[PATCH] reiserfs: use mark_inode_dirty instead of reiserfs_update_sd
[linux-2.6.git] / fs / reiserfs / file.c
1 /*
2  * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3  */
4
5 #include <linux/time.h>
6 #include <linux/reiserfs_fs.h>
7 #include <linux/reiserfs_acl.h>
8 #include <linux/reiserfs_xattr.h>
9 #include <linux/smp_lock.h>
10 #include <asm/uaccess.h>
11 #include <linux/pagemap.h>
12 #include <linux/swap.h>
13 #include <linux/writeback.h>
14 #include <linux/blkdev.h>
15 #include <linux/buffer_head.h>
16 #include <linux/quotaops.h>
17
18 /*
19 ** We pack the tails of files on file close, not at the time they are written.
20 ** This implies an unnecessary copy of the tail and an unnecessary indirect item
21 ** insertion/balancing, for files that are written in one write.
22 ** It avoids unnecessary tail packings (balances) for files that are written in
23 ** multiple writes and are small enough to have tails.
24 ** 
25 ** file_release is called by the VFS layer when the file is closed.  If
26 ** this is the last open file descriptor, and the file
27 ** small enough to have a tail, and the tail is currently in an
28 ** unformatted node, the tail is converted back into a direct item.
29 ** 
30 ** We use reiserfs_truncate_file to pack the tail, since it already has
31 ** all the conditions coded.  
32 */
33 static int reiserfs_file_release(struct inode *inode, struct file *filp)
34 {
35
36         struct reiserfs_transaction_handle th;
37         int err;
38         int jbegin_failure = 0;
39
40         if (!S_ISREG(inode->i_mode))
41                 BUG();
42
43         /* fast out for when nothing needs to be done */
44         if ((atomic_read(&inode->i_count) > 1 ||
45              !(REISERFS_I(inode)->i_flags & i_pack_on_close_mask) ||
46              !tail_has_to_be_packed(inode)) &&
47             REISERFS_I(inode)->i_prealloc_count <= 0) {
48                 return 0;
49         }
50
51         reiserfs_write_lock(inode->i_sb);
52         down(&inode->i_sem);
53         /* freeing preallocation only involves relogging blocks that
54          * are already in the current transaction.  preallocation gets
55          * freed at the end of each transaction, so it is impossible for
56          * us to log any additional blocks (including quota blocks)
57          */
58         err = journal_begin(&th, inode->i_sb, 1);
59         if (err) {
60                 /* uh oh, we can't allow the inode to go away while there
61                  * is still preallocation blocks pending.  Try to join the
62                  * aborted transaction
63                  */
64                 jbegin_failure = err;
65                 err = journal_join_abort(&th, inode->i_sb, 1);
66
67                 if (err) {
68                         /* hmpf, our choices here aren't good.  We can pin the inode
69                          * which will disallow unmount from every happening, we can
70                          * do nothing, which will corrupt random memory on unmount,
71                          * or we can forcibly remove the file from the preallocation
72                          * list, which will leak blocks on disk.  Lets pin the inode
73                          * and let the admin know what is going on.
74                          */
75                         igrab(inode);
76                         reiserfs_warning(inode->i_sb,
77                                          "pinning inode %lu because the "
78                                          "preallocation can't be freed");
79                         goto out;
80                 }
81         }
82         reiserfs_update_inode_transaction(inode);
83
84 #ifdef REISERFS_PREALLOCATE
85         reiserfs_discard_prealloc(&th, inode);
86 #endif
87         err = journal_end(&th, inode->i_sb, 1);
88
89         /* copy back the error code from journal_begin */
90         if (!err)
91                 err = jbegin_failure;
92
93         if (!err && atomic_read(&inode->i_count) <= 1 &&
94             (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) &&
95             tail_has_to_be_packed(inode)) {
96                 /* if regular file is released by last holder and it has been
97                    appended (we append by unformatted node only) or its direct
98                    item(s) had to be converted, then it may have to be
99                    indirect2direct converted */
100                 err = reiserfs_truncate_file(inode, 0);
101         }
102       out:
103         up(&inode->i_sem);
104         reiserfs_write_unlock(inode->i_sb);
105         return err;
106 }
107
108 static void reiserfs_vfs_truncate_file(struct inode *inode)
109 {
110         reiserfs_truncate_file(inode, 1);
111 }
112
113 /* Sync a reiserfs file. */
114
115 /*
116  * FIXME: sync_mapping_buffers() never has anything to sync.  Can
117  * be removed...
118  */
119
120 static int reiserfs_sync_file(struct file *p_s_filp,
121                               struct dentry *p_s_dentry, int datasync)
122 {
123         struct inode *p_s_inode = p_s_dentry->d_inode;
124         int n_err;
125         int barrier_done;
126
127         if (!S_ISREG(p_s_inode->i_mode))
128                 BUG();
129         n_err = sync_mapping_buffers(p_s_inode->i_mapping);
130         reiserfs_write_lock(p_s_inode->i_sb);
131         barrier_done = reiserfs_commit_for_inode(p_s_inode);
132         reiserfs_write_unlock(p_s_inode->i_sb);
133         if (barrier_done != 1)
134                 blkdev_issue_flush(p_s_inode->i_sb->s_bdev, NULL);
135         if (barrier_done < 0)
136                 return barrier_done;
137         return (n_err < 0) ? -EIO : 0;
138 }
139
140 /* I really do not want to play with memory shortage right now, so
141    to simplify the code, we are not going to write more than this much pages at
142    a time. This still should considerably improve performance compared to 4k
143    at a time case. This is 32 pages of 4k size. */
144 #define REISERFS_WRITE_PAGES_AT_A_TIME (128 * 1024) / PAGE_CACHE_SIZE
145
146 /* Allocates blocks for a file to fulfil write request.
147    Maps all unmapped but prepared pages from the list.
148    Updates metadata with newly allocated blocknumbers as needed */
149 static int reiserfs_allocate_blocks_for_region(struct reiserfs_transaction_handle *th, struct inode *inode,     /* Inode we work with */
150                                                loff_t pos,      /* Writing position */
151                                                int num_pages,   /* number of pages write going
152                                                                    to touch */
153                                                int write_bytes, /* amount of bytes to write */
154                                                struct page **prepared_pages,    /* array of
155                                                                                    prepared pages
156                                                                                  */
157                                                int blocks_to_allocate   /* Amount of blocks we
158                                                                            need to allocate to
159                                                                            fit the data into file
160                                                                          */
161     )
162 {
163         struct cpu_key key;     // cpu key of item that we are going to deal with
164         struct item_head *ih;   // pointer to item head that we are going to deal with
165         struct buffer_head *bh; // Buffer head that contains items that we are going to deal with
166         __le32 *item;           // pointer to item we are going to deal with
167         INITIALIZE_PATH(path);  // path to item, that we are going to deal with.
168         b_blocknr_t *allocated_blocks;  // Pointer to a place where allocated blocknumbers would be stored.
169         reiserfs_blocknr_hint_t hint;   // hint structure for block allocator.
170         size_t res;             // return value of various functions that we call.
171         int curr_block;         // current block used to keep track of unmapped blocks.
172         int i;                  // loop counter
173         int itempos;            // position in item
174         unsigned int from = (pos & (PAGE_CACHE_SIZE - 1));      // writing position in
175         // first page
176         unsigned int to = ((pos + write_bytes - 1) & (PAGE_CACHE_SIZE - 1)) + 1;        /* last modified byte offset in last page */
177         __u64 hole_size;        // amount of blocks for a file hole, if it needed to be created.
178         int modifying_this_item = 0;    // Flag for items traversal code to keep track
179         // of the fact that we already prepared
180         // current block for journal
181         int will_prealloc = 0;
182         RFALSE(!blocks_to_allocate,
183                "green-9004: tried to allocate zero blocks?");
184
185         /* only preallocate if this is a small write */
186         if (REISERFS_I(inode)->i_prealloc_count ||
187             (!(write_bytes & (inode->i_sb->s_blocksize - 1)) &&
188              blocks_to_allocate <
189              REISERFS_SB(inode->i_sb)->s_alloc_options.preallocsize))
190                 will_prealloc =
191                     REISERFS_SB(inode->i_sb)->s_alloc_options.preallocsize;
192
193         allocated_blocks = kmalloc((blocks_to_allocate + will_prealloc) *
194                                    sizeof(b_blocknr_t), GFP_NOFS);
195
196         /* First we compose a key to point at the writing position, we want to do
197            that outside of any locking region. */
198         make_cpu_key(&key, inode, pos + 1, TYPE_ANY, 3 /*key length */ );
199
200         /* If we came here, it means we absolutely need to open a transaction,
201            since we need to allocate some blocks */
202         reiserfs_write_lock(inode->i_sb);       // Journaling stuff and we need that.
