fs/bio.c: add missing __user annotation
[linux-2.6.git] / fs / bio.c
1 /*
2  * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public Licens
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
16  *
17  */
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/mempool.h>
27 #include <linux/workqueue.h>
28 #include <linux/blktrace_api.h>
29 #include <trace/block.h>
30 #include <scsi/sg.h>            /* for struct sg_iovec */
31
32 DEFINE_TRACE(block_split);
33
34 /*
35  * Test patch to inline a certain number of bi_io_vec's inside the bio
36  * itself, to shrink a bio data allocation from two mempool calls to one
37  */
38 #define BIO_INLINE_VECS         4
39
40 static mempool_t *bio_split_pool __read_mostly;
41
42 /*
43  * if you change this list, also change bvec_alloc or things will
44  * break badly! cannot be bigger than what you can fit into an
45  * unsigned short
46  */
47 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
48 struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
49         BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
50 };
51 #undef BV
52
53 /*
54  * fs_bio_set is the bio_set containing bio and iovec memory pools used by
55  * IO code that does not need private memory pools.
56  */
57 struct bio_set *fs_bio_set;
58
59 /*
60  * Our slab pool management
61  */
62 struct bio_slab {
63         struct kmem_cache *slab;
64         unsigned int slab_ref;
65         unsigned int slab_size;
66         char name[8];
67 };
68 static DEFINE_MUTEX(bio_slab_lock);
69 static struct bio_slab *bio_slabs;
70 static unsigned int bio_slab_nr, bio_slab_max;
71
72 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
73 {
74         unsigned int sz = sizeof(struct bio) + extra_size;
75         struct kmem_cache *slab = NULL;
76         struct bio_slab *bslab;
77         unsigned int i, entry = -1;
78
79         mutex_lock(&bio_slab_lock);
80
81         i = 0;
82         while (i < bio_slab_nr) {
83                 struct bio_slab *bslab = &bio_slabs[i];
84
85                 if (!bslab->slab && entry == -1)
86                         entry = i;
87                 else if (bslab->slab_size == sz) {
88                         slab = bslab->slab;
89                         bslab->slab_ref++;
90                         break;
91                 }
92                 i++;
93         }
94
95         if (slab)
96                 goto out_unlock;
97
98         if (bio_slab_nr == bio_slab_max && entry == -1) {
99                 bio_slab_max <<= 1;
100                 bio_slabs = krealloc(bio_slabs,
101                                      bio_slab_max * sizeof(struct bio_slab),
102                                      GFP_KERNEL);
103                 if (!bio_slabs)
104                         goto out_unlock;
105         }
106         if (entry == -1)
107                 entry = bio_slab_nr++;
108
109         bslab = &bio_slabs[entry];
110
111         snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
112         slab = kmem_cache_create(bslab->name, sz, 0, SLAB_HWCACHE_ALIGN, NULL);
113         if (!slab)
114                 goto out_unlock;
115
116         printk("bio: create slab <%s> at %d\n", bslab->name, entry);
117         bslab->slab = slab;
118         bslab->slab_ref = 1;
119         bslab->slab_size = sz;
120 out_unlock:
121         mutex_unlock(&bio_slab_lock);
122         return slab;
123 }
124
125 static void bio_put_slab(struct bio_set *bs)
126 {
127         struct bio_slab *bslab = NULL;
128         unsigned int i;
129
130         mutex_lock(&bio_slab_lock);
131
132         for (i = 0; i < bio_slab_nr; i++) {
133                 if (bs->bio_slab == bio_slabs[i].slab) {
134                         bslab = &bio_slabs[i];
135                         break;
136                 }
137         }
138
139         if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
140                 goto out;
141
142         WARN_ON(!bslab->slab_ref);
143
144         if (--bslab->slab_ref)
145                 goto out;
146
147         kmem_cache_destroy(bslab->slab);
148         bslab->slab = NULL;
149
150 out:
151         mutex_unlock(&bio_slab_lock);
152 }
153
154 unsigned int bvec_nr_vecs(unsigned short idx)
155 {
156         return bvec_slabs[idx].nr_vecs;
157 }
158
159 void bvec_free_bs(struct bio_set *bs, struct bio_vec *bv, unsigned int idx)
160 {
161         BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
162
163         if (idx == BIOVEC_MAX_IDX)
164                 mempool_free(bv, bs->bvec_pool);
165         else {
166                 struct biovec_slab *bvs = bvec_slabs + idx;
167
168                 kmem_cache_free(bvs->slab, bv);
169         }
170 }
171
172 struct bio_vec *bvec_alloc_bs(gfp_t gfp_mask, int nr, unsigned long *idx,
173                               struct bio_set *bs)
174 {
175         struct bio_vec *bvl;
176
177         /*
178          * see comment near bvec_array define!
179          */
180         switch (nr) {
181         case 1:
182                 *idx = 0;
183                 break;
184         case 2 ... 4:
185                 *idx = 1;
186                 break;
187         case 5 ... 16:
188                 *idx = 2;
189                 break;
190         case 17 ... 64:
191                 *idx = 3;
192                 break;
193         case 65 ... 128:
194                 *idx = 4;
195                 break;
196         case 129 ... BIO_MAX_PAGES:
197                 *idx = 5;
198                 break;
199         default:
200                 return NULL;
201         }
202
203         /*
204          * idx now points to the pool we want to allocate from. only the
205          * 1-vec entry pool is mempool backed.
206          */
207         if (*idx == BIOVEC_MAX_IDX) {
208 fallback:
209                 bvl = mempool_alloc(bs->bvec_pool, gfp_mask);
210         } else {
211                 struct biovec_slab *bvs = bvec_slabs + *idx;
212                 gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO);
213
214                 /*
215                  * Make this allocation restricted and don't dump info on
216                  * allocation failures, since we'll fallback to the mempool
217                  * in case of failure.
218                  */
219                 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
220
221                 /*
222                  * Try a slab allocation. If this fails and __GFP_WAIT
223                  * is set, retry with the 1-entry mempool
224                  */
225                 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
226                 if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) {
227                         *idx = BIOVEC_MAX_IDX;
228                         goto fallback;
229                 }
230         }
231
232         return bvl;
233 }
234
235 void bio_free(struct bio *bio, struct bio_set *bs)
236 {
237         void *p;
238
239         if (bio_has_allocated_vec(bio))
240                 bvec_free_bs(bs, bio->bi_io_vec, BIO_POOL_IDX(bio));
241
242         if (bio_integrity(bio))
243                 bio_integrity_free(bio);
244
245         /*
246          * If we have front padding, adjust the bio pointer before freeing
247          */
248         p = bio;
249         if (bs->front_pad)
250                 p -= bs->front_pad;
251
252         mempool_free(p, bs->bio_pool);
253 }
254
255 void bio_init(struct bio *bio)
256 {
257         memset(bio, 0, sizeof(*bio));
258         bio->bi_flags = 1 << BIO_UPTODATE;
259         bio->bi_comp_cpu = -1;
260         atomic_set(&bio->bi_cnt, 1);
261 }
262
263 /**
264  * bio_alloc_bioset - allocate a bio for I/O
265  * @gfp_mask:   the GFP_ mask given to the slab allocator
266  * @nr_iovecs:  number of iovecs to pre-allocate
267  * @bs:         the bio_set to allocate from. If %NULL, just use kmalloc
268  *
269  * Description:
270  *   bio_alloc_bioset will first try its own mempool to satisfy the allocation.
