ocfs2: Implement llseek()
[linux-2.6.git] / fs / ocfs2 / file.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * file.c
5  *
6  * File open, close, extend, truncate
7  *
8  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25
26 #include <linux/capability.h>
27 #include <linux/fs.h>
28 #include <linux/types.h>
29 #include <linux/slab.h>
30 #include <linux/highmem.h>
31 #include <linux/pagemap.h>
32 #include <linux/uio.h>
33 #include <linux/sched.h>
34 #include <linux/splice.h>
35 #include <linux/mount.h>
36 #include <linux/writeback.h>
37 #include <linux/falloc.h>
38 #include <linux/quotaops.h>
39 #include <linux/blkdev.h>
40
41 #include <cluster/masklog.h>
42
43 #include "ocfs2.h"
44
45 #include "alloc.h"
46 #include "aops.h"
47 #include "dir.h"
48 #include "dlmglue.h"
49 #include "extent_map.h"
50 #include "file.h"
51 #include "sysfile.h"
52 #include "inode.h"
53 #include "ioctl.h"
54 #include "journal.h"
55 #include "locks.h"
56 #include "mmap.h"
57 #include "suballoc.h"
58 #include "super.h"
59 #include "xattr.h"
60 #include "acl.h"
61 #include "quota.h"
62 #include "refcounttree.h"
63 #include "ocfs2_trace.h"
64
65 #include "buffer_head_io.h"
66
67 static int ocfs2_init_file_private(struct inode *inode, struct file *file)
68 {
69         struct ocfs2_file_private *fp;
70
71         fp = kzalloc(sizeof(struct ocfs2_file_private), GFP_KERNEL);
72         if (!fp)
73                 return -ENOMEM;
74
75         fp->fp_file = file;
76         mutex_init(&fp->fp_mutex);
77         ocfs2_file_lock_res_init(&fp->fp_flock, fp);
78         file->private_data = fp;
79
80         return 0;
81 }
82
83 static void ocfs2_free_file_private(struct inode *inode, struct file *file)
84 {
85         struct ocfs2_file_private *fp = file->private_data;
86         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
87
88         if (fp) {
89                 ocfs2_simple_drop_lockres(osb, &fp->fp_flock);
90                 ocfs2_lock_res_free(&fp->fp_flock);
91                 kfree(fp);
92                 file->private_data = NULL;
93         }
94 }
95
96 static int ocfs2_file_open(struct inode *inode, struct file *file)
97 {
98         int status;
99         int mode = file->f_flags;
100         struct ocfs2_inode_info *oi = OCFS2_I(inode);
101
102         trace_ocfs2_file_open(inode, file, file->f_path.dentry,
103                               (unsigned long long)OCFS2_I(inode)->ip_blkno,
104                               file->f_path.dentry->d_name.len,
105                               file->f_path.dentry->d_name.name, mode);
106
107         if (file->f_mode & FMODE_WRITE)
108                 dquot_initialize(inode);
109
110         spin_lock(&oi->ip_lock);
111
112         /* Check that the inode hasn't been wiped from disk by another
113          * node. If it hasn't then we're safe as long as we hold the
114          * spin lock until our increment of open count. */
115         if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_DELETED) {
116                 spin_unlock(&oi->ip_lock);
117
118                 status = -ENOENT;
119                 goto leave;
120         }
121
122         if (mode & O_DIRECT)
123                 oi->ip_flags |= OCFS2_INODE_OPEN_DIRECT;
124
125         oi->ip_open_count++;
126         spin_unlock(&oi->ip_lock);
127
128         status = ocfs2_init_file_private(inode, file);
129         if (status) {
130                 /*
131                  * We want to set open count back if we're failing the
132                  * open.
133                  */
134                 spin_lock(&oi->ip_lock);
135                 oi->ip_open_count--;
136                 spin_unlock(&oi->ip_lock);
137         }
138
139 leave:
140         return status;
141 }
142
143 static int ocfs2_file_release(struct inode *inode, struct file *file)
144 {
145         struct ocfs2_inode_info *oi = OCFS2_I(inode);
146
147         spin_lock(&oi->ip_lock);
148         if (!--oi->ip_open_count)
149                 oi->ip_flags &= ~OCFS2_INODE_OPEN_DIRECT;
150
151         trace_ocfs2_file_release(inode, file, file->f_path.dentry,
152                                  oi->ip_blkno,
153                                  file->f_path.dentry->d_name.len,
154                                  file->f_path.dentry->d_name.name,
155                                  oi->ip_open_count);
156         spin_unlock(&oi->ip_lock);
157
158         ocfs2_free_file_private(inode, file);
159
160         return 0;
161 }
162
163 static int ocfs2_dir_open(struct inode *inode, struct file *file)
164 {
165         return ocfs2_init_file_private(inode, file);
166 }
167
168 static int ocfs2_dir_release(struct inode *inode, struct file *file)
169 {
170         ocfs2_free_file_private(inode, file);
171         return 0;
172 }
173
174 static int ocfs2_sync_file(struct file *file, loff_t start, loff_t end,
175                            int datasync)
176 {
177         int err = 0;
178         journal_t *journal;
179         struct inode *inode = file->f_mapping->host;
180         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
181
182         trace_ocfs2_sync_file(inode, file, file->f_path.dentry,
183                               OCFS2_I(inode)->ip_blkno,
184                               file->f_path.dentry->d_name.len,
185                               file->f_path.dentry->d_name.name,
186                               (unsigned long long)datasync);
187
188         err = filemap_write_and_wait_range(inode->i_mapping, start, end);
189         if (err)
190                 return err;
191
192         /*
193          * Probably don't need the i_mutex at all in here, just putting it here
194          * to be consistent with how fsync used to be called, someone more
195          * familiar with the fs could possibly remove it.
196          */
197         mutex_lock(&inode->i_mutex);
198         if (datasync && !(inode->i_state & I_DIRTY_DATASYNC)) {
199                 /*
200                  * We still have to flush drive's caches to get data to the
201                  * platter
202                  */
203                 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
204                         blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
205                 goto bail;
206         }
207
208         journal = osb->journal->j_journal;
209         err = jbd2_journal_force_commit(journal);
210
211 bail:
212         if (err)
213                 mlog_errno(err);
214         mutex_unlock(&inode->i_mutex);
215
216         return (err < 0) ? -EIO : 0;
217 }
218
219 int ocfs2_should_update_atime(struct inode *inode,
220                               struct vfsmount *vfsmnt)
221 {
222         struct timespec now;
223         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
224
225         if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
226                 return 0;
227
228         if ((inode->i_flags & S_NOATIME) ||
229             ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode)))
230                 return 0;
231
232         /*
233          * We can be called with no vfsmnt structure - NFSD will
234          * sometimes do this.
235          *
236          * Note that our action here is different than touch_atime() -
237          * if we can't tell whether this is a noatime mount, then we
238          * don't know whether to trust the value of s_atime_quantum.
239          */
240         if (vfsmnt == NULL)
241                 return 0;
242
243         if ((vfsmnt->mnt_flags & MNT_NOATIME) ||
244             ((vfsmnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)))
245                 return 0;
246
247         if (vfsmnt->mnt_flags & MNT_RELATIME) {
248                 if ((timespec_compare(&inode->i_atime, &inode->i_mtime) <= 0) ||
249                     (timespec_compare(&inode->i_atime, &inode->i_ctime) <= 0))
250                         return 1;
251
252                 return 0;
253         }
254
255         now = CURRENT_TIME;
256         if ((now.tv_sec - inode->i_atime.tv_sec <= osb->s_atime_quantum))
257                 return 0;
258         else
259                 return 1;
260 }
261
262 int ocfs2_update_inode_atime(struct inode *inode,
263                              struct buffer_head *bh)
264 {
265         int ret;
266         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
267         handle_t *handle;
268         struct ocfs2_dinode *di = (struct ocfs2_dinode *) bh->b_data;
269
270         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
271         if (IS_ERR(handle)) {
272                 ret = PTR_ERR(handle);
273                 mlog_errno(ret);
274                 goto out;
275         }
276
277         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
278                                       OCFS2_JOURNAL_ACCESS_WRITE);
279         if (ret) {
280                 mlog_errno(ret);
281                 goto out_commit;
282         }
283
284         /*
285          * Don't use ocfs2_mark_inode_dirty() here as we don't always
286          * have i_mutex to guard against concurrent changes to other
287          * inode fields.
288          */
289         inode->i_atime = CURRENT_TIME;
290         di->i_atime = cpu_to_le64(inode->i_atime.tv_sec);
291         di->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
292         ocfs2_journal_dirty(handle, bh);
293
294 out_commit:
295         ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
296 out:
297         return ret;
298 }
299
300 static int ocfs2_set_inode_size(handle_t *handle,
301                                 struct inode *inode,
302                                 struct buffer_head *fe_bh,
303                                 u64 new_i_size)
304 {
305         int status;
306
307         i_size_write(inode, new_i_size);
308         inode->i_blocks = ocfs2_inode_sector_count(inode);
309         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
310
311         status = ocfs2_mark_inode_dirty(handle, inode, fe_bh);
312         if (status < 0) {
313                 mlog_errno(status);
314                 goto bail;
315         }
316
317 bail:
318         return status;
319 }
320
321 int ocfs2_simple_size_update(struct inode *inode,
322                              struct buffer_head *di_bh,
323                              u64 new_i_size)
324 {
325         int ret;
326         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
327         handle_t *handle = NULL;
328
329         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
330         if (IS_ERR(handle)) {
331                 ret = PTR_ERR(handle);
332                 mlog_errno(ret);
333                 goto out;
334         }
335
336         ret = ocfs2_set_inode_size(handle, inode, di_bh,
337                                    new_i_size);
338         if (ret < 0)
339                 mlog_errno(ret);
340
341         ocfs2_commit_trans(osb, handle);
342 out:
343         return ret;
344 }
345
346 static int ocfs2_cow_file_pos(struct inode *inode,
347                               struct buffer_head *fe_bh,
348                               u64 offset)
349 {
350         int status;
351         u32 phys, cpos = offset >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
352         unsigned int num_clusters = 0;
353         unsigned int ext_flags = 0;
354
355         /*
356          * If the new offset is aligned to the range of the cluster, there is
357          * no space for ocfs2_zero_range_for_truncate to fill, so no need to
358          * CoW either.
359          */
360         if ((offset & (OCFS2_SB(inode->i_sb)->s_clustersize - 1)) == 0)
361                 return 0;
362
363         status = ocfs2_get_clusters(inode, cpos, &phys,
364                                     &num_clusters, &ext_flags);
365         if (status) {
366                 mlog_errno(status);
367                 goto out;
368         }
369
370         if (!(ext_flags & OCFS2_EXT_REFCOUNTED))
371                 goto out;
372
373         return ocfs2_refcount_cow(inode, NULL, fe_bh, cpos, 1, cpos+1);
374
375 out:
376         return status;
377 }
378
379 static int ocfs2_orphan_for_truncate(struct ocfs2_super *osb,
380                                      struct inode *inode,
381                                      struct buffer_head *fe_bh,
382                                      u64 new_i_size)
383 {
384         int status;
385         handle_t *handle;
386         struct ocfs2_dinode *di;
387         u64 cluster_bytes;
388
389         /*
390          * We need to CoW the cluster contains the offset if it is reflinked
391          * since we will call ocfs2_zero_range_for_truncate later which will
392          * write "0" from offset to the end of the cluster.
