Merge branch 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6.git] / fs / ubifs / debug.c
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём)
20  *          Adrian Hunter
21  */
22
23 /*
24  * This file implements most of the debugging stuff which is compiled in only
25  * when it is enabled. But some debugging check functions are implemented in
26  * corresponding subsystem, just because they are closely related and utilize
27  * various local functions of those subsystems.
28  */
29
30 #include <linux/module.h>
31 #include <linux/debugfs.h>
32 #include <linux/math64.h>
33 #include <linux/uaccess.h>
34 #include <linux/random.h>
35 #include "ubifs.h"
36
37 #ifdef CONFIG_UBIFS_FS_DEBUG
38
39 DEFINE_SPINLOCK(dbg_lock);
40
41 static char dbg_key_buf0[128];
42 static char dbg_key_buf1[128];
43
44 static const char *get_key_fmt(int fmt)
45 {
46         switch (fmt) {
47         case UBIFS_SIMPLE_KEY_FMT:
48                 return "simple";
49         default:
50                 return "unknown/invalid format";
51         }
52 }
53
54 static const char *get_key_hash(int hash)
55 {
56         switch (hash) {
57         case UBIFS_KEY_HASH_R5:
58                 return "R5";
59         case UBIFS_KEY_HASH_TEST:
60                 return "test";
61         default:
62                 return "unknown/invalid name hash";
63         }
64 }
65
66 static const char *get_key_type(int type)
67 {
68         switch (type) {
69         case UBIFS_INO_KEY:
70                 return "inode";
71         case UBIFS_DENT_KEY:
72                 return "direntry";
73         case UBIFS_XENT_KEY:
74                 return "xentry";
75         case UBIFS_DATA_KEY:
76                 return "data";
77         case UBIFS_TRUN_KEY:
78                 return "truncate";
79         default:
80                 return "unknown/invalid key";
81         }
82 }
83
84 static const char *get_dent_type(int type)
85 {
86         switch (type) {
87         case UBIFS_ITYPE_REG:
88                 return "file";
89         case UBIFS_ITYPE_DIR:
90                 return "dir";
91         case UBIFS_ITYPE_LNK:
92                 return "symlink";
93         case UBIFS_ITYPE_BLK:
94                 return "blkdev";
95         case UBIFS_ITYPE_CHR:
96                 return "char dev";
97         case UBIFS_ITYPE_FIFO:
98                 return "fifo";
99         case UBIFS_ITYPE_SOCK:
100                 return "socket";
101         default:
102                 return "unknown/invalid type";
103         }
104 }
105
106 static void sprintf_key(const struct ubifs_info *c, const union ubifs_key *key,
107                         char *buffer)
108 {
109         char *p = buffer;
110         int type = key_type(c, key);
111
112         if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
113                 switch (type) {
114                 case UBIFS_INO_KEY:
115                         sprintf(p, "(%lu, %s)", (unsigned long)key_inum(c, key),
116                                get_key_type(type));
117                         break;
118                 case UBIFS_DENT_KEY:
119                 case UBIFS_XENT_KEY:
120                         sprintf(p, "(%lu, %s, %#08x)",
121                                 (unsigned long)key_inum(c, key),
122                                 get_key_type(type), key_hash(c, key));
123                         break;
124                 case UBIFS_DATA_KEY:
125                         sprintf(p, "(%lu, %s, %u)",
126                                 (unsigned long)key_inum(c, key),
127                                 get_key_type(type), key_block(c, key));
128                         break;
129                 case UBIFS_TRUN_KEY:
130                         sprintf(p, "(%lu, %s)",
131                                 (unsigned long)key_inum(c, key),
132                                 get_key_type(type));
133                         break;
134                 default:
135                         sprintf(p, "(bad key type: %#08x, %#08x)",
136                                 key->u32[0], key->u32[1]);
137                 }
138         } else
139                 sprintf(p, "bad key format %d", c->key_fmt);
140 }
141
142 const char *dbg_key_str0(const struct ubifs_info *c, const union ubifs_key *key)
143 {
144         /* dbg_lock must be held */
145         sprintf_key(c, key, dbg_key_buf0);
146         return dbg_key_buf0;
147 }
148
149 const char *dbg_key_str1(const struct ubifs_info *c, const union ubifs_key *key)
150 {
151         /* dbg_lock must be held */
152         sprintf_key(c, key, dbg_key_buf1);
153         return dbg_key_buf1;
154 }
155
156 const char *dbg_ntype(int type)
157 {
158         switch (type) {
159         case UBIFS_PAD_NODE:
160                 return "padding node";
161         case UBIFS_SB_NODE:
162                 return "superblock node";
163         case UBIFS_MST_NODE:
164                 return "master node";
165         case UBIFS_REF_NODE:
166                 return "reference node";
167         case UBIFS_INO_NODE:
168                 return "inode node";
169         case UBIFS_DENT_NODE:
170                 return "direntry node";
171         case UBIFS_XENT_NODE:
172                 return "xentry node";
173         case UBIFS_DATA_NODE:
174                 return "data node";
175         case UBIFS_TRUN_NODE:
176                 return "truncate node";
177         case UBIFS_IDX_NODE:
178                 return "indexing node";
179         case UBIFS_CS_NODE:
180                 return "commit start node";
181         case UBIFS_ORPH_NODE:
182                 return "orphan node";
183         default:
184                 return "unknown node";
185         }
186 }
187
188 static const char *dbg_gtype(int type)
189 {
190         switch (type) {
191         case UBIFS_NO_NODE_GROUP:
192                 return "no node group";
193         case UBIFS_IN_NODE_GROUP:
194                 return "in node group";
195         case UBIFS_LAST_OF_NODE_GROUP:
196                 return "last of node group";
197         default:
198                 return "unknown";
199         }
200 }
201
202 const char *dbg_cstate(int cmt_state)
203 {
204         switch (cmt_state) {
205         case COMMIT_RESTING:
206                 return "commit resting";
207         case COMMIT_BACKGROUND:
208                 return "background commit requested";
209         case COMMIT_REQUIRED:
210                 return "commit required";
211         case COMMIT_RUNNING_BACKGROUND:
212                 return "BACKGROUND commit running";
213         case COMMIT_RUNNING_REQUIRED:
214                 return "commit running and required";
215         case COMMIT_BROKEN:
216                 return "broken commit";
217         default:
218                 return "unknown commit state";
219         }
220 }
221
222 const char *dbg_jhead(int jhead)
223 {
224         switch (jhead) {
225         case GCHD:
226                 return "0 (GC)";
227         case BASEHD:
228                 return "1 (base)";
229         case DATAHD:
230                 return "2 (data)";
231         default:
232                 return "unknown journal head";
233         }
234 }
235
236 static void dump_ch(const struct ubifs_ch *ch)
237 {
238         printk(KERN_DEBUG "\tmagic          %#x\n", le32_to_cpu(ch->magic));
239         printk(KERN_DEBUG "\tcrc            %#x\n", le32_to_cpu(ch->crc));
240         printk(KERN_DEBUG "\tnode_type      %d (%s)\n", ch->node_type,
241                dbg_ntype(ch->node_type));
242         printk(KERN_DEBUG "\tgroup_type     %d (%s)\n", ch->group_type,
243                dbg_gtype(ch->group_type));
244         printk(KERN_DEBUG "\tsqnum          %llu\n",
245                (unsigned long long)le64_to_cpu(ch->sqnum));
246         printk(KERN_DEBUG "\tlen            %u\n", le32_to_cpu(ch->len));
247 }
248
249 void dbg_dump_inode(struct ubifs_info *c, const struct inode *inode)
250 {
251         const struct ubifs_inode *ui = ubifs_inode(inode);
252         struct qstr nm = { .name = NULL };
253         union ubifs_key key;
254         struct ubifs_dent_node *dent, *pdent = NULL;
255         int count = 2;
256
257         printk(KERN_DEBUG "Dump in-memory inode:");
258         printk(KERN_DEBUG "\tinode          %lu\n", inode->i_ino);
259         printk(KERN_DEBUG "\tsize           %llu\n",
260                (unsigned long long)i_size_read(inode));
261         printk(KERN_DEBUG "\tnlink          %u\n", inode->i_nlink);
262         printk(KERN_DEBUG "\tuid            %u\n", (unsigned int)inode->i_uid);
263         printk(KERN_DEBUG "\tgid            %u\n", (unsigned int)inode->i_gid);
264         printk(KERN_DEBUG "\tatime          %u.%u\n",
265                (unsigned int)inode->i_atime.tv_sec,
266                (unsigned int)inode->i_atime.tv_nsec);
267         printk(KERN_DEBUG "\tmtime          %u.%u\n",
268                (unsigned int)inode->i_mtime.tv_sec,
269                (unsigned int)inode->i_mtime.tv_nsec);
270         printk(KERN_DEBUG "\tctime          %u.%u\n",
271                (unsigned int)inode->i_ctime.tv_sec,
272                (unsigned int)inode->i_ctime.tv_nsec);
273         printk(KERN_DEBUG "\tcreat_sqnum    %llu\n", ui->creat_sqnum);
274         printk(KERN_DEBUG "\txattr_size     %u\n", ui->xattr_size);
275         printk(KERN_DEBUG "\txattr_cnt      %u\n", ui->xattr_cnt);
276         printk(KERN_DEBUG "\txattr_names    %u\n", ui->xattr_names);
277         printk(KERN_DEBUG "\tdirty          %u\n", ui->dirty);
278         printk(KERN_DEBUG "\txattr          %u\n", ui->xattr);
279         printk(KERN_DEBUG "\tbulk_read      %u\n", ui->xattr);
280         printk(KERN_DEBUG "\tsynced_i_size  %llu\n",
281                (unsigned long long)ui->synced_i_size);
282         printk(KERN_DEBUG "\tui_size        %llu\n",
283                (unsigned long long)ui->ui_size);
284         printk(KERN_DEBUG "\tflags          %d\n", ui->flags);
285         printk(KERN_DEBUG "\tcompr_type     %d\n", ui->compr_type);
286         printk(KERN_DEBUG "\tlast_page_read %lu\n", ui->last_page_read);
287         printk(KERN_DEBUG "\tread_in_a_row  %lu\n", ui->read_in_a_row);
288         printk(KERN_DEBUG "\tdata_len       %d\n", ui->data_len);
289
290         if (!S_ISDIR(inode->i_mode))
291                 return;
292
293         printk(KERN_DEBUG "List of directory entries:\n");
294         ubifs_assert(!mutex_is_locked(&c->tnc_mutex));
295
296         lowest_dent_key(c, &key, inode->i_ino);
297         while (1) {
298                 dent = ubifs_tnc_next_ent(c, &key, &nm);
299                 if (IS_ERR(dent)) {
300                         if (PTR_ERR(dent) != -ENOENT)
301                                 printk(KERN_DEBUG "error %ld\n", PTR_ERR(dent));
302                         break;
303                 }
304
305                 printk(KERN_DEBUG "\t%d: %s (%s)\n",
306                        count++, dent->name, get_dent_type(dent->type));
307
308                 nm.name = dent->name;
309                 nm.len = le16_to_cpu(dent->nlen);
310                 kfree(pdent);
311                 pdent = dent;
312                 key_read(c, &dent->key, &key);
313         }
314         kfree(pdent);
315 }
316
317 void dbg_dump_node(const struct ubifs_info *c, const void *node)
318 {
319         int i, n;
320         union ubifs_key key;
321         const struct ubifs_ch *ch = node;
322
323         if (dbg_is_tst_rcvry(c))
324                 return;
325
326         /* If the magic is incorrect, just hexdump the first bytes */
327         if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
328                 printk(KERN_DEBUG "Not a node, first %zu bytes:", UBIFS_CH_SZ);
329                 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
330                                (void *)node, UBIFS_CH_SZ, 1);
331                 return;
332         }
333
334         spin_lock(&dbg_lock);
335         dump_ch(node);
336
337         switch (ch->node_type) {
338         case UBIFS_PAD_NODE:
339         {
340                 const struct ubifs_pad_node *pad = node;
341
342                 printk(KERN_DEBUG "\tpad_len        %u\n",
343                        le32_to_cpu(pad->pad_len));
344                 break;
345         }
346         case UBIFS_SB_NODE:
347         {
348                 const struct ubifs_sb_node *sup = node;
349                 unsigned int sup_flags = le32_to_cpu(sup->flags);
350
351                 printk(KERN_DEBUG "\tkey_hash       %d (%s)\n",
352                        (int)sup->key_hash, get_key_hash(sup->key_hash));
353                 printk(KERN_DEBUG "\tkey_fmt        %d (%s)\n",
354                        (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
355                 printk(KERN_DEBUG "\tflags          %#x\n", sup_flags);
356                 printk(KERN_DEBUG "\t  big_lpt      %u\n",
357                        !!(sup_flags & UBIFS_FLG_BIGLPT));
358                 printk(KERN_DEBUG "\t  space_fixup  %u\n",
359                        !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
360                 printk(KERN_DEBUG "\tmin_io_size    %u\n",
361                        le32_to_cpu(sup->min_io_size));
362                 printk(KERN_DEBUG "\tleb_size       %u\n",
363                        le32_to_cpu(sup->leb_size));
364                 printk(KERN_DEBUG "\tleb_cnt        %u\n",
365                        le32_to_cpu(sup->leb_cnt));
366                 printk(KERN_DEBUG "\tmax_leb_cnt    %u\n",
367                        le32_to_cpu(sup->max_leb_cnt));
368                 printk(KERN_DEBUG "\tmax_bud_bytes  %llu\n",
369                        (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
370                 printk(KERN_DEBUG "\tlog_lebs       %u\n",
371                        le32_to_cpu(sup->log_lebs));
372                 printk(KERN_DEBUG "\tlpt_lebs       %u\n",
373                        le32_to_cpu(sup->lpt_lebs));
374                 printk(KERN_DEBUG "\torph_lebs      %u\n",
375                        le32_to_cpu(sup->orph_lebs));
376                 printk(KERN_DEBUG "\tjhead_cnt      %u\n",
377                        le32_to_cpu(sup->jhead_cnt));
378                 printk(KERN_DEBUG "\tfanout         %u\n",
379                        le32_to_cpu(sup->fanout));
380                 printk(KERN_DEBUG "\tlsave_cnt      %u\n",
381                        le32_to_cpu(sup->lsave_cnt));
382                 printk(KERN_DEBUG "\tdefault_compr  %u\n",
383                        (int)le16_to_cpu(sup->default_compr));
384                 printk(KERN_DEBUG "\trp_size        %llu\n",
385                        (unsigned long long)le64_to_cpu(sup->rp_size));
386                 printk(KERN_DEBUG "\trp_uid         %u\n",
387                        le32_to_cpu(sup->rp_uid));
388                 printk(KERN_DEBUG "\trp_gid         %u\n",