271  *   If %__GFP_WAIT is set then we will block on the internal pool waiting
272  *   for a &struct bio to become free. If a %NULL @bs is passed in, we will
273  *   fall back to just using @kmalloc to allocate the required memory.
274  *
275  *   Note that the caller must set ->bi_destructor on succesful return
276  *   of a bio, to do the appropriate freeing of the bio once the reference
277  *   count drops to zero.
278  **/
279 struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
280 {
281         unsigned long idx = BIO_POOL_NONE;
282         struct bio_vec *bvl = NULL;
283         struct bio *bio;
284         void *p;
285
286         p = mempool_alloc(bs->bio_pool, gfp_mask);
287         if (unlikely(!p))
288                 return NULL;
289         bio = p + bs->front_pad;
290
291         bio_init(bio);
292
293         if (unlikely(!nr_iovecs))
294                 goto out_set;
295
296         if (nr_iovecs <= BIO_INLINE_VECS) {
297                 bvl = bio->bi_inline_vecs;
298                 nr_iovecs = BIO_INLINE_VECS;
299         } else {
300                 bvl = bvec_alloc_bs(gfp_mask, nr_iovecs, &idx, bs);
301                 if (unlikely(!bvl))
302                         goto err_free;
303
304                 nr_iovecs = bvec_nr_vecs(idx);
305         }
306 out_set:
307         bio->bi_flags |= idx << BIO_POOL_OFFSET;
308         bio->bi_max_vecs = nr_iovecs;
309         bio->bi_io_vec = bvl;
310         return bio;
311
312 err_free:
313         mempool_free(p, bs->bio_pool);
314         return NULL;
315 }
316
317 static void bio_fs_destructor(struct bio *bio)
318 {
319         bio_free(bio, fs_bio_set);
320 }
321
322 /**
323  *      bio_alloc - allocate a new bio, memory pool backed
324  *      @gfp_mask: allocation mask to use
325  *      @nr_iovecs: number of iovecs
326  *
327  *      Allocate a new bio with @nr_iovecs bvecs.  If @gfp_mask
328  *      contains __GFP_WAIT, the allocation is guaranteed to succeed.
329  *
330  *      RETURNS:
331  *      Pointer to new bio on success, NULL on failure.
332  */
333 struct bio *bio_alloc(gfp_t gfp_mask, int nr_iovecs)
334 {
335         struct bio *bio = bio_alloc_bioset(gfp_mask, nr_iovecs, fs_bio_set);
336
337         if (bio)
338                 bio->bi_destructor = bio_fs_destructor;
339
340         return bio;
341 }
342
343 static void bio_kmalloc_destructor(struct bio *bio)
344 {
345         if (bio_integrity(bio))
346                 bio_integrity_free(bio);
347         kfree(bio);
348 }
349
350 /**
351  * bio_alloc - allocate a bio for I/O
352  * @gfp_mask:   the GFP_ mask given to the slab allocator
353  * @nr_iovecs:  number of iovecs to pre-allocate
354  *
355  * Description:
356  *   bio_alloc will allocate a bio and associated bio_vec array that can hold
357  *   at least @nr_iovecs entries. Allocations will be done from the
358  *   fs_bio_set. Also see @bio_alloc_bioset.
359  *
360  *   If %__GFP_WAIT is set, then bio_alloc will always be able to allocate
361  *   a bio. This is due to the mempool guarantees. To make this work, callers
362  *   must never allocate more than 1 bio at the time from this pool. Callers
363  *   that need to allocate more than 1 bio must always submit the previously
364  *   allocate bio for IO before attempting to allocate a new one. Failure to
365  *   do so can cause livelocks under memory pressure.
366  *
367  **/
368 struct bio *bio_kmalloc(gfp_t gfp_mask, int nr_iovecs)
369 {
370         struct bio *bio;
371
372         bio = kmalloc(sizeof(struct bio) + nr_iovecs * sizeof(struct bio_vec),
373                       gfp_mask);
374         if (unlikely(!bio))
375                 return NULL;
376
377         bio_init(bio);
378         bio->bi_flags |= BIO_POOL_NONE << BIO_POOL_OFFSET;
379         bio->bi_max_vecs = nr_iovecs;
380         bio->bi_io_vec = bio->bi_inline_vecs;
381         bio->bi_destructor = bio_kmalloc_destructor;
382
383         return bio;
384 }
385
386 void zero_fill_bio(struct bio *bio)
387 {
388         unsigned long flags;
389         struct bio_vec *bv;
390         int i;
391
392         bio_for_each_segment(bv, bio, i) {
393                 char *data = bvec_kmap_irq(bv, &flags);
394                 memset(data, 0, bv->bv_len);
395                 flush_dcache_page(bv->bv_page);
396                 bvec_kunmap_irq(data, &flags);
397         }
398 }
399 EXPORT_SYMBOL(zero_fill_bio);
400
401 /**
402  * bio_put - release a reference to a bio
403  * @bio:   bio to release reference to
404  *
405  * Description:
406  *   Put a reference to a &struct bio, either one you have gotten with
407  *   bio_alloc or bio_get. The last put of a bio will free it.
408  **/
409 void bio_put(struct bio *bio)
410 {
411         BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
412
413         /*
414          * last put frees it
415          */
416         if (atomic_dec_and_test(&bio->bi_cnt)) {
417                 bio->bi_next = NULL;
418                 bio->bi_destructor(bio);
419         }
420 }
421
422 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
423 {
424         if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
425                 blk_recount_segments(q, bio);
426
427         return bio->bi_phys_segments;
428 }
429
430 /**
431  *      __bio_clone     -       clone a bio
432  *      @bio: destination bio
433  *      @bio_src: bio to clone
434  *
435  *      Clone a &bio. Caller will own the returned bio, but not
436  *      the actual data it points to. Reference count of returned
437  *      bio will be one.