393          */
394         status = ocfs2_cow_file_pos(inode, fe_bh, new_i_size);
395         if (status) {
396                 mlog_errno(status);
397                 return status;
398         }
399
400         /* TODO: This needs to actually orphan the inode in this
401          * transaction. */
402
403         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
404         if (IS_ERR(handle)) {
405                 status = PTR_ERR(handle);
406                 mlog_errno(status);
407                 goto out;
408         }
409
410         status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), fe_bh,
411                                          OCFS2_JOURNAL_ACCESS_WRITE);
412         if (status < 0) {
413                 mlog_errno(status);
414                 goto out_commit;
415         }
416
417         /*
418          * Do this before setting i_size.
419          */
420         cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size);
421         status = ocfs2_zero_range_for_truncate(inode, handle, new_i_size,
422                                                cluster_bytes);
423         if (status) {
424                 mlog_errno(status);
425                 goto out_commit;
426         }
427
428         i_size_write(inode, new_i_size);
429         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
430
431         di = (struct ocfs2_dinode *) fe_bh->b_data;
432         di->i_size = cpu_to_le64(new_i_size);
433         di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
434         di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
435
436         ocfs2_journal_dirty(handle, fe_bh);
437
438 out_commit:
439         ocfs2_commit_trans(osb, handle);
440 out:
441         return status;
442 }
443
444 static int ocfs2_truncate_file(struct inode *inode,
445                                struct buffer_head *di_bh,
446                                u64 new_i_size)
447 {
448         int status = 0;
449         struct ocfs2_dinode *fe = NULL;
450         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
451
452         /* We trust di_bh because it comes from ocfs2_inode_lock(), which
453          * already validated it */
454         fe = (struct ocfs2_dinode *) di_bh->b_data;
455
456         trace_ocfs2_truncate_file((unsigned long long)OCFS2_I(inode)->ip_blkno,
457                                   (unsigned long long)le64_to_cpu(fe->i_size),
458                                   (unsigned long long)new_i_size);
459
460         mlog_bug_on_msg(le64_to_cpu(fe->i_size) != i_size_read(inode),
461                         "Inode %llu, inode i_size = %lld != di "
462                         "i_size = %llu, i_flags = 0x%x\n",
463                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
464                         i_size_read(inode),
465                         (unsigned long long)le64_to_cpu(fe->i_size),
466                         le32_to_cpu(fe->i_flags));
467
468         if (new_i_size > le64_to_cpu(fe->i_size)) {
469                 trace_ocfs2_truncate_file_error(
470                         (unsigned long long)le64_to_cpu(fe->i_size),
471                         (unsigned long long)new_i_size);
472                 status = -EINVAL;
473                 mlog_errno(status);
474                 goto bail;
475         }
476
477         /* lets handle the simple truncate cases before doing any more
478          * cluster locking. */
479         if (new_i_size == le64_to_cpu(fe->i_size))
480                 goto bail;
481
482         down_write(&OCFS2_I(inode)->ip_alloc_sem);
483
484         ocfs2_resv_discard(&osb->osb_la_resmap,
485                            &OCFS2_I(inode)->ip_la_data_resv);
486
487         /*
488          * The inode lock forced other nodes to sync and drop their
489          * pages, which (correctly) happens even if we have a truncate
490          * without allocation change - ocfs2 cluster sizes can be much
491          * greater than page size, so we have to truncate them
492          * anyway.
493          */
494         unmap_mapping_range(inode->i_mapping, new_i_size + PAGE_SIZE - 1, 0, 1);
495         truncate_inode_pages(inode->i_mapping, new_i_size);
496
497         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
498                 status = ocfs2_truncate_inline(inode, di_bh, new_i_size,
499                                                i_size_read(inode), 1);
500                 if (status)
501                         mlog_errno(status);
502
503                 goto bail_unlock_sem;
504         }
505
506         /* alright, we're going to need to do a full blown alloc size
507          * change. Orphan the inode so that recovery can complete the
508          * truncate if necessary. This does the task of marking
509          * i_size. */
510         status = ocfs2_orphan_for_truncate(osb, inode, di_bh, new_i_size);
511         if (status < 0) {
512                 mlog_errno(status);
513                 goto bail_unlock_sem;
514         }
515
516         status = ocfs2_commit_truncate(osb, inode, di_bh);
517         if (status < 0) {
518                 mlog_errno(status);
519                 goto bail_unlock_sem;
520         }
521
522         /* TODO: orphan dir cleanup here. */
523 bail_unlock_sem:
524         up_write(&OCFS2_I(inode)->ip_alloc_sem);
525
526 bail:
527         if (!status && OCFS2_I(inode)->ip_clusters == 0)
528                 status = ocfs2_try_remove_refcount_tree(inode, di_bh);
529
530         return status;
531 }
532
533 /*
534  * extend file allocation only here.
535  * we'll update all the disk stuff, and oip->alloc_size
536  *
537  * expect stuff to be locked, a transaction started and enough data /
538  * metadata reservations in the contexts.
539  *
540  * Will return -EAGAIN, and a reason if a restart is needed.
541  * If passed in, *reason will always be set, even in error.
542  */
543 int ocfs2_add_inode_data(struct ocfs2_super *osb,
544                          struct inode *inode,
545                          u32 *logical_offset,
546                          u32 clusters_to_add,
547                          int mark_unwritten,
548                          struct buffer_head *fe_bh,
549                          handle_t *handle,
550                          struct ocfs2_alloc_context *data_ac,
551                          struct ocfs2_alloc_context *meta_ac,
552                          enum ocfs2_alloc_restarted *reason_ret)
553 {
554         int ret;
555         struct ocfs2_extent_tree et;
556
557         ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), fe_bh);
558         ret = ocfs2_add_clusters_in_btree(handle, &et, logical_offset,
559                                           clusters_to_add, mark_unwritten,
560                                           data_ac, meta_ac, reason_ret);
561
562         return ret;
563 }
564
565 static int __ocfs2_extend_allocation(struct inode *inode, u32 logical_start,
566                                      u32 clusters_to_add, int mark_unwritten)
567 {
568         int status = 0;
569         int restart_func = 0;
570         int credits;
571         u32 prev_clusters;
572         struct buffer_head *bh = NULL;
573         struct ocfs2_dinode *fe = NULL;
574         handle_t *handle = NULL;
575         struct ocfs2_alloc_context *data_ac = NULL;
576         struct ocfs2_alloc_context *meta_ac = NULL;
577         enum ocfs2_alloc_restarted why;
578         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
579         struct ocfs2_extent_tree et;
580         int did_quota = 0;
581
582         /*
583          * This function only exists for file systems which don't
584          * support holes.
585          */
586         BUG_ON(mark_unwritten && !ocfs2_sparse_alloc(osb));
587
588         status = ocfs2_read_inode_block(inode, &bh);
589         if (status < 0) {
590                 mlog_errno(status);
591                 goto leave;
592         }
593         fe = (struct ocfs2_dinode *) bh->b_data;
594
595 restart_all:
596         BUG_ON(le32_to_cpu(fe->i_clusters) != OCFS2_I(inode)->ip_clusters);
597
598         ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), bh);
599         status = ocfs2_lock_allocators(inode, &et, clusters_to_add, 0,
600                                        &data_ac, &meta_ac);
601         if (status) {
602                 mlog_errno(status);
603                 goto leave;
604         }
605
606         credits = ocfs2_calc_extend_credits(osb->sb, &fe->id2.i_list,
607                                             clusters_to_add);
608         handle = ocfs2_start_trans(osb, credits);
609         if (IS_ERR(handle)) {
610                 status = PTR_ERR(handle);
611                 handle = NULL;
612                 mlog_errno(status);
613                 goto leave;
614         }
615
616 restarted_transaction:
617         trace_ocfs2_extend_allocation(
618                 (unsigned long long)OCFS2_I(inode)->ip_blkno,
619                 (unsigned long long)i_size_read(inode),
620                 le32_to_cpu(fe->i_clusters), clusters_to_add,
621                 why, restart_func);
622
623         status = dquot_alloc_space_nodirty(inode,
624                         ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
625         if (status)
626                 goto leave;
627         did_quota = 1;
628
629         /* reserve a write to the file entry early on - that we if we
630          * run out of credits in the allocation path, we can still
631          * update i_size. */
632         status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
633                                          OCFS2_JOURNAL_ACCESS_WRITE);
634         if (status < 0) {
635                 mlog_errno(status);
636                 goto leave;
637         }
638
639         prev_clusters = OCFS2_I(inode)->ip_clusters;
640
641         status = ocfs2_add_inode_data(osb,
642                                       inode,
643                                       &logical_start,
644                                       clusters_to_add,
645                                       mark_unwritten,
646                                       bh,
647                                       handle,
648                                       data_ac,
649                                       meta_ac,
650                                       &why);
651         if ((status < 0) && (status != -EAGAIN)) {
652                 if (status != -ENOSPC)
653                         mlog_errno(status);
654                 goto leave;
655         }
656
657         ocfs2_journal_dirty(handle, bh);
658
659         spin_lock(&OCFS2_I(inode)->ip_lock);
660         clusters_to_add -= (OCFS2_I(inode)->ip_clusters - prev_clusters);
661         spin_unlock(&OCFS2_I(inode)->ip_lock);
662         /* Release unused quota reservation */
663         dquot_free_space(inode,
664                         ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
665         did_quota = 0;
666
667         if (why != RESTART_NONE && clusters_to_add) {
668                 if (why == RESTART_META) {
669                         restart_func = 1;
670                         status = 0;
671                 } else {
672                         BUG_ON(why != RESTART_TRANS);
673
674                         /* TODO: This can be more intelligent. */
675                         credits = ocfs2_calc_extend_credits(osb->sb,
676                                                             &fe->id2.i_list,
677                                                             clusters_to_add);
678                         status = ocfs2_extend_trans(handle, credits);
679                         if (status < 0) {
680                                 /* handle still has to be committed at
681                                  * this point. */
682                                 status = -ENOMEM;
683                                 mlog_errno(status);
684                                 goto leave;
685                         }
686                         goto restarted_transaction;
687                 }
688         }
689
690         trace_ocfs2_extend_allocation_end(OCFS2_I(inode)->ip_blkno,
691              le32_to_cpu(fe->i_clusters),
692              (unsigned long long)le64_to_cpu(fe->i_size),
693              OCFS2_I(inode)->ip_clusters,
694              (unsigned long long)i_size_read(inode));
695
696 leave:
697         if (status < 0 && did_quota)
698                 dquot_free_space(inode,
699                         ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
700         if (handle) {
701                 ocfs2_commit_trans(osb, handle);
702                 handle = NULL;
703         }
704         if (data_ac) {
705                 ocfs2_free_alloc_context(data_ac);
706                 data_ac = NULL;
707         }
708         if (meta_ac) {
709                 ocfs2_free_alloc_context(meta_ac);
710                 meta_ac = NULL;
711         }
712         if ((!status) && restart_func) {
713                 restart_func = 0;
714                 goto restart_all;
715         }
716         brelse(bh);
717         bh = NULL;
718
719         return status;
720 }
721
722 /*
723  * While a write will already be ordering the data, a truncate will not.
724  * Thus, we need to explicitly order the zeroed pages.
