << BIO_PRIO_SHIFT) - 1);          \
162         (bio)->bi_rw |= ((unsigned long) (prio) << BIO_PRIO_SHIFT);     \
163 } while (0)
164
165 /*
166  * various member access, note that bio_data should of course not be used
167  * on highmem page vectors
168  */
169 #define bio_iovec_idx(bio, idx) (&((bio)->bi_io_vec[(idx)]))
170 #define bio_iovec(bio)          bio_iovec_idx((bio), (bio)->bi_idx)
171 #define bio_page(bio)           bio_iovec((bio))->bv_page
172 #define bio_offset(bio)         bio_iovec((bio))->bv_offset
173 #define bio_segments(bio)       ((bio)->bi_vcnt - (bio)->bi_idx)
174 #define bio_sectors(bio)        ((bio)->bi_size >> 9)
175 #define bio_cur_sectors(bio)    (bio_iovec(bio)->bv_len >> 9)
176 #define bio_data(bio)           (page_address(bio_page((bio))) + bio_offset((bio)))
177 #define bio_barrier(bio)        ((bio)->bi_rw & (1 << BIO_RW_BARRIER))
178 #define bio_sync(bio)           ((bio)->bi_rw & (1 << BIO_RW_SYNC))
179 #define bio_failfast(bio)       ((bio)->bi_rw & (1 << BIO_RW_FAILFAST))
180 #define bio_rw_ahead(bio)       ((bio)->bi_rw & (1 << BIO_RW_AHEAD))
181
182 /*
183  * will die
184  */
185 #define bio_to_phys(bio)        (page_to_phys(bio_page((bio))) + (unsigned long) bio_offset((bio)))
186 #define bvec_to_phys(bv)        (page_to_phys((bv)->bv_page) + (unsigned long) (bv)->bv_offset)
187
188 /*
189  * queues that have highmem support enabled may still need to revert to
190  * PIO transfers occasionally and thus map high pages temporarily. For
191  * permanent PIO fall back, user is probably better off disabling highmem
192  * I/O completely on that queue (see ide-dma for example)
193  */
194 #define __bio_kmap_atomic(bio, idx, kmtype)                             \
195         (kmap_atomic(bio_iovec_idx((bio), (idx))->bv_page, kmtype) +    \
196                 bio_iovec_idx((bio), (idx))->bv_offset)
197
198 #define __bio_kunmap_atomic(addr, kmtype) kunmap_atomic(addr, kmtype)
199
200 /*
201  * merge helpers etc
202  */
203
204 #define __BVEC_END(bio)         bio_iovec_idx((bio), (bio)->bi_vcnt - 1)
205 #define __BVEC_START(bio)       bio_iovec_idx((bio), (bio)->bi_idx)
206
207 /*
208  * allow arch override, for eg virtualized architectures (put in asm/io.h)
209  */
210 #ifndef BIOVEC_PHYS_MERGEABLE
211 #define BIOVEC_PHYS_MERGEABLE(vec1, vec2)       \
212         ((bvec_to_phys((vec1)) + (vec1)->bv_len) == bvec_to_phys((vec2)))
213 #endif
214
215 #define BIOVEC_VIRT_MERGEABLE(vec1, vec2)       \
216         ((((bvec_to_phys((vec1)) + (vec1)->bv_len) | bvec_to_phys((vec2))) & (BIO_VMERGE_BOUNDARY - 1)) == 0)
217 #define __BIO_SEG_BOUNDARY(addr1, addr2, mask) \
218         (((addr1) | (mask)) == (((addr2) - 1) | (mask)))
219 #define BIOVEC_SEG_BOUNDARY(q, b1, b2) \
220         __BIO_SEG_BOUNDARY(bvec_to_phys((b1)), bvec_to_phys((b2)) + (b2)->bv_len, (q)->seg_boundary_mask)
221 #define BIO_SEG_BOUNDARY(q, b1, b2) \
222         BIOVEC_SEG_BOUNDARY((q), __BVEC_END((b1)), __BVEC_START((b2)))
223
224 #define bio_io_error(bio, bytes) bio_endio((bio), (bytes), -EIO)
225
226 /*
227  * drivers should not use the __ version unless they _really_ want to
228  * run through the entire bio and not just pending pieces
229  */
230 #define __bio_for_each_segment(bvl, bio, i, start_idx)                  \
231         for (bvl = bio_iovec_idx((bio), (start_idx)), i = (start_idx);  \
232              i < (bio)->bi_vcnt;                                        \
233              bvl++, i++)
234
235 #define bio_for_each_segment(bvl, bio, i)                               \
236         __bio_for_each_segment(bvl, bio, i, (bio)->bi_idx)
237
238 /*
239  * get a reference to a bio, so it won't disappear. the intended use is
240  * something like:
241  *
242  * bio_get(bio);
243  * submit_bio(rw, bio);
244  * if (bio->bi_flags ...)