389                        le32_to_cpu(sup->rp_gid));
390                 printk(KERN_DEBUG "\tfmt_version    %u\n",
391                        le32_to_cpu(sup->fmt_version));
392                 printk(KERN_DEBUG "\ttime_gran      %u\n",
393                        le32_to_cpu(sup->time_gran));
394                 printk(KERN_DEBUG "\tUUID           %pUB\n",
395                        sup->uuid);
396                 break;
397         }
398         case UBIFS_MST_NODE:
399         {
400                 const struct ubifs_mst_node *mst = node;
401
402                 printk(KERN_DEBUG "\thighest_inum   %llu\n",
403                        (unsigned long long)le64_to_cpu(mst->highest_inum));
404                 printk(KERN_DEBUG "\tcommit number  %llu\n",
405                        (unsigned long long)le64_to_cpu(mst->cmt_no));
406                 printk(KERN_DEBUG "\tflags          %#x\n",
407                        le32_to_cpu(mst->flags));
408                 printk(KERN_DEBUG "\tlog_lnum       %u\n",
409                        le32_to_cpu(mst->log_lnum));
410                 printk(KERN_DEBUG "\troot_lnum      %u\n",
411                        le32_to_cpu(mst->root_lnum));
412                 printk(KERN_DEBUG "\troot_offs      %u\n",
413                        le32_to_cpu(mst->root_offs));
414                 printk(KERN_DEBUG "\troot_len       %u\n",
415                        le32_to_cpu(mst->root_len));
416                 printk(KERN_DEBUG "\tgc_lnum        %u\n",
417                        le32_to_cpu(mst->gc_lnum));
418                 printk(KERN_DEBUG "\tihead_lnum     %u\n",
419                        le32_to_cpu(mst->ihead_lnum));
420                 printk(KERN_DEBUG "\tihead_offs     %u\n",
421                        le32_to_cpu(mst->ihead_offs));
422                 printk(KERN_DEBUG "\tindex_size     %llu\n",
423                        (unsigned long long)le64_to_cpu(mst->index_size));
424                 printk(KERN_DEBUG "\tlpt_lnum       %u\n",
425                        le32_to_cpu(mst->lpt_lnum));
426                 printk(KERN_DEBUG "\tlpt_offs       %u\n",
427                        le32_to_cpu(mst->lpt_offs));
428                 printk(KERN_DEBUG "\tnhead_lnum     %u\n",
429                        le32_to_cpu(mst->nhead_lnum));
430                 printk(KERN_DEBUG "\tnhead_offs     %u\n",
431                        le32_to_cpu(mst->nhead_offs));
432                 printk(KERN_DEBUG "\tltab_lnum      %u\n",
433                        le32_to_cpu(mst->ltab_lnum));
434                 printk(KERN_DEBUG "\tltab_offs      %u\n",
435                        le32_to_cpu(mst->ltab_offs));
436                 printk(KERN_DEBUG "\tlsave_lnum     %u\n",
437                        le32_to_cpu(mst->lsave_lnum));
438                 printk(KERN_DEBUG "\tlsave_offs     %u\n",
439                        le32_to_cpu(mst->lsave_offs));
440                 printk(KERN_DEBUG "\tlscan_lnum     %u\n",
441                        le32_to_cpu(mst->lscan_lnum));
442                 printk(KERN_DEBUG "\tleb_cnt        %u\n",
443                        le32_to_cpu(mst->leb_cnt));
444                 printk(KERN_DEBUG "\tempty_lebs     %u\n",
445                        le32_to_cpu(mst->empty_lebs));
446                 printk(KERN_DEBUG "\tidx_lebs       %u\n",
447                        le32_to_cpu(mst->idx_lebs));
448                 printk(KERN_DEBUG "\ttotal_free     %llu\n",
449                        (unsigned long long)le64_to_cpu(mst->total_free));
450                 printk(KERN_DEBUG "\ttotal_dirty    %llu\n",
451                        (unsigned long long)le64_to_cpu(mst->total_dirty));
452                 printk(KERN_DEBUG "\ttotal_used     %llu\n",
453                        (unsigned long long)le64_to_cpu(mst->total_used));
454                 printk(KERN_DEBUG "\ttotal_dead     %llu\n",
455                        (unsigned long long)le64_to_cpu(mst->total_dead));
456                 printk(KERN_DEBUG "\ttotal_dark     %llu\n",
457                        (unsigned long long)le64_to_cpu(mst->total_dark));
458                 break;
459         }
460         case UBIFS_REF_NODE:
461         {
462                 const struct ubifs_ref_node *ref = node;
463
464                 printk(KERN_DEBUG "\tlnum           %u\n",
465                        le32_to_cpu(ref->lnum));
466                 printk(KERN_DEBUG "\toffs           %u\n",
467                        le32_to_cpu(ref->offs));
468                 printk(KERN_DEBUG "\tjhead          %u\n",
469                        le32_to_cpu(ref->jhead));
470                 break;
471         }
472         case UBIFS_INO_NODE:
473         {
474                 const struct ubifs_ino_node *ino = node;
475
476                 key_read(c, &ino->key, &key);
477                 printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key));
478                 printk(KERN_DEBUG "\tcreat_sqnum    %llu\n",
479                        (unsigned long long)le64_to_cpu(ino->creat_sqnum));
480                 printk(KERN_DEBUG "\tsize           %llu\n",
481                        (unsigned long long)le64_to_cpu(ino->size));
482                 printk(KERN_DEBUG "\tnlink          %u\n",
483                        le32_to_cpu(ino->nlink));
484                 printk(KERN_DEBUG "\tatime          %lld.%u\n",
485                        (long long)le64_to_cpu(ino->atime_sec),
486                        le32_to_cpu(ino->atime_nsec));
487                 printk(KERN_DEBUG "\tmtime          %lld.%u\n",
488                        (long long)le64_to_cpu(ino->mtime_sec),
489                        le32_to_cpu(ino->mtime_nsec));
490                 printk(KERN_DEBUG "\tctime          %lld.%u\n",
491                        (long long)le64_to_cpu(ino->ctime_sec),
492                        le32_to_cpu(ino->ctime_nsec));
493                 printk(KERN_DEBUG "\tuid            %u\n",
494                        le32_to_cpu(ino->uid));
495                 printk(KERN_DEBUG "\tgid            %u\n",
496                        le32_to_cpu(ino->gid));
497                 printk(KERN_DEBUG "\tmode           %u\n",
498                        le32_to_cpu(ino->mode));
499                 printk(KERN_DEBUG "\tflags          %#x\n",
500                        le32_to_cpu(ino->flags));
501                 printk(KERN_DEBUG "\txattr_cnt      %u\n",
502                        le32_to_cpu(ino->xattr_cnt));
503                 printk(KERN_DEBUG "\txattr_size     %u\n",
504                        le32_to_cpu(ino->xattr_size));
505                 printk(KERN_DEBUG "\txattr_names    %u\n",
506                        le32_to_cpu(ino->xattr_names));
507                 printk(KERN_DEBUG "\tcompr_type     %#x\n",
508                        (int)le16_to_cpu(ino->compr_type));
509                 printk(KERN_DEBUG "\tdata len       %u\n",
510                        le32_to_cpu(ino->data_len));
511                 break;
512         }
513         case UBIFS_DENT_NODE:
514         case UBIFS_XENT_NODE:
515         {
516                 const struct ubifs_dent_node *dent = node;
517                 int nlen = le16_to_cpu(dent->nlen);
518
519                 key_read(c, &dent->key, &key);
520                 printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key));
521                 printk(KERN_DEBUG "\tinum           %llu\n",
522                        (unsigned long long)le64_to_cpu(dent->inum));
523                 printk(KERN_DEBUG "\ttype           %d\n", (int)dent->type);
524                 printk(KERN_DEBUG "\tnlen           %d\n", nlen);
525                 printk(KERN_DEBUG "\tname           ");
526
527                 if (nlen > UBIFS_MAX_NLEN)
528                         printk(KERN_DEBUG "(bad name length, not printing, "
529                                           "bad or corrupted node)");
530                 else {
531                         for (i = 0; i < nlen && dent->name[i]; i++)
532                                 printk(KERN_CONT "%c", dent->name[i]);
533                 }
534                 printk(KERN_CONT "\n");
535
536                 break;
537         }
538         case UBIFS_DATA_NODE:
539         {
540                 const struct ubifs_data_node *dn = node;
541                 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
542
543                 key_read(c, &dn->key, &key);
544                 printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key));
545                 printk(KERN_DEBUG "\tsize           %u\n",
546                        le32_to_cpu(dn->size));
547                 printk(KERN_DEBUG "\tcompr_typ      %d\n",
548                        (int)le16_to_cpu(dn->compr_type));
549                 printk(KERN_DEBUG "\tdata size      %d\n",
550                        dlen);
551                 printk(KERN_DEBUG "\tdata:\n");
552                 print_hex_dump(KERN_DEBUG, "\t", DUMP_PREFIX_OFFSET, 32, 1,
553                                (void *)&dn->data, dlen, 0);
554                 break;
555         }
556         case UBIFS_TRUN_NODE:
557         {
558                 const struct ubifs_trun_node *trun = node;
559
560                 printk(KERN_DEBUG "\tinum           %u\n",
561                        le32_to_cpu(trun->inum));
562                 printk(KERN_DEBUG "\told_size       %llu\n",
563                        (unsigned long long)le64_to_cpu(trun->old_size));
564                 printk(KERN_DEBUG "\tnew_size       %llu\n",
565                        (unsigned long long)le64_to_cpu(trun->new_size));
566                 break;
567         }
568         case UBIFS_IDX_NODE:
569         {
570                 const struct ubifs_idx_node *idx = node;
571
572                 n = le16_to_cpu(idx->child_cnt);
573                 printk(KERN_DEBUG "\tchild_cnt      %d\n", n);
574                 printk(KERN_DEBUG "\tlevel          %d\n",
575                        (int)le16_to_cpu(idx->level));
576                 printk(KERN_DEBUG "\tBranches:\n");
577
578                 for (i = 0; i < n && i < c->fanout - 1; i++) {
579                         const struct ubifs_branch *br;
580
581                         br = ubifs_idx_branch(c, idx, i);
582                         key_read(c, &br->key, &key);
583                         printk(KERN_DEBUG "\t%d: LEB %d:%d len %d key %s\n",
584                                i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
585                                le32_to_cpu(br->len), DBGKEY(&key));
586                 }
587                 break;
588         }
589         case UBIFS_CS_NODE:
590                 break;
591         case UBIFS_ORPH_NODE:
592         {
593                 const struct ubifs_orph_node *orph = node;
594
595                 printk(KERN_DEBUG "\tcommit number  %llu\n",
596                        (unsigned long long)
597                                 le64_to_cpu(orph->cmt_no) & LLONG_MAX);
598                 printk(KERN_DEBUG "\tlast node flag %llu\n",
599                        (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
600                 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
601                 printk(KERN_DEBUG "\t%d orphan inode numbers:\n", n);
602                 for (i = 0; i < n; i++)
603                         printk(KERN_DEBUG "\t  ino %llu\n",
604                                (unsigned long long)le64_to_cpu(orph->inos[i]));
605                 break;
606         }
607         default:
608                 printk(KERN_DEBUG "node type %d was not recognized\n",
609                        (int)ch->node_type);
610         }
611         spin_unlock(&dbg_lock);
612 }
613
614 void dbg_dump_budget_req(const struct ubifs_budget_req *req)
615 {
616         spin_lock(&dbg_lock);
617         printk(KERN_DEBUG "Budgeting request: new_ino %d, dirtied_ino %d\n",
618                req->new_ino, req->dirtied_ino);
619         printk(KERN_DEBUG "\tnew_ino_d   %d, dirtied_ino_d %d\n",
620                req->new_ino_d, req->dirtied_ino_d);
621         printk(KERN_DEBUG "\tnew_page    %d, dirtied_page %d\n",
622                req->new_page, req->dirtied_page);
623         printk(KERN_DEBUG "\tnew_dent    %d, mod_dent     %d\n",
624                req->new_dent, req->mod_dent);
625         printk(KERN_DEBUG "\tidx_growth  %d\n", req->idx_growth);
626         printk(KERN_DEBUG "\tdata_growth %d dd_growth     %d\n",
627                req->data_growth, req->dd_growth);
628         spin_unlock(&dbg_lock);
629 }
630
631 void dbg_dump_lstats(const struct ubifs_lp_stats *lst)
632 {
633         spin_lock(&dbg_lock);
634         printk(KERN_DEBUG "(pid %d) Lprops statistics: empty_lebs %d, "
635                "idx_lebs  %d\n", current->pid, lst->empty_lebs, lst->idx_lebs);
636         printk(KERN_DEBUG "\ttaken_empty_lebs %d, total_free %lld, "
637                "total_dirty %lld\n", lst->taken_empty_lebs, lst->total_free,
638                lst->total_dirty);
639         printk(KERN_DEBUG "\ttotal_used %lld, total_dark %lld, "
640                "total_dead %lld\n", lst->total_used, lst->total_dark,
641                lst->total_dead);
642         spin_unlock(&dbg_lock);
643 }
644
645 void dbg_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
646 {
647         int i;
648         struct rb_node *rb;
649         struct ubifs_bud *bud;
650         struct ubifs_gced_idx_leb *idx_gc;
651         long long available, outstanding, free;
652
653         spin_lock(&c->space_lock);
654         spin_lock(&dbg_lock);
655         printk(KERN_DEBUG "(pid %d) Budgeting info: data budget sum %lld, "
656                "total budget sum %lld\n", current->pid,
657                bi->data_growth + bi->dd_growth,
658                bi->data_growth + bi->dd_growth + bi->idx_growth);
659         printk(KERN_DEBUG "\tbudg_data_growth %lld, budg_dd_growth %lld, "
660                "budg_idx_growth %lld\n", bi->data_growth, bi->dd_growth,
661                bi->idx_growth);
662         printk(KERN_DEBUG "\tmin_idx_lebs %d, old_idx_sz %llu, "
663                "uncommitted_idx %lld\n", bi->min_idx_lebs, bi->old_idx_sz,
664                bi->uncommitted_idx);
665         printk(KERN_DEBUG "\tpage_budget %d, inode_budget %d, dent_budget %d\n",
666                bi->page_budget, bi->inode_budget, bi->dent_budget);
667         printk(KERN_DEBUG "\tnospace %u, nospace_rp %u\n",
668                bi->nospace, bi->nospace_rp);
669         printk(KERN_DEBUG "\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
670                c->dark_wm, c->dead_wm, c->max_idx_node_sz);
671
672         if (bi != &c->bi)
673                 /*
674                  * If we are dumping saved budgeting data, do not print
675                  * additional information which is about the current state, not
676                  * the old one which corresponded to the saved budgeting data.
