KVM: Use kzalloc to avoid allocating kvm_regs from kernel stack
[linux-2.6.git] / fs / aio.c
1 /*
2  *      An async IO implementation for Linux
3  *      Written by Benjamin LaHaise <bcrl@kvack.org>
4  *
5  *      Implements an efficient asynchronous io interface.
6  *
7  *      Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8  *
9  *      See ../COPYING for licensing terms.
10  */
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/errno.h>
14 #include <linux/time.h>
15 #include <linux/aio_abi.h>
16 #include <linux/module.h>
17 #include <linux/syscalls.h>
18 #include <linux/uio.h>
19
20 #define DEBUG 0
21
22 #include <linux/sched.h>
23 #include <linux/fs.h>
24 #include <linux/file.h>
25 #include <linux/mm.h>
26 #include <linux/mman.h>
27 #include <linux/slab.h>
28 #include <linux/timer.h>
29 #include <linux/aio.h>
30 #include <linux/highmem.h>
31 #include <linux/workqueue.h>
32 #include <linux/security.h>
33 #include <linux/eventfd.h>
34
35 #include <asm/kmap_types.h>
36 #include <asm/uaccess.h>
37 #include <asm/mmu_context.h>
38
39 #if DEBUG > 1
40 #define dprintk         printk
41 #else
42 #define dprintk(x...)   do { ; } while (0)
43 #endif
44
45 /*------ sysctl variables----*/
46 static DEFINE_SPINLOCK(aio_nr_lock);
47 unsigned long aio_nr;           /* current system wide number of aio requests */
48 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
49 /*----end sysctl variables---*/
50
51 static struct kmem_cache        *kiocb_cachep;
52 static struct kmem_cache        *kioctx_cachep;
53
54 static struct workqueue_struct *aio_wq;
55
56 /* Used for rare fput completion. */
57 static void aio_fput_routine(struct work_struct *);
58 static DECLARE_WORK(fput_work, aio_fput_routine);
59
60 static DEFINE_SPINLOCK(fput_lock);
61 static LIST_HEAD(fput_head);
62
63 static void aio_kick_handler(struct work_struct *);
64 static void aio_queue_work(struct kioctx *);
65
66 /* aio_setup
67  *      Creates the slab caches used by the aio routines, panic on
68  *      failure as this is done early during the boot sequence.
69  */
70 static int __init aio_setup(void)
71 {
72         kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
73         kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
74
75         aio_wq = create_workqueue("aio");
76
77         pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page));
78
79         return 0;
80 }
81
82 static void aio_free_ring(struct kioctx *ctx)
83 {
84         struct aio_ring_info *info = &ctx->ring_info;
85         long i;
86
87         for (i=0; i<info->nr_pages; i++)
88                 put_page(info->ring_pages[i]);
89
90         if (info->mmap_size) {
91                 down_write(&ctx->mm->mmap_sem);
92                 do_munmap(ctx->mm, info->mmap_base, info->mmap_size);
93                 up_write(&ctx->mm->mmap_sem);
94         }
95
96         if (info->ring_pages && info->ring_pages != info->internal_pages)
97                 kfree(info->ring_pages);
98         info->ring_pages = NULL;
99         info->nr = 0;
100 }
101
102 static int aio_setup_ring(struct kioctx *ctx)
103 {
104         struct aio_ring *ring;
105         struct aio_ring_info *info = &ctx->ring_info;
106         unsigned nr_events = ctx->max_reqs;
107         unsigned long size;
108         int nr_pages;
109
110         /* Compensate for the ring buffer's head/tail overlap entry */
111         nr_events += 2; /* 1 is required, 2 for good luck */
112
113         size = sizeof(struct aio_ring);
114         size += sizeof(struct io_event) * nr_events;
115         nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT;
116
117         if (nr_pages < 0)
118                 return -EINVAL;
119
120         nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event);
121
122         info->nr = 0;
123         info->ring_pages = info->internal_pages;
124         if (nr_pages > AIO_RING_PAGES) {
125                 info->ring_pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
126                 if (!info->ring_pages)
127                         return -ENOMEM;
128         }
129
130         info->mmap_size = nr_pages * PAGE_SIZE;
131         dprintk("attempting mmap of %lu bytes\n", info->mmap_size);
132         down_write(&ctx->mm->mmap_sem);
133         info->mmap_base = do_mmap(NULL, 0, info->mmap_size, 
134                                   PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE,
135                                   0);
136         if (IS_ERR((void *)info->mmap_base)) {
137                 up_write(&ctx->mm->mmap_sem);
138                 info->mmap_size = 0;
139                 aio_free_ring(ctx);
140                 return -EAGAIN;
141         }
142
143         dprintk("mmap address: 0x%08lx\n", info->mmap_base);
144         info->nr_pages = get_user_pages(current, ctx->mm,
145                                         info->mmap_base, nr_pages, 
146                                         1, 0, info->ring_pages, NULL);
147         up_write(&ctx->mm->mmap_sem);
148
149         if (unlikely(info->nr_pages != nr_pages)) {
150                 aio_free_ring(ctx);
151                 return -EAGAIN;
152         }
153
154         ctx->user_id = info->mmap_base;
155
156         info->nr = nr_events;           /* trusted copy */
157
158         ring = kmap_atomic(info->ring_pages[0], KM_USER0);
159         ring->nr = nr_events;   /* user copy */
160         ring->id = ctx->user_id;
161         ring->head = ring->tail = 0;
162         ring->magic = AIO_RING_MAGIC;
163         ring->compat_features = AIO_RING_COMPAT_FEATURES;
164         ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
165         ring->header_length = sizeof(struct aio_ring);
166         kunmap_atomic(ring, KM_USER0);
167
168         return 0;
169 }
170
171
172 /* aio_ring_event: returns a pointer to the event at the given index from
173  * kmap_atomic(, km).  Release the pointer with put_aio_ring_event();
174  */
175 #define AIO_EVENTS_PER_PAGE     (PAGE_SIZE / sizeof(struct io_event))
176 #define AIO_EVENTS_FIRST_PAGE   ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
177 #define AIO_EVENTS_OFFSET       (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
178
179 #define aio_ring_event(info, nr, km) ({                                 \
180         unsigned pos = (nr) + AIO_EVENTS_OFFSET;                        \
181         struct io_event *__event;                                       \
182         __event = kmap_atomic(                                          \
183                         (info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \
184         __event += pos % AIO_EVENTS_PER_PAGE;                           \
185         __event;                                                        \
186 })
187
188 #define put_aio_ring_event(event, km) do {      \
189         struct io_event *__event = (event);     \
190         (void)__event;                          \
191         kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \
192 } while(0)
193
194 /* ioctx_alloc
195  *      Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
196  */
197 static struct kioctx *ioctx_alloc(unsigned nr_events)
198 {
199         struct mm_struct *mm;
200         struct kioctx *ctx;
201
202         /* Prevent overflows */
203         if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
204             (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
205                 pr_debug("ENOMEM: nr_events too high\n");
206                 return ERR_PTR(-EINVAL);
207         }
208
209         if ((unsigned long)nr_events > aio_max_nr)
210                 return ERR_PTR(-EAGAIN);
211
212         ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
213         if (!ctx)
214                 return ERR_PTR(-ENOMEM);
215
216         ctx->max_reqs = nr_events;
217         mm = ctx->mm = current->mm;
218         atomic_inc(&mm->mm_count);
219
220         atomic_set(&ctx->users, 1);
221         spin_lock_init(&ctx->ctx_lock);
222         spin_lock_init(&ctx->ring_info.ring_lock);
223         init_waitqueue_head(&ctx->wait);
224
225         INIT_LIST_HEAD(&ctx->active_reqs);
226         INIT_LIST_HEAD(&ctx->run_list);
227         INIT_DELAYED_WORK(&ctx->wq, aio_kick_handler);
228
229         if (aio_setup_ring(ctx) < 0)
230                 goto out_freectx;
231
232         /* limit the number of system wide aios */
233         spin_lock(&aio_nr_lock);
234         if (aio_nr + ctx->max_reqs > aio_max_nr ||
235             aio_nr + ctx->max_reqs < aio_nr)
236                 ctx->max_reqs = 0;
237         else
238                 aio_nr += ctx->max_reqs;
239         spin_unlock(&aio_nr_lock);
240         if (ctx->max_reqs == 0)
241                 goto out_cleanup;
242
243         /* now link into global list.  kludge.  FIXME */
244         write_lock(&mm->ioctx_list_lock);
245         ctx->next = mm->ioctx_list;
246         mm->ioctx_list = ctx;
247         write_unlock(&mm->ioctx_list_lock);
248
249         dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
250                 ctx, ctx->user_id, current->mm, ctx->ring_info.nr);
251         return ctx;
252
253 out_cleanup:
254         __put_ioctx(ctx);
255         return ERR_PTR(-EAGAIN);
256
257 out_freectx:
258         mmdrop(mm);
259         kmem_cache_free(kioctx_cachep, ctx);
260         ctx = ERR_PTR(-ENOMEM);
261
262         dprintk("aio: error allocating ioctx %p\n", ctx);
263         return ctx;
264 }
265
266 /* aio_cancel_all
267  *      Cancels all outstanding aio requests on an aio context.  Used 
268  *      when the processes owning a context have all exited to encourage 
269  *      the rapid destruction of the kioctx.