203         res = journal_begin(th, inode->i_sb, JOURNAL_PER_BALANCE_CNT * 3 + 1 + 2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb));   // Wish I know if this number enough
204         if (res)
205                 goto error_exit;
206         reiserfs_update_inode_transaction(inode);
207
208         /* Look for the in-tree position of our write, need path for block allocator */
209         res = search_for_position_by_key(inode->i_sb, &key, &path);
210         if (res == IO_ERROR) {
211                 res = -EIO;
212                 goto error_exit;
213         }
214
215         /* Allocate blocks */
216         /* First fill in "hint" structure for block allocator */
217         hint.th = th;           // transaction handle.
218         hint.path = &path;      // Path, so that block allocator can determine packing locality or whatever it needs to determine.
219         hint.inode = inode;     // Inode is needed by block allocator too.
220         hint.search_start = 0;  // We have no hint on where to search free blocks for block allocator.
221         hint.key = key.on_disk_key;     // on disk key of file.
222         hint.block = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);    // Number of disk blocks this file occupies already.
223         hint.formatted_node = 0;        // We are allocating blocks for unformatted node.
224         hint.preallocate = will_prealloc;
225
226         /* Call block allocator to allocate blocks */
227         res =
228             reiserfs_allocate_blocknrs(&hint, allocated_blocks,
229                                        blocks_to_allocate, blocks_to_allocate);
230         if (res != CARRY_ON) {
231                 if (res == NO_DISK_SPACE) {
232                         /* We flush the transaction in case of no space. This way some
233                            blocks might become free */
234                         SB_JOURNAL(inode->i_sb)->j_must_wait = 1;
235                         res = restart_transaction(th, inode, &path);
236                         if (res)
237                                 goto error_exit;
238
239                         /* We might have scheduled, so search again */
240                         res =
241                             search_for_position_by_key(inode->i_sb, &key,
242                                                        &path);
243                         if (res == IO_ERROR) {
244                                 res = -EIO;
245                                 goto error_exit;
246                         }
247
248                         /* update changed info for hint structure. */
249                         res =
250                             reiserfs_allocate_blocknrs(&hint, allocated_blocks,
251                                                        blocks_to_allocate,
252                                                        blocks_to_allocate);
253                         if (res != CARRY_ON) {
254                                 res = -ENOSPC;
255                                 pathrelse(&path);
256                                 goto error_exit;
257                         }
258                 } else {
259                         res = -ENOSPC;
260                         pathrelse(&path);
261                         goto error_exit;
262                 }
263         }
264 #ifdef __BIG_ENDIAN
265         // Too bad, I have not found any way to convert a given region from
266         // cpu format to little endian format
267         {
268                 int i;
269                 for (i = 0; i < blocks_to_allocate; i++)
270                         allocated_blocks[i] = cpu_to_le32(allocated_blocks[i]);
271         }
272 #endif
273
274         /* Blocks allocating well might have scheduled and tree might have changed,
275            let's search the tree again */
276         /* find where in the tree our write should go */
277         res = search_for_position_by_key(inode->i_sb, &key, &path);
278         if (res == IO_ERROR) {
279                 res = -EIO;
280                 goto error_exit_free_blocks;
281         }
282
283         bh = get_last_bh(&path);        // Get a bufferhead for last element in path.
284         ih = get_ih(&path);     // Get a pointer to last item head in path.
285         item = get_item(&path); // Get a pointer to last item in path
286
287         /* Let's see what we have found */
288         if (res != POSITION_FOUND) {    /* position not found, this means that we
289                                            might need to append file with holes
290                                            first */
291                 // Since we are writing past the file's end, we need to find out if
292                 // there is a hole that needs to be inserted before our writing
293                 // position, and how many blocks it is going to cover (we need to
294                 //  populate pointers to file blocks representing the hole with zeros)
295
296                 {
297                         int item_offset = 1;
298                         /*
299                          * if ih is stat data, its offset is 0 and we don't want to
300                          * add 1 to pos in the hole_size calculation
301                          */
302                         if (is_statdata_le_ih(ih))
303                                 item_offset = 0;
304                         hole_size = (pos + item_offset -
305                                      (le_key_k_offset
306                                       (get_inode_item_key_version(inode),
307                                        &(ih->ih_key)) + op_bytes_number(ih,
308                                                                         inode->
309                                                                         i_sb->
310                                                                         s_blocksize)))
311                             >> inode->i_sb->s_blocksize_bits;
312                 }
313
314                 if (hole_size > 0) {
315                         int to_paste = min_t(__u64, hole_size, MAX_ITEM_LEN(inode->i_sb->s_blocksize) / UNFM_P_SIZE);   // How much data to insert first time.
316                         /* area filled with zeroes, to supply as list of zero blocknumbers
317                            We allocate it outside of loop just in case loop would spin for
318                            several iterations. */
319                         char *zeros = kmalloc(to_paste * UNFM_P_SIZE, GFP_ATOMIC);      // We cannot insert more than MAX_ITEM_LEN bytes anyway.
320                         if (!zeros) {
321                                 res = -ENOMEM;
322                                 goto error_exit_free_blocks;
323                         }
324                         memset(zeros, 0, to_paste * UNFM_P_SIZE);
325                         do {
326                                 to_paste =
327                                     min_t(__u64, hole_size,
328                                           MAX_ITEM_LEN(inode->i_sb->
329                                                        s_blocksize) /
330                                           UNFM_P_SIZE);
331                                 if (is_indirect_le_ih(ih)) {
332                                         /* Ok, there is existing indirect item already. Need to append it */
333                                         /* Calculate position past inserted item */
334                                         make_cpu_key(&key, inode,
335                                                      le_key_k_offset
336                                                      (get_inode_item_key_version
337                                                       (inode),
338                                                       &(ih->ih_key)) +
339                                                      op_bytes_number(ih,
340                                                                      inode->
341                                                                      i_sb->
342                                                                      s_blocksize),
343                                                      TYPE_INDIRECT, 3);
344                                         res =
345                                             reiserfs_paste_into_item(th, &path,
346                                                                      &key,
347                                                                      inode,
348                                                                      (char *)
349                                                                      zeros,
350                                                                      UNFM_P_SIZE
351                                                                      *
352                                                                      to_paste);
353                                         if (res) {
354                                                 kfree(zeros);
355                                                 goto error_exit_free_blocks;
356                                         }
357                                 } else if (is_statdata_le_ih(ih)) {
358                                         /* No existing item, create it */
359                                         /* item head for new item */
360                                         struct item_head ins_ih;
361
362                                         /* create a key for our new item */
363                                         make_cpu_key(&key, inode, 1,
364                                                      TYPE_INDIRECT, 3);
365
366                                         /* Create new item head for our new item */
367                                         make_le_item_head(&ins_ih, &key,
368                                                           key.version, 1,
369                                                           TYPE_INDIRECT,
370                                                           to_paste *
371                                                           UNFM_P_SIZE,
372                                                           0 /* free space */ );
373
374                                         /* Find where such item should live in the tree */
375                                         res =
376                                             search_item(inode->i_sb, &key,
377                                                         &path);
378                                         if (res != ITEM_NOT_FOUND) {
379                                                 /* item should not exist, otherwise we have error */
380                                                 if (res != -ENOSPC) {
381                                                         reiserfs_warning(inode->
382                                                                          i_sb,
383                                                                          "green-9008: search_by_key (%K) returned %d",
384                                                                          &key,
385                                                                          res);
386                                                 }
387                                                 res = -EIO;
388                                                 kfree(zeros);
389                                                 goto error_exit_free_blocks;
390                                         }
391                                         res =
392                                             reiserfs_insert_item(th, &path,
393                                                                  &key, &ins_ih,
394                                                                  inode,
395                                                                  (char *)zeros);
396                                 } else {
397                                         reiserfs_panic(inode->i_sb,
398                                                        "green-9011: Unexpected key type %K\n",
399                                                        &key);
400                                 }
401                                 if (res) {
402                                         kfree(zeros);
403                                         goto error_exit_free_blocks;
404                                 }
405                                 /* Now we want to check if transaction is too full, and if it is
406                                    we restart it. This will also free the path. */
407                                 if (journal_transaction_should_end
408                                     (th, th->t_blocks_allocated)) {
409                                         res =
410                                             restart_transaction(th, inode,
411                                                                 &path);
412                                         if (res) {
413                                                 pathrelse(&path);
414                                                 kfree(zeros);
415                                                 goto error_exit;
416                                         }
417                                 }
418
419                                 /* Well, need to recalculate path and stuff */
420                                 set_cpu_key_k_offset(&key,
421                                                      cpu_key_k_offset(&key) +
422                                                      (to_paste << inode->
423                                                       i_blkbits));
424                                 res =
425                                     search_for_position_by_key(inode->i_sb,
426                                                                &key, &path);
427                                 if (res == IO_ERROR) {
428                                         res = -EIO;
429                                         kfree(zeros);
430                                         goto error_exit_free_blocks;
431                                 }
432                                 bh = get_last_bh(&path);
433                                 ih = get_ih(&path);
434                                 item = get_item(&path);
435                                 hole_size -= to_paste;
436                         } while (hole_size);
437                         kfree(zeros);
438                 }
439         }
440         // Go through existing indirect items first
441         // replace all zeroes with blocknumbers from list
442         // Note that if no corresponding item was found, by previous search,
443         // it means there are no existing in-tree representation for file area
444         // we are going to overwrite, so there is nothing to scan through for holes.
