exofs: Move exofs specific osd operations out of ios.c
[linux-2.6.git] / fs / splice.c
1 /*
2  * "splice": joining two ropes together by interweaving their strands.
3  *
4  * This is the "extended pipe" functionality, where a pipe is used as
5  * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6  * buffer that you can use to transfer data from one end to the other.
7  *
8  * The traditional unix read/write is extended with a "splice()" operation
9  * that transfers data buffers to or from a pipe buffer.
10  *
11  * Named by Larry McVoy, original implementation from Linus, extended by
12  * Jens to support splicing to files, network, direct splicing, etc and
13  * fixing lots of bugs.
14  *
15  * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16  * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17  * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18  *
19  */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/buffer_head.h>
29 #include <linux/module.h>
30 #include <linux/syscalls.h>
31 #include <linux/uio.h>
32 #include <linux/security.h>
33 #include <linux/gfp.h>
34
35 /*
36  * Attempt to steal a page from a pipe buffer. This should perhaps go into
37  * a vm helper function, it's already simplified quite a bit by the
38  * addition of remove_mapping(). If success is returned, the caller may
39  * attempt to reuse this page for another destination.
40  */
41 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
42                                      struct pipe_buffer *buf)
43 {
44         struct page *page = buf->page;
45         struct address_space *mapping;
46
47         lock_page(page);
48
49         mapping = page_mapping(page);
50         if (mapping) {
51                 WARN_ON(!PageUptodate(page));
52
53                 /*
54                  * At least for ext2 with nobh option, we need to wait on
55                  * writeback completing on this page, since we'll remove it
56                  * from the pagecache.  Otherwise truncate wont wait on the
57                  * page, allowing the disk blocks to be reused by someone else
58                  * before we actually wrote our data to them. fs corruption
59                  * ensues.
60                  */
61                 wait_on_page_writeback(page);
62
63                 if (page_has_private(page) &&
64                     !try_to_release_page(page, GFP_KERNEL))
65                         goto out_unlock;
66
67                 /*
68                  * If we succeeded in removing the mapping, set LRU flag
69                  * and return good.
70                  */
71                 if (remove_mapping(mapping, page)) {
72                         buf->flags |= PIPE_BUF_FLAG_LRU;
73                         return 0;
74                 }
75         }
76
77         /*
78          * Raced with truncate or failed to remove page from current
79          * address space, unlock and return failure.
80          */
81 out_unlock:
82         unlock_page(page);
83         return 1;
84 }
85
86 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
87                                         struct pipe_buffer *buf)
88 {
89         page_cache_release(buf->page);
90         buf->flags &= ~PIPE_BUF_FLAG_LRU;
91 }
92
93 /*
94  * Check whether the contents of buf is OK to access. Since the content
95  * is a page cache page, IO may be in flight.
96  */
97 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
98                                        struct pipe_buffer *buf)
99 {
100         struct page *page = buf->page;
101         int err;
102
103         if (!PageUptodate(page)) {
104                 lock_page(page);
105
106                 /*
107                  * Page got truncated/unhashed. This will cause a 0-byte
108                  * splice, if this is the first page.
109                  */
110                 if (!page->mapping) {
111                         err = -ENODATA;
112                         goto error;
113                 }
114
115                 /*
116                  * Uh oh, read-error from disk.
117                  */
118                 if (!PageUptodate(page)) {
119                         err = -EIO;
120                         goto error;
121                 }
122
123                 /*
124                  * Page is ok afterall, we are done.
125                  */
126                 unlock_page(page);
127         }
128
129         return 0;
130 error:
131         unlock_page(page);
132         return err;
133 }
134
135 static const struct pipe_buf_operations page_cache_pipe_buf_ops = {
136         .can_merge = 0,
137         .map = generic_pipe_buf_map,
138         .unmap = generic_pipe_buf_unmap,
139         .confirm = page_cache_pipe_buf_confirm,
140         .release = page_cache_pipe_buf_release,
141         .steal = page_cache_pipe_buf_steal,
142         .get = generic_pipe_buf_get,
143 };
144
145 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
146                                     struct pipe_buffer *buf)
147 {
148         if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
149                 return 1;
150
151         buf->flags |= PIPE_BUF_FLAG_LRU;
152         return generic_pipe_buf_steal(pipe, buf);
153 }
154
155 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
156         .can_merge = 0,
157         .map = generic_pipe_buf_map,
158         .unmap = generic_pipe_buf_unmap,
159         .confirm = generic_pipe_buf_confirm,
160         .release = page_cache_pipe_buf_release,
161         .steal = user_page_pipe_buf_steal,
162         .get = generic_pipe_buf_get,
163 };
164
165 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
166 {
167         smp_mb();
168         if (waitqueue_active(&pipe->wait))
169                 wake_up_interruptible(&pipe->wait);
170         kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
171 }
172
173 /**
174  * splice_to_pipe - fill passed data into a pipe
175  * @pipe:       pipe to fill
176  * @spd:        data to fill
177  *
178  * Description:
179  *    @spd contains a map of pages and len/offset tuples, along with
180  *    the struct pipe_buf_operations associated with these pages. This
181  *    function will link that data to the pipe.
182  *
183  */
184 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
185                        struct splice_pipe_desc *spd)
186 {
187         unsigned int spd_pages = spd->nr_pages;
188         int ret, do_wakeup, page_nr;
189
190         ret = 0;
191         do_wakeup = 0;
192         page_nr = 0;
193
194         pipe_lock(pipe);
195
196         for (;;) {
197                 if (!pipe->readers) {
198                         send_sig(SIGPIPE, current, 0);
199                         if (!ret)
200                                 ret = -EPIPE;
201                         break;
202                 }
203
204                 if (pipe->nrbufs < pipe->buffers) {
205                         int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
206                         struct pipe_buffer *buf = pipe->bufs + newbuf;
207
208                         buf->page = spd->pages[page_nr];
209                         buf->offset = spd->partial[page_nr].offset;
210                         buf->len = spd->partial[page_nr].len;
211                         buf->private = spd->partial[page_nr].private;
212                         buf->ops = spd->ops;
213                         if (spd->flags & SPLICE_F_GIFT)
214                                 buf->flags |= PIPE_BUF_FLAG_GIFT;
215
216                         pipe->nrbufs++;
217                         page_nr++;
218                         ret += buf->len;
219
220                         if (pipe->inode)
221                                 do_wakeup = 1;
222
223                         if (!--spd->nr_pages)
224                                 break;
225                         if (pipe->nrbufs < pipe->buffers)
226                                 continue;
227
228                         break;
229                 }
230
231                 if (spd->flags & SPLICE_F_NONBLOCK) {
232                         if (!ret)
233                                 ret = -EAGAIN;
234                         break;
235                 }
236
237                 if (signal_pending(current)) {
238                         if (!ret)
239                                 ret = -ERESTARTSYS;
240                         break;
241                 }
242
243                 if (do_wakeup) {
244                         smp_mb();
245                         if (waitqueue_active(&pipe->wait))
246                                 wake_up_interruptible_sync(&pipe->wait);
247                         kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
248                         do_wakeup = 0;
249                 }
250
251                 pipe->waiting_writers++;
252                 pipe_wait(pipe);
253                 pipe->waiting_writers--;
254         }
255
256         pipe_unlock(pipe);
257
258         if (do_wakeup)
259                 wakeup_pipe_readers(pipe);
260
261         while (page_nr < spd_pages)
262                 spd->spd_release(spd, page_nr++);
263
264         return ret;
265 }
266
267 static void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
268 {
269         page_cache_release(spd->pages[i]);
270 }
271
272 /*
273  * Check if we need to grow the arrays holding pages and partial page
274  * descriptions.
