NFS: use zero_user_page
[linux-2.6.git] / fs / nfs / write.c
1 /*
2  * linux/fs/nfs/write.c
3  *
4  * Write file data over NFS.
5  *
6  * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de>
7  */
8
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/file.h>
14 #include <linux/writeback.h>
15 #include <linux/swap.h>
16
17 #include <linux/sunrpc/clnt.h>
18 #include <linux/nfs_fs.h>
19 #include <linux/nfs_mount.h>
20 #include <linux/nfs_page.h>
21 #include <linux/backing-dev.h>
22
23 #include <asm/uaccess.h>
24
25 #include "delegation.h"
26 #include "internal.h"
27 #include "iostat.h"
28
29 #define NFSDBG_FACILITY         NFSDBG_PAGECACHE
30
31 #define MIN_POOL_WRITE          (32)
32 #define MIN_POOL_COMMIT         (4)
33
34 /*
35  * Local function declarations
36  */
37 static struct nfs_page * nfs_update_request(struct nfs_open_context*,
38                                             struct page *,
39                                             unsigned int, unsigned int);
40 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *desc,
41                                   struct inode *inode, int ioflags);
42 static const struct rpc_call_ops nfs_write_partial_ops;
43 static const struct rpc_call_ops nfs_write_full_ops;
44 static const struct rpc_call_ops nfs_commit_ops;
45
46 static struct kmem_cache *nfs_wdata_cachep;
47 static mempool_t *nfs_wdata_mempool;
48 static mempool_t *nfs_commit_mempool;
49
50 struct nfs_write_data *nfs_commit_alloc(void)
51 {
52         struct nfs_write_data *p = mempool_alloc(nfs_commit_mempool, GFP_NOFS);
53
54         if (p) {
55                 memset(p, 0, sizeof(*p));
56                 INIT_LIST_HEAD(&p->pages);
57         }
58         return p;
59 }
60
61 void nfs_commit_rcu_free(struct rcu_head *head)
62 {
63         struct nfs_write_data *p = container_of(head, struct nfs_write_data, task.u.tk_rcu);
64         if (p && (p->pagevec != &p->page_array[0]))
65                 kfree(p->pagevec);
66         mempool_free(p, nfs_commit_mempool);
67 }
68
69 void nfs_commit_free(struct nfs_write_data *wdata)
70 {
71         call_rcu_bh(&wdata->task.u.tk_rcu, nfs_commit_rcu_free);
72 }
73
74 struct nfs_write_data *nfs_writedata_alloc(unsigned int pagecount)
75 {
76         struct nfs_write_data *p = mempool_alloc(nfs_wdata_mempool, GFP_NOFS);
77
78         if (p) {
79                 memset(p, 0, sizeof(*p));
80                 INIT_LIST_HEAD(&p->pages);
81                 p->npages = pagecount;
82                 if (pagecount <= ARRAY_SIZE(p->page_array))
83                         p->pagevec = p->page_array;
84                 else {
85                         p->pagevec = kcalloc(pagecount, sizeof(struct page *), GFP_NOFS);
86                         if (!p->pagevec) {
87                                 mempool_free(p, nfs_wdata_mempool);
88                                 p = NULL;
89                         }
90                 }
91         }
92         return p;
93 }
94
95 static void nfs_writedata_rcu_free(struct rcu_head *head)
96 {
97         struct nfs_write_data *p = container_of(head, struct nfs_write_data, task.u.tk_rcu);
98         if (p && (p->pagevec != &p->page_array[0]))
99                 kfree(p->pagevec);
100         mempool_free(p, nfs_wdata_mempool);
101 }
102
103 static void nfs_writedata_free(struct nfs_write_data *wdata)
104 {
105         call_rcu_bh(&wdata->task.u.tk_rcu, nfs_writedata_rcu_free);
106 }
107
108 void nfs_writedata_release(void *wdata)
109 {
110         nfs_writedata_free(wdata);
111 }
112
113 static struct nfs_page *nfs_page_find_request_locked(struct page *page)
114 {
115         struct nfs_page *req = NULL;
116
117         if (PagePrivate(page)) {
118                 req = (struct nfs_page *)page_private(page);
119                 if (req != NULL)
120                         atomic_inc(&req->wb_count);
121         }
122         return req;
123 }
124
125 static struct nfs_page *nfs_page_find_request(struct page *page)
126 {
127         struct nfs_page *req = NULL;
128         spinlock_t *req_lock = &NFS_I(page->mapping->host)->req_lock;
129
130         spin_lock(req_lock);
131         req = nfs_page_find_request_locked(page);
132         spin_unlock(req_lock);
133         return req;
134 }
135
136 /* Adjust the file length if we're writing beyond the end */
137 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count)
138 {
139         struct inode *inode = page->mapping->host;
140         loff_t end, i_size = i_size_read(inode);
141         pgoff_t end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
142
143         if (i_size > 0 && page->index < end_index)
144                 return;
145         end = ((loff_t)page->index << PAGE_CACHE_SHIFT) + ((loff_t)offset+count);
146         if (i_size >= end)
147                 return;
148         nfs_inc_stats(inode, NFSIOS_EXTENDWRITE);
149         i_size_write(inode, end);
150 }
151
152 /* A writeback failed: mark the page as bad, and invalidate the page cache */
153 static void nfs_set_pageerror(struct page *page)
154 {
155         SetPageError(page);
156         nfs_zap_mapping(page->mapping->host, page->mapping);
157 }
158
159 /* We can set the PG_uptodate flag if we see that a write request
160  * covers the full page.