270  */
271 static void aio_cancel_all(struct kioctx *ctx)
272 {
273         int (*cancel)(struct kiocb *, struct io_event *);
274         struct io_event res;
275         spin_lock_irq(&ctx->ctx_lock);
276         ctx->dead = 1;
277         while (!list_empty(&ctx->active_reqs)) {
278                 struct list_head *pos = ctx->active_reqs.next;
279                 struct kiocb *iocb = list_kiocb(pos);
280                 list_del_init(&iocb->ki_list);
281                 cancel = iocb->ki_cancel;
282                 kiocbSetCancelled(iocb);
283                 if (cancel) {
284                         iocb->ki_users++;
285                         spin_unlock_irq(&ctx->ctx_lock);
286                         cancel(iocb, &res);
287                         spin_lock_irq(&ctx->ctx_lock);
288                 }
289         }
290         spin_unlock_irq(&ctx->ctx_lock);
291 }
292
293 static void wait_for_all_aios(struct kioctx *ctx)
294 {
295         struct task_struct *tsk = current;
296         DECLARE_WAITQUEUE(wait, tsk);
297
298         spin_lock_irq(&ctx->ctx_lock);
299         if (!ctx->reqs_active)
300                 goto out;
301
302         add_wait_queue(&ctx->wait, &wait);
303         set_task_state(tsk, TASK_UNINTERRUPTIBLE);
304         while (ctx->reqs_active) {
305                 spin_unlock_irq(&ctx->ctx_lock);
306                 io_schedule();
307                 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
308                 spin_lock_irq(&ctx->ctx_lock);
309         }
310         __set_task_state(tsk, TASK_RUNNING);
311         remove_wait_queue(&ctx->wait, &wait);
312
313 out:
314         spin_unlock_irq(&ctx->ctx_lock);
315 }
316
317 /* wait_on_sync_kiocb:
318  *      Waits on the given sync kiocb to complete.
319  */
320 ssize_t wait_on_sync_kiocb(struct kiocb *iocb)
321 {
322         while (iocb->ki_users) {
323                 set_current_state(TASK_UNINTERRUPTIBLE);
324                 if (!iocb->ki_users)
325                         break;
326                 io_schedule();
327         }
328         __set_current_state(TASK_RUNNING);
329         return iocb->ki_user_data;
330 }
331
332 /* exit_aio: called when the last user of mm goes away.  At this point, 
333  * there is no way for any new requests to be submited or any of the 
334  * io_* syscalls to be called on the context.  However, there may be 
335  * outstanding requests which hold references to the context; as they 
336  * go away, they will call put_ioctx and release any pinned memory
337  * associated with the request (held via struct page * references).
338  */
339 void exit_aio(struct mm_struct *mm)
340 {
341         struct kioctx *ctx = mm->ioctx_list;
342         mm->ioctx_list = NULL;
343         while (ctx) {
344                 struct kioctx *next = ctx->next;
345                 ctx->next = NULL;
346                 aio_cancel_all(ctx);
347
348                 wait_for_all_aios(ctx);
349                 /*
350                  * Ensure we don't leave the ctx on the aio_wq
351                  */
352                 cancel_work_sync(&ctx->wq.work);
353
354                 if (1 != atomic_read(&ctx->users))
355                         printk(KERN_DEBUG
356                                 "exit_aio:ioctx still alive: %d %d %d\n",
357                                 atomic_read(&ctx->users), ctx->dead,
358                                 ctx->reqs_active);
359                 put_ioctx(ctx);
360                 ctx = next;
361         }
362 }
363
364 /* __put_ioctx
365  *      Called when the last user of an aio context has gone away,
366  *      and the struct needs to be freed.
367  */
368 void __put_ioctx(struct kioctx *ctx)
369 {
370         unsigned nr_events = ctx->max_reqs;
371
372         BUG_ON(ctx->reqs_active);
373
374         cancel_delayed_work(&ctx->wq);
375         cancel_work_sync(&ctx->wq.work);
376         aio_free_ring(ctx);
377         mmdrop(ctx->mm);
378         ctx->mm = NULL;
379         pr_debug("__put_ioctx: freeing %p\n", ctx);
380         kmem_cache_free(kioctx_cachep, ctx);
381
382         if (nr_events) {
383                 spin_lock(&aio_nr_lock);
384                 BUG_ON(aio_nr - nr_events > aio_nr);
385                 aio_nr -= nr_events;
386                 spin_unlock(&aio_nr_lock);
387         }
388 }
389
390 /* aio_get_req
391  *      Allocate a slot for an aio request.  Increments the users count
392  * of the kioctx so that the kioctx stays around until all requests are
393  * complete.  Returns NULL if no requests are free.
394  *
395  * Returns with kiocb->users set to 2.  The io submit code path holds
396  * an extra reference while submitting the i/o.
397  * This prevents races between the aio code path referencing the
398  * req (after submitting it) and aio_complete() freeing the req.
399  */
400 static struct kiocb *__aio_get_req(struct kioctx *ctx)
401 {
402         struct kiocb *req = NULL;
403         struct aio_ring *ring;
404         int okay = 0;
405
406         req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
407         if (unlikely(!req))
408                 return NULL;
409
410         req->ki_flags = 0;
411         req->ki_users = 2;
412         req->ki_key = 0;
413         req->ki_ctx = ctx;
414         req->ki_cancel = NULL;
415         req->ki_retry = NULL;
416         req->ki_dtor = NULL;
417         req->private = NULL;
418         req->ki_iovec = NULL;
419         INIT_LIST_HEAD(&req->ki_run_list);
420         req->ki_eventfd = ERR_PTR(-EINVAL);
421
422         /* Check if the completion queue has enough free space to
423          * accept an event from this io.
424          */
425         spin_lock_irq(&ctx->ctx_lock);
426         ring = kmap_atomic(ctx->ring_info.ring_pages[0], KM_USER0);
427         if (ctx->reqs_active < aio_ring_avail(&ctx->ring_info, ring)) {
428                 list_add(&req->ki_list, &ctx->active_reqs);
429                 ctx->reqs_active++;
430                 okay = 1;
431         }
432         kunmap_atomic(ring, KM_USER0);
433         spin_unlock_irq(&ctx->ctx_lock);
434
435         if (!okay) {
436                 kmem_cache_free(kiocb_cachep, req);
437                 req = NULL;
438         }
439
440         return req;
441 }
442
443 static inline struct kiocb *aio_get_req(struct kioctx *ctx)
444 {
445         struct kiocb *req;
446         /* Handle a potential starvation case -- should be exceedingly rare as 
447          * requests will be stuck on fput_head only if the aio_fput_routine is 
448          * delayed and the requests were the last user of the struct file.