438  */
439 void __bio_clone(struct bio *bio, struct bio *bio_src)
440 {
441         memcpy(bio->bi_io_vec, bio_src->bi_io_vec,
442                 bio_src->bi_max_vecs * sizeof(struct bio_vec));
443
444         /*
445          * most users will be overriding ->bi_bdev with a new target,
446          * so we don't set nor calculate new physical/hw segment counts here
447          */
448         bio->bi_sector = bio_src->bi_sector;
449         bio->bi_bdev = bio_src->bi_bdev;
450         bio->bi_flags |= 1 << BIO_CLONED;
451         bio->bi_rw = bio_src->bi_rw;
452         bio->bi_vcnt = bio_src->bi_vcnt;
453         bio->bi_size = bio_src->bi_size;
454         bio->bi_idx = bio_src->bi_idx;
455 }
456
457 /**
458  *      bio_clone       -       clone a bio
459  *      @bio: bio to clone
460  *      @gfp_mask: allocation priority
461  *
462  *      Like __bio_clone, only also allocates the returned bio
463  */
464 struct bio *bio_clone(struct bio *bio, gfp_t gfp_mask)
465 {
466         struct bio *b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, fs_bio_set);
467
468         if (!b)
469                 return NULL;
470
471         b->bi_destructor = bio_fs_destructor;
472         __bio_clone(b, bio);
473
474         if (bio_integrity(bio)) {
475                 int ret;
476
477                 ret = bio_integrity_clone(b, bio, gfp_mask);
478
479                 if (ret < 0) {
480                         bio_put(b);
481                         return NULL;
482                 }
483         }
484
485         return b;
486 }
487
488 /**
489  *      bio_get_nr_vecs         - return approx number of vecs
490  *      @bdev:  I/O target
491  *
492  *      Return the approximate number of pages we can send to this target.
493  *      There's no guarantee that you will be able to fit this number of pages
494  *      into a bio, it does not account for dynamic restrictions that vary
495  *      on offset.
496  */
497 int bio_get_nr_vecs(struct block_device *bdev)
498 {
499         struct request_queue *q = bdev_get_queue(bdev);
500         int nr_pages;
501
502         nr_pages = ((queue_max_sectors(q) << 9) + PAGE_SIZE - 1) >> PAGE_SHIFT;
503         if (nr_pages > queue_max_phys_segments(q))
504                 nr_pages = queue_max_phys_segments(q);
505         if (nr_pages > queue_max_hw_segments(q))
506                 nr_pages = queue_max_hw_segments(q);
507
508         return nr_pages;
509 }
510
511 static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
512                           *page, unsigned int len, unsigned int offset,
513                           unsigned short max_sectors)
514 {
515         int retried_segments = 0;
516         struct bio_vec *bvec;
517
518         /*
519          * cloned bio must not modify vec list
520          */
521         if (unlikely(bio_flagged(bio, BIO_CLONED)))
522                 return 0;
523
524         if (((bio->bi_size + len) >> 9) > max_sectors)
525                 return 0;
526
527         /*
528          * For filesystems with a blocksize smaller than the pagesize
529          * we will often be called with the same page as last time and
530          * a consecutive offset.  Optimize this special case.
531          */
532         if (bio->bi_vcnt > 0) {
533                 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
534
535                 if (page == prev->bv_page &&
536                     offset == prev->bv_offset + prev->bv_len) {
537                         prev->bv_len += len;
538
539                         if (q->merge_bvec_fn) {
540                                 struct bvec_merge_data bvm = {
541                                         .bi_bdev = bio->bi_bdev,
542                                         .bi_sector = bio->bi_sector,
543                                         .bi_size = bio->bi_size,
544                                         .bi_rw = bio->bi_rw,
545                                 };
546
547                                 if (q->merge_bvec_fn(q, &bvm, prev) < len) {
548                                         prev->bv_len -= len;
549                                         return 0;
550                                 }
551                         }
552
553                         goto done;
554                 }
555         }
556
557         if (bio->bi_vcnt >= bio->bi_max_vecs)
558                 return 0;
559
560         /*
561          * we might lose a segment or two here, but rather that than
562          * make this too complex.
563          */
564
565         while (bio->bi_phys_segments >= queue_max_phys_segments(q)
566                || bio->bi_phys_segments >= queue_max_hw_segments(q)) {
567
568                 if (retried_segments)
569                         return 0;
570
571                 retried_segments = 1;
572                 blk_recount_segments(q, bio);
573         }
574
575         /*
576          * setup the new entry, we might clear it again later if we
577          * cannot add the page
578          */
579         bvec = &bio->bi_io_vec[bio->bi_vcnt];
580         bvec->bv_page = page;
581         bvec->bv_len = len;
582         bvec->bv_offset = offset;
583
584         /*
585          * if queue has other restrictions (eg varying max sector size
586          * depending on offset), it can specify a merge_bvec_fn in the
587          * queue to get further control
588          */
589         if (q->merge_bvec_fn) {
590                 struct bvec_merge_data bvm = {
591                         .bi_bdev = bio->bi_bdev,
592                         .bi_sector = bio->bi_sector,
593                         .bi_size = bio->bi_size,
594                         .bi_rw = bio->bi_rw,
595                 };
596
597                 /*
598                  * merge_bvec_fn() returns number of bytes it can accept
599                  * at this offset
600                  */
601                 if (q->merge_bvec_fn(q, &bvm, bvec) < len) {
602                         bvec->bv_page = NULL;
603                         bvec->bv_len = 0;
604                         bvec->bv_offset = 0;
605                         return 0;
606                 }
607         }
608
609         /* If we may be able to merge these biovecs, force a recount */
610         if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
611                 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
612
613         bio->bi_vcnt++;
614         bio->bi_phys_segments++;
615  done:
616         bio->bi_size += len;
617         return len;
618 }
619
620 /**
621  *      bio_add_pc_page -       attempt to add page to bio
622  *      @q: the target queue
623  *      @bio: destination bio
624  *      @page: page to add
625  *      @len: vec entry length
626  *      @offset: vec entry offset
627  *
628  *      Attempt to add a page to the bio_vec maplist. This can fail for a
629  *      number of reasons, such as the bio being full or target block
630  *      device limitations. The target block device must allow bio's
631  *      smaller than PAGE_SIZE, so it is always possible to add a single
632  *      page to an empty bio. This should only be used by REQ_PC bios.