161  */
162 static void nfs_mark_uptodate(struct page *page, unsigned int base, unsigned int count)
163 {
164         if (PageUptodate(page))
165                 return;
166         if (base != 0)
167                 return;
168         if (count != nfs_page_length(page))
169                 return;
170         if (count != PAGE_CACHE_SIZE)
171                 zero_user_page(page, count, PAGE_CACHE_SIZE - count, KM_USER0);
172         SetPageUptodate(page);
173 }
174
175 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page,
176                 unsigned int offset, unsigned int count)
177 {
178         struct nfs_page *req;
179         int ret;
180
181         for (;;) {
182                 req = nfs_update_request(ctx, page, offset, count);
183                 if (!IS_ERR(req))
184                         break;
185                 ret = PTR_ERR(req);
186                 if (ret != -EBUSY)
187                         return ret;
188                 ret = nfs_wb_page(page->mapping->host, page);
189                 if (ret != 0)
190                         return ret;
191         }
192         /* Update file length */
193         nfs_grow_file(page, offset, count);
194         /* Set the PG_uptodate flag? */
195         nfs_mark_uptodate(page, offset, count);
196         nfs_unlock_request(req);
197         return 0;
198 }
199
200 static int wb_priority(struct writeback_control *wbc)
201 {
202         if (wbc->for_reclaim)
203                 return FLUSH_HIGHPRI | FLUSH_STABLE;
204         if (wbc->for_kupdate)
205                 return FLUSH_LOWPRI;
206         return 0;
207 }
208
209 /*
210  * NFS congestion control
211  */
212
213 int nfs_congestion_kb;
214
215 #define NFS_CONGESTION_ON_THRESH        (nfs_congestion_kb >> (PAGE_SHIFT-10))
216 #define NFS_CONGESTION_OFF_THRESH       \
217         (NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2))
218
219 static int nfs_set_page_writeback(struct page *page)
220 {
221         int ret = test_set_page_writeback(page);
222
223         if (!ret) {
224                 struct inode *inode = page->mapping->host;
225                 struct nfs_server *nfss = NFS_SERVER(inode);
226
227                 if (atomic_long_inc_return(&nfss->writeback) >
228                                 NFS_CONGESTION_ON_THRESH)
229                         set_bdi_congested(&nfss->backing_dev_info, WRITE);
230         }
231         return ret;
232 }
233
234 static void nfs_end_page_writeback(struct page *page)
235 {
236         struct inode *inode = page->mapping->host;
237         struct nfs_server *nfss = NFS_SERVER(inode);
238
239         end_page_writeback(page);
240         if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH) {
241                 clear_bdi_congested(&nfss->backing_dev_info, WRITE);
242                 congestion_end(WRITE);
243         }
244 }
245
246 /*
247  * Find an associated nfs write request, and prepare to flush it out
248  * Returns 1 if there was no write request, or if the request was
249  * already tagged by nfs_set_page_dirty.Returns 0 if the request
250  * was not tagged.
251  * May also return an error if the user signalled nfs_wait_on_request().
252  */
253 static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio,
254                                 struct page *page)
255 {
256         struct nfs_page *req;
257         struct nfs_inode *nfsi = NFS_I(page->mapping->host);
258         spinlock_t *req_lock = &nfsi->req_lock;
259         int ret;
260
261         spin_lock(req_lock);
262         for(;;) {
263                 req = nfs_page_find_request_locked(page);
264                 if (req == NULL) {
265                         spin_unlock(req_lock);
266                         return 1;
267                 }
268                 if (nfs_lock_request_dontget(req))
269                         break;
270                 /* Note: If we hold the page lock, as is the case in nfs_writepage,
271                  *       then the call to nfs_lock_request_dontget() will always
272                  *       succeed provided that someone hasn't already marked the
273                  *       request as dirty (in which case we don't care).
274                  */
275                 spin_unlock(req_lock);
276                 /* Prevent deadlock! */
277                 nfs_pageio_complete(pgio);
278                 ret = nfs_wait_on_request(req);
279                 nfs_release_request(req);
280                 if (ret != 0)
281                         return ret;
282                 spin_lock(req_lock);
283         }
284         if (test_bit(PG_NEED_COMMIT, &req->wb_flags)) {
285                 /* This request is marked for commit */
286                 spin_unlock(req_lock);
287                 nfs_unlock_request(req);
288                 nfs_pageio_complete(pgio);
289                 return 1;
290         }
291         if (nfs_set_page_writeback(page) != 0) {
292                 spin_unlock(req_lock);
293                 BUG();
294         }
295         radix_tree_tag_set(&nfsi->nfs_page_tree, req->wb_index,
296                         NFS_PAGE_TAG_WRITEBACK);
297         ret = test_bit(PG_NEED_FLUSH, &req->wb_flags);
298         spin_unlock(req_lock);
299         nfs_pageio_add_request(pgio, req);
300         return ret;
301 }
302
303 /*
304  * Write an mmapped page to the server.
305  */
306 static int nfs_writepage_locked(struct page *page, struct writeback_control *wbc)
307 {
308         struct nfs_pageio_descriptor mypgio, *pgio;
309         struct nfs_open_context *ctx;
310         struct inode *inode = page->mapping->host;
311         unsigned offset;
312         int err;
313
314         nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE);
315         nfs_add_stats(inode, NFSIOS_WRITEPAGES, 1);
316
317         if (wbc->for_writepages)
318                 pgio = wbc->fs_private;
319         else {
320                 nfs_pageio_init_write(&mypgio, inode, wb_priority(wbc));
321                 pgio = &mypgio;
322         }
323
324         err = nfs_page_async_flush(pgio, page);
325         if (err <= 0)
326                 goto out;
327         err = 0;
328         offset = nfs_page_length(page);
329         if (!offset)
330                 goto out;
331
332         ctx = nfs_find_open_context(inode, NULL, FMODE_WRITE);
333         if (ctx == NULL) {
334                 err = -EBADF;
335                 goto out;
336         }
337         err = nfs_writepage_setup(ctx, page, 0, offset);
338         put_nfs_open_context(ctx);
339         if (err != 0)
340                 goto out;
341         err = nfs_page_async_flush(pgio, page);
342         if (err > 0)
343                 err = 0;
344 out:
345         if (!wbc->for_writepages)
346                 nfs_pageio_complete(pgio);
347         return err;
348 }
349
350 int nfs_writepage(struct page *page, struct writeback_control *wbc)
351 {
352         int err;
353
354         err = nfs_writepage_locked(page, wbc);
355         unlock_page(page);
356         return err; 
357 }
358
359 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
360 {
361         struct inode *inode = mapping->host;
362         struct nfs_pageio_descriptor pgio;
363         int err;
364
365         nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES);
366
367         nfs_pageio_init_write(&pgio, inode, wb_priority(wbc));
368         wbc->fs_private = &pgio;