725  */
726 static handle_t *ocfs2_zero_start_ordered_transaction(struct inode *inode)
727 {
728         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
729         handle_t *handle = NULL;
730         int ret = 0;
731
732         if (!ocfs2_should_order_data(inode))
733                 goto out;
734
735         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
736         if (IS_ERR(handle)) {
737                 ret = -ENOMEM;
738                 mlog_errno(ret);
739                 goto out;
740         }
741
742         ret = ocfs2_jbd2_file_inode(handle, inode);
743         if (ret < 0)
744                 mlog_errno(ret);
745
746 out:
747         if (ret) {
748                 if (!IS_ERR(handle))
749                         ocfs2_commit_trans(osb, handle);
750                 handle = ERR_PTR(ret);
751         }
752         return handle;
753 }
754
755 /* Some parts of this taken from generic_cont_expand, which turned out
756  * to be too fragile to do exactly what we need without us having to
757  * worry about recursive locking in ->write_begin() and ->write_end(). */
758 static int ocfs2_write_zero_page(struct inode *inode, u64 abs_from,
759                                  u64 abs_to)
760 {
761         struct address_space *mapping = inode->i_mapping;
762         struct page *page;
763         unsigned long index = abs_from >> PAGE_CACHE_SHIFT;
764         handle_t *handle = NULL;
765         int ret = 0;
766         unsigned zero_from, zero_to, block_start, block_end;
767
768         BUG_ON(abs_from >= abs_to);
769         BUG_ON(abs_to > (((u64)index + 1) << PAGE_CACHE_SHIFT));
770         BUG_ON(abs_from & (inode->i_blkbits - 1));
771
772         page = find_or_create_page(mapping, index, GFP_NOFS);
773         if (!page) {
774                 ret = -ENOMEM;
775                 mlog_errno(ret);
776                 goto out;
777         }
778
779         /* Get the offsets within the page that we want to zero */
780         zero_from = abs_from & (PAGE_CACHE_SIZE - 1);
781         zero_to = abs_to & (PAGE_CACHE_SIZE - 1);
782         if (!zero_to)
783                 zero_to = PAGE_CACHE_SIZE;
784
785         trace_ocfs2_write_zero_page(
786                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
787                         (unsigned long long)abs_from,
788                         (unsigned long long)abs_to,
789                         index, zero_from, zero_to);
790
791         /* We know that zero_from is block aligned */
792         for (block_start = zero_from; block_start < zero_to;
793              block_start = block_end) {
794                 block_end = block_start + (1 << inode->i_blkbits);
795
796                 /*
797                  * block_start is block-aligned.  Bump it by one to force
798                  * __block_write_begin and block_commit_write to zero the
799                  * whole block.
800                  */
801                 ret = __block_write_begin(page, block_start + 1, 0,
802                                           ocfs2_get_block);
803                 if (ret < 0) {
804                         mlog_errno(ret);
805                         goto out_unlock;
806                 }
807
808                 if (!handle) {
809                         handle = ocfs2_zero_start_ordered_transaction(inode);
810                         if (IS_ERR(handle)) {
811                                 ret = PTR_ERR(handle);
812                                 handle = NULL;
813                                 break;
814                         }
815                 }
816
817                 /* must not update i_size! */
818                 ret = block_commit_write(page, block_start + 1,
819                                          block_start + 1);
820                 if (ret < 0)
821                         mlog_errno(ret);
822                 else
823                         ret = 0;
824         }
825
826         if (handle)
827                 ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
828
829 out_unlock:
830         unlock_page(page);
831         page_cache_release(page);
832 out:
833         return ret;
834 }
835
836 /*
837  * Find the next range to zero.  We do this in terms of bytes because
838  * that's what ocfs2_zero_extend() wants, and it is dealing with the
839  * pagecache.  We may return multiple extents.
840  *
841  * zero_start and zero_end are ocfs2_zero_extend()s current idea of what
842  * needs to be zeroed.  range_start and range_end return the next zeroing
843  * range.  A subsequent call should pass the previous range_end as its
844  * zero_start.  If range_end is 0, there's nothing to do.
845  *
846  * Unwritten extents are skipped over.  Refcounted extents are CoWd.
847  */
848 static int ocfs2_zero_extend_get_range(struct inode *inode,
849                                        struct buffer_head *di_bh,
850                                        u64 zero_start, u64 zero_end,
851                                        u64 *range_start, u64 *range_end)
852 {
853         int rc = 0, needs_cow = 0;
854         u32 p_cpos, zero_clusters = 0;
855         u32 zero_cpos =
856                 zero_start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
857         u32 last_cpos = ocfs2_clusters_for_bytes(inode->i_sb, zero_end);
858         unsigned int num_clusters = 0;
859         unsigned int ext_flags = 0;
860
861         while (zero_cpos < last_cpos) {
862                 rc = ocfs2_get_clusters(inode, zero_cpos, &p_cpos,
863                                         &num_clusters, &ext_flags);
864                 if (rc) {
865                         mlog_errno(rc);
866                         goto out;
867                 }
868
869                 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
870                         zero_clusters = num_clusters;
871                         if (ext_flags & OCFS2_EXT_REFCOUNTED)
872                                 needs_cow = 1;
873                         break;
874                 }
875
876                 zero_cpos += num_clusters;
877         }
878         if (!zero_clusters) {
879                 *range_end = 0;
880                 goto out;
881         }
882
883         while ((zero_cpos + zero_clusters) < last_cpos) {
884                 rc = ocfs2_get_clusters(inode, zero_cpos + zero_clusters,
885                                         &p_cpos, &num_clusters,
886                                         &ext_flags);
887                 if (rc) {
888                         mlog_errno(rc);
889                         goto out;
890                 }
891
892                 if (!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN))
893                         break;
894                 if (ext_flags & OCFS2_EXT_REFCOUNTED)
895                         needs_cow = 1;
896                 zero_clusters += num_clusters;
897         }
898         if ((zero_cpos + zero_clusters) > last_cpos)
899                 zero_clusters = last_cpos - zero_cpos;
900
901         if (needs_cow) {
902                 rc = ocfs2_refcount_cow(inode, NULL, di_bh, zero_cpos,
903                                         zero_clusters, UINT_MAX);
904                 if (rc) {
905                         mlog_errno(rc);
906                         goto out;
907                 }
908         }
909
910         *range_start = ocfs2_clusters_to_bytes(inode->i_sb, zero_cpos);
911         *range_end = ocfs2_clusters_to_bytes(inode->i_sb,
912                                              zero_cpos + zero_clusters);
913
914 out:
915         return rc;
916 }
917
918 /*
919  * Zero one range returned from ocfs2_zero_extend_get_range().  The caller
920  * has made sure that the entire range needs zeroing.
921  */
922 static int ocfs2_zero_extend_range(struct inode *inode, u64 range_start,
923                                    u64 range_end)
924 {
925         int rc = 0;
926         u64 next_pos;
927         u64 zero_pos = range_start;
928
929         trace_ocfs2_zero_extend_range(
930                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
931                         (unsigned long long)range_start,
932                         (unsigned long long)range_end);
933         BUG_ON(range_start >= range_end);
934
935         while (zero_pos < range_end) {
936                 next_pos = (zero_pos & PAGE_CACHE_MASK) + PAGE_CACHE_SIZE;
937                 if (next_pos > range_end)
938                         next_pos = range_end;
939                 rc = ocfs2_write_zero_page(inode, zero_pos, next_pos);
940                 if (rc < 0) {
941                         mlog_errno(rc);
942                         break;
943                 }
944                 zero_pos = next_pos;
945
946                 /*
947                  * Very large extends have the potential to lock up
948                  * the cpu for extended periods of time.
949                  */
950                 cond_resched();
951         }
952
953         return rc;
954 }
955
956 int ocfs2_zero_extend(struct inode *inode, struct buffer_head *di_bh,
957                       loff_t zero_to_size)
958 {
959         int ret = 0;
960         u64 zero_start, range_start = 0, range_end = 0;
961         struct super_block *sb = inode->i_sb;
962
963         zero_start = ocfs2_align_bytes_to_blocks(sb, i_size_read(inode));
964         trace_ocfs2_zero_extend((unsigned long long)OCFS2_I(inode)->ip_blkno,
965                                 (unsigned long long)zero_start,
966                                 (unsigned long long)i_size_read(inode));
967         while (zero_start < zero_to_size) {
968                 ret = ocfs2_zero_extend_get_range(inode, di_bh, zero_start,
969                                                   zero_to_size,
970                                                   &range_start,
971                                                   &range_end);
972                 if (ret) {
973                         mlog_errno(ret);
974                         break;
975                 }
976                 if (!range_end)
977                         break;
978                 /* Trim the ends */
979                 if (range_start < zero_start)
980                         range_start = zero_start;
981                 if (range_end > zero_to_size)
982                         range_end = zero_to_size;
983
984                 ret = ocfs2_zero_extend_range(inode, range_start,
985                                               range_end);
986                 if (ret) {
987                         mlog_errno(ret);
988                         break;
989                 }
990                 zero_start = range_end;
991         }
992
993         return ret;
994 }
995
996 int ocfs2_extend_no_holes(struct inode *inode, struct buffer_head *di_bh,
997                           u64 new_i_size, u64 zero_to)
998 {
999         int ret;
1000         u32 clusters_to_add;
1001         struct ocfs2_inode_info *oi = OCFS2_I(inode);
1002
1003         /*
1004          * Only quota files call this without a bh, and they can't be
1005          * refcounted.
1006          */
1007         BUG_ON(!di_bh && (oi->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL));
1008         BUG_ON(!di_bh && !(oi->ip_flags & OCFS2_INODE_SYSTEM_FILE));
1009
1010         clusters_to_add = ocfs2_clusters_for_bytes(inode->i_sb, new_i_size);
1011         if (clusters_to_add < oi->ip_clusters)
1012                 clusters_to_add = 0;
1013         else
1014                 clusters_to_add -= oi->ip_clusters;
1015
1016         if (clusters_to_add) {
1017                 ret = __ocfs2_extend_allocation(inode, oi->ip_clusters,
1018                                                 clusters_to_add, 0);
1019                 if (ret) {
1020                         mlog_errno(ret);
1021                         goto out;
1022                 }
1023         }
1024
1025         /*
1026          * Call this even if we don't add any clusters to the tree. We
1027          * still need to zero the area between the old i_size and the
1028          * new i_size.
1029          */
1030         ret = ocfs2_zero_extend(inode, di_bh, zero_to);
1031         if (ret < 0)
1032                 mlog_errno(ret);
1033
1034 out:
1035         return ret;
1036 }
1037
1038 static int ocfs2_extend_file(struct inode *inode,
1039                              struct buffer_head *di_bh,
1040                              u64 new_i_size)
1041 {
1042         int ret = 0;
1043         struct ocfs2_inode_info *oi = OCFS2_I(inode);
1044
1045         BUG_ON(!di_bh);
1046
1047         /* setattr sometimes calls us like this. */
1048         if (new_i_size == 0)
1049                 goto out;
1050
1051         if (i_size_read(inode) == new_i_size)
1052                 goto out;
1053         BUG_ON(new_i_size < i_size_read(inode));
1054
1055         /*
1056          * The alloc sem blocks people in read/write from reading our
1057          * allocation until we're done changing it. We depend on
1058          * i_mutex to block other extend/truncate calls while we're
1059          * here.  We even have to hold it for sparse files because there
1060          * might be some tail zeroing.
1061          */
1062         down_write(&oi->ip_alloc_sem);
1063
1064         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1065                 /*
1066                  * We can optimize small extends by keeping the inodes
1067                  * inline data.