445         for (curr_block = 0, itempos = path.pos_in_item;
446              curr_block < blocks_to_allocate && res == POSITION_FOUND;) {
447               retry:
448
449                 if (itempos >= ih_item_len(ih) / UNFM_P_SIZE) {
450                         /* We run out of data in this indirect item, let's look for another
451                            one. */
452                         /* First if we are already modifying current item, log it */
453                         if (modifying_this_item) {
454                                 journal_mark_dirty(th, inode->i_sb, bh);
455                                 modifying_this_item = 0;
456                         }
457                         /* Then set the key to look for a new indirect item (offset of old
458                            item is added to old item length */
459                         set_cpu_key_k_offset(&key,
460                                              le_key_k_offset
461                                              (get_inode_item_key_version(inode),
462                                               &(ih->ih_key)) +
463                                              op_bytes_number(ih,
464                                                              inode->i_sb->
465                                                              s_blocksize));
466                         /* Search ofor position of new key in the tree. */
467                         res =
468                             search_for_position_by_key(inode->i_sb, &key,
469                                                        &path);
470                         if (res == IO_ERROR) {
471                                 res = -EIO;
472                                 goto error_exit_free_blocks;
473                         }
474                         bh = get_last_bh(&path);
475                         ih = get_ih(&path);
476                         item = get_item(&path);
477                         itempos = path.pos_in_item;
478                         continue;       // loop to check all kinds of conditions and so on.
479                 }
480                 /* Ok, we have correct position in item now, so let's see if it is
481                    representing file hole (blocknumber is zero) and fill it if needed */
482                 if (!item[itempos]) {
483                         /* Ok, a hole. Now we need to check if we already prepared this
484                            block to be journaled */
485                         while (!modifying_this_item) {  // loop until succeed
486                                 /* Well, this item is not journaled yet, so we must prepare
487                                    it for journal first, before we can change it */
488                                 struct item_head tmp_ih;        // We copy item head of found item,
489                                 // here to detect if fs changed under
490                                 // us while we were preparing for
491                                 // journal.
492                                 int fs_gen;     // We store fs generation here to find if someone
493                                 // changes fs under our feet
494
495                                 copy_item_head(&tmp_ih, ih);    // Remember itemhead
496                                 fs_gen = get_generation(inode->i_sb);   // remember fs generation
497                                 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);       // Prepare a buffer within which indirect item is stored for changing.
498                                 if (fs_changed(fs_gen, inode->i_sb)
499                                     && item_moved(&tmp_ih, &path)) {
500                                         // Sigh, fs was changed under us, we need to look for new
501                                         // location of item we are working with
502
503                                         /* unmark prepaerd area as journaled and search for it's
504                                            new position */
505                                         reiserfs_restore_prepared_buffer(inode->
506                                                                          i_sb,
507                                                                          bh);
508                                         res =
509                                             search_for_position_by_key(inode->
510                                                                        i_sb,
511                                                                        &key,
512                                                                        &path);
513                                         if (res == IO_ERROR) {
514                                                 res = -EIO;
515                                                 goto error_exit_free_blocks;
516                                         }
517                                         bh = get_last_bh(&path);
518                                         ih = get_ih(&path);
519                                         item = get_item(&path);
520                                         itempos = path.pos_in_item;
521                                         goto retry;
522                                 }
523                                 modifying_this_item = 1;
524                         }
525                         item[itempos] = allocated_blocks[curr_block];   // Assign new block
526                         curr_block++;
527                 }
528                 itempos++;
529         }
530
531         if (modifying_this_item) {      // We need to log last-accessed block, if it
532                 // was modified, but not logged yet.
533                 journal_mark_dirty(th, inode->i_sb, bh);
534         }
535
536         if (curr_block < blocks_to_allocate) {
537                 // Oh, well need to append to indirect item, or to create indirect item
538                 // if there weren't any
539                 if (is_indirect_le_ih(ih)) {
540                         // Existing indirect item - append. First calculate key for append
541                         // position. We do not need to recalculate path as it should
542                         // already point to correct place.
543                         make_cpu_key(&key, inode,
544                                      le_key_k_offset(get_inode_item_key_version
545                                                      (inode),
546                                                      &(ih->ih_key)) +
547                                      op_bytes_number(ih,
548                                                      inode->i_sb->s_blocksize),
549                                      TYPE_INDIRECT, 3);
550                         res =
551                             reiserfs_paste_into_item(th, &path, &key, inode,
552                                                      (char *)(allocated_blocks +
553                                                               curr_block),
554                                                      UNFM_P_SIZE *
555                                                      (blocks_to_allocate -
556                                                       curr_block));
557                         if (res) {
558                                 goto error_exit_free_blocks;
559                         }
560                 } else if (is_statdata_le_ih(ih)) {
561                         // Last found item was statdata. That means we need to create indirect item.
562                         struct item_head ins_ih;        /* itemhead for new item */
563
564                         /* create a key for our new item */
565                         make_cpu_key(&key, inode, 1, TYPE_INDIRECT, 3); // Position one,
566                         // because that's
567                         // where first
568                         // indirect item
569                         // begins
570                         /* Create new item head for our new item */
571                         make_le_item_head(&ins_ih, &key, key.version, 1,
572                                           TYPE_INDIRECT,
573                                           (blocks_to_allocate -
574                                            curr_block) * UNFM_P_SIZE,
575                                           0 /* free space */ );
576                         /* Find where such item should live in the tree */
577                         res = search_item(inode->i_sb, &key, &path);
578                         if (res != ITEM_NOT_FOUND) {
579                                 /* Well, if we have found such item already, or some error
580                                    occured, we need to warn user and return error */
581                                 if (res != -ENOSPC) {
582                                         reiserfs_warning(inode->i_sb,
583                                                          "green-9009: search_by_key (%K) "
584                                                          "returned %d", &key,
585                                                          res);
586                                 }
587                                 res = -EIO;
588                                 goto error_exit_free_blocks;
589                         }
590                         /* Insert item into the tree with the data as its body */
591                         res =
592                             reiserfs_insert_item(th, &path, &key, &ins_ih,
593                                                  inode,
594                                                  (char *)(allocated_blocks +
595                                                           curr_block));
596                 } else {
597                         reiserfs_panic(inode->i_sb,
598                                        "green-9010: unexpected item type for key %K\n",
599                                        &key);
600                 }
601         }
602         // the caller is responsible for closing the transaction
603         // unless we return an error, they are also responsible for logging
604         // the inode.