369         err = generic_writepages(mapping, wbc);
370         nfs_pageio_complete(&pgio);
371         if (err)
372                 return err;
373         if (pgio.pg_error)
374                 return pgio.pg_error;
375         return 0;
376 }
377
378 /*
379  * Insert a write request into an inode
380  */
381 static int nfs_inode_add_request(struct inode *inode, struct nfs_page *req)
382 {
383         struct nfs_inode *nfsi = NFS_I(inode);
384         int error;
385
386         error = radix_tree_insert(&nfsi->nfs_page_tree, req->wb_index, req);
387         BUG_ON(error == -EEXIST);
388         if (error)
389                 return error;
390         if (!nfsi->npages) {
391                 igrab(inode);
392                 nfs_begin_data_update(inode);
393                 if (nfs_have_delegation(inode, FMODE_WRITE))
394                         nfsi->change_attr++;
395         }
396         SetPagePrivate(req->wb_page);
397         set_page_private(req->wb_page, (unsigned long)req);
398         if (PageDirty(req->wb_page))
399                 set_bit(PG_NEED_FLUSH, &req->wb_flags);
400         nfsi->npages++;
401         atomic_inc(&req->wb_count);
402         return 0;
403 }
404
405 /*
406  * Remove a write request from an inode
407  */
408 static void nfs_inode_remove_request(struct nfs_page *req)
409 {
410         struct inode *inode = req->wb_context->dentry->d_inode;
411         struct nfs_inode *nfsi = NFS_I(inode);
412
413         BUG_ON (!NFS_WBACK_BUSY(req));
414
415         spin_lock(&nfsi->req_lock);
416         set_page_private(req->wb_page, 0);
417         ClearPagePrivate(req->wb_page);
418         radix_tree_delete(&nfsi->nfs_page_tree, req->wb_index);
419         if (test_and_clear_bit(PG_NEED_FLUSH, &req->wb_flags))
420                 __set_page_dirty_nobuffers(req->wb_page);
421         nfsi->npages--;
422         if (!nfsi->npages) {
423                 spin_unlock(&nfsi->req_lock);
424                 nfs_end_data_update(inode);
425                 iput(inode);
426         } else
427                 spin_unlock(&nfsi->req_lock);
428         nfs_clear_request(req);
429         nfs_release_request(req);
430 }
431
432 static void
433 nfs_redirty_request(struct nfs_page *req)
434 {
435         __set_page_dirty_nobuffers(req->wb_page);
436 }
437
438 /*
439  * Check if a request is dirty
440  */
441 static inline int
442 nfs_dirty_request(struct nfs_page *req)
443 {
444         struct page *page = req->wb_page;
445
446         if (page == NULL || test_bit(PG_NEED_COMMIT, &req->wb_flags))
447                 return 0;
448         return !PageWriteback(req->wb_page);
449 }
450
451 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
452 /*
453  * Add a request to the inode's commit list.
454  */
455 static void
456 nfs_mark_request_commit(struct nfs_page *req)
457 {
458         struct inode *inode = req->wb_context->dentry->d_inode;
459         struct nfs_inode *nfsi = NFS_I(inode);
460
461         spin_lock(&nfsi->req_lock);
462         nfs_list_add_request(req, &nfsi->commit);
463         nfsi->ncommit++;
464         set_bit(PG_NEED_COMMIT, &(req)->wb_flags);
465         spin_unlock(&nfsi->req_lock);
466         inc_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
467         __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
468 }
469
470 static inline
471 int nfs_write_need_commit(struct nfs_write_data *data)
472 {
473         return data->verf.committed != NFS_FILE_SYNC;
474 }
475
476 static inline
477 int nfs_reschedule_unstable_write(struct nfs_page *req)
478 {
479         if (test_bit(PG_NEED_COMMIT, &req->wb_flags)) {
480                 nfs_mark_request_commit(req);
481                 return 1;
482         }
483         if (test_and_clear_bit(PG_NEED_RESCHED, &req->wb_flags)) {
484                 nfs_redirty_request(req);
485                 return 1;
486         }
487         return 0;
488 }
489 #else
490 static inline void
491 nfs_mark_request_commit(struct nfs_page *req)
492 {
493 }
494
495 static inline
496 int nfs_write_need_commit(struct nfs_write_data *data)
497 {
498         return 0;
499 }
500
501 static inline
502 int nfs_reschedule_unstable_write(struct nfs_page *req)
503 {
504         return 0;
505 }
506 #endif
507
508 /*
509  * Wait for a request to complete.
510  *
511  * Interruptible by signals only if mounted with intr flag.
512  */
513 static int nfs_wait_on_requests_locked(struct inode *inode, pgoff_t idx_start, unsigned int npages)
514 {
515         struct nfs_inode *nfsi = NFS_I(inode);
516         struct nfs_page *req;
517         pgoff_t idx_end, next;
518         unsigned int            res = 0;
519         int                     error;
520
521         if (npages == 0)
522                 idx_end = ~0;
523         else
524                 idx_end = idx_start + npages - 1;
525
526         next = idx_start;
527         while (radix_tree_gang_lookup_tag(&nfsi->nfs_page_tree, (void **)&req, next, 1, NFS_PAGE_TAG_WRITEBACK)) {
528                 if (req->wb_index > idx_end)
529                         break;
530
531                 next = req->wb_index + 1;
532                 BUG_ON(!NFS_WBACK_BUSY(req));
533
534                 atomic_inc(&req->wb_count);
535                 spin_unlock(&nfsi->req_lock);
536                 error = nfs_wait_on_request(req);
537                 nfs_release_request(req);
538                 spin_lock(&nfsi->req_lock);
539                 if (error < 0)
540                         return error;
541                 res++;
542         }
543         return res;
544 }
545
546 static void nfs_cancel_commit_list(struct list_head *head)
547 {
548         struct nfs_page *req;
549
550         while(!list_empty(head)) {
551                 req = nfs_list_entry(head->next);
552                 dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
553                 nfs_list_remove_request(req);
554                 clear_bit(PG_NEED_COMMIT, &(req)->wb_flags);
555                 nfs_inode_remove_request(req);
556                 nfs_unlock_request(req);
557         }
558 }
559
560 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
561 /*
562  * nfs_scan_commit - Scan an inode for commit requests
563  * @inode: NFS inode to scan
564  * @dst: destination list
565  * @idx_start: lower bound of page->index to scan.
566  * @npages: idx_start + npages sets the upper bound to scan.
567  *
568  * Moves requests from the inode's 'commit' request list.
569  * The requests are *not* checked to ensure that they form a contiguous set.
570  */
571 static int
572 nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
573 {
574         struct nfs_inode *nfsi = NFS_I(inode);
575         int res = 0;
576
577         if (nfsi->ncommit != 0) {
578                 res = nfs_scan_list(nfsi, &nfsi->commit, dst, idx_start, npages);
579                 nfsi->ncommit -= res;
580                 if ((nfsi->ncommit == 0) != list_empty(&nfsi->commit))
581                         printk(KERN_ERR "NFS: desynchronized value of nfs_i.ncommit.\n");
582         }
583         return res;
584 }
585 #else
586 static inline int nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
587 {
588         return 0;
589 }
590 #endif
591
592 /*
593  * Try to update any existing write request, or create one if there is none.
594  * In order to match, the request's credentials must match those of
595  * the calling process.