1068                  */
1069                 if (ocfs2_size_fits_inline_data(di_bh, new_i_size)) {
1070                         up_write(&oi->ip_alloc_sem);
1071                         goto out_update_size;
1072                 }
1073
1074                 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1075                 if (ret) {
1076                         up_write(&oi->ip_alloc_sem);
1077                         mlog_errno(ret);
1078                         goto out;
1079                 }
1080         }
1081
1082         if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
1083                 ret = ocfs2_zero_extend(inode, di_bh, new_i_size);
1084         else
1085                 ret = ocfs2_extend_no_holes(inode, di_bh, new_i_size,
1086                                             new_i_size);
1087
1088         up_write(&oi->ip_alloc_sem);
1089
1090         if (ret < 0) {
1091                 mlog_errno(ret);
1092                 goto out;
1093         }
1094
1095 out_update_size:
1096         ret = ocfs2_simple_size_update(inode, di_bh, new_i_size);
1097         if (ret < 0)
1098                 mlog_errno(ret);
1099
1100 out:
1101         return ret;
1102 }
1103
1104 int ocfs2_setattr(struct dentry *dentry, struct iattr *attr)
1105 {
1106         int status = 0, size_change;
1107         struct inode *inode = dentry->d_inode;
1108         struct super_block *sb = inode->i_sb;
1109         struct ocfs2_super *osb = OCFS2_SB(sb);
1110         struct buffer_head *bh = NULL;
1111         handle_t *handle = NULL;
1112         struct dquot *transfer_to[MAXQUOTAS] = { };
1113         int qtype;
1114
1115         trace_ocfs2_setattr(inode, dentry,
1116                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
1117                             dentry->d_name.len, dentry->d_name.name,
1118                             attr->ia_valid, attr->ia_mode,
1119                             attr->ia_uid, attr->ia_gid);
1120
1121         /* ensuring we don't even attempt to truncate a symlink */
1122         if (S_ISLNK(inode->i_mode))
1123                 attr->ia_valid &= ~ATTR_SIZE;
1124
1125 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \
1126                            | ATTR_GID | ATTR_UID | ATTR_MODE)
1127         if (!(attr->ia_valid & OCFS2_VALID_ATTRS))
1128                 return 0;
1129
1130         status = inode_change_ok(inode, attr);
1131         if (status)
1132                 return status;
1133
1134         if (is_quota_modification(inode, attr))
1135                 dquot_initialize(inode);
1136         size_change = S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE;
1137         if (size_change) {
1138                 status = ocfs2_rw_lock(inode, 1);
1139                 if (status < 0) {
1140                         mlog_errno(status);
1141                         goto bail;
1142                 }
1143         }
1144
1145         status = ocfs2_inode_lock(inode, &bh, 1);
1146         if (status < 0) {
1147                 if (status != -ENOENT)
1148                         mlog_errno(status);
1149                 goto bail_unlock_rw;
1150         }
1151
1152         if (size_change && attr->ia_size != i_size_read(inode)) {
1153                 status = inode_newsize_ok(inode, attr->ia_size);
1154                 if (status)
1155                         goto bail_unlock;
1156
1157                 inode_dio_wait(inode);
1158
1159                 if (i_size_read(inode) > attr->ia_size) {
1160                         if (ocfs2_should_order_data(inode)) {
1161                                 status = ocfs2_begin_ordered_truncate(inode,
1162                                                                       attr->ia_size);
1163                                 if (status)
1164                                         goto bail_unlock;
1165                         }
1166                         status = ocfs2_truncate_file(inode, bh, attr->ia_size);
1167                 } else
1168                         status = ocfs2_extend_file(inode, bh, attr->ia_size);
1169                 if (status < 0) {
1170                         if (status != -ENOSPC)
1171                                 mlog_errno(status);
1172                         status = -ENOSPC;
1173                         goto bail_unlock;
1174                 }
1175         }
1176
1177         if ((attr->ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
1178             (attr->ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
1179                 /*
1180                  * Gather pointers to quota structures so that allocation /
1181                  * freeing of quota structures happens here and not inside
1182                  * dquot_transfer() where we have problems with lock ordering
1183                  */
1184                 if (attr->ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid
1185                     && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1186                     OCFS2_FEATURE_RO_COMPAT_USRQUOTA)) {
1187                         transfer_to[USRQUOTA] = dqget(sb, attr->ia_uid,
1188                                                       USRQUOTA);
1189                         if (!transfer_to[USRQUOTA]) {
1190                                 status = -ESRCH;
1191                                 goto bail_unlock;
1192                         }
1193                 }
1194                 if (attr->ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid
1195                     && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1196                     OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)) {
1197                         transfer_to[GRPQUOTA] = dqget(sb, attr->ia_gid,
1198                                                       GRPQUOTA);
1199                         if (!transfer_to[GRPQUOTA]) {
1200                                 status = -ESRCH;
1201                                 goto bail_unlock;
1202                         }
1203                 }
1204                 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS +
1205                                            2 * ocfs2_quota_trans_credits(sb));
1206                 if (IS_ERR(handle)) {
1207                         status = PTR_ERR(handle);
1208                         mlog_errno(status);
1209                         goto bail_unlock;
1210                 }
1211                 status = __dquot_transfer(inode, transfer_to);
1212                 if (status < 0)
1213                         goto bail_commit;
1214         } else {
1215                 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1216                 if (IS_ERR(handle)) {
1217                         status = PTR_ERR(handle);
1218                         mlog_errno(status);
1219                         goto bail_unlock;
1220                 }
1221         }
1222
1223         /*
1224          * This will intentionally not wind up calling truncate_setsize(),
1225          * since all the work for a size change has been done above.
1226          * Otherwise, we could get into problems with truncate as
1227          * ip_alloc_sem is used there to protect against i_size
1228          * changes.
1229          *
1230          * XXX: this means the conditional below can probably be removed.
1231          */
1232         if ((attr->ia_valid & ATTR_SIZE) &&
1233             attr->ia_size != i_size_read(inode)) {
1234                 status = vmtruncate(inode, attr->ia_size);
1235                 if (status) {
1236                         mlog_errno(status);
1237                         goto bail_commit;
1238                 }
1239         }
1240
1241         setattr_copy(inode, attr);
1242         mark_inode_dirty(inode);
1243
1244         status = ocfs2_mark_inode_dirty(handle, inode, bh);
1245         if (status < 0)
1246                 mlog_errno(status);
1247
1248 bail_commit:
1249         ocfs2_commit_trans(osb, handle);
1250 bail_unlock:
1251         ocfs2_inode_unlock(inode, 1);
1252 bail_unlock_rw:
1253         if (size_change)
1254                 ocfs2_rw_unlock(inode, 1);
1255 bail:
1256         brelse(bh);
1257
1258         /* Release quota pointers in case we acquired them */
1259         for (qtype = 0; qtype < MAXQUOTAS; qtype++)
1260                 dqput(transfer_to[qtype]);
1261
1262         if (!status && attr->ia_valid & ATTR_MODE) {
1263                 status = ocfs2_acl_chmod(inode);
1264                 if (status < 0)
1265                         mlog_errno(status);
1266         }
1267
1268         return status;
1269 }
1270
1271 int ocfs2_getattr(struct vfsmount *mnt,
1272                   struct dentry *dentry,
1273                   struct kstat *stat)
1274 {
1275         struct inode *inode = dentry->d_inode;
1276         struct super_block *sb = dentry->d_inode->i_sb;
1277         struct ocfs2_super *osb = sb->s_fs_info;
1278         int err;
1279
1280         err = ocfs2_inode_revalidate(dentry);
1281         if (err) {
1282                 if (err != -ENOENT)
1283                         mlog_errno(err);
1284                 goto bail;
1285         }
1286
1287         generic_fillattr(inode, stat);
1288
1289         /* We set the blksize from the cluster size for performance */
1290         stat->blksize = osb->s_clustersize;
1291
1292 bail:
1293         return err;
1294 }
1295
1296 int ocfs2_permission(struct inode *inode, int mask)
1297 {
1298         int ret;
1299
1300         if (mask & MAY_NOT_BLOCK)
1301                 return -ECHILD;
1302
1303         ret = ocfs2_inode_lock(inode, NULL, 0);
1304         if (ret) {
1305                 if (ret != -ENOENT)
1306                         mlog_errno(ret);
1307                 goto out;
1308         }
1309
1310         ret = generic_permission(inode, mask);
1311
1312         ocfs2_inode_unlock(inode, 0);
1313 out:
1314         return ret;
1315 }
1316
1317 static int __ocfs2_write_remove_suid(struct inode *inode,
1318                                      struct buffer_head *bh)
1319 {
1320         int ret;
1321         handle_t *handle;
1322         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1323         struct ocfs2_dinode *di;
1324
1325         trace_ocfs2_write_remove_suid(
1326                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
1327                         inode->i_mode);
1328
1329         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1330         if (IS_ERR(handle)) {
1331                 ret = PTR_ERR(handle);
1332                 mlog_errno(ret);
1333                 goto out;
1334         }
1335
1336         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
1337                                       OCFS2_JOURNAL_ACCESS_WRITE);
1338         if (ret < 0) {
1339                 mlog_errno(ret);
1340                 goto out_trans;
1341         }
1342
1343         inode->i_mode &= ~S_ISUID;
1344         if ((inode->i_mode & S_ISGID) && (inode->i_mode & S_IXGRP))
1345                 inode->i_mode &= ~S_ISGID;
1346
1347         di = (struct ocfs2_dinode *) bh->b_data;
1348         di->i_mode = cpu_to_le16(inode->i_mode);
1349
1350         ocfs2_journal_dirty(handle, bh);
1351
1352 out_trans:
1353         ocfs2_commit_trans(osb, handle);
1354 out:
1355         return ret;
1356 }
1357
1358 /*
1359  * Will look for holes and unwritten extents in the range starting at
1360  * pos for count bytes (inclusive).
1361  */
1362 static int ocfs2_check_range_for_holes(struct inode *inode, loff_t pos,
1363                                        size_t count)
1364 {
1365         int ret = 0;
1366         unsigned int extent_flags;
1367         u32 cpos, clusters, extent_len, phys_cpos;
1368         struct super_block *sb = inode->i_sb;
1369
1370         cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits;
1371         clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos;
1372
1373         while (clusters) {
1374                 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len,
1375                                          &extent_flags);
1376                 if (ret < 0) {
1377                         mlog_errno(ret);
1378                         goto out;
1379                 }
1380
1381                 if (phys_cpos == 0 || (extent_flags & OCFS2_EXT_UNWRITTEN)) {
1382                         ret = 1;
1383                         break;
1384                 }
1385
1386                 if (extent_len > clusters)
1387                         extent_len = clusters;
1388
1389                 clusters -= extent_len;
1390                 cpos += extent_len;
1391         }
1392 out:
1393         return ret;
1394 }
1395
1396 static int ocfs2_write_remove_suid(struct inode *inode)
1397 {
1398         int ret;
1399         struct buffer_head *bh = NULL;
1400
1401         ret = ocfs2_read_inode_block(inode, &bh);
1402         if (ret < 0) {
1403                 mlog_errno(ret);
1404                 goto out;
1405         }
1406
1407         ret =  __ocfs2_write_remove_suid(inode, bh);
1408 out:
1409         brelse(bh);
1410         return ret;
1411 }
1412
1413 /*
1414  * Allocate enough extents to cover the region starting at byte offset
1415  * start for len bytes. Existing extents are skipped, any extents
1416  * added are marked as "unwritten".