633  */
634 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
635                     unsigned int len, unsigned int offset)
636 {
637         return __bio_add_page(q, bio, page, len, offset,
638                               queue_max_hw_sectors(q));
639 }
640
641 /**
642  *      bio_add_page    -       attempt to add page to bio
643  *      @bio: destination bio
644  *      @page: page to add
645  *      @len: vec entry length
646  *      @offset: vec entry offset
647  *
648  *      Attempt to add a page to the bio_vec maplist. This can fail for a
649  *      number of reasons, such as the bio being full or target block
650  *      device limitations. The target block device must allow bio's
651  *      smaller than PAGE_SIZE, so it is always possible to add a single
652  *      page to an empty bio.
653  */
654 int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
655                  unsigned int offset)
656 {
657         struct request_queue *q = bdev_get_queue(bio->bi_bdev);
658         return __bio_add_page(q, bio, page, len, offset, queue_max_sectors(q));
659 }
660
661 struct bio_map_data {
662         struct bio_vec *iovecs;
663         struct sg_iovec *sgvecs;
664         int nr_sgvecs;
665         int is_our_pages;
666 };
667
668 static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio,
669                              struct sg_iovec *iov, int iov_count,
670                              int is_our_pages)
671 {
672         memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt);
673         memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count);
674         bmd->nr_sgvecs = iov_count;
675         bmd->is_our_pages = is_our_pages;
676         bio->bi_private = bmd;
677 }
678
679 static void bio_free_map_data(struct bio_map_data *bmd)
680 {
681         kfree(bmd->iovecs);
682         kfree(bmd->sgvecs);
683         kfree(bmd);
684 }
685
686 static struct bio_map_data *bio_alloc_map_data(int nr_segs, int iov_count,
687                                                gfp_t gfp_mask)
688 {
689         struct bio_map_data *bmd = kmalloc(sizeof(*bmd), gfp_mask);
690
691         if (!bmd)
692                 return NULL;
693
694         bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, gfp_mask);
695         if (!bmd->iovecs) {
696                 kfree(bmd);
697                 return NULL;
698         }
699
700         bmd->sgvecs = kmalloc(sizeof(struct sg_iovec) * iov_count, gfp_mask);
701         if (bmd->sgvecs)
702                 return bmd;
703
704         kfree(bmd->iovecs);
705         kfree(bmd);
706         return NULL;
707 }
708
709 static int __bio_copy_iov(struct bio *bio, struct bio_vec *iovecs,
710                           struct sg_iovec *iov, int iov_count, int uncopy,
711                           int do_free_page)
712 {
713         int ret = 0, i;
714         struct bio_vec *bvec;
715         int iov_idx = 0;
716         unsigned int iov_off = 0;
717         int read = bio_data_dir(bio) == READ;
718
719         __bio_for_each_segment(bvec, bio, i, 0) {
720                 char *bv_addr = page_address(bvec->bv_page);
721                 unsigned int bv_len = iovecs[i].bv_len;
722
723                 while (bv_len && iov_idx < iov_count) {
724                         unsigned int bytes;
725                         char __user *iov_addr;
726
727                         bytes = min_t(unsigned int,
728                                       iov[iov_idx].iov_len - iov_off, bv_len);
729                         iov_addr = iov[iov_idx].iov_base + iov_off;
730
731                         if (!ret) {
732                                 if (!read && !uncopy)
733                                         ret = copy_from_user(bv_addr, iov_addr,
734                                                              bytes);
735                                 if (read && uncopy)
736                                         ret = copy_to_user(iov_addr, bv_addr,
737                                                            bytes);
738
739                                 if (ret)
740                                         ret = -EFAULT;
741                         }
742
743                         bv_len -= bytes;
744                         bv_addr += bytes;
745                         iov_addr += bytes;
746                         iov_off += bytes;
747
748                         if (iov[iov_idx].iov_len == iov_off) {
749                                 iov_idx++;
750                                 iov_off = 0;
751                         }
752                 }
753
754                 if (do_free_page)
755                         __free_page(bvec->bv_page);
756         }
757
758         return ret;
759 }
760
761 /**
762  *      bio_uncopy_user -       finish previously mapped bio
763  *      @bio: bio being terminated
764  *
765  *      Free pages allocated from bio_copy_user() and write back data
766  *      to user space in case of a read.
767  */
768 int bio_uncopy_user(struct bio *bio)
769 {
770         struct bio_map_data *bmd = bio->bi_private;
771         int ret = 0;
772
773         if (!bio_flagged(bio, BIO_NULL_MAPPED))
774                 ret = __bio_copy_iov(bio, bmd->iovecs, bmd->sgvecs,
775                                      bmd->nr_sgvecs, 1, bmd->is_our_pages);
776         bio_free_map_data(bmd);
777         bio_put(bio);
778         return ret;
779 }
780
781 /**
782  *      bio_copy_user_iov       -       copy user data to bio
783  *      @q: destination block queue
784  *      @map_data: pointer to the rq_map_data holding pages (if necessary)
785  *      @iov:   the iovec.
786  *      @iov_count: number of elements in the iovec
787  *      @write_to_vm: bool indicating writing to pages or not
788  *      @gfp_mask: memory allocation flags
789  *
790  *      Prepares and returns a bio for indirect user io, bouncing data
791  *      to/from kernel pages as necessary. Must be paired with
792  *      call bio_uncopy_user() on io completion.