449          */
450         req = __aio_get_req(ctx);
451         if (unlikely(NULL == req)) {
452                 aio_fput_routine(NULL);
453                 req = __aio_get_req(ctx);
454         }
455         return req;
456 }
457
458 static inline void really_put_req(struct kioctx *ctx, struct kiocb *req)
459 {
460         assert_spin_locked(&ctx->ctx_lock);
461
462         if (!IS_ERR(req->ki_eventfd))
463                 fput(req->ki_eventfd);
464         if (req->ki_dtor)
465                 req->ki_dtor(req);
466         if (req->ki_iovec != &req->ki_inline_vec)
467                 kfree(req->ki_iovec);
468         kmem_cache_free(kiocb_cachep, req);
469         ctx->reqs_active--;
470
471         if (unlikely(!ctx->reqs_active && ctx->dead))
472                 wake_up(&ctx->wait);
473 }
474
475 static void aio_fput_routine(struct work_struct *data)
476 {
477         spin_lock_irq(&fput_lock);
478         while (likely(!list_empty(&fput_head))) {
479                 struct kiocb *req = list_kiocb(fput_head.next);
480                 struct kioctx *ctx = req->ki_ctx;
481
482                 list_del(&req->ki_list);
483                 spin_unlock_irq(&fput_lock);
484
485                 /* Complete the fput */
486                 __fput(req->ki_filp);
487
488                 /* Link the iocb into the context's free list */
489                 spin_lock_irq(&ctx->ctx_lock);
490                 really_put_req(ctx, req);
491                 spin_unlock_irq(&ctx->ctx_lock);
492
493                 put_ioctx(ctx);
494                 spin_lock_irq(&fput_lock);
495         }
496         spin_unlock_irq(&fput_lock);
497 }
498
499 /* __aio_put_req
500  *      Returns true if this put was the last user of the request.
501  */
502 static int __aio_put_req(struct kioctx *ctx, struct kiocb *req)
503 {
504         dprintk(KERN_DEBUG "aio_put(%p): f_count=%d\n",
505                 req, atomic_read(&req->ki_filp->f_count));
506
507         assert_spin_locked(&ctx->ctx_lock);
508
509         req->ki_users --;
510         BUG_ON(req->ki_users < 0);
511         if (likely(req->ki_users))
512                 return 0;
513         list_del(&req->ki_list);                /* remove from active_reqs */
514         req->ki_cancel = NULL;
515         req->ki_retry = NULL;
516
517         /* Must be done under the lock to serialise against cancellation.
518          * Call this aio_fput as it duplicates fput via the fput_work.
519          */
520         if (unlikely(atomic_dec_and_test(&req->ki_filp->f_count))) {
521                 get_ioctx(ctx);
522                 spin_lock(&fput_lock);
523                 list_add(&req->ki_list, &fput_head);
524                 spin_unlock(&fput_lock);
525                 queue_work(aio_wq, &fput_work);
526         } else
527                 really_put_req(ctx, req);
528         return 1;
529 }
530
531 /* aio_put_req
532  *      Returns true if this put was the last user of the kiocb,
533  *      false if the request is still in use.
534  */
535 int aio_put_req(struct kiocb *req)
536 {
537         struct kioctx *ctx = req->ki_ctx;
538         int ret;
539         spin_lock_irq(&ctx->ctx_lock);
540         ret = __aio_put_req(ctx, req);
541         spin_unlock_irq(&ctx->ctx_lock);
542         return ret;
543 }
544
545 /*      Lookup an ioctx id.  ioctx_list is lockless for reads.
546  *      FIXME: this is O(n) and is only suitable for development.
547  */
548 struct kioctx *lookup_ioctx(unsigned long ctx_id)
549 {
550         struct kioctx *ioctx;
551         struct mm_struct *mm;
552
553         mm = current->mm;
554         read_lock(&mm->ioctx_list_lock);
555         for (ioctx = mm->ioctx_list; ioctx; ioctx = ioctx->next)
556                 if (likely(ioctx->user_id == ctx_id && !ioctx->dead)) {
557                         get_ioctx(ioctx);
558                         break;
559                 }
560         read_unlock(&mm->ioctx_list_lock);
561
562         return ioctx;
563 }
564
565 /*
566  * use_mm
567  *      Makes the calling kernel thread take on the specified
568  *      mm context.
569  *      Called by the retry thread execute retries within the
570  *      iocb issuer's mm context, so that copy_from/to_user
571  *      operations work seamlessly for aio.
572  *      (Note: this routine is intended to be called only
573  *      from a kernel thread context)
574  */
575 static void use_mm(struct mm_struct *mm)
576 {
577         struct mm_struct *active_mm;
578         struct task_struct *tsk = current;
579
580         task_lock(tsk);
581         tsk->flags |= PF_BORROWED_MM;
582         active_mm = tsk->active_mm;
583         atomic_inc(&mm->mm_count);
584         tsk->mm = mm;
585         tsk->active_mm = mm;
586         /*
587          * Note that on UML this *requires* PF_BORROWED_MM to be set, otherwise
588          * it won't work. Update it accordingly if you change it here
589          */
590         switch_mm(active_mm, mm, tsk);
591         task_unlock(tsk);
592
593         mmdrop(active_mm);
594 }
595
596 /*
597  * unuse_mm
598  *      Reverses the effect of use_mm, i.e. releases the
599  *      specified mm context which was earlier taken on
600  *      by the calling kernel thread
601  *      (Note: this routine is intended to be called only
602  *      from a kernel thread context)
603  */
604 static void unuse_mm(struct mm_struct *mm)
605 {
606         struct task_struct *tsk = current;
607
608         task_lock(tsk);
609         tsk->flags &= ~PF_BORROWED_MM;
610         tsk->mm = NULL;
611         /* active_mm is still 'mm' */
612         enter_lazy_tlb(mm, tsk);
613         task_unlock(tsk);
614 }
615
616 /*
617  * Queue up a kiocb to be retried. Assumes that the kiocb
618  * has already been marked as kicked, and places it on
619  * the retry run list for the corresponding ioctx, if it
620  * isn't already queued. Returns 1 if it actually queued
621  * the kiocb (to tell the caller to activate the work
622  * queue to process it), or 0, if it found that it was
623  * already queued.
624  */
625 static inline int __queue_kicked_iocb(struct kiocb *iocb)
626 {
627         struct kioctx *ctx = iocb->ki_ctx;
628
629         assert_spin_locked(&ctx->ctx_lock);
630
631         if (list_empty(&iocb->ki_run_list)) {
632                 list_add_tail(&iocb->ki_run_list,
633                         &ctx->run_list);
634                 return 1;
635         }
636         return 0;
637 }
638
639 /* aio_run_iocb
640  *      This is the core aio execution routine. It is
641  *      invoked both for initial i/o submission and
642  *      subsequent retries via the aio_kick_handler.
643  *      Expects to be invoked with iocb->ki_ctx->lock
644  *      already held. The lock is released and reacquired
645  *      as needed during processing.
646  *
647  * Calls the iocb retry method (already setup for the
648  * iocb on initial submission) for operation specific
649  * handling, but takes care of most of common retry
650  * execution details for a given iocb. The retry method
651  * needs to be non-blocking as far as possible, to avoid
652  * holding up other iocbs waiting to be serviced by the
653  * retry kernel thread.
654  *
655  * The trickier parts in this code have to do with
656  * ensuring that only one retry instance is in progress
657  * for a given iocb at any time. Providing that guarantee
658  * simplifies the coding of individual aio operations as
659  * it avoids various potential races.
660  */
661 static ssize_t aio_run_iocb(struct kiocb *iocb)
662 {
663         struct kioctx   *ctx = iocb->ki_ctx;
664         ssize_t (*retry)(struct kiocb *);
665         ssize_t ret;
666
667         if (!(retry = iocb->ki_retry)) {
668                 printk("aio_run_iocb: iocb->ki_retry = NULL\n");
669                 return 0;
670         }
671
672         /*
673          * We don't want the next retry iteration for this
674          * operation to start until this one has returned and
675          * updated the iocb state. However, wait_queue functions
676          * can trigger a kick_iocb from interrupt context in the
677          * meantime, indicating that data is available for the next
678          * iteration. We want to remember that and enable the
679          * next retry iteration _after_ we are through with
680          * this one.