1417  */
1418 static int ocfs2_allocate_unwritten_extents(struct inode *inode,
1419                                             u64 start, u64 len)
1420 {
1421         int ret;
1422         u32 cpos, phys_cpos, clusters, alloc_size;
1423         u64 end = start + len;
1424         struct buffer_head *di_bh = NULL;
1425
1426         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1427                 ret = ocfs2_read_inode_block(inode, &di_bh);
1428                 if (ret) {
1429                         mlog_errno(ret);
1430                         goto out;
1431                 }
1432
1433                 /*
1434                  * Nothing to do if the requested reservation range
1435                  * fits within the inode.
1436                  */
1437                 if (ocfs2_size_fits_inline_data(di_bh, end))
1438                         goto out;
1439
1440                 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1441                 if (ret) {
1442                         mlog_errno(ret);
1443                         goto out;
1444                 }
1445         }
1446
1447         /*
1448          * We consider both start and len to be inclusive.
1449          */
1450         cpos = start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
1451         clusters = ocfs2_clusters_for_bytes(inode->i_sb, start + len);
1452         clusters -= cpos;
1453
1454         while (clusters) {
1455                 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos,
1456                                          &alloc_size, NULL);
1457                 if (ret) {
1458                         mlog_errno(ret);
1459                         goto out;
1460                 }
1461
1462                 /*
1463                  * Hole or existing extent len can be arbitrary, so
1464                  * cap it to our own allocation request.
1465                  */
1466                 if (alloc_size > clusters)
1467                         alloc_size = clusters;
1468
1469                 if (phys_cpos) {
1470                         /*
1471                          * We already have an allocation at this
1472                          * region so we can safely skip it.
1473                          */
1474                         goto next;
1475                 }
1476
1477                 ret = __ocfs2_extend_allocation(inode, cpos, alloc_size, 1);
1478                 if (ret) {
1479                         if (ret != -ENOSPC)
1480                                 mlog_errno(ret);
1481                         goto out;
1482                 }
1483
1484 next:
1485                 cpos += alloc_size;
1486                 clusters -= alloc_size;
1487         }
1488
1489         ret = 0;
1490 out:
1491
1492         brelse(di_bh);
1493         return ret;
1494 }
1495
1496 /*
1497  * Truncate a byte range, avoiding pages within partial clusters. This
1498  * preserves those pages for the zeroing code to write to.
1499  */
1500 static void ocfs2_truncate_cluster_pages(struct inode *inode, u64 byte_start,
1501                                          u64 byte_len)
1502 {
1503         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1504         loff_t start, end;
1505         struct address_space *mapping = inode->i_mapping;
1506
1507         start = (loff_t)ocfs2_align_bytes_to_clusters(inode->i_sb, byte_start);
1508         end = byte_start + byte_len;
1509         end = end & ~(osb->s_clustersize - 1);
1510
1511         if (start < end) {
1512                 unmap_mapping_range(mapping, start, end - start, 0);
1513                 truncate_inode_pages_range(mapping, start, end - 1);
1514         }
1515 }
1516
1517 static int ocfs2_zero_partial_clusters(struct inode *inode,
1518                                        u64 start, u64 len)
1519 {
1520         int ret = 0;
1521         u64 tmpend, end = start + len;
1522         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1523         unsigned int csize = osb->s_clustersize;
1524         handle_t *handle;
1525
1526         /*
1527          * The "start" and "end" values are NOT necessarily part of
1528          * the range whose allocation is being deleted. Rather, this
1529          * is what the user passed in with the request. We must zero
1530          * partial clusters here. There's no need to worry about
1531          * physical allocation - the zeroing code knows to skip holes.
1532          */
1533         trace_ocfs2_zero_partial_clusters(
1534                 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1535                 (unsigned long long)start, (unsigned long long)end);
1536
1537         /*
1538          * If both edges are on a cluster boundary then there's no
1539          * zeroing required as the region is part of the allocation to
1540          * be truncated.
1541          */
1542         if ((start & (csize - 1)) == 0 && (end & (csize - 1)) == 0)
1543                 goto out;
1544
1545         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1546         if (IS_ERR(handle)) {
1547                 ret = PTR_ERR(handle);
1548                 mlog_errno(ret);
1549                 goto out;
1550         }
1551
1552         /*
1553          * We want to get the byte offset of the end of the 1st cluster.
1554          */
1555         tmpend = (u64)osb->s_clustersize + (start & ~(osb->s_clustersize - 1));
1556         if (tmpend > end)
1557                 tmpend = end;
1558
1559         trace_ocfs2_zero_partial_clusters_range1((unsigned long long)start,
1560                                                  (unsigned long long)tmpend);
1561
1562         ret = ocfs2_zero_range_for_truncate(inode, handle, start, tmpend);
1563         if (ret)
1564                 mlog_errno(ret);
1565
1566         if (tmpend < end) {
1567                 /*
1568                  * This may make start and end equal, but the zeroing
1569                  * code will skip any work in that case so there's no
1570                  * need to catch it up here.
1571                  */
1572                 start = end & ~(osb->s_clustersize - 1);
1573
1574                 trace_ocfs2_zero_partial_clusters_range2(
1575                         (unsigned long long)start, (unsigned long long)end);
1576
1577                 ret = ocfs2_zero_range_for_truncate(inode, handle, start, end);
1578                 if (ret)
1579                         mlog_errno(ret);
1580         }
1581
1582         ocfs2_commit_trans(osb, handle);
1583 out:
1584         return ret;
1585 }
1586
1587 static int ocfs2_find_rec(struct ocfs2_extent_list *el, u32 pos)
1588 {
1589         int i;
1590         struct ocfs2_extent_rec *rec = NULL;
1591
1592         for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) {
1593
1594                 rec = &el->l_recs[i];
1595
1596                 if (le32_to_cpu(rec->e_cpos) < pos)
1597                         break;
1598         }
1599
1600         return i;
1601 }
1602
1603 /*
1604  * Helper to calculate the punching pos and length in one run, we handle the
1605  * following three cases in order:
1606  *
1607  * - remove the entire record
1608  * - remove a partial record
1609  * - no record needs to be removed (hole-punching completed)
1610 */
1611 static void ocfs2_calc_trunc_pos(struct inode *inode,
1612                                  struct ocfs2_extent_list *el,
1613                                  struct ocfs2_extent_rec *rec,
1614                                  u32 trunc_start, u32 *trunc_cpos,
1615                                  u32 *trunc_len, u32 *trunc_end,
1616                                  u64 *blkno, int *done)
1617 {
1618         int ret = 0;
1619         u32 coff, range;
1620
1621         range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
1622
1623         if (le32_to_cpu(rec->e_cpos) >= trunc_start) {
1624                 /*
1625                  * remove an entire extent record.
1626                  */
1627                 *trunc_cpos = le32_to_cpu(rec->e_cpos);
1628                 /*
1629                  * Skip holes if any.
1630                  */
1631                 if (range < *trunc_end)
1632                         *trunc_end = range;
1633                 *trunc_len = *trunc_end - le32_to_cpu(rec->e_cpos);
1634                 *blkno = le64_to_cpu(rec->e_blkno);
1635                 *trunc_end = le32_to_cpu(rec->e_cpos);
1636         } else if (range > trunc_start) {
1637                 /*
1638                  * remove a partial extent record, which means we're
1639                  * removing the last extent record.
1640                  */
1641                 *trunc_cpos = trunc_start;
1642                 /*
1643                  * skip hole if any.
1644                  */
1645                 if (range < *trunc_end)
1646                         *trunc_end = range;
1647                 *trunc_len = *trunc_end - trunc_start;
1648                 coff = trunc_start - le32_to_cpu(rec->e_cpos);
1649                 *blkno = le64_to_cpu(rec->e_blkno) +
1650                                 ocfs2_clusters_to_blocks(inode->i_sb, coff);
1651                 *trunc_end = trunc_start;
1652         } else {
1653                 /*
1654                  * It may have two following possibilities:
1655                  *
1656                  * - last record has been removed
1657                  * - trunc_start was within a hole
1658                  *
1659                  * both two cases mean the completion of hole punching.
1660                  */
1661                 ret = 1;
1662         }
1663
1664         *done = ret;
1665 }
1666
1667 static int ocfs2_remove_inode_range(struct inode *inode,
1668                                     struct buffer_head *di_bh, u64 byte_start,
1669                                     u64 byte_len)
1670 {
1671         int ret = 0, flags = 0, done = 0, i;
1672         u32 trunc_start, trunc_len, trunc_end, trunc_cpos, phys_cpos;
1673         u32 cluster_in_el;
1674         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1675         struct ocfs2_cached_dealloc_ctxt dealloc;
1676         struct address_space *mapping = inode->i_mapping;
1677         struct ocfs2_extent_tree et;
1678         struct ocfs2_path *path = NULL;
1679         struct ocfs2_extent_list *el = NULL;
1680         struct ocfs2_extent_rec *rec = NULL;
1681         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1682         u64 blkno, refcount_loc = le64_to_cpu(di->i_refcount_loc);
1683
1684         ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
1685         ocfs2_init_dealloc_ctxt(&dealloc);
1686
1687         trace_ocfs2_remove_inode_range(
1688                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
1689                         (unsigned long long)byte_start,
1690                         (unsigned long long)byte_len);
1691
1692         if (byte_len == 0)
1693                 return 0;
1694
1695         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1696                 ret = ocfs2_truncate_inline(inode, di_bh, byte_start,
1697                                             byte_start + byte_len, 0);
1698                 if (ret) {
1699                         mlog_errno(ret);
1700                         goto out;
1701                 }
1702                 /*
1703                  * There's no need to get fancy with the page cache
1704                  * truncate of an inline-data inode. We're talking
1705                  * about less than a page here, which will be cached
1706                  * in the dinode buffer anyway.
1707                  */
1708                 unmap_mapping_range(mapping, 0, 0, 0);
1709                 truncate_inode_pages(mapping, 0);
1710                 goto out;
1711         }
1712
1713         /*
1714          * For reflinks, we may need to CoW 2 clusters which might be
1715          * partially zero'd later, if hole's start and end offset were
1716          * within one cluster(means is not exactly aligned to clustersize).
1717          */
1718
1719         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL) {
1720
1721                 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start);
1722                 if (ret) {
1723                         mlog_errno(ret);
1724                         goto out;
1725                 }
1726
1727                 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start + byte_len);
1728                 if (ret) {
1729                         mlog_errno(ret);
1730                         goto out;
1731                 }
1732         }
1733
1734         trunc_start = ocfs2_clusters_for_bytes(osb->sb, byte_start);
1735         trunc_end = (byte_start + byte_len) >> osb->s_clustersize_bits;
1736         cluster_in_el = trunc_end;
1737
1738         ret = ocfs2_zero_partial_clusters(inode, byte_start, byte_len);
1739         if (ret) {
1740                 mlog_errno(ret);
1741                 goto out;
1742         }
1743
1744         path = ocfs2_new_path_from_et(&et);
1745         if (!path) {
1746                 ret = -ENOMEM;
1747                 mlog_errno(ret);
1748                 goto out;
1749         }
1750
1751         while (trunc_end > trunc_start) {
1752
1753                 ret = ocfs2_find_path(INODE_CACHE(inode), path,
1754                                       cluster_in_el);
1755                 if (ret) {
1756                         mlog_errno(ret);
1757                         goto out;
1758                 }
1759
1760                 el = path_leaf_el(path);
1761
1762                 i = ocfs2_find_rec(el, trunc_end);
1763                 /*
1764                  * Need to go to previous extent block.