793  */
794 struct bio *bio_copy_user_iov(struct request_queue *q,
795                               struct rq_map_data *map_data,
796                               struct sg_iovec *iov, int iov_count,
797                               int write_to_vm, gfp_t gfp_mask)
798 {
799         struct bio_map_data *bmd;
800         struct bio_vec *bvec;
801         struct page *page;
802         struct bio *bio;
803         int i, ret;
804         int nr_pages = 0;
805         unsigned int len = 0;
806         unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0;
807
808         for (i = 0; i < iov_count; i++) {
809                 unsigned long uaddr;
810                 unsigned long end;
811                 unsigned long start;
812
813                 uaddr = (unsigned long)iov[i].iov_base;
814                 end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
815                 start = uaddr >> PAGE_SHIFT;
816
817                 nr_pages += end - start;
818                 len += iov[i].iov_len;
819         }
820
821         if (offset)
822                 nr_pages++;
823
824         bmd = bio_alloc_map_data(nr_pages, iov_count, gfp_mask);
825         if (!bmd)
826                 return ERR_PTR(-ENOMEM);
827
828         ret = -ENOMEM;
829         bio = bio_kmalloc(gfp_mask, nr_pages);
830         if (!bio)
831                 goto out_bmd;
832
833         bio->bi_rw |= (!write_to_vm << BIO_RW);
834
835         ret = 0;
836
837         if (map_data) {
838                 nr_pages = 1 << map_data->page_order;
839                 i = map_data->offset / PAGE_SIZE;
840         }
841         while (len) {
842                 unsigned int bytes = PAGE_SIZE;
843
844                 bytes -= offset;
845
846                 if (bytes > len)
847                         bytes = len;
848
849                 if (map_data) {
850                         if (i == map_data->nr_entries * nr_pages) {
851                                 ret = -ENOMEM;
852                                 break;
853                         }
854
855                         page = map_data->pages[i / nr_pages];
856                         page += (i % nr_pages);
857
858                         i++;
859                 } else {
860                         page = alloc_page(q->bounce_gfp | gfp_mask);
861                         if (!page) {
862                                 ret = -ENOMEM;
863                                 break;
864                         }
865                 }
866
867                 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
868                         break;
869
870                 len -= bytes;
871                 offset = 0;
872         }
873
874         if (ret)
875                 goto cleanup;
876
877         /*
878          * success
879          */
880         if (!write_to_vm && (!map_data || !map_data->null_mapped)) {
881                 ret = __bio_copy_iov(bio, bio->bi_io_vec, iov, iov_count, 0, 0);
882                 if (ret)
883                         goto cleanup;
884         }
885
886         bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1);
887         return bio;
888 cleanup:
889         if (!map_data)
890                 bio_for_each_segment(bvec, bio, i)
891                         __free_page(bvec->bv_page);
892
893         bio_put(bio);
894 out_bmd:
895         bio_free_map_data(bmd);
896         return ERR_PTR(ret);
897 }
898
899 /**
900  *      bio_copy_user   -       copy user data to bio
901  *      @q: destination block queue
902  *      @map_data: pointer to the rq_map_data holding pages (if necessary)
903  *      @uaddr: start of user address
904  *      @len: length in bytes
905  *      @write_to_vm: bool indicating writing to pages or not
906  *      @gfp_mask: memory allocation flags
907  *
908  *      Prepares and returns a bio for indirect user io, bouncing data
909  *      to/from kernel pages as necessary. Must be paired with
910  *      call bio_uncopy_user() on io completion.
911  */
912 struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data,
913                           unsigned long uaddr, unsigned int len,
914                           int write_to_vm, gfp_t gfp_mask)
915 {
916         struct sg_iovec iov;
917
918         iov.iov_base = (void __user *)uaddr;
919         iov.iov_len = len;
920
921         return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask);
922 }
923
924 static struct bio *__bio_map_user_iov(struct request_queue *q,
925                                       struct block_device *bdev,
926                                       struct sg_iovec *iov, int iov_count,
927                                       int write_to_vm, gfp_t gfp_mask)
928 {
929         int i, j;
930         int nr_pages = 0;
931         struct page **pages;
932         struct bio *bio;
933         int cur_page = 0;
934         int ret, offset;
935
936         for (i = 0; i < iov_count; i++) {
937                 unsigned long uaddr = (unsigned long)iov[i].iov_base;
938                 unsigned long len = iov[i].iov_len;
939                 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
940                 unsigned long start = uaddr >> PAGE_SHIFT;
941
942                 nr_pages += end - start;
943                 /*
944                  * buffer must be aligned to at least hardsector size for now
945                  */
946                 if (uaddr & queue_dma_alignment(q))
947                         return ERR_PTR(-EINVAL);
948         }
949
950         if (!nr_pages)
951                 return ERR_PTR(-EINVAL);
952
953         bio = bio_kmalloc(gfp_mask, nr_pages);
954         if (!bio)
955                 return ERR_PTR(-ENOMEM);
956
957         ret = -ENOMEM;
958         pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
959         if (!pages)
960                 goto out;
961
962         for (i = 0; i < iov_count; i++) {
963                 unsigned long uaddr = (unsigned long)iov[i].iov_base;
964                 unsigned long len = iov[i].iov_len;
965                 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
966                 unsigned long start = uaddr >> PAGE_SHIFT;
967                 const int local_nr_pages = end - start;
968                 const int page_limit = cur_page + local_nr_pages;
969                 
970                 ret = get_user_pages_fast(uaddr, local_nr_pages,
971                                 write_to_vm, &pages[cur_page]);
972                 if (ret < local_nr_pages) {
973                         ret = -EFAULT;
974                         goto out_unmap;
975                 }
976
977                 offset = uaddr & ~PAGE_MASK;
978                 for (j = cur_page; j < page_limit; j++) {
979                         unsigned int bytes = PAGE_SIZE - offset;
980
981                         if (len <= 0)
982                                 break;
983                         
984                         if (bytes > len)
985                                 bytes = len;
986
987                         /*
988                          * sorry...
989                          */
990                         if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
991                                             bytes)
992                                 break;
993
994                         len -= bytes;
995                         offset = 0;
996                 }
997
998                 cur_page = j;
999                 /*
1000                  * release the pages we didn't map into the bio, if any
1001                  */
1002                 while (j < page_limit)
1003                         page_cache_release(pages[j++]);
1004         }
1005
1006         kfree(pages);
1007
1008         /*
1009          * set data direction, and check if mapped pages need bouncing
1010          */
1011         if (!write_to_vm)
1012                 bio->bi_rw |= (1 << BIO_RW);
1013
1014         bio->bi_bdev = bdev;
1015         bio->bi_flags |= (1 << BIO_USER_MAPPED);
1016         return bio;
1017
1018  out_unmap:
1019         for (i = 0; i < nr_pages; i++) {
1020                 if(!pages[i])
1021                         break;
1022                 page_cache_release(pages[i]);
1023         }
1024  out:
1025         kfree(pages);
1026         bio_put(bio);
1027         return ERR_PTR(ret);
1028 }
1029
1030 /**
1031  *      bio_map_user    -       map user address into bio
1032  *      @q: the struct request_queue for the bio
1033  *      @bdev: destination block device
1034  *      @uaddr: start of user address
1035  *      @len: length in bytes
1036  *      @write_to_vm: bool indicating writing to pages or not
1037  *      @gfp_mask: memory allocation flags
1038  *
1039  *      Map the user space address into a bio suitable for io to a block
1040  *      device. Returns an error pointer in case of error.
1041  */
1042 struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev,
1043                          unsigned long uaddr, unsigned int len, int write_to_vm,
1044                          gfp_t gfp_mask)
1045 {
1046         struct sg_iovec iov;
1047
1048         iov.iov_base = (void __user *)uaddr;
1049         iov.iov_len = len;
1050
1051         return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask);
1052 }
1053
1054 /**
1055  *      bio_map_user_iov - map user sg_iovec table into bio
1056  *      @q: the struct request_queue for the bio
1057  *      @bdev: destination block device
1058  *      @iov:   the iovec.
1059  *      @iov_count: number of elements in the iovec
1060  *      @write_to_vm: bool indicating writing to pages or not
1061  *      @gfp_mask: memory allocation flags
1062  *
1063  *      Map the user space address into a bio suitable for io to a block
1064  *      device. Returns an error pointer in case of error.