681          *
682          * So, in order to be able to register a "kick", but
683          * prevent it from being queued now, we clear the kick
684          * flag, but make the kick code *think* that the iocb is
685          * still on the run list until we are actually done.
686          * When we are done with this iteration, we check if
687          * the iocb was kicked in the meantime and if so, queue
688          * it up afresh.
689          */
690
691         kiocbClearKicked(iocb);
692
693         /*
694          * This is so that aio_complete knows it doesn't need to
695          * pull the iocb off the run list (We can't just call
696          * INIT_LIST_HEAD because we don't want a kick_iocb to
697          * queue this on the run list yet)
698          */
699         iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL;
700         spin_unlock_irq(&ctx->ctx_lock);
701
702         /* Quit retrying if the i/o has been cancelled */
703         if (kiocbIsCancelled(iocb)) {
704                 ret = -EINTR;
705                 aio_complete(iocb, ret, 0);
706                 /* must not access the iocb after this */
707                 goto out;
708         }
709
710         /*
711          * Now we are all set to call the retry method in async
712          * context.
713          */
714         ret = retry(iocb);
715
716         if (ret != -EIOCBRETRY && ret != -EIOCBQUEUED) {
717                 BUG_ON(!list_empty(&iocb->ki_wait.task_list));
718                 aio_complete(iocb, ret, 0);
719         }
720 out:
721         spin_lock_irq(&ctx->ctx_lock);
722
723         if (-EIOCBRETRY == ret) {
724                 /*
725                  * OK, now that we are done with this iteration
726                  * and know that there is more left to go,
727                  * this is where we let go so that a subsequent
728                  * "kick" can start the next iteration
729                  */
730
731                 /* will make __queue_kicked_iocb succeed from here on */
732                 INIT_LIST_HEAD(&iocb->ki_run_list);
733                 /* we must queue the next iteration ourselves, if it
734                  * has already been kicked */
735                 if (kiocbIsKicked(iocb)) {
736                         __queue_kicked_iocb(iocb);
737
738                         /*
739                          * __queue_kicked_iocb will always return 1 here, because
740                          * iocb->ki_run_list is empty at this point so it should
741                          * be safe to unconditionally queue the context into the
742                          * work queue.
743                          */
744                         aio_queue_work(ctx);
745                 }
746         }
747         return ret;
748 }
749
750 /*
751  * __aio_run_iocbs:
752  *      Process all pending retries queued on the ioctx
753  *      run list.
754  * Assumes it is operating within the aio issuer's mm
755  * context.
756  */
757 static int __aio_run_iocbs(struct kioctx *ctx)
758 {
759         struct kiocb *iocb;
760         struct list_head run_list;
761
762         assert_spin_locked(&ctx->ctx_lock);
763
764         list_replace_init(&ctx->run_list, &run_list);
765         while (!list_empty(&run_list)) {
766                 iocb = list_entry(run_list.next, struct kiocb,
767                         ki_run_list);
768                 list_del(&iocb->ki_run_list);
769                 /*
770                  * Hold an extra reference while retrying i/o.
771                  */
772                 iocb->ki_users++;       /* grab extra reference */
773                 aio_run_iocb(iocb);
774                 __aio_put_req(ctx, iocb);
775         }
776         if (!list_empty(&ctx->run_list))
777                 return 1;
778         return 0;
779 }
780
781 static void aio_queue_work(struct kioctx * ctx)
782 {
783         unsigned long timeout;
784         /*
785          * if someone is waiting, get the work started right
786          * away, otherwise, use a longer delay
787          */
788         smp_mb();
789         if (waitqueue_active(&ctx->wait))
790                 timeout = 1;
791         else
792                 timeout = HZ/10;
793         queue_delayed_work(aio_wq, &ctx->wq, timeout);
794 }
795
796
797 /*
798  * aio_run_iocbs:
799  *      Process all pending retries queued on the ioctx
800  *      run list.
801  * Assumes it is operating within the aio issuer's mm
802  * context.
803  */
804 static inline void aio_run_iocbs(struct kioctx *ctx)
805 {
806         int requeue;
807
808         spin_lock_irq(&ctx->ctx_lock);
809
810         requeue = __aio_run_iocbs(ctx);
811         spin_unlock_irq(&ctx->ctx_lock);
812         if (requeue)
813                 aio_queue_work(ctx);
814 }
815
816 /*
817  * just like aio_run_iocbs, but keeps running them until
818  * the list stays empty
819  */
820 static inline void aio_run_all_iocbs(struct kioctx *ctx)
821 {
822         spin_lock_irq(&ctx->ctx_lock);
823         while (__aio_run_iocbs(ctx))
824                 ;
825         spin_unlock_irq(&ctx->ctx_lock);
826 }
827
828 /*
829  * aio_kick_handler:
830  *      Work queue handler triggered to process pending
831  *      retries on an ioctx. Takes on the aio issuer's
832  *      mm context before running the iocbs, so that
833  *      copy_xxx_user operates on the issuer's address
834  *      space.
835  * Run on aiod's context.
836  */
837 static void aio_kick_handler(struct work_struct *work)
838 {
839         struct kioctx *ctx = container_of(work, struct kioctx, wq.work);
840         mm_segment_t oldfs = get_fs();
841         struct mm_struct *mm;
842         int requeue;
843
844         set_fs(USER_DS);
845         use_mm(ctx->mm);
846         spin_lock_irq(&ctx->ctx_lock);
847         requeue =__aio_run_iocbs(ctx);
848         mm = ctx->mm;
849         spin_unlock_irq(&ctx->ctx_lock);
850         unuse_mm(mm);
851         set_fs(oldfs);
852         /*
853          * we're in a worker thread already, don't use queue_delayed_work,
854          */
855         if (requeue)
856                 queue_delayed_work(aio_wq, &ctx->wq, 0);
857 }
858
859
860 /*
861  * Called by kick_iocb to queue the kiocb for retry
862  * and if required activate the aio work queue to process
863  * it
864  */
865 static void try_queue_kicked_iocb(struct kiocb *iocb)
866 {
867         struct kioctx   *ctx = iocb->ki_ctx;
868         unsigned long flags;
869         int run = 0;
870
871         /* We're supposed to be the only path putting the iocb back on the run
872          * list.  If we find that the iocb is *back* on a wait queue already
873          * than retry has happened before we could queue the iocb.  This also
874          * means that the retry could have completed and freed our iocb, no
875          * good. */
876         BUG_ON((!list_empty(&iocb->ki_wait.task_list)));
877
878         spin_lock_irqsave(&ctx->ctx_lock, flags);
879         /* set this inside the lock so that we can't race with aio_run_iocb()
880          * testing it and putting the iocb on the run list under the lock */
881         if (!kiocbTryKick(iocb))
882                 run = __queue_kicked_iocb(iocb);
883         spin_unlock_irqrestore(&ctx->ctx_lock, flags);
884         if (run)
885                 aio_queue_work(ctx);
886 }
887
888 /*
889  * kick_iocb:
890  *      Called typically from a wait queue callback context
891  *      (aio_wake_function) to trigger a retry of the iocb.
892  *      The retry is usually executed by aio workqueue
893  *      threads (See aio_kick_handler).
894  */
895 void kick_iocb(struct kiocb *iocb)
896 {
897         /* sync iocbs are easy: they can only ever be executing from a 
898          * single context. */
899         if (is_sync_kiocb(iocb)) {
900                 kiocbSetKicked(iocb);
901                 wake_up_process(iocb->ki_obj.tsk);
902                 return;
903         }
904
905         try_queue_kicked_iocb(iocb);
906 }
907 EXPORT_SYMBOL(kick_iocb);
908
909 /* aio_complete
910  *      Called when the io request on the given iocb is complete.
911  *      Returns true if this is the last user of the request.  The 
912  *      only other user of the request can be the cancellation code.