605         //
606         pathrelse(&path);
607         /*
608          * cleanup prellocation from previous writes
609          * if this is a partial block write
610          */
611         if (write_bytes & (inode->i_sb->s_blocksize - 1))
612                 reiserfs_discard_prealloc(th, inode);
613         reiserfs_write_unlock(inode->i_sb);
614
615         // go through all the pages/buffers and map the buffers to newly allocated
616         // blocks (so that system knows where to write these pages later).
617         curr_block = 0;
618         for (i = 0; i < num_pages; i++) {
619                 struct page *page = prepared_pages[i];  //current page
620                 struct buffer_head *head = page_buffers(page);  // first buffer for a page
621                 int block_start, block_end;     // in-page offsets for buffers.
622
623                 if (!page_buffers(page))
624                         reiserfs_panic(inode->i_sb,
625                                        "green-9005: No buffers for prepared page???");
626
627                 /* For each buffer in page */
628                 for (bh = head, block_start = 0; bh != head || !block_start;
629                      block_start = block_end, bh = bh->b_this_page) {
630                         if (!bh)
631                                 reiserfs_panic(inode->i_sb,
632                                                "green-9006: Allocated but absent buffer for a page?");
633                         block_end = block_start + inode->i_sb->s_blocksize;
634                         if (i == 0 && block_end <= from)
635                                 /* if this buffer is before requested data to map, skip it */
636                                 continue;
637                         if (i == num_pages - 1 && block_start >= to)
638                                 /* If this buffer is after requested data to map, abort
639                                    processing of current page */
640                                 break;
641
642                         if (!buffer_mapped(bh)) {       // Ok, unmapped buffer, need to map it
643                                 map_bh(bh, inode->i_sb,
644                                        le32_to_cpu(allocated_blocks
645                                                    [curr_block]));
646                                 curr_block++;
647                                 set_buffer_new(bh);
648                         }
649                 }
650         }
651
652         RFALSE(curr_block > blocks_to_allocate,
653                "green-9007: Used too many blocks? weird");
654
655         kfree(allocated_blocks);
656         return 0;
657
658 // Need to deal with transaction here.
659       error_exit_free_blocks:
660         pathrelse(&path);
661         // free blocks
662         for (i = 0; i < blocks_to_allocate; i++)
663                 reiserfs_free_block(th, inode, le32_to_cpu(allocated_blocks[i]),
664                                     1);
665
666       error_exit:
667         if (th->t_trans_id) {
668                 int err;
669                 // update any changes we made to blk count
670                 mark_inode_dirty(inode);
671                 err =
672                     journal_end(th, inode->i_sb,
673                                 JOURNAL_PER_BALANCE_CNT * 3 + 1 +
674                                 2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb));
675                 if (err)
676                         res = err;
677         }
678         reiserfs_write_unlock(inode->i_sb);
679         kfree(allocated_blocks);
680
681         return res;
682 }
683
684 /* Unlock pages prepared by reiserfs_prepare_file_region_for_write */
685 static void reiserfs_unprepare_pages(struct page **prepared_pages,      /* list of locked pages */
686                                      size_t num_pages /* amount of pages */ )
687 {
688         int i;                  // loop counter
689
690         for (i = 0; i < num_pages; i++) {
691                 struct page *page = prepared_pages[i];
692
693                 try_to_free_buffers(page);
694                 unlock_page(page);
695                 page_cache_release(page);
696         }
697 }
698
699 /* This function will copy data from userspace to specified pages within
700    supplied byte range */
701 static int reiserfs_copy_from_user_to_file_region(loff_t pos,   /* In-file position */
702                                                   int num_pages,        /* Number of pages affected */
703                                                   int write_bytes,      /* Amount of bytes to write */
704                                                   struct page **prepared_pages, /* pointer to 
705                                                                                    array to
706                                                                                    prepared pages
707                                                                                  */
708                                                   const char __user * buf       /* Pointer to user-supplied
709                                                                                    data */
710     )
711 {
712         long page_fault = 0;    // status of copy_from_user.
713         int i;                  // loop counter.
714         int offset;             // offset in page
715
716         for (i = 0, offset = (pos & (PAGE_CACHE_SIZE - 1)); i < num_pages;
717              i++, offset = 0) {
718                 size_t count = min_t(size_t, PAGE_CACHE_SIZE - offset, write_bytes);    // How much of bytes to write to this page
719                 struct page *page = prepared_pages[i];  // Current page we process.
720
721                 fault_in_pages_readable(buf, count);
722
723                 /* Copy data from userspace to the current page */
724                 kmap(page);
725                 page_fault = __copy_from_user(page_address(page) + offset, buf, count); // Copy the data.
726                 /* Flush processor's dcache for this page */
727                 flush_dcache_page(page);
728                 kunmap(page);
729                 buf += count;
730                 write_bytes -= count;
731
732                 if (page_fault)
733                         break;  // Was there a fault? abort.
734         }
735
736         return page_fault ? -EFAULT : 0;
737 }
738
739 /* taken fs/buffer.c:__block_commit_write */
740 int reiserfs_commit_page(struct inode *inode, struct page *page,
741                          unsigned from, unsigned to)
742 {
743         unsigned block_start, block_end;
744         int partial = 0;
745         unsigned blocksize;
746         struct buffer_head *bh, *head;
747         unsigned long i_size_index = inode->i_size >> PAGE_CACHE_SHIFT;
748         int new;
749         int logit = reiserfs_file_data_log(inode);
750         struct super_block *s = inode->i_sb;
751         int bh_per_page = PAGE_CACHE_SIZE / s->s_blocksize;
752         struct reiserfs_transaction_handle th;
753         int ret = 0;
754
755         th.t_trans_id = 0;
756         blocksize = 1 << inode->i_blkbits;
757
758         if (logit) {
759                 reiserfs_write_lock(s);
760                 ret = journal_begin(&th, s, bh_per_page + 1);
761                 if (ret)
762                         goto drop_write_lock;
763                 reiserfs_update_inode_transaction(inode);
764         }
765         for (bh = head = page_buffers(page), block_start = 0;
766              bh != head || !block_start;
767              block_start = block_end, bh = bh->b_this_page) {
768
769                 new = buffer_new(bh);
770                 clear_buffer_new(bh);
771                 block_end = block_start + blocksize;
772                 if (block_end <= from || block_start >= to) {
773                         if (!buffer_uptodate(bh))
774                                 partial = 1;
775                 } else {
776                         set_buffer_uptodate(bh);
777                         if (logit) {
778                                 reiserfs_prepare_for_journal(s, bh, 1);
779                                 journal_mark_dirty(&th, s, bh);
780                         } else if (!buffer_dirty(bh)) {
781                                 mark_buffer_dirty(bh);
782                                 /* do data=ordered on any page past the end
783                                  * of file and any buffer marked BH_New.
784                                  */
785                                 if (reiserfs_data_ordered(inode->i_sb) &&
786                                     (new || page->index >= i_size_index)) {
787                                         reiserfs_add_ordered_list(inode, bh);
788                                 }
789                         }
790                 }
791         }
792         if (logit) {
793                 ret = journal_end(&th, s, bh_per_page + 1);
794               drop_write_lock:
795                 reiserfs_write_unlock(s);
796         }
797         /*
798          * If this is a partial write which happened to make all buffers
799          * uptodate then we can optimize away a bogus readpage() for
800          * the next read(). Here we 'discover' whether the page went
801          * uptodate as a result of this (potentially partial) write.
802          */
803         if (!partial)
804                 SetPageUptodate(page);
805         return ret;
806 }
807
808 /* Submit pages for write. This was separated from actual file copying
809    because we might want to allocate block numbers in-between.
810    This function assumes that caller will adjust file size to correct value. */
811 static int reiserfs_submit_file_region_for_write(struct reiserfs_transaction_handle *th, struct inode *inode, loff_t pos,       /* Writing position offset */
812                                                  size_t num_pages,      /* Number of pages to write */
813                                                  size_t write_bytes,    /* number of bytes to write */
814                                                  struct page **prepared_pages   /* list of pages */
815     )
816 {
817         int status;             // return status of block_commit_write.
818         int retval = 0;         // Return value we are going to return.