596  *
597  * Note: Should always be called with the Page Lock held!
598  */
599 static struct nfs_page * nfs_update_request(struct nfs_open_context* ctx,
600                 struct page *page, unsigned int offset, unsigned int bytes)
601 {
602         struct address_space *mapping = page->mapping;
603         struct inode *inode = mapping->host;
604         struct nfs_inode *nfsi = NFS_I(inode);
605         struct nfs_page         *req, *new = NULL;
606         pgoff_t         rqend, end;
607
608         end = offset + bytes;
609
610         for (;;) {
611                 /* Loop over all inode entries and see if we find
612                  * A request for the page we wish to update
613                  */
614                 spin_lock(&nfsi->req_lock);
615                 req = nfs_page_find_request_locked(page);
616                 if (req) {
617                         if (!nfs_lock_request_dontget(req)) {
618                                 int error;
619
620                                 spin_unlock(&nfsi->req_lock);
621                                 error = nfs_wait_on_request(req);
622                                 nfs_release_request(req);
623                                 if (error < 0) {
624                                         if (new)
625                                                 nfs_release_request(new);
626                                         return ERR_PTR(error);
627                                 }
628                                 continue;
629                         }
630                         spin_unlock(&nfsi->req_lock);
631                         if (new)
632                                 nfs_release_request(new);
633                         break;
634                 }
635
636                 if (new) {
637                         int error;
638                         nfs_lock_request_dontget(new);
639                         error = nfs_inode_add_request(inode, new);
640                         if (error) {
641                                 spin_unlock(&nfsi->req_lock);
642                                 nfs_unlock_request(new);
643                                 return ERR_PTR(error);
644                         }
645                         spin_unlock(&nfsi->req_lock);
646                         return new;
647                 }
648                 spin_unlock(&nfsi->req_lock);
649
650                 new = nfs_create_request(ctx, inode, page, offset, bytes);
651                 if (IS_ERR(new))
652                         return new;
653         }
654
655         /* We have a request for our page.
656          * If the creds don't match, or the
657          * page addresses don't match,
658          * tell the caller to wait on the conflicting
659          * request.
660          */
661         rqend = req->wb_offset + req->wb_bytes;
662         if (req->wb_context != ctx
663             || req->wb_page != page
664             || !nfs_dirty_request(req)
665             || offset > rqend || end < req->wb_offset) {
666                 nfs_unlock_request(req);
667                 return ERR_PTR(-EBUSY);
668         }
669
670         /* Okay, the request matches. Update the region */
671         if (offset < req->wb_offset) {
672                 req->wb_offset = offset;
673                 req->wb_pgbase = offset;
674                 req->wb_bytes = rqend - req->wb_offset;
675         }
676
677         if (end > rqend)
678                 req->wb_bytes = end - req->wb_offset;
679
680         return req;
681 }
682
683 int nfs_flush_incompatible(struct file *file, struct page *page)
684 {
685         struct nfs_open_context *ctx = (struct nfs_open_context *)file->private_data;
686         struct nfs_page *req;
687         int do_flush, status;
688         /*
689          * Look for a request corresponding to this page. If there
690          * is one, and it belongs to another file, we flush it out
691          * before we try to copy anything into the page. Do this
692          * due to the lack of an ACCESS-type call in NFSv2.
693          * Also do the same if we find a request from an existing
694          * dropped page.
695          */
696         do {
697                 req = nfs_page_find_request(page);
698                 if (req == NULL)
699                         return 0;
700                 do_flush = req->wb_page != page || req->wb_context != ctx
701                         || !nfs_dirty_request(req);
702                 nfs_release_request(req);
703                 if (!do_flush)
704                         return 0;
705                 status = nfs_wb_page(page->mapping->host, page);
706         } while (status == 0);
707         return status;
708 }
709
710 /*
711  * Update and possibly write a cached page of an NFS file.
712  *
713  * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad
714  * things with a page scheduled for an RPC call (e.g. invalidate it).
715  */
716 int nfs_updatepage(struct file *file, struct page *page,
717                 unsigned int offset, unsigned int count)
718 {
719         struct nfs_open_context *ctx = (struct nfs_open_context *)file->private_data;
720         struct inode    *inode = page->mapping->host;
721         int             status = 0;
722
723         nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE);
724
725         dprintk("NFS:      nfs_updatepage(%s/%s %d@%Ld)\n",
726                 file->f_path.dentry->d_parent->d_name.name,
727                 file->f_path.dentry->d_name.name, count,
728                 (long long)(page_offset(page) +offset));
729
730         /* If we're not using byte range locks, and we know the page
731          * is entirely in cache, it may be more efficient to avoid
732          * fragmenting write requests.
733          */
734         if (PageUptodate(page) && inode->i_flock == NULL && !(file->f_mode & O_SYNC)) {
735                 count = max(count + offset, nfs_page_length(page));
736                 offset = 0;
737         }
738
739         status = nfs_writepage_setup(ctx, page, offset, count);
740         __set_page_dirty_nobuffers(page);
741
742         dprintk("NFS:      nfs_updatepage returns %d (isize %Ld)\n",
743                         status, (long long)i_size_read(inode));
744         if (status < 0)
745                 nfs_set_pageerror(page);
746         return status;
747 }
748
749 static void nfs_writepage_release(struct nfs_page *req)
750 {
751
752         if (PageError(req->wb_page) || !nfs_reschedule_unstable_write(req)) {
753                 nfs_end_page_writeback(req->wb_page);
754                 nfs_inode_remove_request(req);
755         } else
756                 nfs_end_page_writeback(req->wb_page);
757         nfs_clear_page_writeback(req);
758 }
759
760 static inline int flush_task_priority(int how)
761 {
762         switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) {
763                 case FLUSH_HIGHPRI:
764                         return RPC_PRIORITY_HIGH;
765                 case FLUSH_LOWPRI:
766                         return RPC_PRIORITY_LOW;
767         }
768         return RPC_PRIORITY_NORMAL;
769 }
770
771 /*
772  * Set up the argument/result storage required for the RPC call.