913  */
914 int aio_complete(struct kiocb *iocb, long res, long res2)
915 {
916         struct kioctx   *ctx = iocb->ki_ctx;
917         struct aio_ring_info    *info;
918         struct aio_ring *ring;
919         struct io_event *event;
920         unsigned long   flags;
921         unsigned long   tail;
922         int             ret;
923
924         /*
925          * Special case handling for sync iocbs:
926          *  - events go directly into the iocb for fast handling
927          *  - the sync task with the iocb in its stack holds the single iocb
928          *    ref, no other paths have a way to get another ref
929          *  - the sync task helpfully left a reference to itself in the iocb
930          */
931         if (is_sync_kiocb(iocb)) {
932                 BUG_ON(iocb->ki_users != 1);
933                 iocb->ki_user_data = res;
934                 iocb->ki_users = 0;
935                 wake_up_process(iocb->ki_obj.tsk);
936                 return 1;
937         }
938
939         info = &ctx->ring_info;
940
941         /* add a completion event to the ring buffer.
942          * must be done holding ctx->ctx_lock to prevent
943          * other code from messing with the tail
944          * pointer since we might be called from irq
945          * context.
946          */
947         spin_lock_irqsave(&ctx->ctx_lock, flags);
948
949         if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list))
950                 list_del_init(&iocb->ki_run_list);
951
952         /*
953          * cancelled requests don't get events, userland was given one
954          * when the event got cancelled.
955          */
956         if (kiocbIsCancelled(iocb))
957                 goto put_rq;
958
959         ring = kmap_atomic(info->ring_pages[0], KM_IRQ1);
960
961         tail = info->tail;
962         event = aio_ring_event(info, tail, KM_IRQ0);
963         if (++tail >= info->nr)
964                 tail = 0;
965
966         event->obj = (u64)(unsigned long)iocb->ki_obj.user;
967         event->data = iocb->ki_user_data;
968         event->res = res;
969         event->res2 = res2;
970
971         dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
972                 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
973                 res, res2);
974
975         /* after flagging the request as done, we
976          * must never even look at it again
977          */
978         smp_wmb();      /* make event visible before updating tail */
979
980         info->tail = tail;
981         ring->tail = tail;
982
983         put_aio_ring_event(event, KM_IRQ0);
984         kunmap_atomic(ring, KM_IRQ1);
985
986         pr_debug("added to ring %p at [%lu]\n", iocb, tail);
987
988         /*
989          * Check if the user asked us to deliver the result through an
990          * eventfd. The eventfd_signal() function is safe to be called
991          * from IRQ context.
992          */
993         if (!IS_ERR(iocb->ki_eventfd))
994                 eventfd_signal(iocb->ki_eventfd, 1);
995
996 put_rq:
997         /* everything turned out well, dispose of the aiocb. */
998         ret = __aio_put_req(ctx, iocb);
999
1000         /*
1001          * We have to order our ring_info tail store above and test
1002          * of the wait list below outside the wait lock.  This is
1003          * like in wake_up_bit() where clearing a bit has to be
1004          * ordered with the unlocked test.
1005          */
1006         smp_mb();
1007
1008         if (waitqueue_active(&ctx->wait))
1009                 wake_up(&ctx->wait);
1010
1011         spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1012         return ret;
1013 }
1014
1015 /* aio_read_evt
1016  *      Pull an event off of the ioctx's event ring.  Returns the number of 
1017  *      events fetched (0 or 1 ;-)
1018  *      FIXME: make this use cmpxchg.
1019  *      TODO: make the ringbuffer user mmap()able (requires FIXME).
1020  */
1021 static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent)
1022 {
1023         struct aio_ring_info *info = &ioctx->ring_info;
1024         struct aio_ring *ring;
1025         unsigned long head;
1026         int ret = 0;
1027
1028         ring = kmap_atomic(info->ring_pages[0], KM_USER0);
1029         dprintk("in aio_read_evt h%lu t%lu m%lu\n",
1030                  (unsigned long)ring->head, (unsigned long)ring->tail,
1031                  (unsigned long)ring->nr);
1032
1033         if (ring->head == ring->tail)
1034                 goto out;
1035
1036         spin_lock(&info->ring_lock);
1037
1038         head = ring->head % info->nr;
1039         if (head != ring->tail) {
1040                 struct io_event *evp = aio_ring_event(info, head, KM_USER1);
1041                 *ent = *evp;
1042                 head = (head + 1) % info->nr;
1043                 smp_mb(); /* finish reading the event before updatng the head */
1044                 ring->head = head;
1045                 ret = 1;
1046                 put_aio_ring_event(evp, KM_USER1);
1047         }
1048         spin_unlock(&info->ring_lock);
1049
1050 out:
1051         kunmap_atomic(ring, KM_USER0);
1052         dprintk("leaving aio_read_evt: %d  h%lu t%lu\n", ret,
1053                  (unsigned long)ring->head, (unsigned long)ring->tail);
1054         return ret;
1055 }
1056
1057 struct aio_timeout {
1058         struct timer_list       timer;
1059         int                     timed_out;
1060         struct task_struct      *p;
1061 };
1062
1063 static void timeout_func(unsigned long data)
1064 {
1065         struct aio_timeout *to = (struct aio_timeout *)data;
1066
1067         to->timed_out = 1;
1068         wake_up_process(to->p);
1069 }
1070
1071 static inline void init_timeout(struct aio_timeout *to)
1072 {
1073         init_timer(&to->timer);
1074         to->timer.data = (unsigned long)to;
1075         to->timer.function = timeout_func;
1076         to->timed_out = 0;
1077         to->p = current;
1078 }
1079
1080 static inline void set_timeout(long start_jiffies, struct aio_timeout *to,
1081                                const struct timespec *ts)
1082 {
1083         to->timer.expires = start_jiffies + timespec_to_jiffies(ts);
1084         if (time_after(to->timer.expires, jiffies))
1085                 add_timer(&to->timer);
1086         else
1087                 to->timed_out = 1;
1088 }
1089
1090 static inline void clear_timeout(struct aio_timeout *to)
1091 {
1092         del_singleshot_timer_sync(&to->timer);
1093 }
1094
1095 static int read_events(struct kioctx *ctx,
1096                         long min_nr, long nr,
1097                         struct io_event __user *event,
1098                         struct timespec __user *timeout)
1099 {
1100         long                    start_jiffies = jiffies;
1101         struct task_struct      *tsk = current;
1102         DECLARE_WAITQUEUE(wait, tsk);
1103         int                     ret;
1104         int                     i = 0;
1105         struct io_event         ent;
1106         struct aio_timeout      to;
1107         int                     retry = 0;
1108
1109         /* needed to zero any padding within an entry (there shouldn't be 
1110          * any, but C is fun!
1111          */
1112         memset(&ent, 0, sizeof(ent));
1113 retry:
1114         ret = 0;
1115         while (likely(i < nr)) {
1116                 ret = aio_read_evt(ctx, &ent);
1117                 if (unlikely(ret <= 0))
1118                         break;
1119
1120                 dprintk("read event: %Lx %Lx %Lx %Lx\n",
1121                         ent.data, ent.obj, ent.res, ent.res2);
1122
1123                 /* Could we split the check in two? */
1124                 ret = -EFAULT;
1125                 if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1126                         dprintk("aio: lost an event due to EFAULT.\n");
1127                         break;
1128                 }
1129                 ret = 0;
1130
1131                 /* Good, event copied to userland, update counts. */
1132                 event ++;
1133                 i ++;
1134         }
1135
1136         if (min_nr <= i)
1137                 return i;
1138         if (ret)
1139                 return ret;
1140
1141         /* End fast path */
1142
1143         /* racey check, but it gets redone */
1144         if (!retry && unlikely(!list_empty(&ctx->run_list))) {
1145                 retry = 1;
1146                 aio_run_all_iocbs(ctx);
1147                 goto retry;
1148         }
1149
1150         init_timeout(&to);
1151         if (timeout) {
1152                 struct timespec ts;
1153                 ret = -EFAULT;
1154                 if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1155                         goto out;
1156
1157                 set_timeout(start_jiffies, &to, &ts);
1158         }
1159
1160         while (likely(i < nr)) {
1161                 add_wait_queue_exclusive(&ctx->wait, &wait);
1162                 do {
1163                         set_task_state(tsk, TASK_INTERRUPTIBLE);
1164                         ret = aio_read_evt(ctx, &ent);
1165                         if (ret)
1166                                 break;
1167                         if (min_nr <= i)
1168                                 break;
1169                         ret = 0;
1170                         if (to.timed_out)       /* Only check after read evt */
1171                                 break;
1172                         /* Try to only show up in io wait if there are ops
1173                          *  in flight */
1174                         if (ctx->reqs_active)
1175                                 io_schedule();
1176                         else
1177                                 schedule();
1178                         if (signal_pending(tsk)) {
1179                                 ret = -EINTR;
1180                                 break;
1181                         }
1182                         /*ret = aio_read_evt(ctx, &ent);*/
1183                 } while (1) ;
1184
1185                 set_task_state(tsk, TASK_RUNNING);
1186                 remove_wait_queue(&ctx->wait, &wait);
1187
1188                 if (unlikely(ret <= 0))
1189                         break;
1190
1191                 ret = -EFAULT;
1192                 if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1193                         dprintk("aio: lost an event due to EFAULT.\n");
1194                         break;
1195                 }
1196
1197                 /* Good, event copied to userland, update counts. */
1198                 event ++;
1199                 i ++;
1200         }
1201
1202         if (timeout)
1203                 clear_timeout(&to);
1204 out:
1205         return i ? i : ret;
1206 }
1207
1208 /* Take an ioctx and remove it from the list of ioctx's.  Protects 
1209  * against races with itself via ->dead.