275  */
276 int splice_grow_spd(struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
277 {
278         if (pipe->buffers <= PIPE_DEF_BUFFERS)
279                 return 0;
280
281         spd->pages = kmalloc(pipe->buffers * sizeof(struct page *), GFP_KERNEL);
282         spd->partial = kmalloc(pipe->buffers * sizeof(struct partial_page), GFP_KERNEL);
283
284         if (spd->pages && spd->partial)
285                 return 0;
286
287         kfree(spd->pages);
288         kfree(spd->partial);
289         return -ENOMEM;
290 }
291
292 void splice_shrink_spd(struct pipe_inode_info *pipe,
293                        struct splice_pipe_desc *spd)
294 {
295         if (pipe->buffers <= PIPE_DEF_BUFFERS)
296                 return;
297
298         kfree(spd->pages);
299         kfree(spd->partial);
300 }
301
302 static int
303 __generic_file_splice_read(struct file *in, loff_t *ppos,
304                            struct pipe_inode_info *pipe, size_t len,
305                            unsigned int flags)
306 {
307         struct address_space *mapping = in->f_mapping;
308         unsigned int loff, nr_pages, req_pages;
309         struct page *pages[PIPE_DEF_BUFFERS];
310         struct partial_page partial[PIPE_DEF_BUFFERS];
311         struct page *page;
312         pgoff_t index, end_index;
313         loff_t isize;
314         int error, page_nr;
315         struct splice_pipe_desc spd = {
316                 .pages = pages,
317                 .partial = partial,
318                 .flags = flags,
319                 .ops = &page_cache_pipe_buf_ops,
320                 .spd_release = spd_release_page,
321         };
322
323         if (splice_grow_spd(pipe, &spd))
324                 return -ENOMEM;
325
326         index = *ppos >> PAGE_CACHE_SHIFT;
327         loff = *ppos & ~PAGE_CACHE_MASK;
328         req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
329         nr_pages = min(req_pages, pipe->buffers);
330
331         /*
332          * Lookup the (hopefully) full range of pages we need.
333          */
334         spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages);
335         index += spd.nr_pages;
336
337         /*
338          * If find_get_pages_contig() returned fewer pages than we needed,
339          * readahead/allocate the rest and fill in the holes.
340          */
341         if (spd.nr_pages < nr_pages)
342                 page_cache_sync_readahead(mapping, &in->f_ra, in,
343                                 index, req_pages - spd.nr_pages);
344
345         error = 0;
346         while (spd.nr_pages < nr_pages) {
347                 /*
348                  * Page could be there, find_get_pages_contig() breaks on
349                  * the first hole.
350                  */
351                 page = find_get_page(mapping, index);
352                 if (!page) {
353                         /*
354                          * page didn't exist, allocate one.
355                          */
356                         page = page_cache_alloc_cold(mapping);
357                         if (!page)
358                                 break;
359
360                         error = add_to_page_cache_lru(page, mapping, index,
361                                                 GFP_KERNEL);
362                         if (unlikely(error)) {
363                                 page_cache_release(page);
364                                 if (error == -EEXIST)
365                                         continue;
366                                 break;
367                         }
368                         /*
369                          * add_to_page_cache() locks the page, unlock it
370                          * to avoid convoluting the logic below even more.
371                          */
372                         unlock_page(page);
373                 }
374
375                 spd.pages[spd.nr_pages++] = page;
376                 index++;
377         }
378
379         /*
380          * Now loop over the map and see if we need to start IO on any
381          * pages, fill in the partial map, etc.
382          */
383         index = *ppos >> PAGE_CACHE_SHIFT;
384         nr_pages = spd.nr_pages;
385         spd.nr_pages = 0;
386         for (page_nr = 0; page_nr < nr_pages; page_nr++) {
387                 unsigned int this_len;
388
389                 if (!len)
390                         break;
391
392                 /*
393                  * this_len is the max we'll use from this page
394                  */
395                 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
396                 page = spd.pages[page_nr];
397
398                 if (PageReadahead(page))
399                         page_cache_async_readahead(mapping, &in->f_ra, in,
400                                         page, index, req_pages - page_nr);
401
402                 /*
403                  * If the page isn't uptodate, we may need to start io on it
404                  */
405                 if (!PageUptodate(page)) {
406                         lock_page(page);
407
408                         /*
409                          * Page was truncated, or invalidated by the
410                          * filesystem.  Redo the find/create, but this time the
411                          * page is kept locked, so there's no chance of another
412                          * race with truncate/invalidate.
413                          */
414                         if (!page->mapping) {
415                                 unlock_page(page);
416                                 page = find_or_create_page(mapping, index,
417                                                 mapping_gfp_mask(mapping));
418
419                                 if (!page) {
420                                         error = -ENOMEM;
421                                         break;
422                                 }
423                                 page_cache_release(spd.pages[page_nr]);
424                                 spd.pages[page_nr] = page;
425                         }
426                         /*
427                          * page was already under io and is now done, great
428                          */
429                         if (PageUptodate(page)) {
430                                 unlock_page(page);
431                                 goto fill_it;
432                         }
433
434                         /*
435                          * need to read in the page
436                          */
437                         error = mapping->a_ops->readpage(in, page);
438                         if (unlikely(error)) {
439                                 /*
440                                  * We really should re-lookup the page here,
441                                  * but it complicates things a lot. Instead
442                                  * lets just do what we already stored, and
443                                  * we'll get it the next time we are called.
444                                  */
445                                 if (error == AOP_TRUNCATED_PAGE)
446                                         error = 0;
447
448                                 break;
449                         }
450                 }
451 fill_it:
452                 /*
453                  * i_size must be checked after PageUptodate.
454                  */
455                 isize = i_size_read(mapping->host);
456                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
457                 if (unlikely(!isize || index > end_index))
458                         break;
459
460                 /*
461                  * if this is the last page, see if we need to shrink
462                  * the length and stop
463                  */
464                 if (end_index == index) {
465                         unsigned int plen;
466
467                         /*
468                          * max good bytes in this page
469                          */
470                         plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
471                         if (plen <= loff)
472                                 break;
473
474                         /*
475                          * force quit after adding this page
476                          */
477                         this_len = min(this_len, plen - loff);
478                         len = this_len;
479                 }
480
481                 spd.partial[page_nr].offset = loff;
482                 spd.partial[page_nr].len = this_len;
483                 len -= this_len;
484                 loff = 0;
485                 spd.nr_pages++;
486                 index++;
487         }
488
489         /*
490          * Release any pages at the end, if we quit early. 'page_nr' is how far
491          * we got, 'nr_pages' is how many pages are in the map.
492          */
493         while (page_nr < nr_pages)
494                 page_cache_release(spd.pages[page_nr++]);
495         in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
496
497         if (spd.nr_pages)
498                 error = splice_to_pipe(pipe, &spd);
499
500         splice_shrink_spd(pipe, &spd);
501         return error;
502 }
503
504 /**
505  * generic_file_splice_read - splice data from file to a pipe
506  * @in:         file to splice from
507  * @ppos:       position in @in
508  * @pipe:       pipe to splice to
509  * @len:        number of bytes to splice
510  * @flags:      splice modifier flags
511  *
512  * Description:
513  *    Will read pages from given file and fill them into a pipe. Can be
514  *    used as long as the address_space operations for the source implements
515  *    a readpage() hook.