773  */
774 static void nfs_write_rpcsetup(struct nfs_page *req,
775                 struct nfs_write_data *data,
776                 const struct rpc_call_ops *call_ops,
777                 unsigned int count, unsigned int offset,
778                 int how)
779 {
780         struct inode            *inode;
781         int flags;
782
783         /* Set up the RPC argument and reply structs
784          * NB: take care not to mess about with data->commit et al. */
785
786         data->req = req;
787         data->inode = inode = req->wb_context->dentry->d_inode;
788         data->cred = req->wb_context->cred;
789
790         data->args.fh     = NFS_FH(inode);
791         data->args.offset = req_offset(req) + offset;
792         data->args.pgbase = req->wb_pgbase + offset;
793         data->args.pages  = data->pagevec;
794         data->args.count  = count;
795         data->args.context = req->wb_context;
796
797         data->res.fattr   = &data->fattr;
798         data->res.count   = count;
799         data->res.verf    = &data->verf;
800         nfs_fattr_init(&data->fattr);
801
802         /* Set up the initial task struct.  */
803         flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC;
804         rpc_init_task(&data->task, NFS_CLIENT(inode), flags, call_ops, data);
805         NFS_PROTO(inode)->write_setup(data, how);
806
807         data->task.tk_priority = flush_task_priority(how);
808         data->task.tk_cookie = (unsigned long)inode;
809
810         dprintk("NFS: %5u initiated write call "
811                 "(req %s/%Ld, %u bytes @ offset %Lu)\n",
812                 data->task.tk_pid,
813                 inode->i_sb->s_id,
814                 (long long)NFS_FILEID(inode),
815                 count,
816                 (unsigned long long)data->args.offset);
817 }
818
819 static void nfs_execute_write(struct nfs_write_data *data)
820 {
821         struct rpc_clnt *clnt = NFS_CLIENT(data->inode);
822         sigset_t oldset;
823
824         rpc_clnt_sigmask(clnt, &oldset);
825         rpc_execute(&data->task);
826         rpc_clnt_sigunmask(clnt, &oldset);
827 }
828
829 /*
830  * Generate multiple small requests to write out a single
831  * contiguous dirty area on one page.
832  */
833 static int nfs_flush_multi(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int how)
834 {
835         struct nfs_page *req = nfs_list_entry(head->next);
836         struct page *page = req->wb_page;
837         struct nfs_write_data *data;
838         size_t wsize = NFS_SERVER(inode)->wsize, nbytes;
839         unsigned int offset;
840         int requests = 0;
841         LIST_HEAD(list);
842
843         nfs_list_remove_request(req);
844
845         nbytes = count;
846         do {
847                 size_t len = min(nbytes, wsize);
848
849                 data = nfs_writedata_alloc(1);
850                 if (!data)
851                         goto out_bad;
852                 list_add(&data->pages, &list);
853                 requests++;
854                 nbytes -= len;
855         } while (nbytes != 0);
856         atomic_set(&req->wb_complete, requests);
857
858         ClearPageError(page);
859         offset = 0;
860         nbytes = count;
861         do {
862                 data = list_entry(list.next, struct nfs_write_data, pages);
863                 list_del_init(&data->pages);
864
865                 data->pagevec[0] = page;
866
867                 if (nbytes < wsize)
868                         wsize = nbytes;
869                 nfs_write_rpcsetup(req, data, &nfs_write_partial_ops,
870                                    wsize, offset, how);
871                 offset += wsize;
872                 nbytes -= wsize;
873                 nfs_execute_write(data);
874         } while (nbytes != 0);
875
876         return 0;
877
878 out_bad:
879         while (!list_empty(&list)) {
880                 data = list_entry(list.next, struct nfs_write_data, pages);
881                 list_del(&data->pages);
882                 nfs_writedata_release(data);
883         }
884         nfs_redirty_request(req);
885         nfs_end_page_writeback(req->wb_page);
886         nfs_clear_page_writeback(req);
887         return -ENOMEM;
888 }
889
890 /*
891  * Create an RPC task for the given write request and kick it.
892  * The page must have been locked by the caller.
893  *
894  * It may happen that the page we're passed is not marked dirty.
895  * This is the case if nfs_updatepage detects a conflicting request
896  * that has been written but not committed.
897  */
898 static int nfs_flush_one(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int how)
899 {
900         struct nfs_page         *req;
901         struct page             **pages;
902         struct nfs_write_data   *data;
903
904         data = nfs_writedata_alloc(npages);
905         if (!data)
906                 goto out_bad;
907
908         pages = data->pagevec;
909         while (!list_empty(head)) {
910                 req = nfs_list_entry(head->next);
911                 nfs_list_remove_request(req);
912                 nfs_list_add_request(req, &data->pages);
913                 ClearPageError(req->wb_page);
914                 *pages++ = req->wb_page;
915         }
916         req = nfs_list_entry(data->pages.next);
917
918         /* Set up the argument struct */
919         nfs_write_rpcsetup(req, data, &nfs_write_full_ops, count, 0, how);
920
921         nfs_execute_write(data);
922         return 0;
923  out_bad:
924         while (!list_empty(head)) {
925                 struct nfs_page *req = nfs_list_entry(head->next);
926                 nfs_list_remove_request(req);
927                 nfs_redirty_request(req);
928                 nfs_end_page_writeback(req->wb_page);
929                 nfs_clear_page_writeback(req);
930         }
931         return -ENOMEM;
932 }
933
934 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio,
935                                   struct inode *inode, int ioflags)
936 {
937         int wsize = NFS_SERVER(inode)->wsize;
938
939         if (wsize < PAGE_CACHE_SIZE)
940                 nfs_pageio_init(pgio, inode, nfs_flush_multi, wsize, ioflags);
941         else
942                 nfs_pageio_init(pgio, inode, nfs_flush_one, wsize, ioflags);
943 }
944
945 /*
946  * Handle a write reply that flushed part of a page.
947  */
948 static void nfs_writeback_done_partial(struct rpc_task *task, void *calldata)
949 {
950         struct nfs_write_data   *data = calldata;
951         struct nfs_page         *req = data->req;
952         struct page             *page = req->wb_page;
953
954         dprintk("NFS: write (%s/%Ld %d@%Ld)",
955                 req->wb_context->dentry->d_inode->i_sb->s_id,
956                 (long long)NFS_FILEID(req->wb_context->dentry->d_inode),
957                 req->wb_bytes,
958                 (long long)req_offset(req));
959
960         if (nfs_writeback_done(task, data) != 0)
961                 return;
962
963         if (task->tk_status < 0) {
964                 nfs_set_pageerror(page);
965                 req->wb_context->error = task->tk_status;
966                 dprintk(", error = %d\n", task->tk_status);
967                 goto out;
968         }
969
970         if (nfs_write_need_commit(data)) {
971                 spinlock_t *req_lock = &NFS_I(page->mapping->host)->req_lock;
972
973                 spin_lock(req_lock);
974                 if (test_bit(PG_NEED_RESCHED, &req->wb_flags)) {
975                         /* Do nothing we need to resend the writes */
976                 } else if (!test_and_set_bit(PG_NEED_COMMIT, &req->wb_flags)) {
977                         memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
978                         dprintk(" defer commit\n");
979                 } else if (memcmp(&req->wb_verf, &data->verf, sizeof(req->wb_verf))) {
980                         set_bit(PG_NEED_RESCHED, &req->wb_flags);
981                         clear_bit(PG_NEED_COMMIT, &req->wb_flags);
982                         dprintk(" server reboot detected\n");
983                 }
984                 spin_unlock(req_lock);
985         } else
986                 dprintk(" OK\n");
987
988 out:
989         if (atomic_dec_and_test(&req->wb_complete))
990                 nfs_writepage_release(req);
991 }
992
993 static const struct rpc_call_ops nfs_write_partial_ops = {
994         .rpc_call_done = nfs_writeback_done_partial,
995         .rpc_release = nfs_writedata_release,
996 };
997
998 /*
999  * Handle a write reply that flushes a whole page.