1210  */
1211 static void io_destroy(struct kioctx *ioctx)
1212 {
1213         struct mm_struct *mm = current->mm;
1214         struct kioctx **tmp;
1215         int was_dead;
1216
1217         /* delete the entry from the list is someone else hasn't already */
1218         write_lock(&mm->ioctx_list_lock);
1219         was_dead = ioctx->dead;
1220         ioctx->dead = 1;
1221         for (tmp = &mm->ioctx_list; *tmp && *tmp != ioctx;
1222              tmp = &(*tmp)->next)
1223                 ;
1224         if (*tmp)
1225                 *tmp = ioctx->next;
1226         write_unlock(&mm->ioctx_list_lock);
1227
1228         dprintk("aio_release(%p)\n", ioctx);
1229         if (likely(!was_dead))
1230                 put_ioctx(ioctx);       /* twice for the list */
1231
1232         aio_cancel_all(ioctx);
1233         wait_for_all_aios(ioctx);
1234         put_ioctx(ioctx);       /* once for the lookup */
1235 }
1236
1237 /* sys_io_setup:
1238  *      Create an aio_context capable of receiving at least nr_events.
1239  *      ctxp must not point to an aio_context that already exists, and
1240  *      must be initialized to 0 prior to the call.  On successful
1241  *      creation of the aio_context, *ctxp is filled in with the resulting 
1242  *      handle.  May fail with -EINVAL if *ctxp is not initialized,
1243  *      if the specified nr_events exceeds internal limits.  May fail 
1244  *      with -EAGAIN if the specified nr_events exceeds the user's limit 
1245  *      of available events.  May fail with -ENOMEM if insufficient kernel
1246  *      resources are available.  May fail with -EFAULT if an invalid
1247  *      pointer is passed for ctxp.  Will fail with -ENOSYS if not
1248  *      implemented.
1249  */
1250 asmlinkage long sys_io_setup(unsigned nr_events, aio_context_t __user *ctxp)
1251 {
1252         struct kioctx *ioctx = NULL;
1253         unsigned long ctx;
1254         long ret;
1255
1256         ret = get_user(ctx, ctxp);
1257         if (unlikely(ret))
1258                 goto out;
1259
1260         ret = -EINVAL;
1261         if (unlikely(ctx || nr_events == 0)) {
1262                 pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1263                          ctx, nr_events);
1264                 goto out;
1265         }
1266
1267         ioctx = ioctx_alloc(nr_events);
1268         ret = PTR_ERR(ioctx);
1269         if (!IS_ERR(ioctx)) {
1270                 ret = put_user(ioctx->user_id, ctxp);
1271                 if (!ret)
1272                         return 0;
1273
1274                 get_ioctx(ioctx); /* io_destroy() expects us to hold a ref */
1275                 io_destroy(ioctx);
1276         }
1277
1278 out:
1279         return ret;
1280 }
1281
1282 /* sys_io_destroy:
1283  *      Destroy the aio_context specified.  May cancel any outstanding 
1284  *      AIOs and block on completion.  Will fail with -ENOSYS if not
1285  *      implemented.  May fail with -EFAULT if the context pointed to
1286  *      is invalid.
1287  */
1288 asmlinkage long sys_io_destroy(aio_context_t ctx)
1289 {
1290         struct kioctx *ioctx = lookup_ioctx(ctx);
1291         if (likely(NULL != ioctx)) {
1292                 io_destroy(ioctx);
1293                 return 0;
1294         }
1295         pr_debug("EINVAL: io_destroy: invalid context id\n");
1296         return -EINVAL;
1297 }
1298
1299 static void aio_advance_iovec(struct kiocb *iocb, ssize_t ret)
1300 {
1301         struct iovec *iov = &iocb->ki_iovec[iocb->ki_cur_seg];
1302
1303         BUG_ON(ret <= 0);
1304
1305         while (iocb->ki_cur_seg < iocb->ki_nr_segs && ret > 0) {
1306                 ssize_t this = min((ssize_t)iov->iov_len, ret);
1307                 iov->iov_base += this;
1308                 iov->iov_len -= this;
1309                 iocb->ki_left -= this;
1310                 ret -= this;
1311                 if (iov->iov_len == 0) {
1312                         iocb->ki_cur_seg++;
1313                         iov++;
1314                 }
1315         }
1316
1317         /* the caller should not have done more io than what fit in
1318          * the remaining iovecs */
1319         BUG_ON(ret > 0 && iocb->ki_left == 0);
1320 }
1321
1322 static ssize_t aio_rw_vect_retry(struct kiocb *iocb)
1323 {
1324         struct file *file = iocb->ki_filp;
1325         struct address_space *mapping = file->f_mapping;
1326         struct inode *inode = mapping->host;
1327         ssize_t (*rw_op)(struct kiocb *, const struct iovec *,
1328                          unsigned long, loff_t);
1329         ssize_t ret = 0;
1330         unsigned short opcode;
1331
1332         if ((iocb->ki_opcode == IOCB_CMD_PREADV) ||
1333                 (iocb->ki_opcode == IOCB_CMD_PREAD)) {
1334                 rw_op = file->f_op->aio_read;
1335                 opcode = IOCB_CMD_PREADV;
1336         } else {
1337                 rw_op = file->f_op->aio_write;
1338                 opcode = IOCB_CMD_PWRITEV;
1339         }
1340
1341         /* This matches the pread()/pwrite() logic */
1342         if (iocb->ki_pos < 0)
1343                 return -EINVAL;
1344
1345         do {
1346                 ret = rw_op(iocb, &iocb->ki_iovec[iocb->ki_cur_seg],
1347                             iocb->ki_nr_segs - iocb->ki_cur_seg,
1348                             iocb->ki_pos);
1349                 if (ret > 0)
1350                         aio_advance_iovec(iocb, ret);
1351
1352         /* retry all partial writes.  retry partial reads as long as its a
1353          * regular file. */
1354         } while (ret > 0 && iocb->ki_left > 0 &&
1355                  (opcode == IOCB_CMD_PWRITEV ||
1356                   (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode))));
1357
1358         /* This means we must have transferred all that we could */
1359         /* No need to retry anymore */
1360         if ((ret == 0) || (iocb->ki_left == 0))
1361                 ret = iocb->ki_nbytes - iocb->ki_left;
1362
1363         /* If we managed to write some out we return that, rather than
1364          * the eventual error. */
1365         if (opcode == IOCB_CMD_PWRITEV
1366             && ret < 0 && ret != -EIOCBQUEUED && ret != -EIOCBRETRY
1367             && iocb->ki_nbytes - iocb->ki_left)
1368                 ret = iocb->ki_nbytes - iocb->ki_left;
1369
1370         return ret;
1371 }
1372
1373 static ssize_t aio_fdsync(struct kiocb *iocb)
1374 {
1375         struct file *file = iocb->ki_filp;
1376         ssize_t ret = -EINVAL;
1377
1378         if (file->f_op->aio_fsync)
1379                 ret = file->f_op->aio_fsync(iocb, 1);
1380         return ret;
1381 }
1382
1383 static ssize_t aio_fsync(struct kiocb *iocb)
1384 {
1385         struct file *file = iocb->ki_filp;
1386         ssize_t ret = -EINVAL;
1387
1388         if (file->f_op->aio_fsync)
1389                 ret = file->f_op->aio_fsync(iocb, 0);
1390         return ret;
1391 }
1392
1393 static ssize_t aio_setup_vectored_rw(int type, struct kiocb *kiocb)
1394 {
1395         ssize_t ret;
1396
1397         ret = rw_copy_check_uvector(type, (struct iovec __user *)kiocb->ki_buf,
1398                                     kiocb->ki_nbytes, 1,
1399                                     &kiocb->ki_inline_vec, &kiocb->ki_iovec);
1400         if (ret < 0)
1401                 goto out;
1402
1403         kiocb->ki_nr_segs = kiocb->ki_nbytes;
1404         kiocb->ki_cur_seg = 0;
1405         /* ki_nbytes/left now reflect bytes instead of segs */
1406         kiocb->ki_nbytes = ret;
1407         kiocb->ki_left = ret;
1408
1409         ret = 0;
1410 out:
1411         return ret;
1412 }
1413
1414 static ssize_t aio_setup_single_vector(struct kiocb *kiocb)
1415 {
1416         kiocb->ki_iovec = &kiocb->ki_inline_vec;
1417         kiocb->ki_iovec->iov_base = kiocb->ki_buf;
1418         kiocb->ki_iovec->iov_len = kiocb->ki_left;
1419         kiocb->ki_nr_segs = 1;
1420         kiocb->ki_cur_seg = 0;
1421         return 0;
1422 }
1423
1424 /*
1425  * aio_setup_iocb:
1426  *      Performs the initial checks and aio retry method
1427  *      setup for the kiocb at the time of io submission.