516  *
517  */
518 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
519                                  struct pipe_inode_info *pipe, size_t len,
520                                  unsigned int flags)
521 {
522         loff_t isize, left;
523         int ret;
524
525         isize = i_size_read(in->f_mapping->host);
526         if (unlikely(*ppos >= isize))
527                 return 0;
528
529         left = isize - *ppos;
530         if (unlikely(left < len))
531                 len = left;
532
533         ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
534         if (ret > 0) {
535                 *ppos += ret;
536                 file_accessed(in);
537         }
538
539         return ret;
540 }
541 EXPORT_SYMBOL(generic_file_splice_read);
542
543 static const struct pipe_buf_operations default_pipe_buf_ops = {
544         .can_merge = 0,
545         .map = generic_pipe_buf_map,
546         .unmap = generic_pipe_buf_unmap,
547         .confirm = generic_pipe_buf_confirm,
548         .release = generic_pipe_buf_release,
549         .steal = generic_pipe_buf_steal,
550         .get = generic_pipe_buf_get,
551 };
552
553 static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
554                             unsigned long vlen, loff_t offset)
555 {
556         mm_segment_t old_fs;
557         loff_t pos = offset;
558         ssize_t res;
559
560         old_fs = get_fs();
561         set_fs(get_ds());
562         /* The cast to a user pointer is valid due to the set_fs() */
563         res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
564         set_fs(old_fs);
565
566         return res;
567 }
568
569 static ssize_t kernel_write(struct file *file, const char *buf, size_t count,
570                             loff_t pos)
571 {
572         mm_segment_t old_fs;
573         ssize_t res;
574
575         old_fs = get_fs();
576         set_fs(get_ds());
577         /* The cast to a user pointer is valid due to the set_fs() */
578         res = vfs_write(file, (const char __user *)buf, count, &pos);
579         set_fs(old_fs);
580
581         return res;
582 }
583
584 ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
585                                  struct pipe_inode_info *pipe, size_t len,
586                                  unsigned int flags)
587 {
588         unsigned int nr_pages;
589         unsigned int nr_freed;
590         size_t offset;
591         struct page *pages[PIPE_DEF_BUFFERS];
592         struct partial_page partial[PIPE_DEF_BUFFERS];
593         struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
594         ssize_t res;
595         size_t this_len;
596         int error;
597         int i;
598         struct splice_pipe_desc spd = {
599                 .pages = pages,
600                 .partial = partial,
601                 .flags = flags,
602                 .ops = &default_pipe_buf_ops,
603                 .spd_release = spd_release_page,
604         };
605
606         if (splice_grow_spd(pipe, &spd))
607                 return -ENOMEM;
608
609         res = -ENOMEM;
610         vec = __vec;
611         if (pipe->buffers > PIPE_DEF_BUFFERS) {
612                 vec = kmalloc(pipe->buffers * sizeof(struct iovec), GFP_KERNEL);
613                 if (!vec)
614                         goto shrink_ret;
615         }
616
617         offset = *ppos & ~PAGE_CACHE_MASK;
618         nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
619
620         for (i = 0; i < nr_pages && i < pipe->buffers && len; i++) {
621                 struct page *page;
622
623                 page = alloc_page(GFP_USER);
624                 error = -ENOMEM;
625                 if (!page)
626                         goto err;
627
628                 this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
629                 vec[i].iov_base = (void __user *) page_address(page);
630                 vec[i].iov_len = this_len;
631                 spd.pages[i] = page;
632                 spd.nr_pages++;
633                 len -= this_len;
634                 offset = 0;
635         }
636
637         res = kernel_readv(in, vec, spd.nr_pages, *ppos);
638         if (res < 0) {
639                 error = res;
640                 goto err;
641         }
642
643         error = 0;
644         if (!res)
645                 goto err;
646
647         nr_freed = 0;
648         for (i = 0; i < spd.nr_pages; i++) {
649                 this_len = min_t(size_t, vec[i].iov_len, res);
650                 spd.partial[i].offset = 0;
651                 spd.partial[i].len = this_len;
652                 if (!this_len) {
653                         __free_page(spd.pages[i]);
654                         spd.pages[i] = NULL;
655                         nr_freed++;
656                 }
657                 res -= this_len;
658         }
659         spd.nr_pages -= nr_freed;
660
661         res = splice_to_pipe(pipe, &spd);
662         if (res > 0)
663                 *ppos += res;
664
665 shrink_ret:
666         if (vec != __vec)
667                 kfree(vec);
668         splice_shrink_spd(pipe, &spd);
669         return res;
670
671 err:
672         for (i = 0; i < spd.nr_pages; i++)
673                 __free_page(spd.pages[i]);
674
675         res = error;
676         goto shrink_ret;
677 }
678 EXPORT_SYMBOL(default_file_splice_read);
679
680 /*
681  * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
682  * using sendpage(). Return the number of bytes sent.
683  */
684 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
685                             struct pipe_buffer *buf, struct splice_desc *sd)
686 {
687         struct file *file = sd->u.file;
688         loff_t pos = sd->pos;
689         int more;
690
691         if (!likely(file->f_op && file->f_op->sendpage))
692                 return -EINVAL;
693
694         more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
695         return file->f_op->sendpage(file, buf->page, buf->offset,
696                                     sd->len, &pos, more);
697 }
698
699 /*
700  * This is a little more tricky than the file -> pipe splicing. There are
701  * basically three cases:
702  *
703  *      - Destination page already exists in the address space and there
704  *        are users of it. For that case we have no other option that
705  *        copying the data. Tough luck.
706  *      - Destination page already exists in the address space, but there
707  *        are no users of it. Make sure it's uptodate, then drop it. Fall
708  *        through to last case.
709  *      - Destination page does not exist, we can add the pipe page to
710  *        the page cache and avoid the copy.
711  *
712  * If asked to move pages to the output file (SPLICE_F_MOVE is set in
713  * sd->flags), we attempt to migrate pages from the pipe to the output
714  * file address space page cache. This is possible if no one else has
715  * the pipe page referenced outside of the pipe and page cache. If
716  * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
717  * a new page in the output file page cache and fill/dirty that.
718  */
719 int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
720                  struct splice_desc *sd)
721 {
722         struct file *file = sd->u.file;
723         struct address_space *mapping = file->f_mapping;
724         unsigned int offset, this_len;
725         struct page *page;
726         void *fsdata;
727         int ret;
728
729         offset = sd->pos & ~PAGE_CACHE_MASK;
730
731         this_len = sd->len;
732         if (this_len + offset > PAGE_CACHE_SIZE)
733                 this_len = PAGE_CACHE_SIZE - offset;
734
735         ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
736                                 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
737         if (unlikely(ret))
738                 goto out;
739
740         if (buf->page != page) {
741                 /*
742                  * Careful, ->map() uses KM_USER0!
743                  */
744                 char *src = buf->ops->map(pipe, buf, 1);
745                 char *dst = kmap_atomic(page, KM_USER1);
746
747                 memcpy(dst + offset, src + buf->offset, this_len);
748                 flush_dcache_page(page);
749                 kunmap_atomic(dst, KM_USER1);
750                 buf->ops->unmap(pipe, buf, src);
751         }
752         ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
753                                 page, fsdata);
754 out:
755         return ret;
756 }
757 EXPORT_SYMBOL(pipe_to_file);
758
759 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
760 {
761         smp_mb();
762         if (waitqueue_active(&pipe->wait))
763                 wake_up_interruptible(&pipe->wait);
764         kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
765 }
766
767 /**
768  * splice_from_pipe_feed - feed available data from a pipe to a file
769  * @pipe:       pipe to splice from
770  * @sd:         information to @actor
771  * @actor:      handler that splices the data
772  *
773  * Description:
774  *    This function loops over the pipe and calls @actor to do the
775  *    actual moving of a single struct pipe_buffer to the desired
776  *    destination.  It returns when there's no more buffers left in
777  *    the pipe or if the requested number of bytes (@sd->total_len)
778  *    have been copied.  It returns a positive number (one) if the
779  *    pipe needs to be filled with more data, zero if the required
780  *    number of bytes have been copied and -errno on error.