819         int i;                  // loop counter
820         int offset;             // Writing offset in page.
821         int orig_write_bytes = write_bytes;
822         int sd_update = 0;
823
824         for (i = 0, offset = (pos & (PAGE_CACHE_SIZE - 1)); i < num_pages;
825              i++, offset = 0) {
826                 int count = min_t(int, PAGE_CACHE_SIZE - offset, write_bytes);  // How much of bytes to write to this page
827                 struct page *page = prepared_pages[i];  // Current page we process.
828
829                 status =
830                     reiserfs_commit_page(inode, page, offset, offset + count);
831                 if (status)
832                         retval = status;        // To not overcomplicate matters We are going to
833                 // submit all the pages even if there was error.
834                 // we only remember error status to report it on
835                 // exit.
836                 write_bytes -= count;
837         }
838         /* now that we've gotten all the ordered buffers marked dirty,
839          * we can safely update i_size and close any running transaction
840          */
841         if (pos + orig_write_bytes > inode->i_size) {
842                 inode->i_size = pos + orig_write_bytes; // Set new size
843                 /* If the file have grown so much that tail packing is no
844                  * longer possible, reset "need to pack" flag */
845                 if ((have_large_tails(inode->i_sb) &&
846                      inode->i_size > i_block_size(inode) * 4) ||
847                     (have_small_tails(inode->i_sb) &&
848                      inode->i_size > i_block_size(inode)))
849                         REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
850                 else if ((have_large_tails(inode->i_sb) &&
851                           inode->i_size < i_block_size(inode) * 4) ||
852                          (have_small_tails(inode->i_sb) &&
853                           inode->i_size < i_block_size(inode)))
854                         REISERFS_I(inode)->i_flags |= i_pack_on_close_mask;
855
856                 if (th->t_trans_id) {
857                         reiserfs_write_lock(inode->i_sb);
858                         // this sets the proper flags for O_SYNC to trigger a commit
859                         mark_inode_dirty(inode);
860                         reiserfs_write_unlock(inode->i_sb);
861                 } else
862                         mark_inode_dirty(inode);
863
864                 sd_update = 1;
865         }
866         if (th->t_trans_id) {
867                 reiserfs_write_lock(inode->i_sb);
868                 if (!sd_update)
869                         mark_inode_dirty(inode);
870                 status = journal_end(th, th->t_super, th->t_blocks_allocated);
871                 if (status)
872                         retval = status;
873                 reiserfs_write_unlock(inode->i_sb);
874         }
875         th->t_trans_id = 0;
876
877         /* 
878          * we have to unlock the pages after updating i_size, otherwise
879          * we race with writepage
880          */
881         for (i = 0; i < num_pages; i++) {
882                 struct page *page = prepared_pages[i];
883                 unlock_page(page);
884                 mark_page_accessed(page);
885                 page_cache_release(page);
886         }
887         return retval;
888 }
889
890 /* Look if passed writing region is going to touch file's tail
891    (if it is present). And if it is, convert the tail to unformatted node */
892 static int reiserfs_check_for_tail_and_convert(struct inode *inode,     /* inode to deal with */
893                                                loff_t pos,      /* Writing position */
894                                                int write_bytes  /* amount of bytes to write */
895     )
896 {
897         INITIALIZE_PATH(path);  // needed for search_for_position
898         struct cpu_key key;     // Key that would represent last touched writing byte.
899         struct item_head *ih;   // item header of found block;
900         int res;                // Return value of various functions we call.
901         int cont_expand_offset; // We will put offset for generic_cont_expand here
902         // This can be int just because tails are created
903         // only for small files.
904
905 /* this embodies a dependency on a particular tail policy */
906         if (inode->i_size >= inode->i_sb->s_blocksize * 4) {
907                 /* such a big files do not have tails, so we won't bother ourselves
908                    to look for tails, simply return */
909                 return 0;
910         }
911
912         reiserfs_write_lock(inode->i_sb);
913         /* find the item containing the last byte to be written, or if
914          * writing past the end of the file then the last item of the
915          * file (and then we check its type). */
916         make_cpu_key(&key, inode, pos + write_bytes + 1, TYPE_ANY,
917                      3 /*key length */ );
918         res = search_for_position_by_key(inode->i_sb, &key, &path);
919         if (res == IO_ERROR) {
920                 reiserfs_write_unlock(inode->i_sb);
921                 return -EIO;
922         }
923         ih = get_ih(&path);
924         res = 0;
925         if (is_direct_le_ih(ih)) {
926                 /* Ok, closest item is file tail (tails are stored in "direct"
927                  * items), so we need to unpack it. */
928                 /* To not overcomplicate matters, we just call generic_cont_expand
929                    which will in turn call other stuff and finally will boil down to
930                    reiserfs_get_block() that would do necessary conversion. */
931                 cont_expand_offset =
932                     le_key_k_offset(get_inode_item_key_version(inode),
933                                     &(ih->ih_key));
934                 pathrelse(&path);
935                 res = generic_cont_expand(inode, cont_expand_offset);
936         } else
937                 pathrelse(&path);
938
939         reiserfs_write_unlock(inode->i_sb);
940         return res;
941 }
942
943 /* This function locks pages starting from @pos for @inode.
944    @num_pages pages are locked and stored in
945    @prepared_pages array. Also buffers are allocated for these pages.
946    First and last page of the region is read if it is overwritten only
947    partially. If last page did not exist before write (file hole or file
948    append), it is zeroed, then. 
949    Returns number of unallocated blocks that should be allocated to cover
950    new file data.*/
951 static int reiserfs_prepare_file_region_for_write(struct inode *inode
952                                                   /* Inode of the file */ ,
953                                                   loff_t pos,   /* position in the file */
954                                                   size_t num_pages,     /* number of pages to
955                                                                            prepare */
956                                                   size_t write_bytes,   /* Amount of bytes to be
957                                                                            overwritten from
958                                                                            @pos */
959                                                   struct page **prepared_pages  /* pointer to array
960                                                                                    where to store
961                                                                                    prepared pages */
962     )
963 {
964         int res = 0;            // Return values of different functions we call.
965         unsigned long index = pos >> PAGE_CACHE_SHIFT;  // Offset in file in pages.
966         int from = (pos & (PAGE_CACHE_SIZE - 1));       // Writing offset in first page
967         int to = ((pos + write_bytes - 1) & (PAGE_CACHE_SIZE - 1)) + 1;
968         /* offset of last modified byte in last
969            page */
970         struct address_space *mapping = inode->i_mapping;       // Pages are mapped here.
971         int i;                  // Simple counter
972         int blocks = 0;         /* Return value (blocks that should be allocated) */
973         struct buffer_head *bh, *head;  // Current bufferhead and first bufferhead
974         // of a page.
975         unsigned block_start, block_end;        // Starting and ending offsets of current
976         // buffer in the page.
977         struct buffer_head *wait[2], **wait_bh = wait;  // Buffers for page, if
978         // Page appeared to be not up
979         // to date. Note how we have
980         // at most 2 buffers, this is
981         // because we at most may
982         // partially overwrite two
983         // buffers for one page. One at                                                 // the beginning of write area
984         // and one at the end.
985         // Everything inthe middle gets                                                 // overwritten totally.