1065  */
1066 struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev,
1067                              struct sg_iovec *iov, int iov_count,
1068                              int write_to_vm, gfp_t gfp_mask)
1069 {
1070         struct bio *bio;
1071
1072         bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm,
1073                                  gfp_mask);
1074         if (IS_ERR(bio))
1075                 return bio;
1076
1077         /*
1078          * subtle -- if __bio_map_user() ended up bouncing a bio,
1079          * it would normally disappear when its bi_end_io is run.
1080          * however, we need it for the unmap, so grab an extra
1081          * reference to it
1082          */
1083         bio_get(bio);
1084
1085         return bio;
1086 }
1087
1088 static void __bio_unmap_user(struct bio *bio)
1089 {
1090         struct bio_vec *bvec;
1091         int i;
1092
1093         /*
1094          * make sure we dirty pages we wrote to
1095          */
1096         __bio_for_each_segment(bvec, bio, i, 0) {
1097                 if (bio_data_dir(bio) == READ)
1098                         set_page_dirty_lock(bvec->bv_page);
1099
1100                 page_cache_release(bvec->bv_page);
1101         }
1102
1103         bio_put(bio);
1104 }
1105
1106 /**
1107  *      bio_unmap_user  -       unmap a bio
1108  *      @bio:           the bio being unmapped
1109  *
1110  *      Unmap a bio previously mapped by bio_map_user(). Must be called with
1111  *      a process context.
1112  *
1113  *      bio_unmap_user() may sleep.
1114  */
1115 void bio_unmap_user(struct bio *bio)
1116 {
1117         __bio_unmap_user(bio);
1118         bio_put(bio);
1119 }
1120
1121 static void bio_map_kern_endio(struct bio *bio, int err)
1122 {
1123         bio_put(bio);
1124 }
1125
1126
1127 static struct bio *__bio_map_kern(struct request_queue *q, void *data,
1128                                   unsigned int len, gfp_t gfp_mask)
1129 {
1130         unsigned long kaddr = (unsigned long)data;
1131         unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1132         unsigned long start = kaddr >> PAGE_SHIFT;
1133         const int nr_pages = end - start;
1134         int offset, i;
1135         struct bio *bio;
1136
1137         bio = bio_kmalloc(gfp_mask, nr_pages);
1138         if (!bio)
1139                 return ERR_PTR(-ENOMEM);
1140
1141         offset = offset_in_page(kaddr);
1142         for (i = 0; i < nr_pages; i++) {
1143                 unsigned int bytes = PAGE_SIZE - offset;
1144
1145                 if (len <= 0)
1146                         break;
1147
1148                 if (bytes > len)
1149                         bytes = len;
1150
1151                 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1152                                     offset) < bytes)
1153                         break;
1154
1155                 data += bytes;
1156                 len -= bytes;
1157                 offset = 0;
1158         }
1159
1160         bio->bi_end_io = bio_map_kern_endio;
1161         return bio;
1162 }
1163
1164 /**
1165  *      bio_map_kern    -       map kernel address into bio
1166  *      @q: the struct request_queue for the bio
1167  *      @data: pointer to buffer to map
1168  *      @len: length in bytes
1169  *      @gfp_mask: allocation flags for bio allocation
1170  *
1171  *      Map the kernel address into a bio suitable for io to a block
1172  *      device. Returns an error pointer in case of error.
1173  */
1174 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1175                          gfp_t gfp_mask)
1176 {
1177         struct bio *bio;
1178
1179         bio = __bio_map_kern(q, data, len, gfp_mask);
1180         if (IS_ERR(bio))
1181                 return bio;
1182
1183         if (bio->bi_size == len)
1184                 return bio;
1185
1186         /*
1187          * Don't support partial mappings.
1188          */
1189         bio_put(bio);
1190         return ERR_PTR(-EINVAL);
1191 }
1192
1193 static void bio_copy_kern_endio(struct bio *bio, int err)
1194 {
1195         struct bio_vec *bvec;
1196         const int read = bio_data_dir(bio) == READ;
1197         struct bio_map_data *bmd = bio->bi_private;
1198         int i;
1199         char *p = bmd->sgvecs[0].iov_base;
1200
1201         __bio_for_each_segment(bvec, bio, i, 0) {
1202                 char *addr = page_address(bvec->bv_page);
1203                 int len = bmd->iovecs[i].bv_len;
1204
1205                 if (read)
1206                         memcpy(p, addr, len);
1207
1208                 __free_page(bvec->bv_page);
1209                 p += len;
1210         }
1211
1212         bio_free_map_data(bmd);
1213         bio_put(bio);
1214 }
1215
1216 /**
1217  *      bio_copy_kern   -       copy kernel address into bio
1218  *      @q: the struct request_queue for the bio
1219  *      @data: pointer to buffer to copy
1220  *      @len: length in bytes
1221  *      @gfp_mask: allocation flags for bio and page allocation
1222  *      @reading: data direction is READ
1223  *
1224  *      copy the kernel address into a bio suitable for io to a block
1225  *      device. Returns an error pointer in case of error.
1226  */
1227 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1228                           gfp_t gfp_mask, int reading)
1229 {
1230         struct bio *bio;
1231         struct bio_vec *bvec;
1232         int i;
1233
1234         bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask);
1235         if (IS_ERR(bio))
1236                 return bio;
1237
1238         if (!reading) {
1239                 void *p = data;
1240
1241                 bio_for_each_segment(bvec, bio, i) {
1242                         char *addr = page_address(bvec->bv_page);
1243
1244                         memcpy(addr, p, bvec->bv_len);
1245                         p += bvec->bv_len;
1246                 }
1247         }
1248
1249         bio->bi_end_io = bio_copy_kern_endio;
1250
1251         return bio;
1252 }
1253
1254 /*
1255  * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1256  * for performing direct-IO in BIOs.
1257  *
1258  * The problem is that we cannot run set_page_dirty() from interrupt context
1259  * because the required locks are not interrupt-safe.  So what we can do is to
1260  * mark the pages dirty _before_ performing IO.  And in interrupt context,
1261  * check that the pages are still dirty.   If so, fine.  If not, redirty them
1262  * in process context.
1263  *
1264  * We special-case compound pages here: normally this means reads into hugetlb
1265  * pages.  The logic in here doesn't really work right for compound pages
1266  * because the VM does not uniformly chase down the head page in all cases.
1267  * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1268  * handle them at all.  So we skip compound pages here at an early stage.
1269  *
1270  * Note that this code is very hard to test under normal circumstances because
1271  * direct-io pins the pages with get_user_pages().  This makes
1272  * is_page_cache_freeable return false, and the VM will not clean the pages.