781  *
782  *    This, together with splice_from_pipe_{begin,end,next}, may be
783  *    used to implement the functionality of __splice_from_pipe() when
784  *    locking is required around copying the pipe buffers to the
785  *    destination.
786  */
787 int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
788                           splice_actor *actor)
789 {
790         int ret;
791
792         while (pipe->nrbufs) {
793                 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
794                 const struct pipe_buf_operations *ops = buf->ops;
795
796                 sd->len = buf->len;
797                 if (sd->len > sd->total_len)
798                         sd->len = sd->total_len;
799
800                 ret = buf->ops->confirm(pipe, buf);
801                 if (unlikely(ret)) {
802                         if (ret == -ENODATA)
803                                 ret = 0;
804                         return ret;
805                 }
806
807                 ret = actor(pipe, buf, sd);
808                 if (ret <= 0)
809                         return ret;
810
811                 buf->offset += ret;
812                 buf->len -= ret;
813
814                 sd->num_spliced += ret;
815                 sd->len -= ret;
816                 sd->pos += ret;
817                 sd->total_len -= ret;
818
819                 if (!buf->len) {
820                         buf->ops = NULL;
821                         ops->release(pipe, buf);
822                         pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
823                         pipe->nrbufs--;
824                         if (pipe->inode)
825                                 sd->need_wakeup = true;
826                 }
827
828                 if (!sd->total_len)
829                         return 0;
830         }
831
832         return 1;
833 }
834 EXPORT_SYMBOL(splice_from_pipe_feed);
835
836 /**
837  * splice_from_pipe_next - wait for some data to splice from
838  * @pipe:       pipe to splice from
839  * @sd:         information about the splice operation
840  *
841  * Description:
842  *    This function will wait for some data and return a positive
843  *    value (one) if pipe buffers are available.  It will return zero
844  *    or -errno if no more data needs to be spliced.
845  */
846 int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
847 {
848         while (!pipe->nrbufs) {
849                 if (!pipe->writers)
850                         return 0;
851
852                 if (!pipe->waiting_writers && sd->num_spliced)
853                         return 0;
854
855                 if (sd->flags & SPLICE_F_NONBLOCK)
856                         return -EAGAIN;
857
858                 if (signal_pending(current))
859                         return -ERESTARTSYS;
860
861                 if (sd->need_wakeup) {
862                         wakeup_pipe_writers(pipe);
863                         sd->need_wakeup = false;
864                 }
865
866                 pipe_wait(pipe);
867         }
868
869         return 1;
870 }
871 EXPORT_SYMBOL(splice_from_pipe_next);
872
873 /**
874  * splice_from_pipe_begin - start splicing from pipe
875  * @sd:         information about the splice operation
876  *
877  * Description:
878  *    This function should be called before a loop containing
879  *    splice_from_pipe_next() and splice_from_pipe_feed() to
880  *    initialize the necessary fields of @sd.
881  */
882 void splice_from_pipe_begin(struct splice_desc *sd)
883 {
884         sd->num_spliced = 0;
885         sd->need_wakeup = false;
886 }
887 EXPORT_SYMBOL(splice_from_pipe_begin);
888
889 /**
890  * splice_from_pipe_end - finish splicing from pipe
891  * @pipe:       pipe to splice from
892  * @sd:         information about the splice operation
893  *
894  * Description:
895  *    This function will wake up pipe writers if necessary.  It should
896  *    be called after a loop containing splice_from_pipe_next() and
897  *    splice_from_pipe_feed().
898  */
899 void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
900 {
901         if (sd->need_wakeup)
902                 wakeup_pipe_writers(pipe);
903 }
904 EXPORT_SYMBOL(splice_from_pipe_end);
905
906 /**
907  * __splice_from_pipe - splice data from a pipe to given actor
908  * @pipe:       pipe to splice from
909  * @sd:         information to @actor
910  * @actor:      handler that splices the data
911  *
912  * Description:
913  *    This function does little more than loop over the pipe and call
914  *    @actor to do the actual moving of a single struct pipe_buffer to
915  *    the desired destination. See pipe_to_file, pipe_to_sendpage, or
916  *    pipe_to_user.
917  *
918  */
919 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
920                            splice_actor *actor)
921 {
922         int ret;
923
924         splice_from_pipe_begin(sd);
925         do {
926                 ret = splice_from_pipe_next(pipe, sd);
927                 if (ret > 0)
928                         ret = splice_from_pipe_feed(pipe, sd, actor);
929         } while (ret > 0);
930         splice_from_pipe_end(pipe, sd);
931
932         return sd->num_spliced ? sd->num_spliced : ret;
933 }
934 EXPORT_SYMBOL(__splice_from_pipe);
935
936 /**
937  * splice_from_pipe - splice data from a pipe to a file
938  * @pipe:       pipe to splice from
939  * @out:        file to splice to
940  * @ppos:       position in @out
941  * @len:        how many bytes to splice
942  * @flags:      splice modifier flags
943  * @actor:      handler that splices the data
944  *
945  * Description:
946  *    See __splice_from_pipe. This function locks the pipe inode,
947  *    otherwise it's identical to __splice_from_pipe().
948  *
949  */
950 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
951                          loff_t *ppos, size_t len, unsigned int flags,
952                          splice_actor *actor)
953 {
954         ssize_t ret;
955         struct splice_desc sd = {
956                 .total_len = len,
957                 .flags = flags,
958                 .pos = *ppos,
959                 .u.file = out,
960         };
961
962         pipe_lock(pipe);
963         ret = __splice_from_pipe(pipe, &sd, actor);
964         pipe_unlock(pipe);
965
966         return ret;
967 }
968
969 /**
970  * generic_file_splice_write - splice data from a pipe to a file
971  * @pipe:       pipe info
972  * @out:        file to write to
973  * @ppos:       position in @out
974  * @len:        number of bytes to splice
975  * @flags:      splice modifier flags
976  *
977  * Description:
978  *    Will either move or copy pages (determined by @flags options) from
979  *    the given pipe inode to the given file.
980  *
981  */
982 ssize_t
983 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
984                           loff_t *ppos, size_t len, unsigned int flags)
985 {
986         struct address_space *mapping = out->f_mapping;
987         struct inode *inode = mapping->host;
988         struct splice_desc sd = {
989                 .total_len = len,
990                 .flags = flags,
991                 .pos = *ppos,
992                 .u.file = out,
993         };
994         ssize_t ret;
995
996         pipe_lock(pipe);
997
998         splice_from_pipe_begin(&sd);
999         do {
1000                 ret = splice_from_pipe_next(pipe, &sd);
1001                 if (ret <= 0)
1002                         break;
1003
1004                 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1005                 ret = file_remove_suid(out);
1006                 if (!ret) {
1007                         file_update_time(out);
1008                         ret = splice_from_pipe_feed(pipe, &sd, pipe_to_file);
1009                 }
1010                 mutex_unlock(&inode->i_mutex);
1011         } while (ret > 0);
1012         splice_from_pipe_end(pipe, &sd);
1013
1014         pipe_unlock(pipe);
1015
1016         if (sd.num_spliced)
1017                 ret = sd.num_spliced;
1018
1019         if (ret > 0) {
1020                 unsigned long nr_pages;
1021                 int err;
1022
1023                 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1024
1025                 err = generic_write_sync(out, *ppos, ret);
1026                 if (err)
1027                         ret = err;
1028                 else
1029                         *ppos += ret;
1030                 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
1031         }
1032
1033         return ret;
1034 }
1035
1036 EXPORT_SYMBOL(generic_file_splice_write);
1037
1038 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1039                           struct splice_desc *sd)
1040 {
1041         int ret;
1042         void *data;
1043
1044         data = buf->ops->map(pipe, buf, 0);
1045         ret = kernel_write(sd->u.file, data + buf->offset, sd->len, sd->pos);
1046         buf->ops->unmap(pipe, buf, data);
1047
1048         return ret;
1049 }
1050
1051 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1052                                          struct file *out, loff_t *ppos,
1053                                          size_t len, unsigned int flags)
1054 {
1055         ssize_t ret;
1056
1057         ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1058         if (ret > 0)
1059                 *ppos += ret;
1060
1061         return ret;
1062 }
1063
1064 /**
1065  * generic_splice_sendpage - splice data from a pipe to a socket
1066  * @pipe:       pipe to splice from
1067  * @out:        socket to write to
1068  * @ppos:       position in @out
1069  * @len:        number of bytes to splice
1070  * @flags:      splice modifier flags
1071  *
1072  * Description:
1073  *    Will send @len bytes from the pipe to a network socket. No data copying
1074  *    is involved.