986
987         struct cpu_key key;     // cpu key of item that we are going to deal with
988         struct item_head *ih = NULL;    // pointer to item head that we are going to deal with
989         struct buffer_head *itembuf = NULL;     // Buffer head that contains items that we are going to deal with
990         INITIALIZE_PATH(path);  // path to item, that we are going to deal with.
991         __le32 *item = NULL;    // pointer to item we are going to deal with
992         int item_pos = -1;      /* Position in indirect item */
993
994         if (num_pages < 1) {
995                 reiserfs_warning(inode->i_sb,
996                                  "green-9001: reiserfs_prepare_file_region_for_write "
997                                  "called with zero number of pages to process");
998                 return -EFAULT;
999         }
1000
1001         /* We have 2 loops for pages. In first loop we grab and lock the pages, so
1002            that nobody would touch these until we release the pages. Then
1003            we'd start to deal with mapping buffers to blocks. */
1004         for (i = 0; i < num_pages; i++) {
1005                 prepared_pages[i] = grab_cache_page(mapping, index + i);        // locks the page
1006                 if (!prepared_pages[i]) {
1007                         res = -ENOMEM;
1008                         goto failed_page_grabbing;
1009                 }
1010                 if (!page_has_buffers(prepared_pages[i]))
1011                         create_empty_buffers(prepared_pages[i],
1012                                              inode->i_sb->s_blocksize, 0);
1013         }
1014
1015         /* Let's count amount of blocks for a case where all the blocks
1016            overwritten are new (we will substract already allocated blocks later) */
1017         if (num_pages > 2)
1018                 /* These are full-overwritten pages so we count all the blocks in
1019                    these pages are counted as needed to be allocated */
1020                 blocks =
1021                     (num_pages - 2) << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1022
1023         /* count blocks needed for first page (possibly partially written) */
1024         blocks += ((PAGE_CACHE_SIZE - from) >> inode->i_blkbits) + !!(from & (inode->i_sb->s_blocksize - 1));   /* roundup */
1025
1026         /* Now we account for last page. If last page == first page (we
1027            overwrite only one page), we substract all the blocks past the
1028            last writing position in a page out of already calculated number
1029            of blocks */
1030         blocks += ((num_pages > 1) << (PAGE_CACHE_SHIFT - inode->i_blkbits)) -
1031             ((PAGE_CACHE_SIZE - to) >> inode->i_blkbits);
1032         /* Note how we do not roundup here since partial blocks still
1033            should be allocated */
1034
1035         /* Now if all the write area lies past the file end, no point in
1036            maping blocks, since there is none, so we just zero out remaining
1037            parts of first and last pages in write area (if needed) */
1038         if ((pos & ~((loff_t) PAGE_CACHE_SIZE - 1)) > inode->i_size) {
1039                 if (from != 0) {        /* First page needs to be partially zeroed */
1040                         char *kaddr = kmap_atomic(prepared_pages[0], KM_USER0);
1041                         memset(kaddr, 0, from);
1042                         kunmap_atomic(kaddr, KM_USER0);
1043                 }
1044                 if (to != PAGE_CACHE_SIZE) {    /* Last page needs to be partially zeroed */
1045                         char *kaddr =
1046                             kmap_atomic(prepared_pages[num_pages - 1],
1047                                         KM_USER0);
1048                         memset(kaddr + to, 0, PAGE_CACHE_SIZE - to);
1049                         kunmap_atomic(kaddr, KM_USER0);
1050                 }
1051
1052                 /* Since all blocks are new - use already calculated value */
1053                 return blocks;
1054         }
1055
1056         /* Well, since we write somewhere into the middle of a file, there is
1057            possibility we are writing over some already allocated blocks, so
1058            let's map these blocks and substract number of such blocks out of blocks
1059            we need to allocate (calculated above) */
1060         /* Mask write position to start on blocksize, we do it out of the
1061            loop for performance reasons */
1062         pos &= ~((loff_t) inode->i_sb->s_blocksize - 1);
1063         /* Set cpu key to the starting position in a file (on left block boundary) */
1064         make_cpu_key(&key, inode,
1065                      1 + ((pos) & ~((loff_t) inode->i_sb->s_blocksize - 1)),
1066                      TYPE_ANY, 3 /*key length */ );
1067
1068         reiserfs_write_lock(inode->i_sb);       // We need that for at least search_by_key()
1069         for (i = 0; i < num_pages; i++) {
1070
1071                 head = page_buffers(prepared_pages[i]);
1072                 /* For each buffer in the page */
1073                 for (bh = head, block_start = 0; bh != head || !block_start;
1074                      block_start = block_end, bh = bh->b_this_page) {
1075                         if (!bh)
1076                                 reiserfs_panic(inode->i_sb,
1077                                                "green-9002: Allocated but absent buffer for a page?");
1078                         /* Find where this buffer ends */
1079                         block_end = block_start + inode->i_sb->s_blocksize;
1080                         if (i == 0 && block_end <= from)
1081                                 /* if this buffer is before requested data to map, skip it */
1082                                 continue;
1083
1084                         if (i == num_pages - 1 && block_start >= to) {
1085                                 /* If this buffer is after requested data to map, abort
1086                                    processing of current page */
1087                                 break;
1088                         }
1089
1090                         if (buffer_mapped(bh) && bh->b_blocknr != 0) {
1091                                 /* This is optimisation for a case where buffer is mapped
1092                                    and have blocknumber assigned. In case significant amount
1093                                    of such buffers are present, we may avoid some amount
1094                                    of search_by_key calls.
1095                                    Probably it would be possible to move parts of this code
1096                                    out of BKL, but I afraid that would overcomplicate code
1097                                    without any noticeable benefit.
1098                                  */
1099                                 item_pos++;
1100                                 /* Update the key */
1101                                 set_cpu_key_k_offset(&key,
1102                                                      cpu_key_k_offset(&key) +
1103                                                      inode->i_sb->s_blocksize);
1104                                 blocks--;       // Decrease the amount of blocks that need to be
1105                                 // allocated
1106                                 continue;       // Go to the next buffer
1107                         }
1108
1109                         if (!itembuf || /* if first iteration */
1110                             item_pos >= ih_item_len(ih) / UNFM_P_SIZE) {        /* or if we progressed past the
1111                                                                                    current unformatted_item */
1112                                 /* Try to find next item */
1113                                 res =
1114                                     search_for_position_by_key(inode->i_sb,
1115                                                                &key, &path);
1116                                 /* Abort if no more items */
1117                                 if (res != POSITION_FOUND) {
1118                                         /* make sure later loops don't use this item */
1119                                         itembuf = NULL;
1120                                         item = NULL;
1121                                         break;
1122                                 }
1123
1124                                 /* Update information about current indirect item */
1125                                 itembuf = get_last_bh(&path);
1126                                 ih = get_ih(&path);
1127                                 item = get_item(&path);
1128                                 item_pos = path.pos_in_item;
1129
1130                                 RFALSE(!is_indirect_le_ih(ih),
1131                                        "green-9003: indirect item expected");
1132                         }
1133
1134                         /* See if there is some block associated with the file
1135                            at that position, map the buffer to this block */
1136                         if (get_block_num(item, item_pos)) {
1137                                 map_bh(bh, inode->i_sb,
1138                                        get_block_num(item, item_pos));
1139                                 blocks--;       // Decrease the amount of blocks that need to be
1140                                 // allocated
1141                         }
1142                         item_pos++;
1143                         /* Update the key */
1144                         set_cpu_key_k_offset(&key,
1145                                              cpu_key_k_offset(&key) +
1146                                              inode->i_sb->s_blocksize);
1147                 }
1148         }
1149         pathrelse(&path);       // Free the path
1150         reiserfs_write_unlock(inode->i_sb);
1151
1152         /* Now zero out unmappend buffers for the first and last pages of
1153            write area or issue read requests if page is mapped. */
1154         /* First page, see if it is not uptodate */
1155         if (!PageUptodate(prepared_pages[0])) {
1156                 head = page_buffers(prepared_pages[0]);
1157
1158                 /* For each buffer in page */
1159                 for (bh = head, block_start = 0; bh != head || !block_start;
1160                      block_start = block_end, bh = bh->b_this_page) {
1161
1162                         if (!bh)
1163                                 reiserfs_panic(inode->i_sb,
1164                                                "green-9002: Allocated but absent buffer for a page?");
1165                         /* Find where this buffer ends */