1000  *
1001  * FIXME: There is an inherent race with invalidate_inode_pages and
1002  *        writebacks since the page->count is kept > 1 for as long
1003  *        as the page has a write request pending.
1004  */
1005 static void nfs_writeback_done_full(struct rpc_task *task, void *calldata)
1006 {
1007         struct nfs_write_data   *data = calldata;
1008         struct nfs_page         *req;
1009         struct page             *page;
1010
1011         if (nfs_writeback_done(task, data) != 0)
1012                 return;
1013
1014         /* Update attributes as result of writeback. */
1015         while (!list_empty(&data->pages)) {
1016                 req = nfs_list_entry(data->pages.next);
1017                 nfs_list_remove_request(req);
1018                 page = req->wb_page;
1019
1020                 dprintk("NFS: write (%s/%Ld %d@%Ld)",
1021                         req->wb_context->dentry->d_inode->i_sb->s_id,
1022                         (long long)NFS_FILEID(req->wb_context->dentry->d_inode),
1023                         req->wb_bytes,
1024                         (long long)req_offset(req));
1025
1026                 if (task->tk_status < 0) {
1027                         nfs_set_pageerror(page);
1028                         req->wb_context->error = task->tk_status;
1029                         dprintk(", error = %d\n", task->tk_status);
1030                         goto remove_request;
1031                 }
1032
1033                 if (nfs_write_need_commit(data)) {
1034                         memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
1035                         nfs_mark_request_commit(req);
1036                         nfs_end_page_writeback(page);
1037                         dprintk(" marked for commit\n");
1038                         goto next;
1039                 }
1040                 dprintk(" OK\n");
1041 remove_request:
1042                 nfs_end_page_writeback(page);
1043                 nfs_inode_remove_request(req);
1044         next:
1045                 nfs_clear_page_writeback(req);
1046         }
1047 }
1048
1049 static const struct rpc_call_ops nfs_write_full_ops = {
1050         .rpc_call_done = nfs_writeback_done_full,
1051         .rpc_release = nfs_writedata_release,
1052 };
1053
1054
1055 /*
1056  * This function is called when the WRITE call is complete.
1057  */
1058 int nfs_writeback_done(struct rpc_task *task, struct nfs_write_data *data)
1059 {
1060         struct nfs_writeargs    *argp = &data->args;
1061         struct nfs_writeres     *resp = &data->res;
1062         int status;
1063
1064         dprintk("NFS: %5u nfs_writeback_done (status %d)\n",
1065                 task->tk_pid, task->tk_status);
1066
1067         /*
1068          * ->write_done will attempt to use post-op attributes to detect
1069          * conflicting writes by other clients.  A strict interpretation
1070          * of close-to-open would allow us to continue caching even if
1071          * another writer had changed the file, but some applications
1072          * depend on tighter cache coherency when writing.
1073          */
1074         status = NFS_PROTO(data->inode)->write_done(task, data);
1075         if (status != 0)
1076                 return status;
1077         nfs_add_stats(data->inode, NFSIOS_SERVERWRITTENBYTES, resp->count);
1078
1079 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1080         if (resp->verf->committed < argp->stable && task->tk_status >= 0) {
1081                 /* We tried a write call, but the server did not
1082                  * commit data to stable storage even though we
1083                  * requested it.
1084                  * Note: There is a known bug in Tru64 < 5.0 in which
1085                  *       the server reports NFS_DATA_SYNC, but performs
1086                  *       NFS_FILE_SYNC. We therefore implement this checking
1087                  *       as a dprintk() in order to avoid filling syslog.
1088                  */
1089                 static unsigned long    complain;
1090
1091                 if (time_before(complain, jiffies)) {
1092                         dprintk("NFS: faulty NFS server %s:"
1093                                 " (committed = %d) != (stable = %d)\n",
1094                                 NFS_SERVER(data->inode)->nfs_client->cl_hostname,
1095                                 resp->verf->committed, argp->stable);
1096                         complain = jiffies + 300 * HZ;
1097                 }
1098         }
1099 #endif
1100         /* Is this a short write? */
1101         if (task->tk_status >= 0 && resp->count < argp->count) {
1102                 static unsigned long    complain;
1103
1104                 nfs_inc_stats(data->inode, NFSIOS_SHORTWRITE);
1105
1106                 /* Has the server at least made some progress? */
1107                 if (resp->count != 0) {
1108                         /* Was this an NFSv2 write or an NFSv3 stable write? */
1109                         if (resp->verf->committed != NFS_UNSTABLE) {
1110                                 /* Resend from where the server left off */
1111                                 argp->offset += resp->count;
1112                                 argp->pgbase += resp->count;
1113                                 argp->count -= resp->count;
1114                         } else {
1115                                 /* Resend as a stable write in order to avoid
1116                                  * headaches in the case of a server crash.
1117                                  */
1118                                 argp->stable = NFS_FILE_SYNC;
1119                         }
1120                         rpc_restart_call(task);
1121                         return -EAGAIN;
1122                 }
1123                 if (time_before(complain, jiffies)) {
1124                         printk(KERN_WARNING
1125                                "NFS: Server wrote zero bytes, expected %u.\n",
1126                                         argp->count);
1127                         complain = jiffies + 300 * HZ;
1128                 }
1129                 /* Can't do anything about it except throw an error. */
1130                 task->tk_status = -EIO;
1131         }
1132         return 0;
1133 }
1134
1135
1136 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1137 void nfs_commit_release(void *wdata)
1138 {
1139         nfs_commit_free(wdata);
1140 }
1141
1142 /*
1143  * Set up the argument/result storage required for the RPC call.