1075  *
1076  */
1077 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1078                                 loff_t *ppos, size_t len, unsigned int flags)
1079 {
1080         return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1081 }
1082
1083 EXPORT_SYMBOL(generic_splice_sendpage);
1084
1085 /*
1086  * Attempt to initiate a splice from pipe to file.
1087  */
1088 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1089                            loff_t *ppos, size_t len, unsigned int flags)
1090 {
1091         ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1092                                 loff_t *, size_t, unsigned int);
1093         int ret;
1094
1095         if (unlikely(!(out->f_mode & FMODE_WRITE)))
1096                 return -EBADF;
1097
1098         if (unlikely(out->f_flags & O_APPEND))
1099                 return -EINVAL;
1100
1101         ret = rw_verify_area(WRITE, out, ppos, len);
1102         if (unlikely(ret < 0))
1103                 return ret;
1104
1105         if (out->f_op && out->f_op->splice_write)
1106                 splice_write = out->f_op->splice_write;
1107         else
1108                 splice_write = default_file_splice_write;
1109
1110         return splice_write(pipe, out, ppos, len, flags);
1111 }
1112
1113 /*
1114  * Attempt to initiate a splice from a file to a pipe.
1115  */
1116 static long do_splice_to(struct file *in, loff_t *ppos,
1117                          struct pipe_inode_info *pipe, size_t len,
1118                          unsigned int flags)
1119 {
1120         ssize_t (*splice_read)(struct file *, loff_t *,
1121                                struct pipe_inode_info *, size_t, unsigned int);
1122         int ret;
1123
1124         if (unlikely(!(in->f_mode & FMODE_READ)))
1125                 return -EBADF;
1126
1127         ret = rw_verify_area(READ, in, ppos, len);
1128         if (unlikely(ret < 0))
1129                 return ret;
1130
1131         if (in->f_op && in->f_op->splice_read)
1132                 splice_read = in->f_op->splice_read;
1133         else
1134                 splice_read = default_file_splice_read;
1135
1136         return splice_read(in, ppos, pipe, len, flags);
1137 }
1138
1139 /**
1140  * splice_direct_to_actor - splices data directly between two non-pipes
1141  * @in:         file to splice from
1142  * @sd:         actor information on where to splice to
1143  * @actor:      handles the data splicing
1144  *
1145  * Description:
1146  *    This is a special case helper to splice directly between two
1147  *    points, without requiring an explicit pipe. Internally an allocated
1148  *    pipe is cached in the process, and reused during the lifetime of
1149  *    that process.
1150  *
1151  */
1152 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1153                                splice_direct_actor *actor)
1154 {
1155         struct pipe_inode_info *pipe;
1156         long ret, bytes;
1157         umode_t i_mode;
1158         size_t len;
1159         int i, flags;
1160
1161         /*
1162          * We require the input being a regular file, as we don't want to
1163          * randomly drop data for eg socket -> socket splicing. Use the
1164          * piped splicing for that!
1165          */
1166         i_mode = in->f_path.dentry->d_inode->i_mode;
1167         if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1168                 return -EINVAL;
1169
1170         /*
1171          * neither in nor out is a pipe, setup an internal pipe attached to
1172          * 'out' and transfer the wanted data from 'in' to 'out' through that
1173          */
1174         pipe = current->splice_pipe;
1175         if (unlikely(!pipe)) {
1176                 pipe = alloc_pipe_info(NULL);
1177                 if (!pipe)
1178                         return -ENOMEM;
1179
1180                 /*
1181                  * We don't have an immediate reader, but we'll read the stuff
1182                  * out of the pipe right after the splice_to_pipe(). So set
1183                  * PIPE_READERS appropriately.
1184                  */
1185                 pipe->readers = 1;
1186
1187                 current->splice_pipe = pipe;
1188         }
1189
1190         /*
1191          * Do the splice.
1192          */
1193         ret = 0;
1194         bytes = 0;
1195         len = sd->total_len;
1196         flags = sd->flags;
1197
1198         /*
1199          * Don't block on output, we have to drain the direct pipe.
1200          */
1201         sd->flags &= ~SPLICE_F_NONBLOCK;
1202
1203         while (len) {
1204                 size_t read_len;
1205                 loff_t pos = sd->pos, prev_pos = pos;
1206
1207                 ret = do_splice_to(in, &pos, pipe, len, flags);
1208                 if (unlikely(ret <= 0))
1209                         goto out_release;
1210
1211                 read_len = ret;
1212                 sd->total_len = read_len;
1213
1214                 /*
1215                  * NOTE: nonblocking mode only applies to the input. We
1216                  * must not do the output in nonblocking mode as then we
1217                  * could get stuck data in the internal pipe:
1218                  */
1219                 ret = actor(pipe, sd);
1220                 if (unlikely(ret <= 0)) {
1221                         sd->pos = prev_pos;
1222                         goto out_release;
1223                 }
1224
1225                 bytes += ret;
1226                 len -= ret;
1227                 sd->pos = pos;
1228
1229                 if (ret < read_len) {
1230                         sd->pos = prev_pos + ret;
1231                         goto out_release;
1232                 }
1233         }
1234
1235 done:
1236         pipe->nrbufs = pipe->curbuf = 0;
1237         file_accessed(in);
1238         return bytes;
1239
1240 out_release:
1241         /*
1242          * If we did an incomplete transfer we must release
1243          * the pipe buffers in question:
1244          */
1245         for (i = 0; i < pipe->buffers; i++) {
1246                 struct pipe_buffer *buf = pipe->bufs + i;
1247
1248                 if (buf->ops) {
1249                         buf->ops->release(pipe, buf);
1250                         buf->ops = NULL;
1251                 }
1252         }
1253
1254         if (!bytes)
1255                 bytes = ret;
1256
1257         goto done;
1258 }
1259 EXPORT_SYMBOL(splice_direct_to_actor);
1260
1261 static int direct_splice_actor(struct pipe_inode_info *pipe,
1262                                struct splice_desc *sd)
1263 {
1264         struct file *file = sd->u.file;
1265
1266         return do_splice_from(pipe, file, &file->f_pos, sd->total_len,
1267                               sd->flags);
1268 }
1269
1270 /**
1271  * do_splice_direct - splices data directly between two files
1272  * @in:         file to splice from
1273  * @ppos:       input file offset
1274  * @out:        file to splice to
1275  * @len:        number of bytes to splice
1276  * @flags:      splice modifier flags
1277  *
1278  * Description:
1279  *    For use by do_sendfile(). splice can easily emulate sendfile, but
1280  *    doing it in the application would incur an extra system call
1281  *    (splice in + splice out, as compared to just sendfile()). So this helper
1282  *    can splice directly through a process-private pipe.