1273  * But other code (eg, pdflush) could clean the pages if they are mapped
1274  * pagecache.
1275  *
1276  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1277  * deferred bio dirtying paths.
1278  */
1279
1280 /*
1281  * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1282  */
1283 void bio_set_pages_dirty(struct bio *bio)
1284 {
1285         struct bio_vec *bvec = bio->bi_io_vec;
1286         int i;
1287
1288         for (i = 0; i < bio->bi_vcnt; i++) {
1289                 struct page *page = bvec[i].bv_page;
1290
1291                 if (page && !PageCompound(page))
1292                         set_page_dirty_lock(page);
1293         }
1294 }
1295
1296 static void bio_release_pages(struct bio *bio)
1297 {
1298         struct bio_vec *bvec = bio->bi_io_vec;
1299         int i;
1300
1301         for (i = 0; i < bio->bi_vcnt; i++) {
1302                 struct page *page = bvec[i].bv_page;
1303
1304                 if (page)
1305                         put_page(page);
1306         }
1307 }
1308
1309 /*
1310  * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1311  * If they are, then fine.  If, however, some pages are clean then they must
1312  * have been written out during the direct-IO read.  So we take another ref on
1313  * the BIO and the offending pages and re-dirty the pages in process context.
1314  *
1315  * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1316  * here on.  It will run one page_cache_release() against each page and will
1317  * run one bio_put() against the BIO.
1318  */
1319
1320 static void bio_dirty_fn(struct work_struct *work);
1321
1322 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1323 static DEFINE_SPINLOCK(bio_dirty_lock);
1324 static struct bio *bio_dirty_list;
1325
1326 /*
1327  * This runs in process context
1328  */
1329 static void bio_dirty_fn(struct work_struct *work)
1330 {
1331         unsigned long flags;
1332         struct bio *bio;
1333
1334         spin_lock_irqsave(&bio_dirty_lock, flags);
1335         bio = bio_dirty_list;
1336         bio_dirty_list = NULL;
1337         spin_unlock_irqrestore(&bio_dirty_lock, flags);
1338
1339         while (bio) {
1340                 struct bio *next = bio->bi_private;
1341
1342                 bio_set_pages_dirty(bio);
1343                 bio_release_pages(bio);
1344                 bio_put(bio);
1345                 bio = next;
1346         }
1347 }
1348
1349 void bio_check_pages_dirty(struct bio *bio)
1350 {
1351         struct bio_vec *bvec = bio->bi_io_vec;
1352         int nr_clean_pages = 0;
1353         int i;
1354
1355         for (i = 0; i < bio->bi_vcnt; i++) {
1356                 struct page *page = bvec[i].bv_page;
1357
1358                 if (PageDirty(page) || PageCompound(page)) {
1359                         page_cache_release(page);
1360                         bvec[i].bv_page = NULL;
1361                 } else {
1362                         nr_clean_pages++;
1363                 }
1364         }
1365
1366         if (nr_clean_pages) {
1367                 unsigned long flags;
1368
1369                 spin_lock_irqsave(&bio_dirty_lock, flags);
1370                 bio->bi_private = bio_dirty_list;
1371                 bio_dirty_list = bio;
1372                 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1373                 schedule_work(&bio_dirty_work);
1374         } else {
1375                 bio_put(bio);
1376         }
1377 }
1378
1379 /**
1380  * bio_endio - end I/O on a bio
1381  * @bio:        bio
1382  * @error:      error, if any
1383  *
1384  * Description:
1385  *   bio_endio() will end I/O on the whole bio. bio_endio() is the
1386  *   preferred way to end I/O on a bio, it takes care of clearing
1387  *   BIO_UPTODATE on error. @error is 0 on success, and and one of the
1388  *   established -Exxxx (-EIO, for instance) error values in case
1389  *   something went wrong. Noone should call bi_end_io() directly on a
1390  *   bio unless they own it and thus know that it has an end_io
1391  *   function.
1392  **/
1393 void bio_endio(struct bio *bio, int error)
1394 {
1395         if (error)
1396                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
1397         else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1398                 error = -EIO;
1399
1400         if (bio->bi_end_io)
1401                 bio->bi_end_io(bio, error);
1402 }
1403
1404 void bio_pair_release(struct bio_pair *bp)
1405 {
1406         if (atomic_dec_and_test(&bp->cnt)) {
1407                 struct bio *master = bp->bio1.bi_private;
1408
1409                 bio_endio(master, bp->error);
1410                 mempool_free(bp, bp->bio2.bi_private);
1411         }
1412 }
1413
1414 static void bio_pair_end_1(struct bio *bi, int err)
1415 {
1416         struct bio_pair *bp = container_of(bi, struct bio_pair, bio1);
1417
1418         if (err)
1419                 bp->error = err;
1420
1421         bio_pair_release(bp);
1422 }
1423
1424 static void bio_pair_end_2(struct bio *bi, int err)
1425 {
1426         struct bio_pair *bp = container_of(bi, struct bio_pair, bio2);
1427
1428         if (err)
1429                 bp->error = err;
1430
1431         bio_pair_release(bp);
1432 }
1433
1434 /*
1435  * split a bio - only worry about a bio with a single page in its iovec
1436  */
1437 struct bio_pair *bio_split(struct bio *bi, int first_sectors)
1438 {
1439         struct bio_pair *bp = mempool_alloc(bio_split_pool, GFP_NOIO);
1440
1441         if (!bp)
1442                 return bp;
1443
1444         trace_block_split(bdev_get_queue(bi->bi_bdev), bi,
1445                                 bi->bi_sector + first_sectors);
1446
1447         BUG_ON(bi->bi_vcnt != 1);
1448         BUG_ON(bi->bi_idx != 0);
1449         atomic_set(&bp->cnt, 3);
1450         bp->error = 0;
1451         bp->bio1 = *bi;
1452         bp->bio2 = *bi;
1453         bp->bio2.bi_sector += first_sectors;
1454         bp->bio2.bi_size -= first_sectors << 9;
1455         bp->bio1.bi_size = first_sectors << 9;
1456
1457         bp->bv1 = bi->bi_io_vec[0];
1458         bp->bv2 = bi->bi_io_vec[0];
1459         bp->bv2.bv_offset += first_sectors << 9;
1460         bp->bv2.bv_len -= first_sectors << 9;
1461         bp->bv1.bv_len = first_sectors << 9;
1462
1463         bp->bio1.bi_io_vec = &bp->bv1;
1464         bp->bio2.bi_io_vec = &bp->bv2;
1465
1466         bp->bio1.bi_max_vecs = 1;
1467         bp->bio2.bi_max_vecs = 1;
1468
1469         bp->bio1.bi_end_io = bio_pair_end_1;
1470         bp->bio2.bi_end_io = bio_pair_end_2;
1471
1472         bp->bio1.bi_private = bi;
1473         bp->bio2.bi_private = bio_split_pool;
1474
1475         if (bio_integrity(bi))
1476                 bio_integrity_split(bi, bp, first_sectors);
1477
1478         return bp;
1479 }
1480
1481 /**
1482  *      bio_sector_offset - Find hardware sector offset in bio
1483  *      @bio:           bio to inspect
1484  *      @index:         bio_vec index
1485  *      @offset:        offset in bv_page
1486  *
1487  *      Return the number of hardware sectors between beginning of bio
1488  *      and an end point indicated by a bio_vec index and an offset
1489  *      within that vector's page.