245  *      do_something
246  * bio_put(bio);
247  *
248  * without the bio_get(), it could potentially complete I/O before submit_bio
249  * returns. and then bio would be freed memory when if (bio->bi_flags ...)
250  * runs
251  */
252 #define bio_get(bio)    atomic_inc(&(bio)->bi_cnt)
253
254
255 /*
256  * A bio_pair is used when we need to split a bio.
257  * This can only happen for a bio that refers to just one
258  * page of data, and in the unusual situation when the
259  * page crosses a chunk/device boundary
260  *
261  * The address of the master bio is stored in bio1.bi_private
262  * The address of the pool the pair was allocated from is stored
263  *   in bio2.bi_private
264  */
265 struct bio_pair {
266         struct bio      bio1, bio2;
267         struct bio_vec  bv1, bv2;
268         atomic_t        cnt;
269         int             error;
270 };
271 extern struct bio_pair *bio_split(struct bio *bi, mempool_t *pool,
272                                   int first_sectors);
273 extern mempool_t *bio_split_pool;
274 extern void bio_pair_release(struct bio_pair *dbio);
275
276 extern struct bio_set *bioset_create(int, int, int);
277 extern void bioset_free(struct bio_set *);
278
279 extern struct bio *bio_alloc(unsigned int __nocast, int);
280 extern struct bio *bio_alloc_bioset(unsigned int __nocast, int, struct bio_set *);
281 extern void bio_put(struct bio *);
282 extern void bio_free(struct bio *, struct bio_set *);
283
284 extern void bio_endio(struct bio *, unsigned int, int);
285 struct request_queue;
286 extern int bio_phys_segments(struct request_queue *, struct bio *);
287 extern int bio_hw_segments(struct request_queue *, struct bio *);
288
289 extern void __bio_clone(struct bio *, struct bio *);
290 extern struct bio *bio_clone(struct bio *, unsigned int __nocast);
291
292 extern void bio_init(struct bio *);
293
294 extern int bio_add_page(struct bio *, struct page *, unsigned int,unsigned int);
295 extern int bio_get_nr_vecs(struct block_device *);
296 extern struct bio *bio_map_user(struct request_queue *, struct block_device *,
297                                 unsigned long, unsigned int, int);
298 struct sg_iovec;
299 extern struct bio *bio_map_user_iov(struct request_queue *,
300                                     struct block_device *,
301                                     struct sg_iovec *, int, int);
302 extern void bio_unmap_user(struct bio *);
303 extern struct bio *bio_map_kern(struct request_queue *, void *, unsigned int,
304                                 unsigned int);
305 extern void bio_set_pages_dirty(struct bio *bio);
306 extern void bio_check_pages_dirty(struct bio *bio);
307 extern struct bio *bio_copy_user(struct request_queue *, unsigned long, unsigned int, int);
308 extern int bio_uncopy_user(struct bio *);
309 void zero_fill_bio(struct bio *bio);
310
311 #ifdef CONFIG_HIGHMEM
312 /*
313  * remember to add offset! and never ever reenable interrupts between a
314  * bvec_kmap_irq and bvec_kunmap_irq!!
315  *
316  * This function MUST be inlined - it plays with the CPU interrupt flags.
317  */
318 static inline char *bvec_kmap_irq(struct bio_vec *bvec, unsigned long *flags)
319 {
320         unsigned long addr;
321
322         /*
323          * might not be a highmem page, but the preempt/irq count
324          * balancing is a lot nicer this way
325          */
326         local_irq_save(*flags);
327         addr = (unsigned long) kmap_atomic(bvec->bv_page, KM_BIO_SRC_IRQ);
328
329         BUG_ON(addr & ~PAGE_MASK);
330
331         return (char *) addr + bvec->bv_offset;
332 }
333
334 static inline void bvec_kunmap_irq(char *buffer, unsigned long *flags)
335 {
336         unsigned long ptr = (unsigned long) buffer & PAGE_MASK;
337
338         kunmap_atomic((void *) ptr, KM_BIO_SRC_IRQ);
339         local_irq_restore(*flags);
340 }
341
342 #else
343 #define bvec_kmap_irq(bvec, flags)      (page_address((bvec)->bv_page) + (bvec)->bv_offset)
344 #define bvec_kunmap_irq(buf, flags)     do { *(flags) = 0; } while (0)
345 #endif
346
347 static inline char *__bio_kmap_irq(struct bio *bio, unsigned short idx,
348                                    unsigned long *flags)
349 {
350         return bvec_kmap_irq(bio_iovec_idx(bio, idx), flags);
351 }
352 #define __bio_kunmap_irq(buf, flags)    bvec_kunmap_irq(buf, flags)
353
354 #define bio_kmap_irq(bio, flags) \
355         __bio_kmap_irq((bio), (bio)->bi_idx, (flags))
356 #define bio_kunmap_irq(buf,flags)       __bio_kunmap_irq(buf, flags)
357
358 #endif /* __LINUX_BIO_H */