1166                         block_end = block_start + inode->i_sb->s_blocksize;
1167                         if (block_end <= from)
1168                                 /* if this buffer is before requested data to map, skip it */
1169                                 continue;
1170                         if (block_start < from) {       /* Aha, our partial buffer */
1171                                 if (buffer_mapped(bh)) {        /* If it is mapped, we need to
1172                                                                    issue READ request for it to
1173                                                                    not loose data */
1174                                         ll_rw_block(READ, 1, &bh);
1175                                         *wait_bh++ = bh;
1176                                 } else {        /* Not mapped, zero it */
1177                                         char *kaddr =
1178                                             kmap_atomic(prepared_pages[0],
1179                                                         KM_USER0);
1180                                         memset(kaddr + block_start, 0,
1181                                                from - block_start);
1182                                         kunmap_atomic(kaddr, KM_USER0);
1183                                         set_buffer_uptodate(bh);
1184                                 }
1185                         }
1186                 }
1187         }
1188
1189         /* Last page, see if it is not uptodate, or if the last page is past the end of the file. */
1190         if (!PageUptodate(prepared_pages[num_pages - 1]) ||
1191             ((pos + write_bytes) >> PAGE_CACHE_SHIFT) >
1192             (inode->i_size >> PAGE_CACHE_SHIFT)) {
1193                 head = page_buffers(prepared_pages[num_pages - 1]);
1194
1195                 /* for each buffer in page */
1196                 for (bh = head, block_start = 0; bh != head || !block_start;
1197                      block_start = block_end, bh = bh->b_this_page) {
1198
1199                         if (!bh)
1200                                 reiserfs_panic(inode->i_sb,
1201                                                "green-9002: Allocated but absent buffer for a page?");
1202                         /* Find where this buffer ends */
1203                         block_end = block_start + inode->i_sb->s_blocksize;
1204                         if (block_start >= to)
1205                                 /* if this buffer is after requested data to map, skip it */
1206                                 break;
1207                         if (block_end > to) {   /* Aha, our partial buffer */
1208                                 if (buffer_mapped(bh)) {        /* If it is mapped, we need to
1209                                                                    issue READ request for it to
1210                                                                    not loose data */
1211                                         ll_rw_block(READ, 1, &bh);
1212                                         *wait_bh++ = bh;
1213                                 } else {        /* Not mapped, zero it */
1214                                         char *kaddr =
1215                                             kmap_atomic(prepared_pages
1216                                                         [num_pages - 1],
1217                                                         KM_USER0);
1218                                         memset(kaddr + to, 0, block_end - to);
1219                                         kunmap_atomic(kaddr, KM_USER0);
1220                                         set_buffer_uptodate(bh);
1221                                 }
1222                         }
1223                 }
1224         }
1225
1226         /* Wait for read requests we made to happen, if necessary */
1227         while (wait_bh > wait) {
1228                 wait_on_buffer(*--wait_bh);
1229                 if (!buffer_uptodate(*wait_bh)) {
1230                         res = -EIO;
1231                         goto failed_read;
1232                 }
1233         }
1234
1235         return blocks;
1236       failed_page_grabbing:
1237         num_pages = i;
1238       failed_read:
1239         reiserfs_unprepare_pages(prepared_pages, num_pages);
1240         return res;
1241 }
1242
1243 /* Write @count bytes at position @ppos in a file indicated by @file
1244    from the buffer @buf.  
1245
1246    generic_file_write() is only appropriate for filesystems that are not seeking to optimize performance and want
1247    something simple that works.  It is not for serious use by general purpose filesystems, excepting the one that it was
1248    written for (ext2/3).  This is for several reasons:
1249
1250    * It has no understanding of any filesystem specific optimizations.
1251
1252    * It enters the filesystem repeatedly for each page that is written.
1253
1254    * It depends on reiserfs_get_block() function which if implemented by reiserfs performs costly search_by_key
1255    * operation for each page it is supplied with. By contrast reiserfs_file_write() feeds as much as possible at a time
1256    * to reiserfs which allows for fewer tree traversals.
1257
1258    * Each indirect pointer insertion takes a lot of cpu, because it involves memory moves inside of blocks.
1259
1260    * Asking the block allocation code for blocks one at a time is slightly less efficient.
1261
1262    All of these reasons for not using only generic file write were understood back when reiserfs was first miscoded to
1263    use it, but we were in a hurry to make code freeze, and so it couldn't be revised then.  This new code should make
1264    things right finally.
1265
1266    Future Features: providing search_by_key with hints.
1267
1268 */
1269 static ssize_t reiserfs_file_write(struct file *file,   /* the file we are going to write into */
1270                                    const char __user * buf,     /*  pointer to user supplied data
1271                                                                    (in userspace) */
1272                                    size_t count,        /* amount of bytes to write */
1273                                    loff_t * ppos        /* pointer to position in file that we start writing at. Should be updated to
1274                                                          * new current position before returning. */
1275                                    )
1276 {
1277         size_t already_written = 0;     // Number of bytes already written to the file.
1278         loff_t pos;             // Current position in the file.
1279         ssize_t res;            // return value of various functions that we call.
1280         int err = 0;
1281         struct inode *inode = file->f_dentry->d_inode;  // Inode of the file that we are writing to.
1282         /* To simplify coding at this time, we store
1283            locked pages in array for now */
1284         struct page *prepared_pages[REISERFS_WRITE_PAGES_AT_A_TIME];
1285         struct reiserfs_transaction_handle th;
1286         th.t_trans_id = 0;
1287
1288         if (file->f_flags & O_DIRECT) { // Direct IO needs treatment
1289                 ssize_t result, after_file_end = 0;
1290                 if ((*ppos + count >= inode->i_size)
1291                     || (file->f_flags & O_APPEND)) {
1292                         /* If we are appending a file, we need to put this savelink in here.
1293                            If we will crash while doing direct io, finish_unfinished will
1294                            cut the garbage from the file end. */
1295                         reiserfs_write_lock(inode->i_sb);
1296                         err =
1297                             journal_begin(&th, inode->i_sb,
1298                                           JOURNAL_PER_BALANCE_CNT);
1299                         if (err) {
1300                                 reiserfs_write_unlock(inode->i_sb);
1301                                 return err;
1302                         }
1303                         reiserfs_update_inode_transaction(inode);
1304                         add_save_link(&th, inode, 1 /* Truncate */ );
1305                         after_file_end = 1;
1306                         err =
1307                             journal_end(&th, inode->i_sb,
1308                                         JOURNAL_PER_BALANCE_CNT);
1309                         reiserfs_write_unlock(inode->i_sb);
1310                         if (err)
1311                                 return err;
1312                 }
1313                 result = generic_file_write(file, buf, count, ppos);
1314
1315                 if (after_file_end) {   /* Now update i_size and remove the savelink */
1316                         struct reiserfs_transaction_handle th;
1317                         reiserfs_write_lock(inode->i_sb);
1318                         err = journal_begin(&th, inode->i_sb, 1);
1319                         if (err) {
1320                                 reiserfs_write_unlock(inode->i_sb);
1321                                 return err;
1322                         }
1323                         reiserfs_update_inode_transaction(inode);
1324                         mark_inode_dirty(inode);
1325                         err = journal_end(&th, inode->i_sb, 1);
1326                         if (err) {
1327                                 reiserfs_write_unlock(inode->i_sb);
1328                                 return err;
1329                         }
1330                         err = remove_save_link(inode, 1 /* truncate */ );
1331                         reiserfs_write_unlock(inode->i_sb);
1332                         if (err)
1333                                 return err;
1334                 }
1335
1336                 return result;
1337         }
1338
1339         if (unlikely((ssize_t) count < 0))
1340                 return -EINVAL;
1341
1342         if (unlikely(!access_ok(VERIFY_READ, buf, count)))
1343                 return -EFAULT;
1344
1345         down(&inode->i_sem);    // locks the entire file for just us
1346
1347         pos = *ppos;
1348
1349         /* Check if we can write to specified region of file, file
1350            is not overly big and this kind of stuff. Adjust pos and
1351            count, if needed */
1352         res = generic_write_checks(file, &pos, &count, 0);
1353         if (res)
1354                 goto out;
1355
1356         if (count == 0)
1357                 goto out;
1358
1359         res = remove_suid(file->f_dentry);
1360         if (res)
1361                 goto out;
1362
1363         inode_update_time(inode, 1);    /* Both mtime and ctime */
1364
1365         // Ok, we are done with all the checks.