677                  */
678                 goto out_unlock;
679
680         printk(KERN_DEBUG "\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
681                c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
682         printk(KERN_DEBUG "\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, "
683                "clean_zn_cnt %ld\n", atomic_long_read(&c->dirty_pg_cnt),
684                atomic_long_read(&c->dirty_zn_cnt),
685                atomic_long_read(&c->clean_zn_cnt));
686         printk(KERN_DEBUG "\tgc_lnum %d, ihead_lnum %d\n",
687                c->gc_lnum, c->ihead_lnum);
688
689         /* If we are in R/O mode, journal heads do not exist */
690         if (c->jheads)
691                 for (i = 0; i < c->jhead_cnt; i++)
692                         printk(KERN_DEBUG "\tjhead %s\t LEB %d\n",
693                                dbg_jhead(c->jheads[i].wbuf.jhead),
694                                c->jheads[i].wbuf.lnum);
695         for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
696                 bud = rb_entry(rb, struct ubifs_bud, rb);
697                 printk(KERN_DEBUG "\tbud LEB %d\n", bud->lnum);
698         }
699         list_for_each_entry(bud, &c->old_buds, list)
700                 printk(KERN_DEBUG "\told bud LEB %d\n", bud->lnum);
701         list_for_each_entry(idx_gc, &c->idx_gc, list)
702                 printk(KERN_DEBUG "\tGC'ed idx LEB %d unmap %d\n",
703                        idx_gc->lnum, idx_gc->unmap);
704         printk(KERN_DEBUG "\tcommit state %d\n", c->cmt_state);
705
706         /* Print budgeting predictions */
707         available = ubifs_calc_available(c, c->bi.min_idx_lebs);
708         outstanding = c->bi.data_growth + c->bi.dd_growth;
709         free = ubifs_get_free_space_nolock(c);
710         printk(KERN_DEBUG "Budgeting predictions:\n");
711         printk(KERN_DEBUG "\tavailable: %lld, outstanding %lld, free %lld\n",
712                available, outstanding, free);
713 out_unlock:
714         spin_unlock(&dbg_lock);
715         spin_unlock(&c->space_lock);
716 }
717
718 void dbg_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
719 {
720         int i, spc, dark = 0, dead = 0;
721         struct rb_node *rb;
722         struct ubifs_bud *bud;
723
724         spc = lp->free + lp->dirty;
725         if (spc < c->dead_wm)
726                 dead = spc;
727         else
728                 dark = ubifs_calc_dark(c, spc);
729
730         if (lp->flags & LPROPS_INDEX)
731                 printk(KERN_DEBUG "LEB %-7d free %-8d dirty %-8d used %-8d "
732                        "free + dirty %-8d flags %#x (", lp->lnum, lp->free,
733                        lp->dirty, c->leb_size - spc, spc, lp->flags);
734         else
735                 printk(KERN_DEBUG "LEB %-7d free %-8d dirty %-8d used %-8d "
736                        "free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d "
737                        "flags %#-4x (", lp->lnum, lp->free, lp->dirty,
738                        c->leb_size - spc, spc, dark, dead,
739                        (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
740
741         if (lp->flags & LPROPS_TAKEN) {
742                 if (lp->flags & LPROPS_INDEX)
743                         printk(KERN_CONT "index, taken");
744                 else
745                         printk(KERN_CONT "taken");
746         } else {
747                 const char *s;
748
749                 if (lp->flags & LPROPS_INDEX) {
750                         switch (lp->flags & LPROPS_CAT_MASK) {
751                         case LPROPS_DIRTY_IDX:
752                                 s = "dirty index";
753                                 break;
754                         case LPROPS_FRDI_IDX:
755                                 s = "freeable index";
756                                 break;
757                         default:
758                                 s = "index";
759                         }
760                 } else {
761                         switch (lp->flags & LPROPS_CAT_MASK) {
762                         case LPROPS_UNCAT:
763                                 s = "not categorized";
764                                 break;
765                         case LPROPS_DIRTY:
766                                 s = "dirty";
767                                 break;
768                         case LPROPS_FREE:
769                                 s = "free";
770                                 break;
771                         case LPROPS_EMPTY:
772                                 s = "empty";
773                                 break;
774                         case LPROPS_FREEABLE:
775                                 s = "freeable";
776                                 break;
777                         default:
778                                 s = NULL;
779                                 break;
780                         }
781                 }
782                 printk(KERN_CONT "%s", s);
783         }
784
785         for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
786                 bud = rb_entry(rb, struct ubifs_bud, rb);
787                 if (bud->lnum == lp->lnum) {
788                         int head = 0;
789                         for (i = 0; i < c->jhead_cnt; i++) {
790                                 /*
791                                  * Note, if we are in R/O mode or in the middle
792                                  * of mounting/re-mounting, the write-buffers do
793                                  * not exist.
794                                  */
795                                 if (c->jheads &&
796                                     lp->lnum == c->jheads[i].wbuf.lnum) {
797                                         printk(KERN_CONT ", jhead %s",
798                                                dbg_jhead(i));
799                                         head = 1;
800                                 }
801                         }
802                         if (!head)
803                                 printk(KERN_CONT ", bud of jhead %s",
804                                        dbg_jhead(bud->jhead));
805                 }
806         }
807         if (lp->lnum == c->gc_lnum)
808                 printk(KERN_CONT ", GC LEB");
809         printk(KERN_CONT ")\n");
810 }
811
812 void dbg_dump_lprops(struct ubifs_info *c)
813 {
814         int lnum, err;
815         struct ubifs_lprops lp;
816         struct ubifs_lp_stats lst;
817
818         printk(KERN_DEBUG "(pid %d) start dumping LEB properties\n",
819                current->pid);
820         ubifs_get_lp_stats(c, &lst);
821         dbg_dump_lstats(&lst);
822
823         for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
824                 err = ubifs_read_one_lp(c, lnum, &lp);
825                 if (err)
826                         ubifs_err("cannot read lprops for LEB %d", lnum);
827
828                 dbg_dump_lprop(c, &lp);
829         }
830         printk(KERN_DEBUG "(pid %d) finish dumping LEB properties\n",
831                current->pid);
832 }
833
834 void dbg_dump_lpt_info(struct ubifs_info *c)
835 {
836         int i;
837
838         spin_lock(&dbg_lock);
839         printk(KERN_DEBUG "(pid %d) dumping LPT information\n", current->pid);
840         printk(KERN_DEBUG "\tlpt_sz:        %lld\n", c->lpt_sz);
841         printk(KERN_DEBUG "\tpnode_sz:      %d\n", c->pnode_sz);
842         printk(KERN_DEBUG "\tnnode_sz:      %d\n", c->nnode_sz);
843         printk(KERN_DEBUG "\tltab_sz:       %d\n", c->ltab_sz);
844         printk(KERN_DEBUG "\tlsave_sz:      %d\n", c->lsave_sz);
845         printk(KERN_DEBUG "\tbig_lpt:       %d\n", c->big_lpt);
846         printk(KERN_DEBUG "\tlpt_hght:      %d\n", c->lpt_hght);
847         printk(KERN_DEBUG "\tpnode_cnt:     %d\n", c->pnode_cnt);
848         printk(KERN_DEBUG "\tnnode_cnt:     %d\n", c->nnode_cnt);
849         printk(KERN_DEBUG "\tdirty_pn_cnt:  %d\n", c->dirty_pn_cnt);
850         printk(KERN_DEBUG "\tdirty_nn_cnt:  %d\n", c->dirty_nn_cnt);
851         printk(KERN_DEBUG "\tlsave_cnt:     %d\n", c->lsave_cnt);
852         printk(KERN_DEBUG "\tspace_bits:    %d\n", c->space_bits);
853         printk(KERN_DEBUG "\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
854         printk(KERN_DEBUG "\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
855         printk(KERN_DEBUG "\tlpt_spc_bits:  %d\n", c->lpt_spc_bits);
856         printk(KERN_DEBUG "\tpcnt_bits:     %d\n", c->pcnt_bits);
857         printk(KERN_DEBUG "\tlnum_bits:     %d\n", c->lnum_bits);
858         printk(KERN_DEBUG "\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
859         printk(KERN_DEBUG "\tLPT head is at %d:%d\n",
860                c->nhead_lnum, c->nhead_offs);
861         printk(KERN_DEBUG "\tLPT ltab is at %d:%d\n",
862                c->ltab_lnum, c->ltab_offs);
863         if (c->big_lpt)
864                 printk(KERN_DEBUG "\tLPT lsave is at %d:%d\n",
865                        c->lsave_lnum, c->lsave_offs);
866         for (i = 0; i < c->lpt_lebs; i++)
867                 printk(KERN_DEBUG "\tLPT LEB %d free %d dirty %d tgc %d "
868                        "cmt %d\n", i + c->lpt_first, c->ltab[i].free,
869                        c->ltab[i].dirty, c->ltab[i].tgc, c->ltab[i].cmt);
870         spin_unlock(&dbg_lock);
871 }
872
873 void dbg_dump_leb(const struct ubifs_info *c, int lnum)
874 {
875         struct ubifs_scan_leb *sleb;
876         struct ubifs_scan_node *snod;
877         void *buf;
878
879         if (dbg_is_tst_rcvry(c))
880                 return;
881
882         printk(KERN_DEBUG "(pid %d) start dumping LEB %d\n",
883                current->pid, lnum);
884
885         buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
886         if (!buf) {
887                 ubifs_err("cannot allocate memory for dumping LEB %d", lnum);
888                 return;
889         }
890
891         sleb = ubifs_scan(c, lnum, 0, buf, 0);
892         if (IS_ERR(sleb)) {
893                 ubifs_err("scan error %d", (int)PTR_ERR(sleb));
894                 goto out;
895         }
896
897         printk(KERN_DEBUG "LEB %d has %d nodes ending at %d\n", lnum,
898                sleb->nodes_cnt, sleb->endpt);
899
900         list_for_each_entry(snod, &sleb->nodes, list) {
901                 cond_resched();
902                 printk(KERN_DEBUG "Dumping node at LEB %d:%d len %d\n", lnum,
903                        snod->offs, snod->len);
904                 dbg_dump_node(c, snod->node);
905         }
906
907         printk(KERN_DEBUG "(pid %d) finish dumping LEB %d\n",
908                current->pid, lnum);
909         ubifs_scan_destroy(sleb);
910
911 out:
912         vfree(buf);
913         return;
914 }
915
916 void dbg_dump_znode(const struct ubifs_info *c,
917                     const struct ubifs_znode *znode)
918 {
919         int n;
920         const struct ubifs_zbranch *zbr;
921
922         spin_lock(&dbg_lock);
923         if (znode->parent)
924                 zbr = &znode->parent->zbranch[znode->iip];
925         else
926                 zbr = &c->zroot;
927
928         printk(KERN_DEBUG "znode %p, LEB %d:%d len %d parent %p iip %d level %d"
929                " child_cnt %d flags %lx\n", znode, zbr->lnum, zbr->offs,
930                zbr->len, znode->parent, znode->iip, znode->level,
931                znode->child_cnt, znode->flags);
932
933         if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
934                 spin_unlock(&dbg_lock);
935                 return;
936         }
937
938         printk(KERN_DEBUG "zbranches:\n");
939         for (n = 0; n < znode->child_cnt; n++) {
940                 zbr = &znode->zbranch[n];
941                 if (znode->level > 0)
942                         printk(KERN_DEBUG "\t%d: znode %p LEB %d:%d len %d key "
943                                           "%s\n", n, zbr->znode, zbr->lnum,
944                                           zbr->offs, zbr->len,
945                                           DBGKEY(&zbr->key));
946                 else
947                         printk(KERN_DEBUG "\t%d: LNC %p LEB %d:%d len %d key "
948                                           "%s\n", n, zbr->znode, zbr->lnum,
949                                           zbr->offs, zbr->len,
950                                           DBGKEY(&zbr->key));
951         }
952         spin_unlock(&dbg_lock);
953 }
954
955 void dbg_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
956 {
957         int i;
958
959         printk(KERN_DEBUG "(pid %d) start dumping heap cat %d (%d elements)\n",
960                current->pid, cat, heap->cnt);
961         for (i = 0; i < heap->cnt; i++) {
962                 struct ubifs_lprops *lprops = heap->arr[i];
963
964                 printk(KERN_DEBUG "\t%d. LEB %d hpos %d free %d dirty %d "
965                        "flags %d\n", i, lprops->lnum, lprops->hpos,
966                        lprops->free, lprops->dirty, lprops->flags);
967         }
968         printk(KERN_DEBUG "(pid %d) finish dumping heap\n", current->pid);
969 }
970
971 void dbg_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
972                     struct ubifs_nnode *parent, int iip)
973 {
974         int i;
975
976         printk(KERN_DEBUG "(pid %d) dumping pnode:\n", current->pid);
977         printk(KERN_DEBUG "\taddress %zx parent %zx cnext %zx\n",
978                (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
979         printk(KERN_DEBUG "\tflags %lu iip %d level %d num %d\n",
980                pnode->flags, iip, pnode->level, pnode->num);
981         for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
982                 struct ubifs_lprops *lp = &pnode->lprops[i];
983
984                 printk(KERN_DEBUG "\t%d: free %d dirty %d flags %d lnum %d\n",
985                        i, lp->free, lp->dirty, lp->flags, lp->lnum);
986         }
987 }
988
989 void dbg_dump_tnc(struct ubifs_info *c)
990 {
991         struct ubifs_znode *znode;
992         int level;
993
994         printk(KERN_DEBUG "\n");
995         printk(KERN_DEBUG "(pid %d) start dumping TNC tree\n", current->pid);
996         znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
997         level = znode->level;
998         printk(KERN_DEBUG "== Level %d ==\n", level);
999         while (znode) {
1000                 if (level != znode->level) {
1001                         level = znode->level;
1002                         printk(KERN_DEBUG "== Level %d ==\n", level);
1003                 }
1004                 dbg_dump_znode(c, znode);
1005                 znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
1006         }
1007         printk(KERN_DEBUG "(pid %d) finish dumping TNC tree\n", current->pid);
1008 }
1009
1010 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
1011                       void *priv)
1012 {
1013         dbg_dump_znode(c, znode);
1014         return 0;
1015 }
1016
1017 /**
1018  * dbg_dump_index - dump the on-flash index.