1144  */
1145 static void nfs_commit_rpcsetup(struct list_head *head,
1146                 struct nfs_write_data *data,
1147                 int how)
1148 {
1149         struct nfs_page         *first;
1150         struct inode            *inode;
1151         int flags;
1152
1153         /* Set up the RPC argument and reply structs
1154          * NB: take care not to mess about with data->commit et al. */
1155
1156         list_splice_init(head, &data->pages);
1157         first = nfs_list_entry(data->pages.next);
1158         inode = first->wb_context->dentry->d_inode;
1159
1160         data->inode       = inode;
1161         data->cred        = first->wb_context->cred;
1162
1163         data->args.fh     = NFS_FH(data->inode);
1164         /* Note: we always request a commit of the entire inode */
1165         data->args.offset = 0;
1166         data->args.count  = 0;
1167         data->res.count   = 0;
1168         data->res.fattr   = &data->fattr;
1169         data->res.verf    = &data->verf;
1170         nfs_fattr_init(&data->fattr);
1171
1172         /* Set up the initial task struct.  */
1173         flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC;
1174         rpc_init_task(&data->task, NFS_CLIENT(inode), flags, &nfs_commit_ops, data);
1175         NFS_PROTO(inode)->commit_setup(data, how);
1176
1177         data->task.tk_priority = flush_task_priority(how);
1178         data->task.tk_cookie = (unsigned long)inode;
1179         
1180         dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid);
1181 }
1182
1183 /*
1184  * Commit dirty pages
1185  */
1186 static int
1187 nfs_commit_list(struct inode *inode, struct list_head *head, int how)
1188 {
1189         struct nfs_write_data   *data;
1190         struct nfs_page         *req;
1191
1192         data = nfs_commit_alloc();
1193
1194         if (!data)
1195                 goto out_bad;
1196
1197         /* Set up the argument struct */
1198         nfs_commit_rpcsetup(head, data, how);
1199
1200         nfs_execute_write(data);
1201         return 0;
1202  out_bad:
1203         while (!list_empty(head)) {
1204                 req = nfs_list_entry(head->next);
1205                 nfs_list_remove_request(req);
1206                 nfs_mark_request_commit(req);
1207                 dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
1208                 nfs_clear_page_writeback(req);
1209         }
1210         return -ENOMEM;
1211 }
1212
1213 /*
1214  * COMMIT call returned
1215  */
1216 static void nfs_commit_done(struct rpc_task *task, void *calldata)
1217 {
1218         struct nfs_write_data   *data = calldata;
1219         struct nfs_page         *req;
1220
1221         dprintk("NFS: %5u nfs_commit_done (status %d)\n",
1222                                 task->tk_pid, task->tk_status);
1223
1224         /* Call the NFS version-specific code */
1225         if (NFS_PROTO(data->inode)->commit_done(task, data) != 0)
1226                 return;
1227
1228         while (!list_empty(&data->pages)) {
1229                 req = nfs_list_entry(data->pages.next);
1230                 nfs_list_remove_request(req);
1231                 clear_bit(PG_NEED_COMMIT, &(req)->wb_flags);
1232                 dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
1233
1234                 dprintk("NFS: commit (%s/%Ld %d@%Ld)",
1235                         req->wb_context->dentry->d_inode->i_sb->s_id,
1236                         (long long)NFS_FILEID(req->wb_context->dentry->d_inode),
1237                         req->wb_bytes,
1238                         (long long)req_offset(req));
1239                 if (task->tk_status < 0) {
1240                         req->wb_context->error = task->tk_status;
1241                         nfs_inode_remove_request(req);
1242                         dprintk(", error = %d\n", task->tk_status);
1243                         goto next;
1244                 }
1245
1246                 /* Okay, COMMIT succeeded, apparently. Check the verifier
1247                  * returned by the server against all stored verfs. */
1248                 if (!memcmp(req->wb_verf.verifier, data->verf.verifier, sizeof(data->verf.verifier))) {
1249                         /* We have a match */
1250                         nfs_inode_remove_request(req);
1251                         dprintk(" OK\n");
1252                         goto next;
1253                 }
1254                 /* We have a mismatch. Write the page again */
1255                 dprintk(" mismatch\n");
1256                 nfs_redirty_request(req);
1257         next:
1258                 nfs_clear_page_writeback(req);
1259         }
1260 }
1261
1262 static const struct rpc_call_ops nfs_commit_ops = {
1263         .rpc_call_done = nfs_commit_done,
1264         .rpc_release = nfs_commit_release,
1265 };
1266
1267 int nfs_commit_inode(struct inode *inode, int how)
1268 {
1269         struct nfs_inode *nfsi = NFS_I(inode);
1270         LIST_HEAD(head);
1271         int res;
1272
1273         spin_lock(&nfsi->req_lock);
1274         res = nfs_scan_commit(inode, &head, 0, 0);
1275         spin_unlock(&nfsi->req_lock);
1276         if (res) {
1277                 int error = nfs_commit_list(inode, &head, how);
1278                 if (error < 0)
1279                         return error;
1280         }
1281         return res;
1282 }
1283 #else
1284 static inline int nfs_commit_list(struct inode *inode, struct list_head *head, int how)
1285 {
1286         return 0;
1287 }
1288 #endif
1289
1290 long nfs_sync_mapping_wait(struct address_space *mapping, struct writeback_control *wbc, int how)
1291 {
1292         struct inode *inode = mapping->host;
1293         struct nfs_inode *nfsi = NFS_I(inode);
1294         pgoff_t idx_start, idx_end;
1295         unsigned int npages = 0;
1296         LIST_HEAD(head);
1297         int nocommit = how & FLUSH_NOCOMMIT;
1298         long pages, ret;
1299
1300         /* FIXME */
1301         if (wbc->range_cyclic)
1302                 idx_start = 0;
1303         else {
1304                 idx_start = wbc->range_start >> PAGE_CACHE_SHIFT;
1305                 idx_end = wbc->range_end >> PAGE_CACHE_SHIFT;
1306                 if (idx_end > idx_start) {
1307                         pgoff_t l_npages = 1 + idx_end - idx_start;
1308                         npages = l_npages;
1309                         if (sizeof(npages) != sizeof(l_npages) &&
1310                                         (pgoff_t)npages != l_npages)
1311                                 npages = 0;
1312                 }
1313         }
1314         how &= ~FLUSH_NOCOMMIT;
1315         spin_lock(&nfsi->req_lock);
1316         do {
1317                 ret = nfs_wait_on_requests_locked(inode, idx_start, npages);
1318                 if (ret != 0)
1319                         continue;
1320                 if (nocommit)
1321                         break;
1322                 pages = nfs_scan_commit(inode, &head, idx_start, npages);
1323                 if (pages == 0)
1324                         break;
1325                 if (how & FLUSH_INVALIDATE) {
1326                         spin_unlock(&nfsi->req_lock);
1327                         nfs_cancel_commit_list(&head);
1328                         ret = pages;
1329                         spin_lock(&nfsi->req_lock);
1330                         continue;
1331                 }
1332                 pages += nfs_scan_commit(inode, &head, 0, 0);
1333                 spin_unlock(&nfsi->req_lock);
1334                 ret = nfs_commit_list(inode, &head, how);
1335                 spin_lock(&nfsi->req_lock);
1336         } while (ret >= 0);
1337         spin_unlock(&nfsi->req_lock);
1338         return ret;
1339 }
1340
1341 /*
1342  * flush the inode to disk.