1765                  */
1766                 if (i < 0) {
1767                         if (path->p_tree_depth == 0)
1768                                 break;
1769
1770                         ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
1771                                                             path,
1772                                                             &cluster_in_el);
1773                         if (ret) {
1774                                 mlog_errno(ret);
1775                                 goto out;
1776                         }
1777
1778                         /*
1779                          * We've reached the leftmost extent block,
1780                          * it's safe to leave.
1781                          */
1782                         if (cluster_in_el == 0)
1783                                 break;
1784
1785                         /*
1786                          * The 'pos' searched for previous extent block is
1787                          * always one cluster less than actual trunc_end.
1788                          */
1789                         trunc_end = cluster_in_el + 1;
1790
1791                         ocfs2_reinit_path(path, 1);
1792
1793                         continue;
1794
1795                 } else
1796                         rec = &el->l_recs[i];
1797
1798                 ocfs2_calc_trunc_pos(inode, el, rec, trunc_start, &trunc_cpos,
1799                                      &trunc_len, &trunc_end, &blkno, &done);
1800                 if (done)
1801                         break;
1802
1803                 flags = rec->e_flags;
1804                 phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno);
1805
1806                 ret = ocfs2_remove_btree_range(inode, &et, trunc_cpos,
1807                                                phys_cpos, trunc_len, flags,
1808                                                &dealloc, refcount_loc);
1809                 if (ret < 0) {
1810                         mlog_errno(ret);
1811                         goto out;
1812                 }
1813
1814                 cluster_in_el = trunc_end;
1815
1816                 ocfs2_reinit_path(path, 1);
1817         }
1818
1819         ocfs2_truncate_cluster_pages(inode, byte_start, byte_len);
1820
1821 out:
1822         ocfs2_schedule_truncate_log_flush(osb, 1);
1823         ocfs2_run_deallocs(osb, &dealloc);
1824
1825         return ret;
1826 }
1827
1828 /*
1829  * Parts of this function taken from xfs_change_file_space()
1830  */
1831 static int __ocfs2_change_file_space(struct file *file, struct inode *inode,
1832                                      loff_t f_pos, unsigned int cmd,
1833                                      struct ocfs2_space_resv *sr,
1834                                      int change_size)
1835 {
1836         int ret;
1837         s64 llen;
1838         loff_t size;
1839         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1840         struct buffer_head *di_bh = NULL;
1841         handle_t *handle;
1842         unsigned long long max_off = inode->i_sb->s_maxbytes;
1843
1844         if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
1845                 return -EROFS;
1846
1847         mutex_lock(&inode->i_mutex);
1848
1849         /*
1850          * This prevents concurrent writes on other nodes
1851          */
1852         ret = ocfs2_rw_lock(inode, 1);
1853         if (ret) {
1854                 mlog_errno(ret);
1855                 goto out;
1856         }
1857
1858         ret = ocfs2_inode_lock(inode, &di_bh, 1);
1859         if (ret) {
1860                 mlog_errno(ret);
1861                 goto out_rw_unlock;
1862         }
1863
1864         if (inode->i_flags & (S_IMMUTABLE|S_APPEND)) {
1865                 ret = -EPERM;
1866                 goto out_inode_unlock;
1867         }
1868
1869         switch (sr->l_whence) {
1870         case 0: /*SEEK_SET*/
1871                 break;
1872         case 1: /*SEEK_CUR*/
1873                 sr->l_start += f_pos;
1874                 break;
1875         case 2: /*SEEK_END*/
1876                 sr->l_start += i_size_read(inode);
1877                 break;
1878         default:
1879                 ret = -EINVAL;
1880                 goto out_inode_unlock;
1881         }
1882         sr->l_whence = 0;
1883
1884         llen = sr->l_len > 0 ? sr->l_len - 1 : sr->l_len;
1885
1886         if (sr->l_start < 0
1887             || sr->l_start > max_off
1888             || (sr->l_start + llen) < 0
1889             || (sr->l_start + llen) > max_off) {
1890                 ret = -EINVAL;
1891                 goto out_inode_unlock;
1892         }
1893         size = sr->l_start + sr->l_len;
1894
1895         if (cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) {
1896                 if (sr->l_len <= 0) {
1897                         ret = -EINVAL;
1898                         goto out_inode_unlock;
1899                 }
1900         }
1901
1902         if (file && should_remove_suid(file->f_path.dentry)) {
1903                 ret = __ocfs2_write_remove_suid(inode, di_bh);
1904                 if (ret) {
1905                         mlog_errno(ret);
1906                         goto out_inode_unlock;
1907                 }
1908         }
1909
1910         down_write(&OCFS2_I(inode)->ip_alloc_sem);
1911         switch (cmd) {
1912         case OCFS2_IOC_RESVSP:
1913         case OCFS2_IOC_RESVSP64:
1914                 /*
1915                  * This takes unsigned offsets, but the signed ones we
1916                  * pass have been checked against overflow above.
1917                  */
1918                 ret = ocfs2_allocate_unwritten_extents(inode, sr->l_start,
1919                                                        sr->l_len);
1920                 break;
1921         case OCFS2_IOC_UNRESVSP:
1922         case OCFS2_IOC_UNRESVSP64:
1923                 ret = ocfs2_remove_inode_range(inode, di_bh, sr->l_start,
1924                                                sr->l_len);
1925                 break;
1926         default:
1927                 ret = -EINVAL;
1928         }
1929         up_write(&OCFS2_I(inode)->ip_alloc_sem);
1930         if (ret) {
1931                 mlog_errno(ret);
1932                 goto out_inode_unlock;
1933         }
1934
1935         /*
1936          * We update c/mtime for these changes
1937          */
1938         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1939         if (IS_ERR(handle)) {
1940                 ret = PTR_ERR(handle);
1941                 mlog_errno(ret);
1942                 goto out_inode_unlock;
1943         }
1944
1945         if (change_size && i_size_read(inode) < size)
1946                 i_size_write(inode, size);
1947
1948         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
1949         ret = ocfs2_mark_inode_dirty(handle, inode, di_bh);
1950         if (ret < 0)
1951                 mlog_errno(ret);
1952
1953         ocfs2_commit_trans(osb, handle);
1954
1955 out_inode_unlock:
1956         brelse(di_bh);
1957         ocfs2_inode_unlock(inode, 1);
1958 out_rw_unlock:
1959         ocfs2_rw_unlock(inode, 1);
1960
1961 out:
1962         mutex_unlock(&inode->i_mutex);
1963         return ret;
1964 }
1965
1966 int ocfs2_change_file_space(struct file *file, unsigned int cmd,
1967                             struct ocfs2_space_resv *sr)
1968 {
1969         struct inode *inode = file->f_path.dentry->d_inode;
1970         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1971
1972         if ((cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) &&
1973             !ocfs2_writes_unwritten_extents(osb))
1974                 return -ENOTTY;
1975         else if ((cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) &&
1976                  !ocfs2_sparse_alloc(osb))
1977                 return -ENOTTY;
1978
1979         if (!S_ISREG(inode->i_mode))
1980                 return -EINVAL;
1981
1982         if (!(file->f_mode & FMODE_WRITE))
1983                 return -EBADF;
1984
1985         return __ocfs2_change_file_space(file, inode, file->f_pos, cmd, sr, 0);
1986 }
1987
1988 static long ocfs2_fallocate(struct file *file, int mode, loff_t offset,
1989                             loff_t len)
1990 {
1991         struct inode *inode = file->f_path.dentry->d_inode;
1992         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1993         struct ocfs2_space_resv sr;
1994         int change_size = 1;
1995         int cmd = OCFS2_IOC_RESVSP64;
1996
1997         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
1998                 return -EOPNOTSUPP;
1999         if (!ocfs2_writes_unwritten_extents(osb))
2000                 return -EOPNOTSUPP;
2001
2002         if (mode & FALLOC_FL_KEEP_SIZE)
2003                 change_size = 0;
2004
2005         if (mode & FALLOC_FL_PUNCH_HOLE)
2006                 cmd = OCFS2_IOC_UNRESVSP64;
2007
2008         sr.l_whence = 0;
2009         sr.l_start = (s64)offset;
2010         sr.l_len = (s64)len;
2011
2012         return __ocfs2_change_file_space(NULL, inode, offset, cmd, &sr,
2013                                          change_size);
2014 }
2015
2016 int ocfs2_check_range_for_refcount(struct inode *inode, loff_t pos,
2017                                    size_t count)
2018 {
2019         int ret = 0;
2020         unsigned int extent_flags;
2021         u32 cpos, clusters, extent_len, phys_cpos;
2022         struct super_block *sb = inode->i_sb;
2023
2024         if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb)) ||
2025             !(OCFS2_I(inode)->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL) ||
2026             OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2027                 return 0;
2028
2029         cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits;
2030         clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos;
2031
2032         while (clusters) {
2033                 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len,
2034                                          &extent_flags);
2035                 if (ret < 0) {
2036                         mlog_errno(ret);
2037                         goto out;
2038                 }
2039
2040                 if (phys_cpos && (extent_flags & OCFS2_EXT_REFCOUNTED)) {
2041                         ret = 1;
2042                         break;
2043                 }
2044
2045                 if (extent_len > clusters)
2046                         extent_len = clusters;
2047
2048                 clusters -= extent_len;
2049                 cpos += extent_len;
2050         }
2051 out:
2052         return ret;
2053 }
2054
2055 static int ocfs2_prepare_inode_for_refcount(struct inode *inode,
2056                                             struct file *file,
2057                                             loff_t pos, size_t count,
2058                                             int *meta_level)
2059 {
2060         int ret;
2061         struct buffer_head *di_bh = NULL;
2062         u32 cpos = pos >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
2063         u32 clusters =
2064                 ocfs2_clusters_for_bytes(inode->i_sb, pos + count) - cpos;
2065
2066         ret = ocfs2_inode_lock(inode, &di_bh, 1);
2067         if (ret) {
2068                 mlog_errno(ret);
2069                 goto out;
2070         }
2071
2072         *meta_level = 1;
2073
2074         ret = ocfs2_refcount_cow(inode, file, di_bh, cpos, clusters, UINT_MAX);
2075         if (ret)
2076                 mlog_errno(ret);
2077 out:
2078         brelse(di_bh);
2079         return ret;
2080 }
2081
2082 static int ocfs2_prepare_inode_for_write(struct file *file,
2083                                          loff_t *ppos,
2084                                          size_t count,
2085                                          int appending,
2086                                          int *direct_io,
2087                                          int *has_refcount)
2088 {
2089         int ret = 0, meta_level = 0;
2090         struct dentry *dentry = file->f_path.dentry;
2091         struct inode *inode = dentry->d_inode;
2092         loff_t saved_pos = 0, end;
2093
2094         /*
2095          * We start with a read level meta lock and only jump to an ex
2096          * if we need to make modifications here.