1019  * @c: UBIFS file-system description object
1020  *
1021  * This function dumps whole UBIFS indexing B-tree, unlike 'dbg_dump_tnc()'
1022  * which dumps only in-memory znodes and does not read znodes which from flash.
1023  */
1024 void dbg_dump_index(struct ubifs_info *c)
1025 {
1026         dbg_walk_index(c, NULL, dump_znode, NULL);
1027 }
1028
1029 /**
1030  * dbg_save_space_info - save information about flash space.
1031  * @c: UBIFS file-system description object
1032  *
1033  * This function saves information about UBIFS free space, dirty space, etc, in
1034  * order to check it later.
1035  */
1036 void dbg_save_space_info(struct ubifs_info *c)
1037 {
1038         struct ubifs_debug_info *d = c->dbg;
1039         int freeable_cnt;
1040
1041         spin_lock(&c->space_lock);
1042         memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
1043         memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
1044         d->saved_idx_gc_cnt = c->idx_gc_cnt;
1045
1046         /*
1047          * We use a dirty hack here and zero out @c->freeable_cnt, because it
1048          * affects the free space calculations, and UBIFS might not know about
1049          * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
1050          * only when we read their lprops, and we do this only lazily, upon the
1051          * need. So at any given point of time @c->freeable_cnt might be not
1052          * exactly accurate.
1053          *
1054          * Just one example about the issue we hit when we did not zero
1055          * @c->freeable_cnt.
1056          * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
1057          *    amount of free space in @d->saved_free
1058          * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
1059          *    information from flash, where we cache LEBs from various
1060          *    categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
1061          *    -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
1062          *    -> 'ubifs_get_pnode()' -> 'update_cats()'
1063          *    -> 'ubifs_add_to_cat()').
1064          * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
1065          *    becomes %1.
1066          * 4. We calculate the amount of free space when the re-mount is
1067          *    finished in 'dbg_check_space_info()' and it does not match
1068          *    @d->saved_free.
1069          */
1070         freeable_cnt = c->freeable_cnt;
1071         c->freeable_cnt = 0;
1072         d->saved_free = ubifs_get_free_space_nolock(c);
1073         c->freeable_cnt = freeable_cnt;
1074         spin_unlock(&c->space_lock);
1075 }
1076
1077 /**
1078  * dbg_check_space_info - check flash space information.
1079  * @c: UBIFS file-system description object
1080  *
1081  * This function compares current flash space information with the information
1082  * which was saved when the 'dbg_save_space_info()' function was called.
1083  * Returns zero if the information has not changed, and %-EINVAL it it has
1084  * changed.
1085  */
1086 int dbg_check_space_info(struct ubifs_info *c)
1087 {
1088         struct ubifs_debug_info *d = c->dbg;
1089         struct ubifs_lp_stats lst;
1090         long long free;
1091         int freeable_cnt;
1092
1093         spin_lock(&c->space_lock);
1094         freeable_cnt = c->freeable_cnt;
1095         c->freeable_cnt = 0;
1096         free = ubifs_get_free_space_nolock(c);
1097         c->freeable_cnt = freeable_cnt;
1098         spin_unlock(&c->space_lock);
1099
1100         if (free != d->saved_free) {
1101                 ubifs_err("free space changed from %lld to %lld",
1102                           d->saved_free, free);
1103                 goto out;
1104         }
1105
1106         return 0;
1107
1108 out:
1109         ubifs_msg("saved lprops statistics dump");
1110         dbg_dump_lstats(&d->saved_lst);
1111         ubifs_msg("saved budgeting info dump");
1112         dbg_dump_budg(c, &d->saved_bi);
1113         ubifs_msg("saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1114         ubifs_msg("current lprops statistics dump");
1115         ubifs_get_lp_stats(c, &lst);
1116         dbg_dump_lstats(&lst);
1117         ubifs_msg("current budgeting info dump");
1118         dbg_dump_budg(c, &c->bi);
1119         dump_stack();
1120         return -EINVAL;
1121 }
1122
1123 /**
1124  * dbg_check_synced_i_size - check synchronized inode size.
1125  * @c: UBIFS file-system description object
1126  * @inode: inode to check
1127  *
1128  * If inode is clean, synchronized inode size has to be equivalent to current
1129  * inode size. This function has to be called only for locked inodes (@i_mutex
1130  * has to be locked). Returns %0 if synchronized inode size if correct, and
1131  * %-EINVAL if not.
1132  */
1133 int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
1134 {
1135         int err = 0;
1136         struct ubifs_inode *ui = ubifs_inode(inode);
1137
1138         if (!dbg_is_chk_gen(c))
1139                 return 0;
1140         if (!S_ISREG(inode->i_mode))
1141                 return 0;
1142
1143         mutex_lock(&ui->ui_mutex);
1144         spin_lock(&ui->ui_lock);
1145         if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1146                 ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode "
1147                           "is clean", ui->ui_size, ui->synced_i_size);
1148                 ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1149                           inode->i_mode, i_size_read(inode));
1150                 dbg_dump_stack();
1151                 err = -EINVAL;
1152         }
1153         spin_unlock(&ui->ui_lock);
1154         mutex_unlock(&ui->ui_mutex);
1155         return err;
1156 }
1157
1158 /*
1159  * dbg_check_dir - check directory inode size and link count.
1160  * @c: UBIFS file-system description object
1161  * @dir: the directory to calculate size for
1162  * @size: the result is returned here
1163  *
1164  * This function makes sure that directory size and link count are correct.
1165  * Returns zero in case of success and a negative error code in case of
1166  * failure.
1167  *
1168  * Note, it is good idea to make sure the @dir->i_mutex is locked before
1169  * calling this function.
1170  */
1171 int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1172 {
1173         unsigned int nlink = 2;
1174         union ubifs_key key;
1175         struct ubifs_dent_node *dent, *pdent = NULL;
1176         struct qstr nm = { .name = NULL };
1177         loff_t size = UBIFS_INO_NODE_SZ;
1178
1179         if (!dbg_is_chk_gen(c))
1180                 return 0;
1181
1182         if (!S_ISDIR(dir->i_mode))
1183                 return 0;
1184
1185         lowest_dent_key(c, &key, dir->i_ino);
1186         while (1) {
1187                 int err;
1188
1189                 dent = ubifs_tnc_next_ent(c, &key, &nm);
1190                 if (IS_ERR(dent)) {
1191                         err = PTR_ERR(dent);
1192                         if (err == -ENOENT)
1193                                 break;
1194                         return err;
1195                 }
1196
1197                 nm.name = dent->name;
1198                 nm.len = le16_to_cpu(dent->nlen);
1199                 size += CALC_DENT_SIZE(nm.len);
1200                 if (dent->type == UBIFS_ITYPE_DIR)
1201                         nlink += 1;
1202                 kfree(pdent);
1203                 pdent = dent;
1204                 key_read(c, &dent->key, &key);
1205         }
1206         kfree(pdent);
1207
1208         if (i_size_read(dir) != size) {
1209                 ubifs_err("directory inode %lu has size %llu, "
1210                           "but calculated size is %llu", dir->i_ino,
1211                           (unsigned long long)i_size_read(dir),
1212                           (unsigned long long)size);
1213                 dbg_dump_inode(c, dir);
1214                 dump_stack();
1215                 return -EINVAL;
1216         }
1217         if (dir->i_nlink != nlink) {
1218                 ubifs_err("directory inode %lu has nlink %u, but calculated "
1219                           "nlink is %u", dir->i_ino, dir->i_nlink, nlink);
1220                 dbg_dump_inode(c, dir);
1221                 dump_stack();
1222                 return -EINVAL;
1223         }
1224
1225         return 0;
1226 }
1227
1228 /**
1229  * dbg_check_key_order - make sure that colliding keys are properly ordered.
1230  * @c: UBIFS file-system description object
1231  * @zbr1: first zbranch
1232  * @zbr2: following zbranch
1233  *
1234  * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1235  * names of the direntries/xentries which are referred by the keys. This
1236  * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1237  * sure the name of direntry/xentry referred by @zbr1 is less than
1238  * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1239  * and a negative error code in case of failure.
1240  */
1241 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1242                                struct ubifs_zbranch *zbr2)
1243 {
1244         int err, nlen1, nlen2, cmp;
1245         struct ubifs_dent_node *dent1, *dent2;
1246         union ubifs_key key;
1247
1248         ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
1249         dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1250         if (!dent1)
1251                 return -ENOMEM;
1252         dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1253         if (!dent2) {
1254                 err = -ENOMEM;
1255                 goto out_free;
1256         }
1257
1258         err = ubifs_tnc_read_node(c, zbr1, dent1);
1259         if (err)
1260                 goto out_free;
1261         err = ubifs_validate_entry(c, dent1);
1262         if (err)
1263                 goto out_free;
1264
1265         err = ubifs_tnc_read_node(c, zbr2, dent2);
1266         if (err)
1267                 goto out_free;
1268         err = ubifs_validate_entry(c, dent2);
1269         if (err)
1270                 goto out_free;
1271
1272         /* Make sure node keys are the same as in zbranch */
1273         err = 1;
1274         key_read(c, &dent1->key, &key);
1275         if (keys_cmp(c, &zbr1->key, &key)) {
1276                 dbg_err("1st entry at %d:%d has key %s", zbr1->lnum,
1277                         zbr1->offs, DBGKEY(&key));
1278                 dbg_err("but it should have key %s according to tnc",
1279                         DBGKEY(&zbr1->key));
1280                 dbg_dump_node(c, dent1);
1281                 goto out_free;
1282         }
1283
1284         key_read(c, &dent2->key, &key);
1285         if (keys_cmp(c, &zbr2->key, &key)) {
1286                 dbg_err("2nd entry at %d:%d has key %s", zbr1->lnum,
1287                         zbr1->offs, DBGKEY(&key));
1288                 dbg_err("but it should have key %s according to tnc",
1289                         DBGKEY(&zbr2->key));
1290                 dbg_dump_node(c, dent2);
1291                 goto out_free;
1292         }
1293
1294         nlen1 = le16_to_cpu(dent1->nlen);
1295         nlen2 = le16_to_cpu(dent2->nlen);
1296
1297         cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1298         if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1299                 err = 0;
1300                 goto out_free;
1301         }
1302         if (cmp == 0 && nlen1 == nlen2)
1303                 dbg_err("2 xent/dent nodes with the same name");
1304         else
1305                 dbg_err("bad order of colliding key %s",
1306                         DBGKEY(&key));
1307
1308         ubifs_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1309         dbg_dump_node(c, dent1);
1310         ubifs_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1311         dbg_dump_node(c, dent2);
1312
1313 out_free:
1314         kfree(dent2);
1315         kfree(dent1);
1316         return err;
1317 }
1318
1319 /**
1320  * dbg_check_znode - check if znode is all right.
1321  * @c: UBIFS file-system description object
1322  * @zbr: zbranch which points to this znode
1323  *
1324  * This function makes sure that znode referred to by @zbr is all right.
1325  * Returns zero if it is, and %-EINVAL if it is not.
1326  */
1327 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1328 {
1329         struct ubifs_znode *znode = zbr->znode;
1330         struct ubifs_znode *zp = znode->parent;
1331         int n, err, cmp;
1332
1333         if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1334                 err = 1;
1335                 goto out;
1336         }
1337         if (znode->level < 0) {
1338                 err = 2;
1339                 goto out;
1340         }
1341         if (znode->iip < 0 || znode->iip >= c->fanout) {
1342                 err = 3;
1343                 goto out;
1344         }
1345
1346         if (zbr->len == 0)
1347                 /* Only dirty zbranch may have no on-flash nodes */
1348                 if (!ubifs_zn_dirty(znode)) {
1349                         err = 4;
1350                         goto out;
1351                 }
1352
1353         if (ubifs_zn_dirty(znode)) {
1354                 /*
1355                  * If znode is dirty, its parent has to be dirty as well. The
1356                  * order of the operation is important, so we have to have
1357                  * memory barriers.
1358                  */
1359                 smp_mb();
1360                 if (zp && !ubifs_zn_dirty(zp)) {
1361                         /*
1362                          * The dirty flag is atomic and is cleared outside the
1363                          * TNC mutex, so znode's dirty flag may now have
1364                          * been cleared. The child is always cleared before the
1365                          * parent, so we just need to check again.
1366                          */
1367                         smp_mb();
1368                         if (ubifs_zn_dirty(znode)) {
1369                                 err = 5;
1370                                 goto out;
1371                         }
1372                 }
1373         }
1374
1375         if (zp) {
1376                 const union ubifs_key *min, *max;
1377
1378                 if (znode->level != zp->level - 1) {
1379                         err = 6;
1380                         goto out;
1381                 }
1382
1383                 /* Make sure the 'parent' pointer in our znode is correct */
1384                 err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1385                 if (!err) {
1386                         /* This zbranch does not exist in the parent */
1387                         err = 7;
1388                         goto out;
1389                 }
1390
1391                 if (znode->iip >= zp->child_cnt) {
1392                         err = 8;
1393                         goto out;
1394                 }
1395
1396                 if (znode->iip != n) {
1397                         /* This may happen only in case of collisions */
1398                         if (keys_cmp(c, &zp->zbranch[n].key,
1399                                      &zp->zbranch[znode->iip].key)) {
1400                                 err = 9;
1401                                 goto out;
1402                         }
1403                         n = znode->iip;
1404                 }
1405
1406                 /*
1407                  * Make sure that the first key in our znode is greater than or
1408                  * equal to the key in the pointing zbranch.
1409                  */
1410                 min = &zbr->key;
1411                 cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1412                 if (cmp == 1) {
1413                         err = 10;
1414                         goto out;
1415                 }
1416
1417                 if (n + 1 < zp->child_cnt) {
1418                         max = &zp->zbranch[n + 1].key;
1419
1420                         /*
1421                          * Make sure the last key in our znode is less or
1422                          * equivalent than the key in the zbranch which goes
1423                          * after our pointing zbranch.
1424                          */
1425                         cmp = keys_cmp(c, max,
1426                                 &znode->zbranch[znode->child_cnt - 1].key);
1427                         if (cmp == -1) {
1428                                 err = 11;
1429                                 goto out;
1430                         }
1431                 }
1432         } else {
1433                 /* This may only be root znode */
1434                 if (zbr != &c->zroot) {
1435                         err = 12;
1436                         goto out;
1437                 }
1438         }
1439
1440         /*
1441          * Make sure that next key is greater or equivalent then the previous
1442          * one.