1343  */
1344 int nfs_wb_all(struct inode *inode)
1345 {
1346         struct address_space *mapping = inode->i_mapping;
1347         struct writeback_control wbc = {
1348                 .bdi = mapping->backing_dev_info,
1349                 .sync_mode = WB_SYNC_ALL,
1350                 .nr_to_write = LONG_MAX,
1351                 .for_writepages = 1,
1352                 .range_cyclic = 1,
1353         };
1354         int ret;
1355
1356         ret = nfs_writepages(mapping, &wbc);
1357         if (ret < 0)
1358                 goto out;
1359         ret = nfs_sync_mapping_wait(mapping, &wbc, 0);
1360         if (ret >= 0)
1361                 return 0;
1362 out:
1363         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1364         return ret;
1365 }
1366
1367 int nfs_sync_mapping_range(struct address_space *mapping, loff_t range_start, loff_t range_end, int how)
1368 {
1369         struct writeback_control wbc = {
1370                 .bdi = mapping->backing_dev_info,
1371                 .sync_mode = WB_SYNC_ALL,
1372                 .nr_to_write = LONG_MAX,
1373                 .range_start = range_start,
1374                 .range_end = range_end,
1375                 .for_writepages = 1,
1376         };
1377         int ret;
1378
1379         ret = nfs_writepages(mapping, &wbc);
1380         if (ret < 0)
1381                 goto out;
1382         ret = nfs_sync_mapping_wait(mapping, &wbc, how);
1383         if (ret >= 0)
1384                 return 0;
1385 out:
1386         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1387         return ret;
1388 }
1389
1390 int nfs_wb_page_priority(struct inode *inode, struct page *page, int how)
1391 {
1392         loff_t range_start = page_offset(page);
1393         loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1);
1394         struct writeback_control wbc = {
1395                 .bdi = page->mapping->backing_dev_info,
1396                 .sync_mode = WB_SYNC_ALL,
1397                 .nr_to_write = LONG_MAX,
1398                 .range_start = range_start,
1399                 .range_end = range_end,
1400         };
1401         int ret;
1402
1403         BUG_ON(!PageLocked(page));
1404         if (clear_page_dirty_for_io(page)) {
1405                 ret = nfs_writepage_locked(page, &wbc);
1406                 if (ret < 0)
1407                         goto out;
1408         }
1409         if (!PagePrivate(page))
1410                 return 0;
1411         ret = nfs_sync_mapping_wait(page->mapping, &wbc, how);
1412         if (ret >= 0)
1413                 return 0;
1414 out:
1415         __mark_inode_dirty(inode, I_DIRTY_PAGES);
1416         return ret;
1417 }
1418
1419 /*
1420  * Write back all requests on one page - we do this before reading it.
1421  */
1422 int nfs_wb_page(struct inode *inode, struct page* page)
1423 {
1424         return nfs_wb_page_priority(inode, page, FLUSH_STABLE);
1425 }
1426
1427 int nfs_set_page_dirty(struct page *page)
1428 {
1429         struct address_space *mapping = page->mapping;
1430         struct inode *inode;
1431         spinlock_t *req_lock;
1432         struct nfs_page *req;
1433         int ret;
1434
1435         if (!mapping)
1436                 goto out_raced;
1437         inode = mapping->host;
1438         if (!inode)
1439                 goto out_raced;
1440         req_lock = &NFS_I(inode)->req_lock;
1441         spin_lock(req_lock);
1442         req = nfs_page_find_request_locked(page);
1443         if (req != NULL) {
1444                 /* Mark any existing write requests for flushing */
1445                 ret = !test_and_set_bit(PG_NEED_FLUSH, &req->wb_flags);
1446                 spin_unlock(req_lock);
1447                 nfs_release_request(req);
1448                 return ret;
1449         }
1450         ret = __set_page_dirty_nobuffers(page);
1451         spin_unlock(req_lock);
1452         return ret;
1453 out_raced:
1454         return !TestSetPageDirty(page);
1455 }
1456
1457
1458 int __init nfs_init_writepagecache(void)
1459 {
1460         nfs_wdata_cachep = kmem_cache_create("nfs_write_data",
1461                                              sizeof(struct nfs_write_data),
1462                                              0, SLAB_HWCACHE_ALIGN,
1463                                              NULL, NULL);
1464         if (nfs_wdata_cachep == NULL)
1465                 return -ENOMEM;
1466
1467         nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE,
1468                                                      nfs_wdata_cachep);
1469         if (nfs_wdata_mempool == NULL)
1470                 return -ENOMEM;
1471
1472         nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT,
1473                                                       nfs_wdata_cachep);
1474         if (nfs_commit_mempool == NULL)
1475                 return -ENOMEM;
1476
1477         /*
1478          * NFS congestion size, scale with available memory.
1479          *
1480          *  64MB:    8192k
1481          * 128MB:   11585k
1482          * 256MB:   16384k
1483          * 512MB:   23170k
1484          *   1GB:   32768k
1485          *   2GB:   46340k
1486          *   4GB:   65536k
1487          *   8GB:   92681k
1488          *  16GB:  131072k
1489          *
1490          * This allows larger machines to have larger/more transfers.
1491          * Limit the default to 256M
1492          */
1493         nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10);
1494         if (nfs_congestion_kb > 256*1024)
1495                 nfs_congestion_kb = 256*1024;
1496
1497         return 0;
1498 }
1499
1500 void nfs_destroy_writepagecache(void)
1501 {
1502         mempool_destroy(nfs_commit_mempool);
1503         mempool_destroy(nfs_wdata_mempool);
1504         kmem_cache_destroy(nfs_wdata_cachep);
1505 }
1506