1283  *
1284  */
1285 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1286                       size_t len, unsigned int flags)
1287 {
1288         struct splice_desc sd = {
1289                 .len            = len,
1290                 .total_len      = len,
1291                 .flags          = flags,
1292                 .pos            = *ppos,
1293                 .u.file         = out,
1294         };
1295         long ret;
1296
1297         ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1298         if (ret > 0)
1299                 *ppos = sd.pos;
1300
1301         return ret;
1302 }
1303
1304 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1305                                struct pipe_inode_info *opipe,
1306                                size_t len, unsigned int flags);
1307
1308 /*
1309  * Determine where to splice to/from.
1310  */
1311 static long do_splice(struct file *in, loff_t __user *off_in,
1312                       struct file *out, loff_t __user *off_out,
1313                       size_t len, unsigned int flags)
1314 {
1315         struct pipe_inode_info *ipipe;
1316         struct pipe_inode_info *opipe;
1317         loff_t offset, *off;
1318         long ret;
1319
1320         ipipe = get_pipe_info(in);
1321         opipe = get_pipe_info(out);
1322
1323         if (ipipe && opipe) {
1324                 if (off_in || off_out)
1325                         return -ESPIPE;
1326
1327                 if (!(in->f_mode & FMODE_READ))
1328                         return -EBADF;
1329
1330                 if (!(out->f_mode & FMODE_WRITE))
1331                         return -EBADF;
1332
1333                 /* Splicing to self would be fun, but... */
1334                 if (ipipe == opipe)
1335                         return -EINVAL;
1336
1337                 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1338         }
1339
1340         if (ipipe) {
1341                 if (off_in)
1342                         return -ESPIPE;
1343                 if (off_out) {
1344                         if (!(out->f_mode & FMODE_PWRITE))
1345                                 return -EINVAL;
1346                         if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1347                                 return -EFAULT;
1348                         off = &offset;
1349                 } else
1350                         off = &out->f_pos;
1351
1352                 ret = do_splice_from(ipipe, out, off, len, flags);
1353
1354                 if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1355                         ret = -EFAULT;
1356
1357                 return ret;
1358         }
1359
1360         if (opipe) {
1361                 if (off_out)
1362                         return -ESPIPE;
1363                 if (off_in) {
1364                         if (!(in->f_mode & FMODE_PREAD))
1365                                 return -EINVAL;
1366                         if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1367                                 return -EFAULT;
1368                         off = &offset;
1369                 } else
1370                         off = &in->f_pos;
1371
1372                 ret = do_splice_to(in, off, opipe, len, flags);
1373
1374                 if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1375                         ret = -EFAULT;
1376
1377                 return ret;
1378         }
1379
1380         return -EINVAL;
1381 }
1382
1383 /*
1384  * Map an iov into an array of pages and offset/length tupples. With the
1385  * partial_page structure, we can map several non-contiguous ranges into
1386  * our ones pages[] map instead of splitting that operation into pieces.
1387  * Could easily be exported as a generic helper for other users, in which
1388  * case one would probably want to add a 'max_nr_pages' parameter as well.
1389  */
1390 static int get_iovec_page_array(const struct iovec __user *iov,
1391                                 unsigned int nr_vecs, struct page **pages,
1392                                 struct partial_page *partial, int aligned,
1393                                 unsigned int pipe_buffers)
1394 {
1395         int buffers = 0, error = 0;
1396
1397         while (nr_vecs) {
1398                 unsigned long off, npages;
1399                 struct iovec entry;
1400                 void __user *base;
1401                 size_t len;
1402                 int i;
1403
1404                 error = -EFAULT;
1405                 if (copy_from_user(&entry, iov, sizeof(entry)))
1406                         break;
1407
1408                 base = entry.iov_base;
1409                 len = entry.iov_len;
1410
1411                 /*
1412                  * Sanity check this iovec. 0 read succeeds.
1413                  */
1414                 error = 0;
1415                 if (unlikely(!len))
1416                         break;
1417                 error = -EFAULT;
1418                 if (!access_ok(VERIFY_READ, base, len))
1419                         break;
1420
1421                 /*
1422                  * Get this base offset and number of pages, then map
1423                  * in the user pages.
1424                  */
1425                 off = (unsigned long) base & ~PAGE_MASK;
1426
1427                 /*
1428                  * If asked for alignment, the offset must be zero and the
1429                  * length a multiple of the PAGE_SIZE.
1430                  */
1431                 error = -EINVAL;
1432                 if (aligned && (off || len & ~PAGE_MASK))
1433                         break;
1434
1435                 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1436                 if (npages > pipe_buffers - buffers)
1437                         npages = pipe_buffers - buffers;
1438
1439                 error = get_user_pages_fast((unsigned long)base, npages,
1440                                         0, &pages[buffers]);
1441
1442                 if (unlikely(error <= 0))
1443                         break;
1444
1445                 /*
1446                  * Fill this contiguous range into the partial page map.
1447                  */
1448                 for (i = 0; i < error; i++) {
1449                         const int plen = min_t(size_t, len, PAGE_SIZE - off);
1450
1451                         partial[buffers].offset = off;
1452                         partial[buffers].len = plen;
1453
1454                         off = 0;
1455                         len -= plen;
1456                         buffers++;
1457                 }
1458
1459                 /*
1460                  * We didn't complete this iov, stop here since it probably
1461                  * means we have to move some of this into a pipe to
1462                  * be able to continue.
1463                  */
1464                 if (len)
1465                         break;
1466
1467                 /*
1468                  * Don't continue if we mapped fewer pages than we asked for,
1469                  * or if we mapped the max number of pages that we have
1470                  * room for.
1471                  */
1472                 if (error < npages || buffers == pipe_buffers)
1473                         break;
1474
1475                 nr_vecs--;
1476                 iov++;
1477         }
1478
1479         if (buffers)
1480                 return buffers;
1481
1482         return error;
1483 }
1484
1485 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1486                         struct splice_desc *sd)
1487 {
1488         char *src;
1489         int ret;
1490
1491         /*
1492          * See if we can use the atomic maps, by prefaulting in the
1493          * pages and doing an atomic copy
1494          */
1495         if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1496                 src = buf->ops->map(pipe, buf, 1);
1497                 ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1498                                                         sd->len);
1499                 buf->ops->unmap(pipe, buf, src);
1500                 if (!ret) {
1501                         ret = sd->len;
1502                         goto out;
1503                 }
1504         }
1505
1506         /*
1507          * No dice, use slow non-atomic map and copy
1508          */
1509         src = buf->ops->map(pipe, buf, 0);
1510
1511         ret = sd->len;
1512         if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1513                 ret = -EFAULT;
1514
1515         buf->ops->unmap(pipe, buf, src);
1516 out:
1517         if (ret > 0)
1518                 sd->u.userptr += ret;
1519         return ret;
1520 }
1521
1522 /*
1523  * For lack of a better implementation, implement vmsplice() to userspace
1524  * as a simple copy of the pipes pages to the user iov.
1525  */
1526 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1527                              unsigned long nr_segs, unsigned int flags)
1528 {
1529         struct pipe_inode_info *pipe;
1530         struct splice_desc sd;
1531         ssize_t size;
1532         int error;
1533         long ret;
1534
1535         pipe = get_pipe_info(file);
1536         if (!pipe)
1537                 return -EBADF;
1538
1539         pipe_lock(pipe);
1540
1541         error = ret = 0;
1542         while (nr_segs) {
1543                 void __user *base;
1544                 size_t len;
1545
1546                 /*
1547                  * Get user address base and length for this iovec.