1443          */
1444         for (n = 1; n < znode->child_cnt; n++) {
1445                 cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1446                                &znode->zbranch[n].key);
1447                 if (cmp > 0) {
1448                         err = 13;
1449                         goto out;
1450                 }
1451                 if (cmp == 0) {
1452                         /* This can only be keys with colliding hash */
1453                         if (!is_hash_key(c, &znode->zbranch[n].key)) {
1454                                 err = 14;
1455                                 goto out;
1456                         }
1457
1458                         if (znode->level != 0 || c->replaying)
1459                                 continue;
1460
1461                         /*
1462                          * Colliding keys should follow binary order of
1463                          * corresponding xentry/dentry names.
1464                          */
1465                         err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1466                                                   &znode->zbranch[n]);
1467                         if (err < 0)
1468                                 return err;
1469                         if (err) {
1470                                 err = 15;
1471                                 goto out;
1472                         }
1473                 }
1474         }
1475
1476         for (n = 0; n < znode->child_cnt; n++) {
1477                 if (!znode->zbranch[n].znode &&
1478                     (znode->zbranch[n].lnum == 0 ||
1479                      znode->zbranch[n].len == 0)) {
1480                         err = 16;
1481                         goto out;
1482                 }
1483
1484                 if (znode->zbranch[n].lnum != 0 &&
1485                     znode->zbranch[n].len == 0) {
1486                         err = 17;
1487                         goto out;
1488                 }
1489
1490                 if (znode->zbranch[n].lnum == 0 &&
1491                     znode->zbranch[n].len != 0) {
1492                         err = 18;
1493                         goto out;
1494                 }
1495
1496                 if (znode->zbranch[n].lnum == 0 &&
1497                     znode->zbranch[n].offs != 0) {
1498                         err = 19;
1499                         goto out;
1500                 }
1501
1502                 if (znode->level != 0 && znode->zbranch[n].znode)
1503                         if (znode->zbranch[n].znode->parent != znode) {
1504                                 err = 20;
1505                                 goto out;
1506                         }
1507         }
1508
1509         return 0;
1510
1511 out:
1512         ubifs_err("failed, error %d", err);
1513         ubifs_msg("dump of the znode");
1514         dbg_dump_znode(c, znode);
1515         if (zp) {
1516                 ubifs_msg("dump of the parent znode");
1517                 dbg_dump_znode(c, zp);
1518         }
1519         dump_stack();
1520         return -EINVAL;
1521 }
1522
1523 /**
1524  * dbg_check_tnc - check TNC tree.
1525  * @c: UBIFS file-system description object
1526  * @extra: do extra checks that are possible at start commit
1527  *
1528  * This function traverses whole TNC tree and checks every znode. Returns zero
1529  * if everything is all right and %-EINVAL if something is wrong with TNC.
1530  */
1531 int dbg_check_tnc(struct ubifs_info *c, int extra)
1532 {
1533         struct ubifs_znode *znode;
1534         long clean_cnt = 0, dirty_cnt = 0;
1535         int err, last;
1536
1537         if (!dbg_is_chk_index(c))
1538                 return 0;
1539
1540         ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1541         if (!c->zroot.znode)
1542                 return 0;
1543
1544         znode = ubifs_tnc_postorder_first(c->zroot.znode);
1545         while (1) {
1546                 struct ubifs_znode *prev;
1547                 struct ubifs_zbranch *zbr;
1548
1549                 if (!znode->parent)
1550                         zbr = &c->zroot;
1551                 else
1552                         zbr = &znode->parent->zbranch[znode->iip];
1553
1554                 err = dbg_check_znode(c, zbr);
1555                 if (err)
1556                         return err;
1557
1558                 if (extra) {
1559                         if (ubifs_zn_dirty(znode))
1560                                 dirty_cnt += 1;
1561                         else
1562                                 clean_cnt += 1;
1563                 }
1564
1565                 prev = znode;
1566                 znode = ubifs_tnc_postorder_next(znode);
1567                 if (!znode)
1568                         break;
1569
1570                 /*
1571                  * If the last key of this znode is equivalent to the first key
1572                  * of the next znode (collision), then check order of the keys.
1573                  */
1574                 last = prev->child_cnt - 1;
1575                 if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1576                     !keys_cmp(c, &prev->zbranch[last].key,
1577                               &znode->zbranch[0].key)) {
1578                         err = dbg_check_key_order(c, &prev->zbranch[last],
1579                                                   &znode->zbranch[0]);
1580                         if (err < 0)
1581                                 return err;
1582                         if (err) {
1583                                 ubifs_msg("first znode");
1584                                 dbg_dump_znode(c, prev);
1585                                 ubifs_msg("second znode");
1586                                 dbg_dump_znode(c, znode);
1587                                 return -EINVAL;
1588                         }
1589                 }
1590         }
1591
1592         if (extra) {
1593                 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1594                         ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld",
1595                                   atomic_long_read(&c->clean_zn_cnt),
1596                                   clean_cnt);
1597                         return -EINVAL;
1598                 }
1599                 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1600                         ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld",
1601                                   atomic_long_read(&c->dirty_zn_cnt),
1602                                   dirty_cnt);
1603                         return -EINVAL;
1604                 }
1605         }
1606
1607         return 0;
1608 }
1609
1610 /**
1611  * dbg_walk_index - walk the on-flash index.
1612  * @c: UBIFS file-system description object
1613  * @leaf_cb: called for each leaf node
1614  * @znode_cb: called for each indexing node
1615  * @priv: private data which is passed to callbacks
1616  *
1617  * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1618  * node and @znode_cb for each indexing node. Returns zero in case of success
1619  * and a negative error code in case of failure.
1620  *
1621  * It would be better if this function removed every znode it pulled to into
1622  * the TNC, so that the behavior more closely matched the non-debugging
1623  * behavior.
1624  */
1625 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1626                    dbg_znode_callback znode_cb, void *priv)
1627 {
1628         int err;
1629         struct ubifs_zbranch *zbr;
1630         struct ubifs_znode *znode, *child;
1631
1632         mutex_lock(&c->tnc_mutex);
1633         /* If the root indexing node is not in TNC - pull it */
1634         if (!c->zroot.znode) {
1635                 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1636                 if (IS_ERR(c->zroot.znode)) {
1637                         err = PTR_ERR(c->zroot.znode);
1638                         c->zroot.znode = NULL;
1639                         goto out_unlock;
1640                 }
1641         }
1642
1643         /*
1644          * We are going to traverse the indexing tree in the postorder manner.
1645          * Go down and find the leftmost indexing node where we are going to
1646          * start from.
1647          */
1648         znode = c->zroot.znode;
1649         while (znode->level > 0) {
1650                 zbr = &znode->zbranch[0];
1651                 child = zbr->znode;
1652                 if (!child) {
1653                         child = ubifs_load_znode(c, zbr, znode, 0);
1654                         if (IS_ERR(child)) {
1655                                 err = PTR_ERR(child);
1656                                 goto out_unlock;
1657                         }
1658                         zbr->znode = child;
1659                 }
1660
1661                 znode = child;
1662         }
1663
1664         /* Iterate over all indexing nodes */
1665         while (1) {
1666                 int idx;
1667
1668                 cond_resched();
1669
1670                 if (znode_cb) {
1671                         err = znode_cb(c, znode, priv);
1672                         if (err) {
1673                                 ubifs_err("znode checking function returned "
1674                                           "error %d", err);
1675                                 dbg_dump_znode(c, znode);
1676                                 goto out_dump;
1677                         }
1678                 }
1679                 if (leaf_cb && znode->level == 0) {
1680                         for (idx = 0; idx < znode->child_cnt; idx++) {
1681                                 zbr = &znode->zbranch[idx];
1682                                 err = leaf_cb(c, zbr, priv);
1683                                 if (err) {
1684                                         ubifs_err("leaf checking function "
1685                                                   "returned error %d, for leaf "
1686                                                   "at LEB %d:%d",
1687                                                   err, zbr->lnum, zbr->offs);
1688                                         goto out_dump;
1689                                 }
1690                         }
1691                 }
1692
1693                 if (!znode->parent)
1694                         break;
1695
1696                 idx = znode->iip + 1;
1697                 znode = znode->parent;
1698                 if (idx < znode->child_cnt) {
1699                         /* Switch to the next index in the parent */
1700                         zbr = &znode->zbranch[idx];
1701                         child = zbr->znode;
1702                         if (!child) {
1703                                 child = ubifs_load_znode(c, zbr, znode, idx);
1704                                 if (IS_ERR(child)) {
1705                                         err = PTR_ERR(child);
1706                                         goto out_unlock;
1707                                 }
1708                                 zbr->znode = child;
1709                         }
1710                         znode = child;
1711                 } else
1712                         /*
1713                          * This is the last child, switch to the parent and
1714                          * continue.
1715                          */
1716                         continue;
1717
1718                 /* Go to the lowest leftmost znode in the new sub-tree */
1719                 while (znode->level > 0) {
1720                         zbr = &znode->zbranch[0];
1721                         child = zbr->znode;
1722                         if (!child) {
1723                                 child = ubifs_load_znode(c, zbr, znode, 0);
1724                                 if (IS_ERR(child)) {
1725                                         err = PTR_ERR(child);
1726                                         goto out_unlock;
1727                                 }
1728                                 zbr->znode = child;
1729                         }
1730                         znode = child;
1731                 }
1732         }
1733
1734         mutex_unlock(&c->tnc_mutex);
1735         return 0;
1736
1737 out_dump:
1738         if (znode->parent)
1739                 zbr = &znode->parent->zbranch[znode->iip];
1740         else
1741                 zbr = &c->zroot;
1742         ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1743         dbg_dump_znode(c, znode);
1744 out_unlock:
1745         mutex_unlock(&c->tnc_mutex);
1746         return err;
1747 }
1748
1749 /**
1750  * add_size - add znode size to partially calculated index size.
1751  * @c: UBIFS file-system description object
1752  * @znode: znode to add size for
1753  * @priv: partially calculated index size
1754  *
1755  * This is a helper function for 'dbg_check_idx_size()' which is called for
1756  * every indexing node and adds its size to the 'long long' variable pointed to
1757  * by @priv.
1758  */
1759 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1760 {
1761         long long *idx_size = priv;
1762         int add;
1763
1764         add = ubifs_idx_node_sz(c, znode->child_cnt);
1765         add = ALIGN(add, 8);
1766         *idx_size += add;
1767         return 0;
1768 }
1769
1770 /**
1771  * dbg_check_idx_size - check index size.
1772  * @c: UBIFS file-system description object
1773  * @idx_size: size to check
1774  *
1775  * This function walks the UBIFS index, calculates its size and checks that the
1776  * size is equivalent to @idx_size. Returns zero in case of success and a
1777  * negative error code in case of failure.
1778  */
1779 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1780 {
1781         int err;
1782         long long calc = 0;
1783
1784         if (!dbg_is_chk_index(c))
1785                 return 0;
1786
1787         err = dbg_walk_index(c, NULL, add_size, &calc);
1788         if (err) {
1789                 ubifs_err("error %d while walking the index", err);
1790                 return err;
1791         }
1792
1793         if (calc != idx_size) {
1794                 ubifs_err("index size check failed: calculated size is %lld, "
1795                           "should be %lld", calc, idx_size);
1796                 dump_stack();
1797                 return -EINVAL;
1798         }
1799
1800         return 0;
1801 }
1802
1803 /**
1804  * struct fsck_inode - information about an inode used when checking the file-system.
1805  * @rb: link in the RB-tree of inodes
1806  * @inum: inode number
1807  * @mode: inode type, permissions, etc
1808  * @nlink: inode link count
1809  * @xattr_cnt: count of extended attributes
1810  * @references: how many directory/xattr entries refer this inode (calculated
1811  *              while walking the index)
1812  * @calc_cnt: for directory inode count of child directories
1813  * @size: inode size (read from on-flash inode)
1814  * @xattr_sz: summary size of all extended attributes (read from on-flash
1815  *            inode)
1816  * @calc_sz: for directories calculated directory size
1817  * @calc_xcnt: count of extended attributes
1818  * @calc_xsz: calculated summary size of all extended attributes
1819  * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1820  *             inode (read from on-flash inode)
1821  * @calc_xnms: calculated sum of lengths of all extended attribute names
1822  */
1823 struct fsck_inode {
1824         struct rb_node rb;
1825         ino_t inum;
1826         umode_t mode;
1827         unsigned int nlink;
1828         unsigned int xattr_cnt;
1829         int references;
1830         int calc_cnt;
1831         long long size;
1832         unsigned int xattr_sz;
1833         long long calc_sz;
1834         long long calc_xcnt;
1835         long long calc_xsz;
1836         unsigned int xattr_nms;
1837         long long calc_xnms;
1838 };
1839
1840 /**
1841  * struct fsck_data - private FS checking information.
1842  * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1843  */
1844 struct fsck_data {
1845         struct rb_root inodes;
1846 };
1847
1848 /**
1849  * add_inode - add inode information to RB-tree of inodes.
1850  * @c: UBIFS file-system description object
1851  * @fsckd: FS checking information
1852  * @ino: raw UBIFS inode to add
1853  *
1854  * This is a helper function for 'check_leaf()' which adds information about
1855  * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1856  * case of success and a negative error code in case of failure.
1857  */
1858 static struct fsck_inode *add_inode(struct ubifs_info *c,
1859                                     struct fsck_data *fsckd,
1860                                     struct ubifs_ino_node *ino)
1861 {
1862         struct rb_node **p, *parent = NULL;
1863         struct fsck_inode *fscki;
1864         ino_t inum = key_inum_flash(c, &ino->key);
1865         struct inode *inode;
1866         struct ubifs_inode *ui;
1867
1868         p = &fsckd->inodes.rb_node;
1869         while (*p) {
1870                 parent = *p;
1871                 fscki = rb_entry(parent, struct fsck_inode, rb);
1872                 if (inum < fscki->inum)
1873                         p = &(*p)->rb_left;
1874                 else if (inum > fscki->inum)
1875                         p = &(*p)->rb_right;
1876                 else
1877                         return fscki;
1878         }
1879
1880         if (inum > c->highest_inum) {
1881                 ubifs_err("too high inode number, max. is %lu",
1882                           (unsigned long)c->highest_inum);
1883                 return ERR_PTR(-EINVAL);
1884         }
1885
1886         fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1887         if (!fscki)
1888                 return ERR_PTR(-ENOMEM);
1889
1890         inode = ilookup(c->vfs_sb, inum);
1891
1892         fscki->inum = inum;
1893         /*
1894          * If the inode is present in the VFS inode cache, use it instead of
1895          * the on-flash inode which might be out-of-date. E.g., the size might
1896          * be out-of-date. If we do not do this, the following may happen, for
1897          * example:
1898          *   1. A power cut happens
1899          *   2. We mount the file-system R/O, the replay process fixes up the
1900          *      inode size in the VFS cache, but on on-flash.