1366
1367         // Now we should start real work
1368
1369         /* If we are going to write past the file's packed tail or if we are going
1370            to overwrite part of the tail, we need that tail to be converted into
1371            unformatted node */
1372         res = reiserfs_check_for_tail_and_convert(inode, pos, count);
1373         if (res)
1374                 goto out;
1375
1376         while (count > 0) {
1377                 /* This is the main loop in which we running until some error occures
1378                    or until we write all of the data. */
1379                 size_t num_pages;       /* amount of pages we are going to write this iteration */
1380                 size_t write_bytes;     /* amount of bytes to write during this iteration */
1381                 size_t blocks_to_allocate;      /* how much blocks we need to allocate for this iteration */
1382
1383                 /*  (pos & (PAGE_CACHE_SIZE-1)) is an idiom for offset into a page of pos */
1384                 num_pages = !!((pos + count) & (PAGE_CACHE_SIZE - 1)) + /* round up partial
1385                                                                            pages */
1386                     ((count +
1387                       (pos & (PAGE_CACHE_SIZE - 1))) >> PAGE_CACHE_SHIFT);
1388                 /* convert size to amount of
1389                    pages */
1390                 reiserfs_write_lock(inode->i_sb);
1391                 if (num_pages > REISERFS_WRITE_PAGES_AT_A_TIME
1392                     || num_pages > reiserfs_can_fit_pages(inode->i_sb)) {
1393                         /* If we were asked to write more data than we want to or if there
1394                            is not that much space, then we shorten amount of data to write
1395                            for this iteration. */
1396                         num_pages =
1397                             min_t(size_t, REISERFS_WRITE_PAGES_AT_A_TIME,
1398                                   reiserfs_can_fit_pages(inode->i_sb));
1399                         /* Also we should not forget to set size in bytes accordingly */
1400                         write_bytes = (num_pages << PAGE_CACHE_SHIFT) -
1401                             (pos & (PAGE_CACHE_SIZE - 1));
1402                         /* If position is not on the
1403                            start of the page, we need
1404                            to substract the offset
1405                            within page */
1406                 } else
1407                         write_bytes = count;
1408
1409                 /* reserve the blocks to be allocated later, so that later on
1410                    we still have the space to write the blocks to */
1411                 reiserfs_claim_blocks_to_be_allocated(inode->i_sb,
1412                                                       num_pages <<
1413                                                       (PAGE_CACHE_SHIFT -
1414                                                        inode->i_blkbits));
1415                 reiserfs_write_unlock(inode->i_sb);
1416
1417                 if (!num_pages) {       /* If we do not have enough space even for a single page... */
1418                         if (pos >
1419                             inode->i_size + inode->i_sb->s_blocksize -
1420                             (pos & (inode->i_sb->s_blocksize - 1))) {
1421                                 res = -ENOSPC;
1422                                 break;  // In case we are writing past the end of the last file block, break.
1423                         }
1424                         // Otherwise we are possibly overwriting the file, so
1425                         // let's set write size to be equal or less than blocksize.
1426                         // This way we get it correctly for file holes.
1427                         // But overwriting files on absolutelly full volumes would not
1428                         // be very efficient. Well, people are not supposed to fill
1429                         // 100% of disk space anyway.
1430                         write_bytes =
1431                             min_t(size_t, count,
1432                                   inode->i_sb->s_blocksize -
1433                                   (pos & (inode->i_sb->s_blocksize - 1)));
1434                         num_pages = 1;
1435                         // No blocks were claimed before, so do it now.
1436                         reiserfs_claim_blocks_to_be_allocated(inode->i_sb,
1437                                                               1 <<
1438                                                               (PAGE_CACHE_SHIFT
1439                                                                -
1440                                                                inode->
1441                                                                i_blkbits));
1442                 }
1443
1444                 /* Prepare for writing into the region, read in all the
1445                    partially overwritten pages, if needed. And lock the pages,
1446                    so that nobody else can access these until we are done.
1447                    We get number of actual blocks needed as a result. */
1448                 blocks_to_allocate =
1449                     reiserfs_prepare_file_region_for_write(inode, pos,
1450                                                            num_pages,
1451                                                            write_bytes,
1452                                                            prepared_pages);
1453                 if (blocks_to_allocate < 0) {
1454                         res = blocks_to_allocate;
1455                         reiserfs_release_claimed_blocks(inode->i_sb,
1456                                                         num_pages <<
1457                                                         (PAGE_CACHE_SHIFT -
1458                                                          inode->i_blkbits));
1459                         break;
1460                 }
1461
1462                 /* First we correct our estimate of how many blocks we need */
1463                 reiserfs_release_claimed_blocks(inode->i_sb,
1464                                                 (num_pages <<
1465                                                  (PAGE_CACHE_SHIFT -
1466                                                   inode->i_sb->
1467                                                   s_blocksize_bits)) -
1468                                                 blocks_to_allocate);
1469
1470                 if (blocks_to_allocate > 0) {   /*We only allocate blocks if we need to */
1471                         /* Fill in all the possible holes and append the file if needed */
1472                         res =
1473                             reiserfs_allocate_blocks_for_region(&th, inode, pos,
1474                                                                 num_pages,
1475                                                                 write_bytes,
1476                                                                 prepared_pages,
1477                                                                 blocks_to_allocate);
1478                 }
1479
1480                 /* well, we have allocated the blocks, so it is time to free
1481                    the reservation we made earlier. */
1482                 reiserfs_release_claimed_blocks(inode->i_sb,
1483                                                 blocks_to_allocate);
1484                 if (res) {
1485                         reiserfs_unprepare_pages(prepared_pages, num_pages);
1486                         break;
1487                 }
1488
1489 /* NOTE that allocating blocks and filling blocks can be done in reverse order
1490    and probably we would do that just to get rid of garbage in files after a
1491    crash */
1492
1493                 /* Copy data from user-supplied buffer to file's pages */
1494                 res =
1495                     reiserfs_copy_from_user_to_file_region(pos, num_pages,
1496                                                            write_bytes,
1497                                                            prepared_pages, buf);
1498                 if (res) {
1499                         reiserfs_unprepare_pages(prepared_pages, num_pages);
1500                         break;
1501                 }
1502
1503                 /* Send the pages to disk and unlock them. */
1504                 res =
1505                     reiserfs_submit_file_region_for_write(&th, inode, pos,
1506                                                           num_pages,
1507                                                           write_bytes,
1508                                                           prepared_pages);
1509                 if (res)
1510                         break;
1511
1512                 already_written += write_bytes;
1513                 buf += write_bytes;
1514                 *ppos = pos += write_bytes;
1515                 count -= write_bytes;
1516                 balance_dirty_pages_ratelimited(inode->i_mapping);
1517         }
1518
1519         /* this is only true on error */
1520         if (th.t_trans_id) {
1521                 reiserfs_write_lock(inode->i_sb);
1522                 err = journal_end(&th, th.t_super, th.t_blocks_allocated);
1523                 reiserfs_write_unlock(inode->i_sb);
1524                 if (err) {
1525                         res = err;
1526                         goto out;
1527                 }
1528         }
1529
1530         if ((file->f_flags & O_SYNC) || IS_SYNC(inode))
1531                 res =
1532                     generic_osync_inode(inode, file->f_mapping,
1533                                         OSYNC_METADATA | OSYNC_DATA);
1534
1535         up(&inode->i_sem);
1536         reiserfs_async_progress_wait(inode->i_sb);
1537         return (already_written != 0) ? already_written : res;
1538
1539       out:
1540         up(&inode->i_sem);      // unlock the file on exit.
1541         return res;
1542 }
1543
1544 static ssize_t reiserfs_aio_write(struct kiocb *iocb, const char __user * buf,
1545                                   size_t count, loff_t pos)
1546 {
1547         return generic_file_aio_write(iocb, buf, count, pos);
1548 }
1549
1550 struct file_operations reiserfs_file_operations = {
1551         .read = generic_file_read,
1552         .write = reiserfs_file_write,
1553         .ioctl = reiserfs_ioctl,
1554         .mmap = generic_file_mmap,
1555         .release = reiserfs_file_release,
1556         .fsync = reiserfs_sync_file,
1557         .sendfile = generic_file_sendfile,
1558         .aio_read = generic_file_aio_read,
1559         .aio_write = reiserfs_aio_write,
1560 };
1561
1562 struct inode_operations reiserfs_file_inode_operations = {
1563         .truncate = reiserfs_vfs_truncate_file,
1564         .setattr = reiserfs_setattr,
1565         .setxattr = reiserfs_setxattr,
1566         .getxattr = reiserfs_getxattr,
1567         .listxattr = reiserfs_listxattr,
1568         .removexattr = reiserfs_removexattr,
1569         .permission = reiserfs_permission,
1570 };