1490  */
1491 sector_t bio_sector_offset(struct bio *bio, unsigned short index,
1492                            unsigned int offset)
1493 {
1494         unsigned int sector_sz;
1495         struct bio_vec *bv;
1496         sector_t sectors;
1497         int i;
1498
1499         sector_sz = queue_logical_block_size(bio->bi_bdev->bd_disk->queue);
1500         sectors = 0;
1501
1502         if (index >= bio->bi_idx)
1503                 index = bio->bi_vcnt - 1;
1504
1505         __bio_for_each_segment(bv, bio, i, 0) {
1506                 if (i == index) {
1507                         if (offset > bv->bv_offset)
1508                                 sectors += (offset - bv->bv_offset) / sector_sz;
1509                         break;
1510                 }
1511
1512                 sectors += bv->bv_len / sector_sz;
1513         }
1514
1515         return sectors;
1516 }
1517 EXPORT_SYMBOL(bio_sector_offset);
1518
1519 /*
1520  * create memory pools for biovec's in a bio_set.
1521  * use the global biovec slabs created for general use.
1522  */
1523 static int biovec_create_pools(struct bio_set *bs, int pool_entries)
1524 {
1525         struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
1526
1527         bs->bvec_pool = mempool_create_slab_pool(pool_entries, bp->slab);
1528         if (!bs->bvec_pool)
1529                 return -ENOMEM;
1530
1531         return 0;
1532 }
1533
1534 static void biovec_free_pools(struct bio_set *bs)
1535 {
1536         mempool_destroy(bs->bvec_pool);
1537 }
1538
1539 void bioset_free(struct bio_set *bs)
1540 {
1541         if (bs->bio_pool)
1542                 mempool_destroy(bs->bio_pool);
1543
1544         biovec_free_pools(bs);
1545         bio_put_slab(bs);
1546
1547         kfree(bs);
1548 }
1549
1550 /**
1551  * bioset_create  - Create a bio_set
1552  * @pool_size:  Number of bio and bio_vecs to cache in the mempool
1553  * @front_pad:  Number of bytes to allocate in front of the returned bio
1554  *
1555  * Description:
1556  *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1557  *    to ask for a number of bytes to be allocated in front of the bio.
1558  *    Front pad allocation is useful for embedding the bio inside
1559  *    another structure, to avoid allocating extra data to go with the bio.
1560  *    Note that the bio must be embedded at the END of that structure always,
1561  *    or things will break badly.
1562  */
1563 struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1564 {
1565         unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1566         struct bio_set *bs;
1567
1568         bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1569         if (!bs)
1570                 return NULL;
1571
1572         bs->front_pad = front_pad;
1573
1574         bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1575         if (!bs->bio_slab) {
1576                 kfree(bs);
1577                 return NULL;
1578         }
1579
1580         bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1581         if (!bs->bio_pool)
1582                 goto bad;
1583
1584         if (!biovec_create_pools(bs, pool_size))
1585                 return bs;
1586
1587 bad:
1588         bioset_free(bs);
1589         return NULL;
1590 }
1591
1592 static void __init biovec_init_slabs(void)
1593 {
1594         int i;
1595
1596         for (i = 0; i < BIOVEC_NR_POOLS; i++) {
1597                 int size;
1598                 struct biovec_slab *bvs = bvec_slabs + i;
1599
1600 #ifndef CONFIG_BLK_DEV_INTEGRITY
1601                 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
1602                         bvs->slab = NULL;
1603                         continue;
1604                 }
1605 #endif
1606
1607                 size = bvs->nr_vecs * sizeof(struct bio_vec);
1608                 bvs->slab = kmem_cache_create(bvs->name, size, 0,
1609                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1610         }
1611 }
1612
1613 static int __init init_bio(void)
1614 {
1615         bio_slab_max = 2;
1616         bio_slab_nr = 0;
1617         bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
1618         if (!bio_slabs)
1619                 panic("bio: can't allocate bios\n");
1620
1621         biovec_init_slabs();
1622
1623         fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
1624         if (!fs_bio_set)
1625                 panic("bio: can't allocate bios\n");
1626
1627         bio_split_pool = mempool_create_kmalloc_pool(BIO_SPLIT_ENTRIES,
1628                                                      sizeof(struct bio_pair));
1629         if (!bio_split_pool)
1630                 panic("bio: can't create split pool\n");
1631
1632         return 0;
1633 }
1634
1635 subsys_initcall(init_bio);
1636
1637 EXPORT_SYMBOL(bio_alloc);
1638 EXPORT_SYMBOL(bio_kmalloc);
1639 EXPORT_SYMBOL(bio_put);
1640 EXPORT_SYMBOL(bio_free);
1641 EXPORT_SYMBOL(bio_endio);
1642 EXPORT_SYMBOL(bio_init);
1643 EXPORT_SYMBOL(__bio_clone);
1644 EXPORT_SYMBOL(bio_clone);
1645 EXPORT_SYMBOL(bio_phys_segments);
1646 EXPORT_SYMBOL(bio_add_page);
1647 EXPORT_SYMBOL(bio_add_pc_page);
1648 EXPORT_SYMBOL(bio_get_nr_vecs);
1649 EXPORT_SYMBOL(bio_map_user);
1650 EXPORT_SYMBOL(bio_unmap_user);
1651 EXPORT_SYMBOL(bio_map_kern);
1652 EXPORT_SYMBOL(bio_copy_kern);
1653 EXPORT_SYMBOL(bio_pair_release);
1654 EXPORT_SYMBOL(bio_split);
1655 EXPORT_SYMBOL(bio_copy_user);
1656 EXPORT_SYMBOL(bio_uncopy_user);
1657 EXPORT_SYMBOL(bioset_create);
1658 EXPORT_SYMBOL(bioset_free);
1659 EXPORT_SYMBOL(bio_alloc_bioset);