1901          *   3. 'check_leaf()' fails because it hits a data node beyond inode
1902          *      size.
1903          */
1904         if (!inode) {
1905                 fscki->nlink = le32_to_cpu(ino->nlink);
1906                 fscki->size = le64_to_cpu(ino->size);
1907                 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1908                 fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1909                 fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1910                 fscki->mode = le32_to_cpu(ino->mode);
1911         } else {
1912                 ui = ubifs_inode(inode);
1913                 fscki->nlink = inode->i_nlink;
1914                 fscki->size = inode->i_size;
1915                 fscki->xattr_cnt = ui->xattr_cnt;
1916                 fscki->xattr_sz = ui->xattr_size;
1917                 fscki->xattr_nms = ui->xattr_names;
1918                 fscki->mode = inode->i_mode;
1919                 iput(inode);
1920         }
1921
1922         if (S_ISDIR(fscki->mode)) {
1923                 fscki->calc_sz = UBIFS_INO_NODE_SZ;
1924                 fscki->calc_cnt = 2;
1925         }
1926
1927         rb_link_node(&fscki->rb, parent, p);
1928         rb_insert_color(&fscki->rb, &fsckd->inodes);
1929
1930         return fscki;
1931 }
1932
1933 /**
1934  * search_inode - search inode in the RB-tree of inodes.
1935  * @fsckd: FS checking information
1936  * @inum: inode number to search
1937  *
1938  * This is a helper function for 'check_leaf()' which searches inode @inum in
1939  * the RB-tree of inodes and returns an inode information pointer or %NULL if
1940  * the inode was not found.
1941  */
1942 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1943 {
1944         struct rb_node *p;
1945         struct fsck_inode *fscki;
1946
1947         p = fsckd->inodes.rb_node;
1948         while (p) {
1949                 fscki = rb_entry(p, struct fsck_inode, rb);
1950                 if (inum < fscki->inum)
1951                         p = p->rb_left;
1952                 else if (inum > fscki->inum)
1953                         p = p->rb_right;
1954                 else
1955                         return fscki;
1956         }
1957         return NULL;
1958 }
1959
1960 /**
1961  * read_add_inode - read inode node and add it to RB-tree of inodes.
1962  * @c: UBIFS file-system description object
1963  * @fsckd: FS checking information
1964  * @inum: inode number to read
1965  *
1966  * This is a helper function for 'check_leaf()' which finds inode node @inum in
1967  * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1968  * information pointer in case of success and a negative error code in case of
1969  * failure.
1970  */
1971 static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1972                                          struct fsck_data *fsckd, ino_t inum)
1973 {
1974         int n, err;
1975         union ubifs_key key;
1976         struct ubifs_znode *znode;
1977         struct ubifs_zbranch *zbr;
1978         struct ubifs_ino_node *ino;
1979         struct fsck_inode *fscki;
1980
1981         fscki = search_inode(fsckd, inum);
1982         if (fscki)
1983                 return fscki;
1984
1985         ino_key_init(c, &key, inum);
1986         err = ubifs_lookup_level0(c, &key, &znode, &n);
1987         if (!err) {
1988                 ubifs_err("inode %lu not found in index", (unsigned long)inum);
1989                 return ERR_PTR(-ENOENT);
1990         } else if (err < 0) {
1991                 ubifs_err("error %d while looking up inode %lu",
1992                           err, (unsigned long)inum);
1993                 return ERR_PTR(err);
1994         }
1995
1996         zbr = &znode->zbranch[n];
1997         if (zbr->len < UBIFS_INO_NODE_SZ) {
1998                 ubifs_err("bad node %lu node length %d",
1999                           (unsigned long)inum, zbr->len);
2000                 return ERR_PTR(-EINVAL);
2001         }
2002
2003         ino = kmalloc(zbr->len, GFP_NOFS);
2004         if (!ino)
2005                 return ERR_PTR(-ENOMEM);
2006
2007         err = ubifs_tnc_read_node(c, zbr, ino);
2008         if (err) {
2009                 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2010                           zbr->lnum, zbr->offs, err);
2011                 kfree(ino);
2012                 return ERR_PTR(err);
2013         }
2014
2015         fscki = add_inode(c, fsckd, ino);
2016         kfree(ino);
2017         if (IS_ERR(fscki)) {
2018                 ubifs_err("error %ld while adding inode %lu node",
2019                           PTR_ERR(fscki), (unsigned long)inum);
2020                 return fscki;
2021         }
2022
2023         return fscki;
2024 }
2025
2026 /**
2027  * check_leaf - check leaf node.
2028  * @c: UBIFS file-system description object
2029  * @zbr: zbranch of the leaf node to check
2030  * @priv: FS checking information
2031  *
2032  * This is a helper function for 'dbg_check_filesystem()' which is called for
2033  * every single leaf node while walking the indexing tree. It checks that the
2034  * leaf node referred from the indexing tree exists, has correct CRC, and does
2035  * some other basic validation. This function is also responsible for building
2036  * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
2037  * calculates reference count, size, etc for each inode in order to later
2038  * compare them to the information stored inside the inodes and detect possible
2039  * inconsistencies. Returns zero in case of success and a negative error code
2040  * in case of failure.
2041  */
2042 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
2043                       void *priv)
2044 {
2045         ino_t inum;
2046         void *node;
2047         struct ubifs_ch *ch;
2048         int err, type = key_type(c, &zbr->key);
2049         struct fsck_inode *fscki;
2050
2051         if (zbr->len < UBIFS_CH_SZ) {
2052                 ubifs_err("bad leaf length %d (LEB %d:%d)",
2053                           zbr->len, zbr->lnum, zbr->offs);
2054                 return -EINVAL;
2055         }
2056
2057         node = kmalloc(zbr->len, GFP_NOFS);
2058         if (!node)
2059                 return -ENOMEM;
2060
2061         err = ubifs_tnc_read_node(c, zbr, node);
2062         if (err) {
2063                 ubifs_err("cannot read leaf node at LEB %d:%d, error %d",
2064                           zbr->lnum, zbr->offs, err);
2065                 goto out_free;
2066         }
2067
2068         /* If this is an inode node, add it to RB-tree of inodes */
2069         if (type == UBIFS_INO_KEY) {
2070                 fscki = add_inode(c, priv, node);
2071                 if (IS_ERR(fscki)) {
2072                         err = PTR_ERR(fscki);
2073                         ubifs_err("error %d while adding inode node", err);
2074                         goto out_dump;
2075                 }
2076                 goto out;
2077         }
2078
2079         if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2080             type != UBIFS_DATA_KEY) {
2081                 ubifs_err("unexpected node type %d at LEB %d:%d",
2082                           type, zbr->lnum, zbr->offs);
2083                 err = -EINVAL;
2084                 goto out_free;
2085         }
2086
2087         ch = node;
2088         if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2089                 ubifs_err("too high sequence number, max. is %llu",
2090                           c->max_sqnum);
2091                 err = -EINVAL;
2092                 goto out_dump;
2093         }
2094
2095         if (type == UBIFS_DATA_KEY) {
2096                 long long blk_offs;
2097                 struct ubifs_data_node *dn = node;
2098
2099                 /*
2100                  * Search the inode node this data node belongs to and insert
2101                  * it to the RB-tree of inodes.
2102                  */
2103                 inum = key_inum_flash(c, &dn->key);
2104                 fscki = read_add_inode(c, priv, inum);
2105                 if (IS_ERR(fscki)) {
2106                         err = PTR_ERR(fscki);
2107                         ubifs_err("error %d while processing data node and "
2108                                   "trying to find inode node %lu",
2109                                   err, (unsigned long)inum);
2110                         goto out_dump;
2111                 }
2112
2113                 /* Make sure the data node is within inode size */
2114                 blk_offs = key_block_flash(c, &dn->key);
2115                 blk_offs <<= UBIFS_BLOCK_SHIFT;
2116                 blk_offs += le32_to_cpu(dn->size);
2117                 if (blk_offs > fscki->size) {
2118                         ubifs_err("data node at LEB %d:%d is not within inode "
2119                                   "size %lld", zbr->lnum, zbr->offs,
2120                                   fscki->size);
2121                         err = -EINVAL;
2122                         goto out_dump;
2123                 }
2124         } else {
2125                 int nlen;
2126                 struct ubifs_dent_node *dent = node;
2127                 struct fsck_inode *fscki1;
2128
2129                 err = ubifs_validate_entry(c, dent);
2130                 if (err)
2131                         goto out_dump;
2132
2133                 /*
2134                  * Search the inode node this entry refers to and the parent
2135                  * inode node and insert them to the RB-tree of inodes.
2136                  */
2137                 inum = le64_to_cpu(dent->inum);
2138                 fscki = read_add_inode(c, priv, inum);
2139                 if (IS_ERR(fscki)) {
2140                         err = PTR_ERR(fscki);
2141                         ubifs_err("error %d while processing entry node and "
2142                                   "trying to find inode node %lu",
2143                                   err, (unsigned long)inum);
2144                         goto out_dump;
2145                 }
2146
2147                 /* Count how many direntries or xentries refers this inode */
2148                 fscki->references += 1;
2149
2150                 inum = key_inum_flash(c, &dent->key);
2151                 fscki1 = read_add_inode(c, priv, inum);
2152                 if (IS_ERR(fscki1)) {
2153                         err = PTR_ERR(fscki1);
2154                         ubifs_err("error %d while processing entry node and "
2155                                   "trying to find parent inode node %lu",
2156                                   err, (unsigned long)inum);
2157                         goto out_dump;
2158                 }
2159
2160                 nlen = le16_to_cpu(dent->nlen);
2161                 if (type == UBIFS_XENT_KEY) {
2162                         fscki1->calc_xcnt += 1;
2163                         fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2164                         fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2165                         fscki1->calc_xnms += nlen;
2166                 } else {
2167                         fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2168                         if (dent->type == UBIFS_ITYPE_DIR)
2169                                 fscki1->calc_cnt += 1;
2170                 }
2171         }
2172
2173 out:
2174         kfree(node);
2175         return 0;
2176
2177 out_dump:
2178         ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2179         dbg_dump_node(c, node);
2180 out_free:
2181         kfree(node);
2182         return err;
2183 }
2184
2185 /**
2186  * free_inodes - free RB-tree of inodes.
2187  * @fsckd: FS checking information
2188  */
2189 static void free_inodes(struct fsck_data *fsckd)
2190 {
2191         struct rb_node *this = fsckd->inodes.rb_node;
2192         struct fsck_inode *fscki;
2193
2194         while (this) {
2195                 if (this->rb_left)
2196                         this = this->rb_left;
2197                 else if (this->rb_right)
2198                         this = this->rb_right;
2199                 else {
2200                         fscki = rb_entry(this, struct fsck_inode, rb);
2201                         this = rb_parent(this);
2202                         if (this) {
2203                                 if (this->rb_left == &fscki->rb)
2204                                         this->rb_left = NULL;
2205                                 else
2206                                         this->rb_right = NULL;
2207                         }
2208                         kfree(fscki);
2209                 }
2210         }
2211 }
2212
2213 /**
2214  * check_inodes - checks all inodes.
2215  * @c: UBIFS file-system description object
2216  * @fsckd: FS checking information
2217  *
2218  * This is a helper function for 'dbg_check_filesystem()' which walks the
2219  * RB-tree of inodes after the index scan has been finished, and checks that
2220  * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2221  * %-EINVAL if not, and a negative error code in case of failure.
2222  */
2223 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2224 {
2225         int n, err;
2226         union ubifs_key key;
2227         struct ubifs_znode *znode;
2228         struct ubifs_zbranch *zbr;
2229         struct ubifs_ino_node *ino;
2230         struct fsck_inode *fscki;
2231         struct rb_node *this = rb_first(&fsckd->inodes);
2232
2233         while (this) {
2234                 fscki = rb_entry(this, struct fsck_inode, rb);
2235                 this = rb_next(this);
2236
2237                 if (S_ISDIR(fscki->mode)) {
2238                         /*
2239                          * Directories have to have exactly one reference (they
2240                          * cannot have hardlinks), although root inode is an
2241                          * exception.
2242                          */
2243                         if (fscki->inum != UBIFS_ROOT_INO &&
2244                             fscki->references != 1) {
2245                                 ubifs_err("directory inode %lu has %d "
2246                                           "direntries which refer it, but "
2247                                           "should be 1",
2248                                           (unsigned long)fscki->inum,
2249                                           fscki->references);
2250                                 goto out_dump;
2251                         }
2252                         if (fscki->inum == UBIFS_ROOT_INO &&
2253                             fscki->references != 0) {
2254                                 ubifs_err("root inode %lu has non-zero (%d) "
2255                                           "direntries which refer it",
2256                                           (unsigned long)fscki->inum,
2257                                           fscki->references);
2258                                 goto out_dump;
2259                         }
2260                         if (fscki->calc_sz != fscki->size) {
2261                                 ubifs_err("directory inode %lu size is %lld, "
2262                                           "but calculated size is %lld",
2263                                           (unsigned long)fscki->inum,
2264                                           fscki->size, fscki->calc_sz);
2265                                 goto out_dump;
2266                         }
2267                         if (fscki->calc_cnt != fscki->nlink) {
2268                                 ubifs_err("directory inode %lu nlink is %d, "
2269                                           "but calculated nlink is %d",
2270                                           (unsigned long)fscki->inum,
2271                                           fscki->nlink, fscki->calc_cnt);
2272                                 goto out_dump;
2273                         }
2274                 } else {
2275                         if (fscki->references != fscki->nlink) {
2276                                 ubifs_err("inode %lu nlink is %d, but "
2277                                           "calculated nlink is %d",
2278                                           (unsigned long)fscki->inum,
2279                                           fscki->nlink, fscki->references);
2280                                 goto out_dump;
2281                         }
2282                 }
2283                 if (fscki->xattr_sz != fscki->calc_xsz) {
2284                         ubifs_err("inode %lu has xattr size %u, but "
2285                                   "calculated size is %lld",
2286                                   (unsigned long)fscki->inum, fscki->xattr_sz,
2287                                   fscki->calc_xsz);
2288                         goto out_dump;
2289                 }
2290                 if (fscki->xattr_cnt != fscki->calc_xcnt) {
2291                         ubifs_err("inode %lu has %u xattrs, but "
2292                                   "calculated count is %lld",
2293                                   (unsigned long)fscki->inum,
2294                                   fscki->xattr_cnt, fscki->calc_xcnt);
2295                         goto out_dump;
2296                 }
2297                 if (fscki->xattr_nms != fscki->calc_xnms) {
2298                         ubifs_err("inode %lu has xattr names' size %u, but "
2299                                   "calculated names' size is %lld",
2300                                   (unsigned long)fscki->inum, fscki->xattr_nms,
2301                                   fscki->calc_xnms);
2302                         goto out_dump;
2303                 }
2304         }
2305
2306         return 0;
2307
2308 out_dump:
2309         /* Read the bad inode and dump it */
2310         ino_key_init(c, &key, fscki->inum);
2311         err = ubifs_lookup_level0(c, &key, &znode, &n);
2312         if (!err) {
2313                 ubifs_err("inode %lu not found in index",
2314                           (unsigned long)fscki->inum);
2315                 return -ENOENT;
2316         } else if (err < 0) {
2317                 ubifs_err("error %d while looking up inode %lu",
2318                           err, (unsigned long)fscki->inum);
2319                 return err;
2320         }
2321
2322         zbr = &znode->zbranch[n];
2323         ino = kmalloc(zbr->len, GFP_NOFS);
2324         if (!ino)
2325                 return -ENOMEM;
2326
2327         err = ubifs_tnc_read_node(c, zbr, ino);
2328         if (err) {
2329                 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2330                           zbr->lnum, zbr->offs, err);
2331                 kfree(ino);
2332                 return err;
2333         }
2334
2335         ubifs_msg("dump of the inode %lu sitting in LEB %d:%d",
2336                   (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2337         dbg_dump_node(c, ino);
2338         kfree(ino);
2339         return -EINVAL;
2340 }
2341
2342 /**
2343  * dbg_check_filesystem - check the file-system.