1428  */
1429 static ssize_t aio_setup_iocb(struct kiocb *kiocb)
1430 {
1431         struct file *file = kiocb->ki_filp;
1432         ssize_t ret = 0;
1433
1434         switch (kiocb->ki_opcode) {
1435         case IOCB_CMD_PREAD:
1436                 ret = -EBADF;
1437                 if (unlikely(!(file->f_mode & FMODE_READ)))
1438                         break;
1439                 ret = -EFAULT;
1440                 if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf,
1441                         kiocb->ki_left)))
1442                         break;
1443                 ret = security_file_permission(file, MAY_READ);
1444                 if (unlikely(ret))
1445                         break;
1446                 ret = aio_setup_single_vector(kiocb);
1447                 if (ret)
1448                         break;
1449                 ret = -EINVAL;
1450                 if (file->f_op->aio_read)
1451                         kiocb->ki_retry = aio_rw_vect_retry;
1452                 break;
1453         case IOCB_CMD_PWRITE:
1454                 ret = -EBADF;
1455                 if (unlikely(!(file->f_mode & FMODE_WRITE)))
1456                         break;
1457                 ret = -EFAULT;
1458                 if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf,
1459                         kiocb->ki_left)))
1460                         break;
1461                 ret = security_file_permission(file, MAY_WRITE);
1462                 if (unlikely(ret))
1463                         break;
1464                 ret = aio_setup_single_vector(kiocb);
1465                 if (ret)
1466                         break;
1467                 ret = -EINVAL;
1468                 if (file->f_op->aio_write)
1469                         kiocb->ki_retry = aio_rw_vect_retry;
1470                 break;
1471         case IOCB_CMD_PREADV:
1472                 ret = -EBADF;
1473                 if (unlikely(!(file->f_mode & FMODE_READ)))
1474                         break;
1475                 ret = security_file_permission(file, MAY_READ);
1476                 if (unlikely(ret))
1477                         break;
1478                 ret = aio_setup_vectored_rw(READ, kiocb);
1479                 if (ret)
1480                         break;
1481                 ret = -EINVAL;
1482                 if (file->f_op->aio_read)
1483                         kiocb->ki_retry = aio_rw_vect_retry;
1484                 break;
1485         case IOCB_CMD_PWRITEV:
1486                 ret = -EBADF;
1487                 if (unlikely(!(file->f_mode & FMODE_WRITE)))
1488                         break;
1489                 ret = security_file_permission(file, MAY_WRITE);
1490                 if (unlikely(ret))
1491                         break;
1492                 ret = aio_setup_vectored_rw(WRITE, kiocb);
1493                 if (ret)
1494                         break;
1495                 ret = -EINVAL;
1496                 if (file->f_op->aio_write)
1497                         kiocb->ki_retry = aio_rw_vect_retry;
1498                 break;
1499         case IOCB_CMD_FDSYNC:
1500                 ret = -EINVAL;
1501                 if (file->f_op->aio_fsync)
1502                         kiocb->ki_retry = aio_fdsync;
1503                 break;
1504         case IOCB_CMD_FSYNC:
1505                 ret = -EINVAL;
1506                 if (file->f_op->aio_fsync)
1507                         kiocb->ki_retry = aio_fsync;
1508                 break;
1509         default:
1510                 dprintk("EINVAL: io_submit: no operation provided\n");
1511                 ret = -EINVAL;
1512         }
1513
1514         if (!kiocb->ki_retry)
1515                 return ret;
1516
1517         return 0;
1518 }
1519
1520 /*
1521  * aio_wake_function:
1522  *      wait queue callback function for aio notification,
1523  *      Simply triggers a retry of the operation via kick_iocb.
1524  *
1525  *      This callback is specified in the wait queue entry in
1526  *      a kiocb.
1527  *
1528  * Note:
1529  * This routine is executed with the wait queue lock held.
1530  * Since kick_iocb acquires iocb->ctx->ctx_lock, it nests
1531  * the ioctx lock inside the wait queue lock. This is safe
1532  * because this callback isn't used for wait queues which
1533  * are nested inside ioctx lock (i.e. ctx->wait)
1534  */
1535 static int aio_wake_function(wait_queue_t *wait, unsigned mode,
1536                              int sync, void *key)
1537 {
1538         struct kiocb *iocb = container_of(wait, struct kiocb, ki_wait);
1539
1540         list_del_init(&wait->task_list);
1541         kick_iocb(iocb);
1542         return 1;
1543 }
1544
1545 int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1546                          struct iocb *iocb)
1547 {
1548         struct kiocb *req;
1549         struct file *file;
1550         ssize_t ret;
1551
1552         /* enforce forwards compatibility on users */
1553         if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1554                 pr_debug("EINVAL: io_submit: reserve field set\n");
1555                 return -EINVAL;
1556         }
1557
1558         /* prevent overflows */
1559         if (unlikely(
1560             (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1561             (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1562             ((ssize_t)iocb->aio_nbytes < 0)
1563            )) {
1564                 pr_debug("EINVAL: io_submit: overflow check\n");
1565                 return -EINVAL;
1566         }
1567
1568         file = fget(iocb->aio_fildes);
1569         if (unlikely(!file))
1570                 return -EBADF;
1571
1572         req = aio_get_req(ctx);         /* returns with 2 references to req */
1573         if (unlikely(!req)) {
1574                 fput(file);
1575                 return -EAGAIN;
1576         }
1577         req->ki_filp = file;
1578         if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1579                 /*
1580                  * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1581                  * instance of the file* now. The file descriptor must be
1582                  * an eventfd() fd, and will be signaled for each completed
1583                  * event using the eventfd_signal() function.