1548                  */
1549                 error = get_user(base, &iov->iov_base);
1550                 if (unlikely(error))
1551                         break;
1552                 error = get_user(len, &iov->iov_len);
1553                 if (unlikely(error))
1554                         break;
1555
1556                 /*
1557                  * Sanity check this iovec. 0 read succeeds.
1558                  */
1559                 if (unlikely(!len))
1560                         break;
1561                 if (unlikely(!base)) {
1562                         error = -EFAULT;
1563                         break;
1564                 }
1565
1566                 if (unlikely(!access_ok(VERIFY_WRITE, base, len))) {
1567                         error = -EFAULT;
1568                         break;
1569                 }
1570
1571                 sd.len = 0;
1572                 sd.total_len = len;
1573                 sd.flags = flags;
1574                 sd.u.userptr = base;
1575                 sd.pos = 0;
1576
1577                 size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1578                 if (size < 0) {
1579                         if (!ret)
1580                                 ret = size;
1581
1582                         break;
1583                 }
1584
1585                 ret += size;
1586
1587                 if (size < len)
1588                         break;
1589
1590                 nr_segs--;
1591                 iov++;
1592         }
1593
1594         pipe_unlock(pipe);
1595
1596         if (!ret)
1597                 ret = error;
1598
1599         return ret;
1600 }
1601
1602 /*
1603  * vmsplice splices a user address range into a pipe. It can be thought of
1604  * as splice-from-memory, where the regular splice is splice-from-file (or
1605  * to file). In both cases the output is a pipe, naturally.
1606  */
1607 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1608                              unsigned long nr_segs, unsigned int flags)
1609 {
1610         struct pipe_inode_info *pipe;
1611         struct page *pages[PIPE_DEF_BUFFERS];
1612         struct partial_page partial[PIPE_DEF_BUFFERS];
1613         struct splice_pipe_desc spd = {
1614                 .pages = pages,
1615                 .partial = partial,
1616                 .flags = flags,
1617                 .ops = &user_page_pipe_buf_ops,
1618                 .spd_release = spd_release_page,
1619         };
1620         long ret;
1621
1622         pipe = get_pipe_info(file);
1623         if (!pipe)
1624                 return -EBADF;
1625
1626         if (splice_grow_spd(pipe, &spd))
1627                 return -ENOMEM;
1628
1629         spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages,
1630                                             spd.partial, flags & SPLICE_F_GIFT,
1631                                             pipe->buffers);
1632         if (spd.nr_pages <= 0)
1633                 ret = spd.nr_pages;
1634         else
1635                 ret = splice_to_pipe(pipe, &spd);
1636
1637         splice_shrink_spd(pipe, &spd);
1638         return ret;
1639 }
1640
1641 /*
1642  * Note that vmsplice only really supports true splicing _from_ user memory
1643  * to a pipe, not the other way around. Splicing from user memory is a simple
1644  * operation that can be supported without any funky alignment restrictions
1645  * or nasty vm tricks. We simply map in the user memory and fill them into
1646  * a pipe. The reverse isn't quite as easy, though. There are two possible
1647  * solutions for that:
1648  *
1649  *      - memcpy() the data internally, at which point we might as well just
1650  *        do a regular read() on the buffer anyway.
1651  *      - Lots of nasty vm tricks, that are neither fast nor flexible (it
1652  *        has restriction limitations on both ends of the pipe).
1653  *
1654  * Currently we punt and implement it as a normal copy, see pipe_to_user().
1655  *
1656  */
1657 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1658                 unsigned long, nr_segs, unsigned int, flags)
1659 {
1660         struct file *file;
1661         long error;
1662         int fput;
1663
1664         if (unlikely(nr_segs > UIO_MAXIOV))
1665                 return -EINVAL;
1666         else if (unlikely(!nr_segs))
1667                 return 0;
1668
1669         error = -EBADF;
1670         file = fget_light(fd, &fput);
1671         if (file) {
1672                 if (file->f_mode & FMODE_WRITE)
1673                         error = vmsplice_to_pipe(file, iov, nr_segs, flags);
1674                 else if (file->f_mode & FMODE_READ)
1675                         error = vmsplice_to_user(file, iov, nr_segs, flags);
1676
1677                 fput_light(file, fput);
1678         }
1679
1680         return error;
1681 }
1682
1683 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1684                 int, fd_out, loff_t __user *, off_out,
1685                 size_t, len, unsigned int, flags)
1686 {
1687         long error;
1688         struct file *in, *out;
1689         int fput_in, fput_out;
1690
1691         if (unlikely(!len))
1692                 return 0;
1693
1694         error = -EBADF;
1695         in = fget_light(fd_in, &fput_in);
1696         if (in) {
1697                 if (in->f_mode & FMODE_READ) {
1698                         out = fget_light(fd_out, &fput_out);
1699                         if (out) {
1700                                 if (out->f_mode & FMODE_WRITE)
1701                                         error = do_splice(in, off_in,
1702                                                           out, off_out,
1703                                                           len, flags);
1704                                 fput_light(out, fput_out);
1705                         }
1706                 }
1707
1708                 fput_light(in, fput_in);
1709         }
1710
1711         return error;
1712 }
1713
1714 /*
1715  * Make sure there's data to read. Wait for input if we can, otherwise
1716  * return an appropriate error.
1717  */
1718 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1719 {
1720         int ret;
1721
1722         /*
1723          * Check ->nrbufs without the inode lock first. This function
1724          * is speculative anyways, so missing one is ok.
1725          */
1726         if (pipe->nrbufs)
1727                 return 0;
1728
1729         ret = 0;
1730         pipe_lock(pipe);
1731
1732         while (!pipe->nrbufs) {
1733                 if (signal_pending(current)) {
1734                         ret = -ERESTARTSYS;
1735                         break;
1736                 }
1737                 if (!pipe->writers)
1738                         break;
1739                 if (!pipe->waiting_writers) {
1740                         if (flags & SPLICE_F_NONBLOCK) {
1741                                 ret = -EAGAIN;
1742                                 break;
1743                         }
1744                 }
1745                 pipe_wait(pipe);
1746         }
1747
1748         pipe_unlock(pipe);
1749         return ret;
1750 }
1751
1752 /*
1753  * Make sure there's writeable room. Wait for room if we can, otherwise
1754  * return an appropriate error.
1755  */
1756 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1757 {
1758         int ret;
1759
1760         /*
1761          * Check ->nrbufs without the inode lock first. This function
1762          * is speculative anyways, so missing one is ok.
1763          */
1764         if (pipe->nrbufs < pipe->buffers)
1765                 return 0;
1766
1767         ret = 0;
1768         pipe_lock(pipe);
1769
1770         while (pipe->nrbufs >= pipe->buffers) {
1771                 if (!pipe->readers) {
1772                         send_sig(SIGPIPE, current, 0);
1773                         ret = -EPIPE;
1774                         break;
1775                 }
1776                 if (flags & SPLICE_F_NONBLOCK) {
1777                         ret = -EAGAIN;
1778                         break;
1779                 }
1780                 if (signal_pending(current)) {
1781                         ret = -ERESTARTSYS;
1782                         break;
1783                 }
1784                 pipe->waiting_writers++;
1785                 pipe_wait(pipe);
1786                 pipe->waiting_writers--;
1787         }
1788
1789         pipe_unlock(pipe);
1790         return ret;
1791 }
1792
1793 /*
1794  * Splice contents of ipipe to opipe.