2344  * @c: UBIFS file-system description object
2345  *
2346  * This function checks the file system, namely:
2347  * o makes sure that all leaf nodes exist and their CRCs are correct;
2348  * o makes sure inode nlink, size, xattr size/count are correct (for all
2349  *   inodes).
2350  *
2351  * The function reads whole indexing tree and all nodes, so it is pretty
2352  * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2353  * not, and a negative error code in case of failure.
2354  */
2355 int dbg_check_filesystem(struct ubifs_info *c)
2356 {
2357         int err;
2358         struct fsck_data fsckd;
2359
2360         if (!dbg_is_chk_fs(c))
2361                 return 0;
2362
2363         fsckd.inodes = RB_ROOT;
2364         err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2365         if (err)
2366                 goto out_free;
2367
2368         err = check_inodes(c, &fsckd);
2369         if (err)
2370                 goto out_free;
2371
2372         free_inodes(&fsckd);
2373         return 0;
2374
2375 out_free:
2376         ubifs_err("file-system check failed with error %d", err);
2377         dump_stack();
2378         free_inodes(&fsckd);
2379         return err;
2380 }
2381
2382 /**
2383  * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2384  * @c: UBIFS file-system description object
2385  * @head: the list of nodes ('struct ubifs_scan_node' objects)
2386  *
2387  * This function returns zero if the list of data nodes is sorted correctly,
2388  * and %-EINVAL if not.
2389  */
2390 int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2391 {
2392         struct list_head *cur;
2393         struct ubifs_scan_node *sa, *sb;
2394
2395         if (!dbg_is_chk_gen(c))
2396                 return 0;
2397
2398         for (cur = head->next; cur->next != head; cur = cur->next) {
2399                 ino_t inuma, inumb;
2400                 uint32_t blka, blkb;
2401
2402                 cond_resched();
2403                 sa = container_of(cur, struct ubifs_scan_node, list);
2404                 sb = container_of(cur->next, struct ubifs_scan_node, list);
2405
2406                 if (sa->type != UBIFS_DATA_NODE) {
2407                         ubifs_err("bad node type %d", sa->type);
2408                         dbg_dump_node(c, sa->node);
2409                         return -EINVAL;
2410                 }
2411                 if (sb->type != UBIFS_DATA_NODE) {
2412                         ubifs_err("bad node type %d", sb->type);
2413                         dbg_dump_node(c, sb->node);
2414                         return -EINVAL;
2415                 }
2416
2417                 inuma = key_inum(c, &sa->key);
2418                 inumb = key_inum(c, &sb->key);
2419
2420                 if (inuma < inumb)
2421                         continue;
2422                 if (inuma > inumb) {
2423                         ubifs_err("larger inum %lu goes before inum %lu",
2424                                   (unsigned long)inuma, (unsigned long)inumb);
2425                         goto error_dump;
2426                 }
2427
2428                 blka = key_block(c, &sa->key);
2429                 blkb = key_block(c, &sb->key);
2430
2431                 if (blka > blkb) {
2432                         ubifs_err("larger block %u goes before %u", blka, blkb);
2433                         goto error_dump;
2434                 }
2435                 if (blka == blkb) {
2436                         ubifs_err("two data nodes for the same block");
2437                         goto error_dump;
2438                 }
2439         }
2440
2441         return 0;
2442
2443 error_dump:
2444         dbg_dump_node(c, sa->node);
2445         dbg_dump_node(c, sb->node);
2446         return -EINVAL;
2447 }
2448
2449 /**
2450  * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2451  * @c: UBIFS file-system description object
2452  * @head: the list of nodes ('struct ubifs_scan_node' objects)
2453  *
2454  * This function returns zero if the list of non-data nodes is sorted correctly,
2455  * and %-EINVAL if not.
2456  */
2457 int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2458 {
2459         struct list_head *cur;
2460         struct ubifs_scan_node *sa, *sb;
2461
2462         if (!dbg_is_chk_gen(c))
2463                 return 0;
2464
2465         for (cur = head->next; cur->next != head; cur = cur->next) {
2466                 ino_t inuma, inumb;
2467                 uint32_t hasha, hashb;
2468
2469                 cond_resched();
2470                 sa = container_of(cur, struct ubifs_scan_node, list);
2471                 sb = container_of(cur->next, struct ubifs_scan_node, list);
2472
2473                 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2474                     sa->type != UBIFS_XENT_NODE) {
2475                         ubifs_err("bad node type %d", sa->type);
2476                         dbg_dump_node(c, sa->node);
2477                         return -EINVAL;
2478                 }
2479                 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2480                     sa->type != UBIFS_XENT_NODE) {
2481                         ubifs_err("bad node type %d", sb->type);
2482                         dbg_dump_node(c, sb->node);
2483                         return -EINVAL;
2484                 }
2485
2486                 if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2487                         ubifs_err("non-inode node goes before inode node");
2488                         goto error_dump;
2489                 }
2490
2491                 if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2492                         continue;
2493
2494                 if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2495                         /* Inode nodes are sorted in descending size order */
2496                         if (sa->len < sb->len) {
2497                                 ubifs_err("smaller inode node goes first");
2498                                 goto error_dump;
2499                         }
2500                         continue;
2501                 }
2502
2503                 /*
2504                  * This is either a dentry or xentry, which should be sorted in
2505                  * ascending (parent ino, hash) order.
2506                  */
2507                 inuma = key_inum(c, &sa->key);
2508                 inumb = key_inum(c, &sb->key);
2509
2510                 if (inuma < inumb)
2511                         continue;
2512                 if (inuma > inumb) {
2513                         ubifs_err("larger inum %lu goes before inum %lu",
2514                                   (unsigned long)inuma, (unsigned long)inumb);
2515                         goto error_dump;
2516                 }
2517
2518                 hasha = key_block(c, &sa->key);
2519                 hashb = key_block(c, &sb->key);
2520
2521                 if (hasha > hashb) {
2522                         ubifs_err("larger hash %u goes before %u",
2523                                   hasha, hashb);
2524                         goto error_dump;
2525                 }
2526         }
2527
2528         return 0;
2529
2530 error_dump:
2531         ubifs_msg("dumping first node");
2532         dbg_dump_node(c, sa->node);
2533         ubifs_msg("dumping second node");
2534         dbg_dump_node(c, sb->node);
2535         return -EINVAL;
2536         return 0;
2537 }
2538
2539 static inline int chance(unsigned int n, unsigned int out_of)
2540 {
2541         return !!((random32() % out_of) + 1 <= n);
2542
2543 }
2544
2545 static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
2546 {
2547         struct ubifs_debug_info *d = c->dbg;
2548
2549         ubifs_assert(dbg_is_tst_rcvry(c));
2550
2551         if (!d->pc_cnt) {
2552                 /* First call - decide delay to the power cut */
2553                 if (chance(1, 2)) {
2554                         unsigned long delay;
2555
2556                         if (chance(1, 2)) {
2557                                 d->pc_delay = 1;
2558                                 /* Fail withing 1 minute */
2559                                 delay = random32() % 60000;
2560                                 d->pc_timeout = jiffies;
2561                                 d->pc_timeout += msecs_to_jiffies(delay);
2562                                 ubifs_warn("failing after %lums", delay);
2563                         } else {
2564                                 d->pc_delay = 2;
2565                                 delay = random32() % 10000;
2566                                 /* Fail within 10000 operations */
2567                                 d->pc_cnt_max = delay;
2568                                 ubifs_warn("failing after %lu calls", delay);
2569                         }
2570                 }
2571
2572                 d->pc_cnt += 1;
2573         }
2574
2575         /* Determine if failure delay has expired */
2576         if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
2577                         return 0;
2578         if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
2579                         return 0;
2580
2581         if (lnum == UBIFS_SB_LNUM) {
2582                 if (write && chance(1, 2))
2583                         return 0;
2584                 if (chance(19, 20))
2585                         return 0;
2586                 ubifs_warn("failing in super block LEB %d", lnum);
2587         } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2588                 if (chance(19, 20))
2589                         return 0;
2590                 ubifs_warn("failing in master LEB %d", lnum);
2591         } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2592                 if (write && chance(99, 100))
2593                         return 0;
2594                 if (chance(399, 400))
2595                         return 0;
2596                 ubifs_warn("failing in log LEB %d", lnum);
2597         } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2598                 if (write && chance(7, 8))
2599                         return 0;
2600                 if (chance(19, 20))
2601                         return 0;
2602                 ubifs_warn("failing in LPT LEB %d", lnum);
2603         } else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2604                 if (write && chance(1, 2))
2605                         return 0;
2606                 if (chance(9, 10))
2607                         return 0;
2608                 ubifs_warn("failing in orphan LEB %d", lnum);
2609         } else if (lnum == c->ihead_lnum) {
2610                 if (chance(99, 100))
2611                         return 0;
2612                 ubifs_warn("failing in index head LEB %d", lnum);
2613         } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2614                 if (chance(9, 10))
2615                         return 0;
2616                 ubifs_warn("failing in GC head LEB %d", lnum);
2617         } else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2618                    !ubifs_search_bud(c, lnum)) {
2619                 if (chance(19, 20))
2620                         return 0;
2621                 ubifs_warn("failing in non-bud LEB %d", lnum);
2622         } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2623                    c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2624                 if (chance(999, 1000))
2625                         return 0;
2626                 ubifs_warn("failing in bud LEB %d commit running", lnum);
2627         } else {
2628                 if (chance(9999, 10000))
2629                         return 0;
2630                 ubifs_warn("failing in bud LEB %d commit not running", lnum);
2631         }
2632
2633         d->pc_happened = 1;
2634         ubifs_warn("========== Power cut emulated ==========");
2635         dump_stack();
2636         return 1;
2637 }
2638
2639 static void cut_data(const void *buf, unsigned int len)
2640 {
2641         unsigned int from, to, i, ffs = chance(1, 2);
2642         unsigned char *p = (void *)buf;
2643
2644         from = random32() % (len + 1);
2645         if (chance(1, 2))
2646                 to = random32() % (len - from + 1);
2647         else
2648                 to = len;
2649
2650         if (from < to)
2651                 ubifs_warn("filled bytes %u-%u with %s", from, to - 1,
2652                            ffs ? "0xFFs" : "random data");
2653
2654         if (ffs)
2655                 for (i = from; i < to; i++)
2656                         p[i] = 0xFF;
2657         else
2658                 for (i = from; i < to; i++)
2659                         p[i] = random32() % 0x100;
2660 }
2661
2662 int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
2663                   int offs, int len, int dtype)
2664 {
2665         int err, failing;
2666
2667         if (c->dbg->pc_happened)
2668                 return -EROFS;
2669
2670         failing = power_cut_emulated(c, lnum, 1);
2671         if (failing)
2672                 cut_data(buf, len);
2673         err = ubi_leb_write(c->ubi, lnum, buf, offs, len, dtype);
2674         if (err)
2675                 return err;
2676         if (failing)
2677                 return -EROFS;
2678         return 0;
2679 }
2680
2681 int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
2682                    int len, int dtype)
2683 {
2684         int err;
2685
2686         if (c->dbg->pc_happened)
2687                 return -EROFS;
2688         if (power_cut_emulated(c, lnum, 1))
2689                 return -EROFS;
2690         err = ubi_leb_change(c->ubi, lnum, buf, len, dtype);
2691         if (err)
2692                 return err;
2693         if (power_cut_emulated(c, lnum, 1))
2694                 return -EROFS;
2695         return 0;
2696 }
2697
2698 int dbg_leb_unmap(struct ubifs_info *c, int lnum)
2699 {
2700         int err;
2701
2702         if (c->dbg->pc_happened)
2703                 return -EROFS;
2704         if (power_cut_emulated(c, lnum, 0))
2705                 return -EROFS;
2706         err = ubi_leb_unmap(c->ubi, lnum);
2707         if (err)
2708                 return err;
2709         if (power_cut_emulated(c, lnum, 0))
2710                 return -EROFS;
2711         return 0;
2712 }
2713
2714 int dbg_leb_map(struct ubifs_info *c, int lnum, int dtype)
2715 {
2716         int err;
2717
2718         if (c->dbg->pc_happened)
2719                 return -EROFS;
2720         if (power_cut_emulated(c, lnum, 0))
2721                 return -EROFS;
2722         err = ubi_leb_map(c->ubi, lnum, dtype);
2723         if (err)
2724                 return err;
2725         if (power_cut_emulated(c, lnum, 0))
2726                 return -EROFS;
2727         return 0;
2728 }
2729
2730 /*
2731  * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2732  * contain the stuff specific to particular file-system mounts.
2733  */
2734 static struct dentry *dfs_rootdir;
2735
2736 static int dfs_file_open(struct inode *inode, struct file *file)
2737 {
2738         file->private_data = inode->i_private;
2739         return nonseekable_open(inode, file);
2740 }
2741
2742 /**
2743  * provide_user_output - provide output to the user reading a debugfs file.