2097          */
2098         for(;;) {
2099                 ret = ocfs2_inode_lock(inode, NULL, meta_level);
2100                 if (ret < 0) {
2101                         meta_level = -1;
2102                         mlog_errno(ret);
2103                         goto out;
2104                 }
2105
2106                 /* Clear suid / sgid if necessary. We do this here
2107                  * instead of later in the write path because
2108                  * remove_suid() calls ->setattr without any hint that
2109                  * we may have already done our cluster locking. Since
2110                  * ocfs2_setattr() *must* take cluster locks to
2111                  * proceeed, this will lead us to recursively lock the
2112                  * inode. There's also the dinode i_size state which
2113                  * can be lost via setattr during extending writes (we
2114                  * set inode->i_size at the end of a write. */
2115                 if (should_remove_suid(dentry)) {
2116                         if (meta_level == 0) {
2117                                 ocfs2_inode_unlock(inode, meta_level);
2118                                 meta_level = 1;
2119                                 continue;
2120                         }
2121
2122                         ret = ocfs2_write_remove_suid(inode);
2123                         if (ret < 0) {
2124                                 mlog_errno(ret);
2125                                 goto out_unlock;
2126                         }
2127                 }
2128
2129                 /* work on a copy of ppos until we're sure that we won't have
2130                  * to recalculate it due to relocking. */
2131                 if (appending)
2132                         saved_pos = i_size_read(inode);
2133                 else
2134                         saved_pos = *ppos;
2135
2136                 end = saved_pos + count;
2137
2138                 ret = ocfs2_check_range_for_refcount(inode, saved_pos, count);
2139                 if (ret == 1) {
2140                         ocfs2_inode_unlock(inode, meta_level);
2141                         meta_level = -1;
2142
2143                         ret = ocfs2_prepare_inode_for_refcount(inode,
2144                                                                file,
2145                                                                saved_pos,
2146                                                                count,
2147                                                                &meta_level);
2148                         if (has_refcount)
2149                                 *has_refcount = 1;
2150                         if (direct_io)
2151                                 *direct_io = 0;
2152                 }
2153
2154                 if (ret < 0) {
2155                         mlog_errno(ret);
2156                         goto out_unlock;
2157                 }
2158
2159                 /*
2160                  * Skip the O_DIRECT checks if we don't need
2161                  * them.
2162                  */
2163                 if (!direct_io || !(*direct_io))
2164                         break;
2165
2166                 /*
2167                  * There's no sane way to do direct writes to an inode
2168                  * with inline data.
2169                  */
2170                 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2171                         *direct_io = 0;
2172                         break;
2173                 }
2174
2175                 /*
2176                  * Allowing concurrent direct writes means
2177                  * i_size changes wouldn't be synchronized, so
2178                  * one node could wind up truncating another
2179                  * nodes writes.
2180                  */
2181                 if (end > i_size_read(inode)) {
2182                         *direct_io = 0;
2183                         break;
2184                 }
2185
2186                 /*
2187                  * We don't fill holes during direct io, so
2188                  * check for them here. If any are found, the
2189                  * caller will have to retake some cluster
2190                  * locks and initiate the io as buffered.
2191                  */
2192                 ret = ocfs2_check_range_for_holes(inode, saved_pos, count);
2193                 if (ret == 1) {
2194                         *direct_io = 0;
2195                         ret = 0;
2196                 } else if (ret < 0)
2197                         mlog_errno(ret);
2198                 break;
2199         }
2200
2201         if (appending)
2202                 *ppos = saved_pos;
2203
2204 out_unlock:
2205         trace_ocfs2_prepare_inode_for_write(OCFS2_I(inode)->ip_blkno,
2206                                             saved_pos, appending, count,
2207                                             direct_io, has_refcount);
2208
2209         if (meta_level >= 0)
2210                 ocfs2_inode_unlock(inode, meta_level);
2211
2212 out:
2213         return ret;
2214 }
2215
2216 static ssize_t ocfs2_file_aio_write(struct kiocb *iocb,
2217                                     const struct iovec *iov,
2218                                     unsigned long nr_segs,
2219                                     loff_t pos)
2220 {
2221         int ret, direct_io, appending, rw_level, have_alloc_sem  = 0;
2222         int can_do_direct, has_refcount = 0;
2223         ssize_t written = 0;
2224         size_t ocount;          /* original count */
2225         size_t count;           /* after file limit checks */
2226         loff_t old_size, *ppos = &iocb->ki_pos;
2227         u32 old_clusters;
2228         struct file *file = iocb->ki_filp;
2229         struct inode *inode = file->f_path.dentry->d_inode;
2230         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2231         int full_coherency = !(osb->s_mount_opt &
2232                                OCFS2_MOUNT_COHERENCY_BUFFERED);
2233
2234         trace_ocfs2_file_aio_write(inode, file, file->f_path.dentry,
2235                 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2236                 file->f_path.dentry->d_name.len,
2237                 file->f_path.dentry->d_name.name,
2238                 (unsigned int)nr_segs);
2239
2240         if (iocb->ki_left == 0)
2241                 return 0;
2242
2243         vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2244
2245         appending = file->f_flags & O_APPEND ? 1 : 0;
2246         direct_io = file->f_flags & O_DIRECT ? 1 : 0;
2247
2248         mutex_lock(&inode->i_mutex);
2249
2250         ocfs2_iocb_clear_sem_locked(iocb);
2251
2252 relock:
2253         /* to match setattr's i_mutex -> rw_lock ordering */
2254         if (direct_io) {
2255                 have_alloc_sem = 1;
2256                 /* communicate with ocfs2_dio_end_io */
2257                 ocfs2_iocb_set_sem_locked(iocb);
2258         }
2259
2260         /*
2261          * Concurrent O_DIRECT writes are allowed with
2262          * mount_option "coherency=buffered".
2263          */
2264         rw_level = (!direct_io || full_coherency);
2265
2266         ret = ocfs2_rw_lock(inode, rw_level);
2267         if (ret < 0) {
2268                 mlog_errno(ret);
2269                 goto out_sems;
2270         }
2271
2272         /*
2273          * O_DIRECT writes with "coherency=full" need to take EX cluster
2274          * inode_lock to guarantee coherency.
2275          */
2276         if (direct_io && full_coherency) {
2277                 /*
2278                  * We need to take and drop the inode lock to force
2279                  * other nodes to drop their caches.  Buffered I/O
2280                  * already does this in write_begin().
2281                  */
2282                 ret = ocfs2_inode_lock(inode, NULL, 1);
2283                 if (ret < 0) {
2284                         mlog_errno(ret);
2285                         goto out_sems;
2286                 }
2287
2288                 ocfs2_inode_unlock(inode, 1);
2289         }
2290
2291         can_do_direct = direct_io;
2292         ret = ocfs2_prepare_inode_for_write(file, ppos,
2293                                             iocb->ki_left, appending,
2294                                             &can_do_direct, &has_refcount);
2295         if (ret < 0) {
2296                 mlog_errno(ret);
2297                 goto out;
2298         }
2299
2300         /*
2301          * We can't complete the direct I/O as requested, fall back to
2302          * buffered I/O.
2303          */
2304         if (direct_io && !can_do_direct) {
2305                 ocfs2_rw_unlock(inode, rw_level);
2306
2307                 have_alloc_sem = 0;
2308                 rw_level = -1;
2309
2310                 direct_io = 0;
2311                 goto relock;
2312         }
2313
2314         /*
2315          * To later detect whether a journal commit for sync writes is
2316          * necessary, we sample i_size, and cluster count here.
2317          */
2318         old_size = i_size_read(inode);
2319         old_clusters = OCFS2_I(inode)->ip_clusters;
2320
2321         /* communicate with ocfs2_dio_end_io */
2322         ocfs2_iocb_set_rw_locked(iocb, rw_level);
2323
2324         ret = generic_segment_checks(iov, &nr_segs, &ocount,
2325                                      VERIFY_READ);
2326         if (ret)
2327                 goto out_dio;
2328
2329         count = ocount;
2330         ret = generic_write_checks(file, ppos, &count,
2331                                    S_ISBLK(inode->i_mode));
2332         if (ret)
2333                 goto out_dio;
2334
2335         if (direct_io) {
2336                 written = generic_file_direct_write(iocb, iov, &nr_segs, *ppos,
2337                                                     ppos, count, ocount);
2338                 if (written < 0) {
2339                         ret = written;
2340                         goto out_dio;
2341                 }
2342         } else {
2343                 current->backing_dev_info = file->f_mapping->backing_dev_info;
2344                 written = generic_file_buffered_write(iocb, iov, nr_segs, *ppos,
2345                                                       ppos, count, 0);
2346                 current->backing_dev_info = NULL;
2347         }
2348
2349 out_dio:
2350         /* buffered aio wouldn't have proper lock coverage today */
2351         BUG_ON(ret == -EIOCBQUEUED && !(file->f_flags & O_DIRECT));
2352
2353         if (((file->f_flags & O_DSYNC) && !direct_io) || IS_SYNC(inode) ||
2354             ((file->f_flags & O_DIRECT) && !direct_io)) {
2355                 ret = filemap_fdatawrite_range(file->f_mapping, pos,
2356                                                pos + count - 1);
2357                 if (ret < 0)
2358                         written = ret;
2359
2360                 if (!ret && ((old_size != i_size_read(inode)) ||
2361                              (old_clusters != OCFS2_I(inode)->ip_clusters) ||
2362                              has_refcount)) {
2363                         ret = jbd2_journal_force_commit(osb->journal->j_journal);
2364                         if (ret < 0)
2365                                 written = ret;
2366                 }
2367
2368                 if (!ret)
2369                         ret = filemap_fdatawait_range(file->f_mapping, pos,
2370                                                       pos + count - 1);
2371         }
2372
2373         /*
2374          * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io
2375          * function pointer which is called when o_direct io completes so that
2376          * it can unlock our rw lock.
2377          * Unfortunately there are error cases which call end_io and others
2378          * that don't.  so we don't have to unlock the rw_lock if either an
2379          * async dio is going to do it in the future or an end_io after an
2380          * error has already done it.