1795  */
1796 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1797                                struct pipe_inode_info *opipe,
1798                                size_t len, unsigned int flags)
1799 {
1800         struct pipe_buffer *ibuf, *obuf;
1801         int ret = 0, nbuf;
1802         bool input_wakeup = false;
1803
1804
1805 retry:
1806         ret = ipipe_prep(ipipe, flags);
1807         if (ret)
1808                 return ret;
1809
1810         ret = opipe_prep(opipe, flags);
1811         if (ret)
1812                 return ret;
1813
1814         /*
1815          * Potential ABBA deadlock, work around it by ordering lock
1816          * grabbing by pipe info address. Otherwise two different processes
1817          * could deadlock (one doing tee from A -> B, the other from B -> A).
1818          */
1819         pipe_double_lock(ipipe, opipe);
1820
1821         do {
1822                 if (!opipe->readers) {
1823                         send_sig(SIGPIPE, current, 0);
1824                         if (!ret)
1825                                 ret = -EPIPE;
1826                         break;
1827                 }
1828
1829                 if (!ipipe->nrbufs && !ipipe->writers)
1830                         break;
1831
1832                 /*
1833                  * Cannot make any progress, because either the input
1834                  * pipe is empty or the output pipe is full.
1835                  */
1836                 if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1837                         /* Already processed some buffers, break */
1838                         if (ret)
1839                                 break;
1840
1841                         if (flags & SPLICE_F_NONBLOCK) {
1842                                 ret = -EAGAIN;
1843                                 break;
1844                         }
1845
1846                         /*
1847                          * We raced with another reader/writer and haven't
1848                          * managed to process any buffers.  A zero return
1849                          * value means EOF, so retry instead.
1850                          */
1851                         pipe_unlock(ipipe);
1852                         pipe_unlock(opipe);
1853                         goto retry;
1854                 }
1855
1856                 ibuf = ipipe->bufs + ipipe->curbuf;
1857                 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1858                 obuf = opipe->bufs + nbuf;
1859
1860                 if (len >= ibuf->len) {
1861                         /*
1862                          * Simply move the whole buffer from ipipe to opipe
1863                          */
1864                         *obuf = *ibuf;
1865                         ibuf->ops = NULL;
1866                         opipe->nrbufs++;
1867                         ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1868                         ipipe->nrbufs--;
1869                         input_wakeup = true;
1870                 } else {
1871                         /*
1872                          * Get a reference to this pipe buffer,
1873                          * so we can copy the contents over.
1874                          */
1875                         ibuf->ops->get(ipipe, ibuf);
1876                         *obuf = *ibuf;
1877
1878                         /*
1879                          * Don't inherit the gift flag, we need to
1880                          * prevent multiple steals of this page.
1881                          */
1882                         obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1883
1884                         obuf->len = len;
1885                         opipe->nrbufs++;
1886                         ibuf->offset += obuf->len;
1887                         ibuf->len -= obuf->len;
1888                 }
1889                 ret += obuf->len;
1890                 len -= obuf->len;
1891         } while (len);
1892
1893         pipe_unlock(ipipe);
1894         pipe_unlock(opipe);
1895
1896         /*
1897          * If we put data in the output pipe, wakeup any potential readers.
1898          */
1899         if (ret > 0)
1900                 wakeup_pipe_readers(opipe);
1901
1902         if (input_wakeup)
1903                 wakeup_pipe_writers(ipipe);
1904
1905         return ret;
1906 }
1907
1908 /*
1909  * Link contents of ipipe to opipe.
1910  */
1911 static int link_pipe(struct pipe_inode_info *ipipe,
1912                      struct pipe_inode_info *opipe,
1913                      size_t len, unsigned int flags)
1914 {
1915         struct pipe_buffer *ibuf, *obuf;
1916         int ret = 0, i = 0, nbuf;
1917
1918         /*
1919          * Potential ABBA deadlock, work around it by ordering lock
1920          * grabbing by pipe info address. Otherwise two different processes
1921          * could deadlock (one doing tee from A -> B, the other from B -> A).
1922          */
1923         pipe_double_lock(ipipe, opipe);
1924
1925         do {
1926                 if (!opipe->readers) {
1927                         send_sig(SIGPIPE, current, 0);
1928                         if (!ret)
1929                                 ret = -EPIPE;
1930                         break;
1931                 }
1932
1933                 /*
1934                  * If we have iterated all input buffers or ran out of
1935                  * output room, break.
1936                  */
1937                 if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1938                         break;
1939
1940                 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1941                 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1942
1943                 /*
1944                  * Get a reference to this pipe buffer,
1945                  * so we can copy the contents over.
1946                  */
1947                 ibuf->ops->get(ipipe, ibuf);
1948
1949                 obuf = opipe->bufs + nbuf;
1950                 *obuf = *ibuf;
1951
1952                 /*
1953                  * Don't inherit the gift flag, we need to
1954                  * prevent multiple steals of this page.
1955                  */
1956                 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1957
1958                 if (obuf->len > len)
1959                         obuf->len = len;
1960
1961                 opipe->nrbufs++;
1962                 ret += obuf->len;
1963                 len -= obuf->len;
1964                 i++;
1965         } while (len);
1966
1967         /*
1968          * return EAGAIN if we have the potential of some data in the
1969          * future, otherwise just return 0
1970          */
1971         if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1972                 ret = -EAGAIN;
1973
1974         pipe_unlock(ipipe);
1975         pipe_unlock(opipe);
1976
1977         /*
1978          * If we put data in the output pipe, wakeup any potential readers.
1979          */
1980         if (ret > 0)
1981                 wakeup_pipe_readers(opipe);
1982
1983         return ret;
1984 }
1985
1986 /*
1987  * This is a tee(1) implementation that works on pipes. It doesn't copy
1988  * any data, it simply references the 'in' pages on the 'out' pipe.
1989  * The 'flags' used are the SPLICE_F_* variants, currently the only
1990  * applicable one is SPLICE_F_NONBLOCK.
1991  */
1992 static long do_tee(struct file *in, struct file *out, size_t len,
1993                    unsigned int flags)
1994 {
1995         struct pipe_inode_info *ipipe = get_pipe_info(in);
1996         struct pipe_inode_info *opipe = get_pipe_info(out);
1997         int ret = -EINVAL;
1998
1999         /*
2000          * Duplicate the contents of ipipe to opipe without actually
2001          * copying the data.
2002          */
2003         if (ipipe && opipe && ipipe != opipe) {
2004                 /*
2005                  * Keep going, unless we encounter an error. The ipipe/opipe
2006                  * ordering doesn't really matter.
2007                  */
2008                 ret = ipipe_prep(ipipe, flags);
2009                 if (!ret) {
2010                         ret = opipe_prep(opipe, flags);
2011                         if (!ret)
2012                                 ret = link_pipe(ipipe, opipe, len, flags);
2013                 }
2014         }
2015
2016         return ret;
2017 }
2018
2019 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2020 {
2021         struct file *in;
2022         int error, fput_in;
2023
2024         if (unlikely(!len))
2025                 return 0;
2026
2027         error = -EBADF;
2028         in = fget_light(fdin, &fput_in);
2029         if (in) {
2030                 if (in->f_mode & FMODE_READ) {
2031                         int fput_out;
2032                         struct file *out = fget_light(fdout, &fput_out);
2033
2034                         if (out) {
2035                                 if (out->f_mode & FMODE_WRITE)
2036                                         error = do_tee(in, out, len, flags);
2037                                 fput_light(out, fput_out);
2038                         }
2039                 }
2040                 fput_light(in, fput_in);
2041         }
2042
2043         return error;
2044 }