2744  * @val: boolean value for the answer
2745  * @u: the buffer to store the answer at
2746  * @count: size of the buffer
2747  * @ppos: position in the @u output buffer
2748  *
2749  * This is a simple helper function which stores @val boolean value in the user
2750  * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2751  * bytes written to @u in case of success and a negative error code in case of
2752  * failure.
2753  */
2754 static int provide_user_output(int val, char __user *u, size_t count,
2755                                loff_t *ppos)
2756 {
2757         char buf[3];
2758
2759         if (val)
2760                 buf[0] = '1';
2761         else
2762                 buf[0] = '0';
2763         buf[1] = '\n';
2764         buf[2] = 0x00;
2765
2766         return simple_read_from_buffer(u, count, ppos, buf, 2);
2767 }
2768
2769 static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
2770                              loff_t *ppos)
2771 {
2772         struct dentry *dent = file->f_path.dentry;
2773         struct ubifs_info *c = file->private_data;
2774         struct ubifs_debug_info *d = c->dbg;
2775         int val;
2776
2777         if (dent == d->dfs_chk_gen)
2778                 val = d->chk_gen;
2779         else if (dent == d->dfs_chk_index)
2780                 val = d->chk_index;
2781         else if (dent == d->dfs_chk_orph)
2782                 val = d->chk_orph;
2783         else if (dent == d->dfs_chk_lprops)
2784                 val = d->chk_lprops;
2785         else if (dent == d->dfs_chk_fs)
2786                 val = d->chk_fs;
2787         else if (dent == d->dfs_tst_rcvry)
2788                 val = d->tst_rcvry;
2789         else
2790                 return -EINVAL;
2791
2792         return provide_user_output(val, u, count, ppos);
2793 }
2794
2795 /**
2796  * interpret_user_input - interpret user debugfs file input.
2797  * @u: user-provided buffer with the input
2798  * @count: buffer size
2799  *
2800  * This is a helper function which interpret user input to a boolean UBIFS
2801  * debugfs file. Returns %0 or %1 in case of success and a negative error code
2802  * in case of failure.
2803  */
2804 static int interpret_user_input(const char __user *u, size_t count)
2805 {
2806         size_t buf_size;
2807         char buf[8];
2808
2809         buf_size = min_t(size_t, count, (sizeof(buf) - 1));
2810         if (copy_from_user(buf, u, buf_size))
2811                 return -EFAULT;
2812
2813         if (buf[0] == '1')
2814                 return 1;
2815         else if (buf[0] == '0')
2816                 return 0;
2817
2818         return -EINVAL;
2819 }
2820
2821 static ssize_t dfs_file_write(struct file *file, const char __user *u,
2822                               size_t count, loff_t *ppos)
2823 {
2824         struct ubifs_info *c = file->private_data;
2825         struct ubifs_debug_info *d = c->dbg;
2826         struct dentry *dent = file->f_path.dentry;
2827         int val;
2828
2829         /*
2830          * TODO: this is racy - the file-system might have already been
2831          * unmounted and we'd oops in this case. The plan is to fix it with
2832          * help of 'iterate_supers_type()' which we should have in v3.0: when
2833          * a debugfs opened, we rember FS's UUID in file->private_data. Then
2834          * whenever we access the FS via a debugfs file, we iterate all UBIFS
2835          * superblocks and fine the one with the same UUID, and take the
2836          * locking right.
2837          *
2838          * The other way to go suggested by Al Viro is to create a separate
2839          * 'ubifs-debug' file-system instead.
2840          */
2841         if (file->f_path.dentry == d->dfs_dump_lprops) {
2842                 dbg_dump_lprops(c);
2843                 return count;
2844         }
2845         if (file->f_path.dentry == d->dfs_dump_budg) {
2846                 dbg_dump_budg(c, &c->bi);
2847                 return count;
2848         }
2849         if (file->f_path.dentry == d->dfs_dump_tnc) {
2850                 mutex_lock(&c->tnc_mutex);
2851                 dbg_dump_tnc(c);
2852                 mutex_unlock(&c->tnc_mutex);
2853                 return count;
2854         }
2855
2856         val = interpret_user_input(u, count);
2857         if (val < 0)
2858                 return val;
2859
2860         if (dent == d->dfs_chk_gen)
2861                 d->chk_gen = val;
2862         else if (dent == d->dfs_chk_index)
2863                 d->chk_index = val;
2864         else if (dent == d->dfs_chk_orph)
2865                 d->chk_orph = val;
2866         else if (dent == d->dfs_chk_lprops)
2867                 d->chk_lprops = val;
2868         else if (dent == d->dfs_chk_fs)
2869                 d->chk_fs = val;
2870         else if (dent == d->dfs_tst_rcvry)
2871                 d->tst_rcvry = val;
2872         else
2873                 return -EINVAL;
2874
2875         return count;
2876 }
2877
2878 static const struct file_operations dfs_fops = {
2879         .open = dfs_file_open,
2880         .read = dfs_file_read,
2881         .write = dfs_file_write,
2882         .owner = THIS_MODULE,
2883         .llseek = no_llseek,
2884 };
2885
2886 /**
2887  * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2888  * @c: UBIFS file-system description object
2889  *
2890  * This function creates all debugfs files for this instance of UBIFS. Returns
2891  * zero in case of success and a negative error code in case of failure.
2892  *
2893  * Note, the only reason we have not merged this function with the
2894  * 'ubifs_debugging_init()' function is because it is better to initialize
2895  * debugfs interfaces at the very end of the mount process, and remove them at
2896  * the very beginning of the mount process.
2897  */
2898 int dbg_debugfs_init_fs(struct ubifs_info *c)
2899 {
2900         int err, n;
2901         const char *fname;
2902         struct dentry *dent;
2903         struct ubifs_debug_info *d = c->dbg;
2904
2905         n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME,
2906                      c->vi.ubi_num, c->vi.vol_id);
2907         if (n == UBIFS_DFS_DIR_LEN) {
2908                 /* The array size is too small */
2909                 fname = UBIFS_DFS_DIR_NAME;
2910                 dent = ERR_PTR(-EINVAL);
2911                 goto out;
2912         }
2913
2914         fname = d->dfs_dir_name;
2915         dent = debugfs_create_dir(fname, dfs_rootdir);
2916         if (IS_ERR_OR_NULL(dent))
2917                 goto out;
2918         d->dfs_dir = dent;
2919
2920         fname = "dump_lprops";
2921         dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2922         if (IS_ERR_OR_NULL(dent))
2923                 goto out_remove;
2924         d->dfs_dump_lprops = dent;
2925
2926         fname = "dump_budg";
2927         dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2928         if (IS_ERR_OR_NULL(dent))
2929                 goto out_remove;
2930         d->dfs_dump_budg = dent;
2931
2932         fname = "dump_tnc";
2933         dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2934         if (IS_ERR_OR_NULL(dent))
2935                 goto out_remove;
2936         d->dfs_dump_tnc = dent;
2937
2938         fname = "chk_general";
2939         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2940                                    &dfs_fops);
2941         if (IS_ERR_OR_NULL(dent))
2942                 goto out_remove;
2943         d->dfs_chk_gen = dent;
2944
2945         fname = "chk_index";
2946         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2947                                    &dfs_fops);
2948         if (IS_ERR_OR_NULL(dent))
2949                 goto out_remove;
2950         d->dfs_chk_index = dent;
2951
2952         fname = "chk_orphans";
2953         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2954                                    &dfs_fops);
2955         if (IS_ERR_OR_NULL(dent))
2956                 goto out_remove;
2957         d->dfs_chk_orph = dent;
2958
2959         fname = "chk_lprops";
2960         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2961                                    &dfs_fops);
2962         if (IS_ERR_OR_NULL(dent))
2963                 goto out_remove;
2964         d->dfs_chk_lprops = dent;
2965
2966         fname = "chk_fs";
2967         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2968                                    &dfs_fops);
2969         if (IS_ERR_OR_NULL(dent))
2970                 goto out_remove;
2971         d->dfs_chk_fs = dent;
2972
2973         fname = "tst_recovery";
2974         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2975                                    &dfs_fops);
2976         if (IS_ERR_OR_NULL(dent))
2977                 goto out_remove;
2978         d->dfs_tst_rcvry = dent;
2979
2980         return 0;
2981
2982 out_remove:
2983         debugfs_remove_recursive(d->dfs_dir);
2984 out:
2985         err = dent ? PTR_ERR(dent) : -ENODEV;
2986         ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n",
2987                   fname, err);
2988         return err;
2989 }
2990
2991 /**
2992  * dbg_debugfs_exit_fs - remove all debugfs files.
2993  * @c: UBIFS file-system description object
2994  */
2995 void dbg_debugfs_exit_fs(struct ubifs_info *c)
2996 {
2997         debugfs_remove_recursive(c->dbg->dfs_dir);
2998 }
2999
3000 struct ubifs_global_debug_info ubifs_dbg;
3001
3002 static struct dentry *dfs_chk_gen;
3003 static struct dentry *dfs_chk_index;
3004 static struct dentry *dfs_chk_orph;
3005 static struct dentry *dfs_chk_lprops;
3006 static struct dentry *dfs_chk_fs;
3007 static struct dentry *dfs_tst_rcvry;
3008
3009 static ssize_t dfs_global_file_read(struct file *file, char __user *u,
3010                                     size_t count, loff_t *ppos)
3011 {
3012         struct dentry *dent = file->f_path.dentry;
3013         int val;
3014
3015         if (dent == dfs_chk_gen)
3016                 val = ubifs_dbg.chk_gen;
3017         else if (dent == dfs_chk_index)
3018                 val = ubifs_dbg.chk_index;
3019         else if (dent == dfs_chk_orph)
3020                 val = ubifs_dbg.chk_orph;
3021         else if (dent == dfs_chk_lprops)
3022                 val = ubifs_dbg.chk_lprops;
3023         else if (dent == dfs_chk_fs)
3024                 val = ubifs_dbg.chk_fs;
3025         else if (dent == dfs_tst_rcvry)
3026                 val = ubifs_dbg.tst_rcvry;
3027         else
3028                 return -EINVAL;
3029
3030         return provide_user_output(val, u, count, ppos);
3031 }
3032
3033 static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
3034                                      size_t count, loff_t *ppos)
3035 {
3036         struct dentry *dent = file->f_path.dentry;
3037         int val;
3038
3039         val = interpret_user_input(u, count);
3040         if (val < 0)
3041                 return val;
3042
3043         if (dent == dfs_chk_gen)
3044                 ubifs_dbg.chk_gen = val;
3045         else if (dent == dfs_chk_index)
3046                 ubifs_dbg.chk_index = val;
3047         else if (dent == dfs_chk_orph)
3048                 ubifs_dbg.chk_orph = val;
3049         else if (dent == dfs_chk_lprops)
3050                 ubifs_dbg.chk_lprops = val;
3051         else if (dent == dfs_chk_fs)
3052                 ubifs_dbg.chk_fs = val;
3053         else if (dent == dfs_tst_rcvry)
3054                 ubifs_dbg.tst_rcvry = val;
3055         else
3056                 return -EINVAL;
3057
3058         return count;
3059 }
3060
3061 static const struct file_operations dfs_global_fops = {
3062         .read = dfs_global_file_read,
3063         .write = dfs_global_file_write,
3064         .owner = THIS_MODULE,
3065         .llseek = no_llseek,
3066 };
3067
3068 /**
3069  * dbg_debugfs_init - initialize debugfs file-system.
3070  *
3071  * UBIFS uses debugfs file-system to expose various debugging knobs to
3072  * user-space. This function creates "ubifs" directory in the debugfs
3073  * file-system. Returns zero in case of success and a negative error code in
3074  * case of failure.
3075  */
3076 int dbg_debugfs_init(void)
3077 {
3078         int err;
3079         const char *fname;
3080         struct dentry *dent;
3081
3082         fname = "ubifs";
3083         dent = debugfs_create_dir(fname, NULL);
3084         if (IS_ERR_OR_NULL(dent))
3085                 goto out;
3086         dfs_rootdir = dent;
3087
3088         fname = "chk_general";
3089         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3090                                    &dfs_global_fops);
3091         if (IS_ERR_OR_NULL(dent))
3092                 goto out_remove;
3093         dfs_chk_gen = dent;
3094
3095         fname = "chk_index";
3096         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3097                                    &dfs_global_fops);
3098         if (IS_ERR_OR_NULL(dent))
3099                 goto out_remove;
3100         dfs_chk_index = dent;
3101
3102         fname = "chk_orphans";
3103         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3104                                    &dfs_global_fops);
3105         if (IS_ERR_OR_NULL(dent))
3106                 goto out_remove;
3107         dfs_chk_orph = dent;
3108
3109         fname = "chk_lprops";
3110         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3111                                    &dfs_global_fops);
3112         if (IS_ERR_OR_NULL(dent))
3113                 goto out_remove;
3114         dfs_chk_lprops = dent;
3115
3116         fname = "chk_fs";
3117         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3118                                    &dfs_global_fops);
3119         if (IS_ERR_OR_NULL(dent))
3120                 goto out_remove;
3121         dfs_chk_fs = dent;
3122
3123         fname = "tst_recovery";
3124         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3125                                    &dfs_global_fops);
3126         if (IS_ERR_OR_NULL(dent))
3127                 goto out_remove;
3128         dfs_tst_rcvry = dent;
3129
3130         return 0;
3131
3132 out_remove:
3133         debugfs_remove_recursive(dfs_rootdir);
3134 out:
3135         err = dent ? PTR_ERR(dent) : -ENODEV;
3136         ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n",
3137                   fname, err);
3138         return err;
3139 }
3140
3141 /**
3142  * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
3143  */
3144 void dbg_debugfs_exit(void)
3145 {
3146         debugfs_remove_recursive(dfs_rootdir);
3147 }
3148
3149 /**
3150  * ubifs_debugging_init - initialize UBIFS debugging.
3151  * @c: UBIFS file-system description object
3152  *
3153  * This function initializes debugging-related data for the file system.
3154  * Returns zero in case of success and a negative error code in case of
3155  * failure.
3156  */
3157 int ubifs_debugging_init(struct ubifs_info *c)
3158 {
3159         c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
3160         if (!c->dbg)
3161                 return -ENOMEM;
3162
3163         return 0;
3164 }
3165
3166 /**
3167  * ubifs_debugging_exit - free debugging data.
3168  * @c: UBIFS file-system description object
3169  */
3170 void ubifs_debugging_exit(struct ubifs_info *c)
3171 {
3172         kfree(c->dbg);
3173 }
3174
3175 #endif /* CONFIG_UBIFS_FS_DEBUG */