2381          */
2382         if ((ret == -EIOCBQUEUED) || (!ocfs2_iocb_is_rw_locked(iocb))) {
2383                 rw_level = -1;
2384                 have_alloc_sem = 0;
2385         }
2386
2387 out:
2388         if (rw_level != -1)
2389                 ocfs2_rw_unlock(inode, rw_level);
2390
2391 out_sems:
2392         if (have_alloc_sem)
2393                 ocfs2_iocb_clear_sem_locked(iocb);
2394
2395         mutex_unlock(&inode->i_mutex);
2396
2397         if (written)
2398                 ret = written;
2399         return ret;
2400 }
2401
2402 static int ocfs2_splice_to_file(struct pipe_inode_info *pipe,
2403                                 struct file *out,
2404                                 struct splice_desc *sd)
2405 {
2406         int ret;
2407
2408         ret = ocfs2_prepare_inode_for_write(out, &sd->pos,
2409                                             sd->total_len, 0, NULL, NULL);
2410         if (ret < 0) {
2411                 mlog_errno(ret);
2412                 return ret;
2413         }
2414
2415         return splice_from_pipe_feed(pipe, sd, pipe_to_file);
2416 }
2417
2418 static ssize_t ocfs2_file_splice_write(struct pipe_inode_info *pipe,
2419                                        struct file *out,
2420                                        loff_t *ppos,
2421                                        size_t len,
2422                                        unsigned int flags)
2423 {
2424         int ret;
2425         struct address_space *mapping = out->f_mapping;
2426         struct inode *inode = mapping->host;
2427         struct splice_desc sd = {
2428                 .total_len = len,
2429                 .flags = flags,
2430                 .pos = *ppos,
2431                 .u.file = out,
2432         };
2433
2434
2435         trace_ocfs2_file_splice_write(inode, out, out->f_path.dentry,
2436                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
2437                         out->f_path.dentry->d_name.len,
2438                         out->f_path.dentry->d_name.name, len);
2439
2440         if (pipe->inode)
2441                 mutex_lock_nested(&pipe->inode->i_mutex, I_MUTEX_PARENT);
2442
2443         splice_from_pipe_begin(&sd);
2444         do {
2445                 ret = splice_from_pipe_next(pipe, &sd);
2446                 if (ret <= 0)
2447                         break;
2448
2449                 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2450                 ret = ocfs2_rw_lock(inode, 1);
2451                 if (ret < 0)
2452                         mlog_errno(ret);
2453                 else {
2454                         ret = ocfs2_splice_to_file(pipe, out, &sd);
2455                         ocfs2_rw_unlock(inode, 1);
2456                 }
2457                 mutex_unlock(&inode->i_mutex);
2458         } while (ret > 0);
2459         splice_from_pipe_end(pipe, &sd);
2460
2461         if (pipe->inode)
2462                 mutex_unlock(&pipe->inode->i_mutex);
2463
2464         if (sd.num_spliced)
2465                 ret = sd.num_spliced;
2466
2467         if (ret > 0) {
2468                 unsigned long nr_pages;
2469                 int err;
2470
2471                 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
2472
2473                 err = generic_write_sync(out, *ppos, ret);
2474                 if (err)
2475                         ret = err;
2476                 else
2477                         *ppos += ret;
2478
2479                 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
2480         }
2481
2482         return ret;
2483 }
2484
2485 static ssize_t ocfs2_file_splice_read(struct file *in,
2486                                       loff_t *ppos,
2487                                       struct pipe_inode_info *pipe,
2488                                       size_t len,
2489                                       unsigned int flags)
2490 {
2491         int ret = 0, lock_level = 0;
2492         struct inode *inode = in->f_path.dentry->d_inode;
2493
2494         trace_ocfs2_file_splice_read(inode, in, in->f_path.dentry,
2495                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
2496                         in->f_path.dentry->d_name.len,
2497                         in->f_path.dentry->d_name.name, len);
2498
2499         /*
2500          * See the comment in ocfs2_file_aio_read()
2501          */
2502         ret = ocfs2_inode_lock_atime(inode, in->f_vfsmnt, &lock_level);
2503         if (ret < 0) {
2504                 mlog_errno(ret);
2505                 goto bail;
2506         }
2507         ocfs2_inode_unlock(inode, lock_level);
2508
2509         ret = generic_file_splice_read(in, ppos, pipe, len, flags);
2510
2511 bail:
2512         return ret;
2513 }
2514
2515 static ssize_t ocfs2_file_aio_read(struct kiocb *iocb,
2516                                    const struct iovec *iov,
2517                                    unsigned long nr_segs,
2518                                    loff_t pos)
2519 {
2520         int ret = 0, rw_level = -1, have_alloc_sem = 0, lock_level = 0;
2521         struct file *filp = iocb->ki_filp;
2522         struct inode *inode = filp->f_path.dentry->d_inode;
2523
2524         trace_ocfs2_file_aio_read(inode, filp, filp->f_path.dentry,
2525                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
2526                         filp->f_path.dentry->d_name.len,
2527                         filp->f_path.dentry->d_name.name, nr_segs);
2528
2529
2530         if (!inode) {
2531                 ret = -EINVAL;
2532                 mlog_errno(ret);
2533                 goto bail;
2534         }
2535
2536         ocfs2_iocb_clear_sem_locked(iocb);
2537
2538         /*
2539          * buffered reads protect themselves in ->readpage().  O_DIRECT reads
2540          * need locks to protect pending reads from racing with truncate.
2541          */
2542         if (filp->f_flags & O_DIRECT) {
2543                 have_alloc_sem = 1;
2544                 ocfs2_iocb_set_sem_locked(iocb);
2545
2546                 ret = ocfs2_rw_lock(inode, 0);
2547                 if (ret < 0) {
2548                         mlog_errno(ret);
2549                         goto bail;
2550                 }
2551                 rw_level = 0;
2552                 /* communicate with ocfs2_dio_end_io */
2553                 ocfs2_iocb_set_rw_locked(iocb, rw_level);
2554         }
2555
2556         /*
2557          * We're fine letting folks race truncates and extending
2558          * writes with read across the cluster, just like they can
2559          * locally. Hence no rw_lock during read.
2560          *
2561          * Take and drop the meta data lock to update inode fields
2562          * like i_size. This allows the checks down below
2563          * generic_file_aio_read() a chance of actually working.
2564          */
2565         ret = ocfs2_inode_lock_atime(inode, filp->f_vfsmnt, &lock_level);
2566         if (ret < 0) {
2567                 mlog_errno(ret);
2568                 goto bail;
2569         }
2570         ocfs2_inode_unlock(inode, lock_level);
2571
2572         ret = generic_file_aio_read(iocb, iov, nr_segs, iocb->ki_pos);
2573         trace_generic_file_aio_read_ret(ret);
2574
2575         /* buffered aio wouldn't have proper lock coverage today */
2576         BUG_ON(ret == -EIOCBQUEUED && !(filp->f_flags & O_DIRECT));
2577
2578         /* see ocfs2_file_aio_write */
2579         if (ret == -EIOCBQUEUED || !ocfs2_iocb_is_rw_locked(iocb)) {
2580                 rw_level = -1;
2581                 have_alloc_sem = 0;
2582         }
2583
2584 bail:
2585         if (have_alloc_sem)
2586                 ocfs2_iocb_clear_sem_locked(iocb);
2587
2588         if (rw_level != -1)
2589                 ocfs2_rw_unlock(inode, rw_level);
2590
2591         return ret;
2592 }
2593
2594 /* Refer generic_file_llseek_unlocked() */
2595 static loff_t ocfs2_file_llseek(struct file *file, loff_t offset, int origin)
2596 {
2597         struct inode *inode = file->f_mapping->host;
2598         int ret = 0;
2599
2600         mutex_lock(&inode->i_mutex);
2601
2602         switch (origin) {
2603         case SEEK_SET:
2604                 break;
2605         case SEEK_END:
2606                 offset += inode->i_size;
2607                 break;
2608         case SEEK_CUR:
2609                 if (offset == 0) {
2610                         offset = file->f_pos;
2611                         goto out;
2612                 }
2613                 offset += file->f_pos;
2614                 break;
2615         case SEEK_DATA:
2616         case SEEK_HOLE:
2617                 ret = ocfs2_seek_data_hole_offset(file, &offset, origin);
2618                 if (ret)
2619                         goto out;
2620                 break;
2621         default:
2622                 ret = -EINVAL;
2623                 goto out;
2624         }
2625
2626         if (offset < 0 && !(file->f_mode & FMODE_UNSIGNED_OFFSET))
2627                 ret = -EINVAL;
2628         if (!ret && offset > inode->i_sb->s_maxbytes)
2629                 ret = -EINVAL;
2630         if (ret)
2631                 goto out;
2632
2633         if (offset != file->f_pos) {
2634                 file->f_pos = offset;
2635                 file->f_version = 0;
2636         }
2637
2638 out:
2639         mutex_unlock(&inode->i_mutex);
2640         if (ret)
2641                 return ret;
2642         return offset;
2643 }
2644
2645 const struct inode_operations ocfs2_file_iops = {
2646         .setattr        = ocfs2_setattr,
2647         .getattr        = ocfs2_getattr,
2648         .permission     = ocfs2_permission,
2649         .setxattr       = generic_setxattr,
2650         .getxattr       = generic_getxattr,
2651         .listxattr      = ocfs2_listxattr,
2652         .removexattr    = generic_removexattr,
2653         .fiemap         = ocfs2_fiemap,
2654         .check_acl      = ocfs2_check_acl,
2655 };
2656
2657 const struct inode_operations ocfs2_special_file_iops = {
2658         .setattr        = ocfs2_setattr,
2659         .getattr        = ocfs2_getattr,
2660         .permission     = ocfs2_permission,
2661         .check_acl      = ocfs2_check_acl,
2662 };
2663
2664 /*
2665  * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with
2666  * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks!
2667  */
2668 const struct file_operations ocfs2_fops = {
2669         .llseek         = ocfs2_file_llseek,
2670         .read           = do_sync_read,
2671         .write          = do_sync_write,
2672         .mmap           = ocfs2_mmap,
2673         .fsync          = ocfs2_sync_file,
2674         .release        = ocfs2_file_release,
2675         .open           = ocfs2_file_open,
2676         .aio_read       = ocfs2_file_aio_read,
2677         .aio_write      = ocfs2_file_aio_write,
2678         .unlocked_ioctl = ocfs2_ioctl,
2679 #ifdef CONFIG_COMPAT
2680         .compat_ioctl   = ocfs2_compat_ioctl,
2681 #endif
2682         .lock           = ocfs2_lock,
2683         .flock          = ocfs2_flock,
2684         .splice_read    = ocfs2_file_splice_read,
2685         .splice_write   = ocfs2_file_splice_write,
2686         .fallocate      = ocfs2_fallocate,
2687 };
2688
2689 const struct file_operations ocfs2_dops = {
2690         .llseek         = generic_file_llseek,
2691         .read           = generic_read_dir,
2692         .readdir        = ocfs2_readdir,
2693         .fsync          = ocfs2_sync_file,
2694         .release        = ocfs2_dir_release,
2695         .open           = ocfs2_dir_open,
2696         .unlocked_ioctl = ocfs2_ioctl,
2697 #ifdef CONFIG_COMPAT
2698         .compat_ioctl   = ocfs2_compat_ioctl,
2699 #endif
2700         .lock           = ocfs2_lock,
2701         .flock          = ocfs2_flock,
2702 };
2703
2704 /*
2705  * POSIX-lockless variants of our file_operations.
2706  *
2707  * These will be used if the underlying cluster stack does not support
2708  * posix file locking, if the user passes the "localflocks" mount
2709  * option, or if we have a local-only fs.
2710  *
2711  * ocfs2_flock is in here because all stacks handle UNIX file locks,
2712  * so we still want it in the case of no stack support for
2713  * plocks. Internally, it will do the right thing when asked to ignore
2714  * the cluster.
2715  */
2716 const struct file_operations ocfs2_fops_no_plocks = {
2717         .llseek         = ocfs2_file_llseek,
2718         .read           = do_sync_read,
2719         .write          = do_sync_write,
2720         .mmap           = ocfs2_mmap,
2721         .fsync          = ocfs2_sync_file,
2722         .release        = ocfs2_file_release,
2723         .open           = ocfs2_file_open,
2724         .aio_read       = ocfs2_file_aio_read,
2725         .aio_write      = ocfs2_file_aio_write,
2726         .unlocked_ioctl = ocfs2_ioctl,
2727 #ifdef CONFIG_COMPAT
2728         .compat_ioctl   = ocfs2_compat_ioctl,
2729 #endif
2730         .flock          = ocfs2_flock,
2731         .splice_read    = ocfs2_file_splice_read,
2732         .splice_write   = ocfs2_file_splice_write,
2733         .fallocate      = ocfs2_fallocate,
2734 };
2735
2736 const struct file_operations ocfs2_dops_no_plocks = {
2737         .llseek         = generic_file_llseek,
2738         .read           = generic_read_dir,
2739         .readdir        = ocfs2_readdir,
2740         .fsync          = ocfs2_sync_file,
2741         .release        = ocfs2_dir_release,
2742         .open           = ocfs2_dir_open,
2743         .unlocked_ioctl = ocfs2_ioctl,
2744 #ifdef CONFIG_COMPAT
2745         .compat_ioctl   = ocfs2_compat_ioctl,
2746 #endif
2747         .flock          = ocfs2_flock,
2748 };