1584                  */
1585                 req->ki_eventfd = eventfd_fget((int) iocb->aio_resfd);
1586                 if (unlikely(IS_ERR(req->ki_eventfd))) {
1587                         ret = PTR_ERR(req->ki_eventfd);
1588                         goto out_put_req;
1589                 }
1590         }
1591
1592         ret = put_user(req->ki_key, &user_iocb->aio_key);
1593         if (unlikely(ret)) {
1594                 dprintk("EFAULT: aio_key\n");
1595                 goto out_put_req;
1596         }
1597
1598         req->ki_obj.user = user_iocb;
1599         req->ki_user_data = iocb->aio_data;
1600         req->ki_pos = iocb->aio_offset;
1601
1602         req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf;
1603         req->ki_left = req->ki_nbytes = iocb->aio_nbytes;
1604         req->ki_opcode = iocb->aio_lio_opcode;
1605         init_waitqueue_func_entry(&req->ki_wait, aio_wake_function);
1606         INIT_LIST_HEAD(&req->ki_wait.task_list);
1607
1608         ret = aio_setup_iocb(req);
1609
1610         if (ret)
1611                 goto out_put_req;
1612
1613         spin_lock_irq(&ctx->ctx_lock);
1614         aio_run_iocb(req);
1615         if (!list_empty(&ctx->run_list)) {
1616                 /* drain the run list */
1617                 while (__aio_run_iocbs(ctx))
1618                         ;
1619         }
1620         spin_unlock_irq(&ctx->ctx_lock);
1621         aio_put_req(req);       /* drop extra ref to req */
1622         return 0;
1623
1624 out_put_req:
1625         aio_put_req(req);       /* drop extra ref to req */
1626         aio_put_req(req);       /* drop i/o ref to req */
1627         return ret;
1628 }
1629
1630 /* sys_io_submit:
1631  *      Queue the nr iocbs pointed to by iocbpp for processing.  Returns
1632  *      the number of iocbs queued.  May return -EINVAL if the aio_context
1633  *      specified by ctx_id is invalid, if nr is < 0, if the iocb at
1634  *      *iocbpp[0] is not properly initialized, if the operation specified
1635  *      is invalid for the file descriptor in the iocb.  May fail with
1636  *      -EFAULT if any of the data structures point to invalid data.  May
1637  *      fail with -EBADF if the file descriptor specified in the first
1638  *      iocb is invalid.  May fail with -EAGAIN if insufficient resources
1639  *      are available to queue any iocbs.  Will return 0 if nr is 0.  Will
1640  *      fail with -ENOSYS if not implemented.
1641  */
1642 asmlinkage long sys_io_submit(aio_context_t ctx_id, long nr,
1643                               struct iocb __user * __user *iocbpp)
1644 {
1645         struct kioctx *ctx;
1646         long ret = 0;
1647         int i;
1648
1649         if (unlikely(nr < 0))
1650                 return -EINVAL;
1651
1652         if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1653                 return -EFAULT;
1654
1655         ctx = lookup_ioctx(ctx_id);
1656         if (unlikely(!ctx)) {
1657                 pr_debug("EINVAL: io_submit: invalid context id\n");
1658                 return -EINVAL;
1659         }
1660
1661         /*
1662          * AKPM: should this return a partial result if some of the IOs were
1663          * successfully submitted?
1664          */
1665         for (i=0; i<nr; i++) {
1666                 struct iocb __user *user_iocb;
1667                 struct iocb tmp;
1668
1669                 if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1670                         ret = -EFAULT;
1671                         break;
1672                 }
1673
1674                 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1675                         ret = -EFAULT;
1676                         break;
1677                 }
1678
1679                 ret = io_submit_one(ctx, user_iocb, &tmp);
1680                 if (ret)
1681                         break;
1682         }
1683
1684         put_ioctx(ctx);
1685         return i ? i : ret;
1686 }
1687
1688 /* lookup_kiocb
1689  *      Finds a given iocb for cancellation.
1690  */
1691 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1692                                   u32 key)
1693 {
1694         struct list_head *pos;
1695
1696         assert_spin_locked(&ctx->ctx_lock);
1697
1698         /* TODO: use a hash or array, this sucks. */
1699         list_for_each(pos, &ctx->active_reqs) {
1700                 struct kiocb *kiocb = list_kiocb(pos);
1701                 if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key)
1702                         return kiocb;
1703         }
1704         return NULL;
1705 }
1706
1707 /* sys_io_cancel:
1708  *      Attempts to cancel an iocb previously passed to io_submit.  If
1709  *      the operation is successfully cancelled, the resulting event is
1710  *      copied into the memory pointed to by result without being placed
1711  *      into the completion queue and 0 is returned.  May fail with
1712  *      -EFAULT if any of the data structures pointed to are invalid.
1713  *      May fail with -EINVAL if aio_context specified by ctx_id is
1714  *      invalid.  May fail with -EAGAIN if the iocb specified was not
1715  *      cancelled.  Will fail with -ENOSYS if not implemented.
1716  */
1717 asmlinkage long sys_io_cancel(aio_context_t ctx_id, struct iocb __user *iocb,
1718                               struct io_event __user *result)
1719 {
1720         int (*cancel)(struct kiocb *iocb, struct io_event *res);
1721         struct kioctx *ctx;
1722         struct kiocb *kiocb;
1723         u32 key;
1724         int ret;
1725
1726         ret = get_user(key, &iocb->aio_key);
1727         if (unlikely(ret))
1728                 return -EFAULT;
1729
1730         ctx = lookup_ioctx(ctx_id);
1731         if (unlikely(!ctx))
1732                 return -EINVAL;
1733
1734         spin_lock_irq(&ctx->ctx_lock);
1735         ret = -EAGAIN;
1736         kiocb = lookup_kiocb(ctx, iocb, key);
1737         if (kiocb && kiocb->ki_cancel) {
1738                 cancel = kiocb->ki_cancel;
1739                 kiocb->ki_users ++;
1740                 kiocbSetCancelled(kiocb);
1741         } else
1742                 cancel = NULL;
1743         spin_unlock_irq(&ctx->ctx_lock);
1744
1745         if (NULL != cancel) {
1746                 struct io_event tmp;
1747                 pr_debug("calling cancel\n");
1748                 memset(&tmp, 0, sizeof(tmp));
1749                 tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user;
1750                 tmp.data = kiocb->ki_user_data;
1751                 ret = cancel(kiocb, &tmp);
1752                 if (!ret) {
1753                         /* Cancellation succeeded -- copy the result
1754                          * into the user's buffer.
1755                          */
1756                         if (copy_to_user(result, &tmp, sizeof(tmp)))
1757                                 ret = -EFAULT;
1758                 }
1759         } else
1760                 ret = -EINVAL;
1761
1762         put_ioctx(ctx);
1763
1764         return ret;
1765 }
1766
1767 /* io_getevents:
1768  *      Attempts to read at least min_nr events and up to nr events from
1769  *      the completion queue for the aio_context specified by ctx_id.  May
1770  *      fail with -EINVAL if ctx_id is invalid, if min_nr is out of range,
1771  *      if nr is out of range, if when is out of range.  May fail with
1772  *      -EFAULT if any of the memory specified to is invalid.  May return
1773  *      0 or < min_nr if no events are available and the timeout specified
1774  *      by when has elapsed, where when == NULL specifies an infinite
1775  *      timeout.  Note that the timeout pointed to by when is relative and
1776  *      will be updated if not NULL and the operation blocks.  Will fail
1777  *      with -ENOSYS if not implemented.
1778  */
1779 asmlinkage long sys_io_getevents(aio_context_t ctx_id,
1780                                  long min_nr,
1781                                  long nr,
1782                                  struct io_event __user *events,
1783                                  struct timespec __user *timeout)
1784 {
1785         struct kioctx *ioctx = lookup_ioctx(ctx_id);
1786         long ret = -EINVAL;
1787
1788         if (likely(ioctx)) {
1789                 if (likely(min_nr <= nr && min_nr >= 0 && nr >= 0))
1790                         ret = read_events(ioctx, min_nr, nr, events, timeout);
1791                 put_ioctx(ioctx);
1792         }
1793
1794         asmlinkage_protect(5, ret, ctx_id, min_nr, nr, events, timeout);
1795         return ret;
1796 }
1797
1798 __initcall(aio_setup);
1799
1800 EXPORT_SYMBOL(aio_complete);
1801 EXPORT_SYMBOL(aio_put_req);
1802 EXPORT_SYMBOL(wait_on_sync_kiocb);