intelfb: support 945GME (as used in ASUS Eee 901)
[linux-2.6.git] / drivers / video / intelfb / intelfbhw.c
1 /*
2  * intelfb
3  *
4  * Linux framebuffer driver for Intel(R) 865G integrated graphics chips.
5  *
6  * Copyright © 2002, 2003 David Dawes <dawes@xfree86.org>
7  *                   2004 Sylvain Meyer
8  *
9  * This driver consists of two parts.  The first part (intelfbdrv.c) provides
10  * the basic fbdev interfaces, is derived in part from the radeonfb and
11  * vesafb drivers, and is covered by the GPL.  The second part (intelfbhw.c)
12  * provides the code to program the hardware.  Most of it is derived from
13  * the i810/i830 XFree86 driver.  The HW-specific code is covered here
14  * under a dual license (GPL and MIT/XFree86 license).
15  *
16  * Author: David Dawes
17  *
18  */
19
20 /* $DHD: intelfb/intelfbhw.c,v 1.9 2003/06/27 15:06:25 dawes Exp $ */
21
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/errno.h>
25 #include <linux/string.h>
26 #include <linux/mm.h>
27 #include <linux/slab.h>
28 #include <linux/delay.h>
29 #include <linux/fb.h>
30 #include <linux/ioport.h>
31 #include <linux/init.h>
32 #include <linux/pci.h>
33 #include <linux/vmalloc.h>
34 #include <linux/pagemap.h>
35 #include <linux/interrupt.h>
36
37 #include <asm/io.h>
38
39 #include "intelfb.h"
40 #include "intelfbhw.h"
41
42 struct pll_min_max {
43         int min_m, max_m, min_m1, max_m1;
44         int min_m2, max_m2, min_n, max_n;
45         int min_p, max_p, min_p1, max_p1;
46         int min_vco, max_vco, p_transition_clk, ref_clk;
47         int p_inc_lo, p_inc_hi;
48 };
49
50 #define PLLS_I8xx 0
51 #define PLLS_I9xx 1
52 #define PLLS_MAX 2
53
54 static struct pll_min_max plls[PLLS_MAX] = {
55         { 108, 140, 18, 26,
56           6, 16, 3, 16,
57           4, 128, 0, 31,
58           930000, 1400000, 165000, 48000,
59           4, 2 },               /* I8xx */
60
61         { 75, 120, 10, 20,
62           5, 9, 4, 7,
63           5, 80, 1, 8,
64           1400000, 2800000, 200000, 96000,
65           10, 5 }               /* I9xx */
66 };
67
68 int intelfbhw_get_chipset(struct pci_dev *pdev, struct intelfb_info *dinfo)
69 {
70         u32 tmp;
71         if (!pdev || !dinfo)
72                 return 1;
73
74         switch (pdev->device) {
75         case PCI_DEVICE_ID_INTEL_830M:
76                 dinfo->name = "Intel(R) 830M";
77                 dinfo->chipset = INTEL_830M;
78                 dinfo->mobile = 1;
79                 dinfo->pll_index = PLLS_I8xx;
80                 return 0;
81         case PCI_DEVICE_ID_INTEL_845G:
82                 dinfo->name = "Intel(R) 845G";
83                 dinfo->chipset = INTEL_845G;
84                 dinfo->mobile = 0;
85                 dinfo->pll_index = PLLS_I8xx;
86                 return 0;
87         case PCI_DEVICE_ID_INTEL_85XGM:
88                 tmp = 0;
89                 dinfo->mobile = 1;
90                 dinfo->pll_index = PLLS_I8xx;
91                 pci_read_config_dword(pdev, INTEL_85X_CAPID, &tmp);
92                 switch ((tmp >> INTEL_85X_VARIANT_SHIFT) &
93                         INTEL_85X_VARIANT_MASK) {
94                 case INTEL_VAR_855GME:
95                         dinfo->name = "Intel(R) 855GME";
96                         dinfo->chipset = INTEL_855GME;
97                         return 0;
98                 case INTEL_VAR_855GM:
99                         dinfo->name = "Intel(R) 855GM";
100                         dinfo->chipset = INTEL_855GM;
101                         return 0;
102                 case INTEL_VAR_852GME:
103                         dinfo->name = "Intel(R) 852GME";
104                         dinfo->chipset = INTEL_852GME;
105                         return 0;
106                 case INTEL_VAR_852GM:
107                         dinfo->name = "Intel(R) 852GM";
108                         dinfo->chipset = INTEL_852GM;
109                         return 0;
110                 default:
111                         dinfo->name = "Intel(R) 852GM/855GM";
112                         dinfo->chipset = INTEL_85XGM;
113                         return 0;
114                 }
115                 break;
116         case PCI_DEVICE_ID_INTEL_865G:
117                 dinfo->name = "Intel(R) 865G";
118                 dinfo->chipset = INTEL_865G;
119                 dinfo->mobile = 0;
120                 dinfo->pll_index = PLLS_I8xx;
121                 return 0;
122         case PCI_DEVICE_ID_INTEL_915G:
123                 dinfo->name = "Intel(R) 915G";
124                 dinfo->chipset = INTEL_915G;
125                 dinfo->mobile = 0;
126                 dinfo->pll_index = PLLS_I9xx;
127                 return 0;
128         case PCI_DEVICE_ID_INTEL_915GM:
129                 dinfo->name = "Intel(R) 915GM";
130                 dinfo->chipset = INTEL_915GM;
131                 dinfo->mobile = 1;
132                 dinfo->pll_index = PLLS_I9xx;
133                 return 0;
134         case PCI_DEVICE_ID_INTEL_945G:
135                 dinfo->name = "Intel(R) 945G";
136                 dinfo->chipset = INTEL_945G;
137                 dinfo->mobile = 0;
138                 dinfo->pll_index = PLLS_I9xx;
139                 return 0;
140         case PCI_DEVICE_ID_INTEL_945GM:
141                 dinfo->name = "Intel(R) 945GM";
142                 dinfo->chipset = INTEL_945GM;
143                 dinfo->mobile = 1;
144                 dinfo->pll_index = PLLS_I9xx;
145                 return 0;
146         case PCI_DEVICE_ID_INTEL_945GME:
147                 dinfo->name = "Intel(R) 945GME";
148                 dinfo->chipset = INTEL_945GME;
149                 dinfo->mobile = 1;
150                 dinfo->pll_index = PLLS_I9xx;
151                 return 0;
152         case PCI_DEVICE_ID_INTEL_965G:
153                 dinfo->name = "Intel(R) 965G";
154                 dinfo->chipset = INTEL_965G;
155                 dinfo->mobile = 0;
156                 dinfo->pll_index = PLLS_I9xx;
157                 return 0;
158         case PCI_DEVICE_ID_INTEL_965GM:
159                 dinfo->name = "Intel(R) 965GM";
160                 dinfo->chipset = INTEL_965GM;
161                 dinfo->mobile = 1;
162                 dinfo->pll_index = PLLS_I9xx;
163                 return 0;
164         default:
165                 return 1;
166         }
167 }
168
169 int intelfbhw_get_memory(struct pci_dev *pdev, int *aperture_size,
170                          int *stolen_size)
171 {
172         struct pci_dev *bridge_dev;
173         u16 tmp;
174         int stolen_overhead;
175
176         if (!pdev || !aperture_size || !stolen_size)
177                 return 1;
178
179         /* Find the bridge device.  It is always 0:0.0 */
180         if (!(bridge_dev = pci_get_bus_and_slot(0, PCI_DEVFN(0, 0)))) {
181                 ERR_MSG("cannot find bridge device\n");
182                 return 1;
183         }
184
185         /* Get the fb aperture size and "stolen" memory amount. */
186         tmp = 0;
187         pci_read_config_word(bridge_dev, INTEL_GMCH_CTRL, &tmp);
188         pci_dev_put(bridge_dev);
189
190         switch (pdev->device) {
191         case PCI_DEVICE_ID_INTEL_915G:
192         case PCI_DEVICE_ID_INTEL_915GM:
193         case PCI_DEVICE_ID_INTEL_945G:
194         case PCI_DEVICE_ID_INTEL_945GM:
195         case PCI_DEVICE_ID_INTEL_945GME:
196         case PCI_DEVICE_ID_INTEL_965G:
197         case PCI_DEVICE_ID_INTEL_965GM:
198                 /* 915, 945 and 965 chipsets support a 256MB aperture.
199                    Aperture size is determined by inspected the
200                    base address of the aperture. */
201                 if (pci_resource_start(pdev, 2) & 0x08000000)
202                         *aperture_size = MB(128);
203                 else
204                         *aperture_size = MB(256);
205                 break;
206         default:
207                 if ((tmp & INTEL_GMCH_MEM_MASK) == INTEL_GMCH_MEM_64M)
208                         *aperture_size = MB(64);
209                 else
210                         *aperture_size = MB(128);
211                 break;
212         }
213
214         /* Stolen memory size is reduced by the GTT and the popup.
215            GTT is 1K per MB of aperture size, and popup is 4K. */
216         stolen_overhead = (*aperture_size / MB(1)) + 4;
217         switch(pdev->device) {
218         case PCI_DEVICE_ID_INTEL_830M:
219         case PCI_DEVICE_ID_INTEL_845G:
220                 switch (tmp & INTEL_830_GMCH_GMS_MASK) {
221                 case INTEL_830_GMCH_GMS_STOLEN_512:
222                         *stolen_size = KB(512) - KB(stolen_overhead);
223                         return 0;
224                 case INTEL_830_GMCH_GMS_STOLEN_1024:
225                         *stolen_size = MB(1) - KB(stolen_overhead);
226                         return 0;
227                 case INTEL_830_GMCH_GMS_STOLEN_8192:
228                         *stolen_size = MB(8) - KB(stolen_overhead);
229                         return 0;
230                 case INTEL_830_GMCH_GMS_LOCAL:
231                         ERR_MSG("only local memory found\n");
232                         return 1;
233                 case INTEL_830_GMCH_GMS_DISABLED:
234                         ERR_MSG("video memory is disabled\n");
235                         return 1;
236                 default:
237                         ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
238                                 tmp & INTEL_830_GMCH_GMS_MASK);
239                         return 1;
240                 }
241                 break;
242         default:
243                 switch (tmp & INTEL_855_GMCH_GMS_MASK) {
244                 case INTEL_855_GMCH_GMS_STOLEN_1M:
245                         *stolen_size = MB(1) - KB(stolen_overhead);
246                         return 0;
247                 case INTEL_855_GMCH_GMS_STOLEN_4M:
248                         *stolen_size = MB(4) - KB(stolen_overhead);
249                         return 0;
250                 case INTEL_855_GMCH_GMS_STOLEN_8M:
251                         *stolen_size = MB(8) - KB(stolen_overhead);
252                         return 0;
253                 case INTEL_855_GMCH_GMS_STOLEN_16M:
254                         *stolen_size = MB(16) - KB(stolen_overhead);
255                         return 0;
256                 case INTEL_855_GMCH_GMS_STOLEN_32M:
257                         *stolen_size = MB(32) - KB(stolen_overhead);
258                         return 0;
259                 case INTEL_915G_GMCH_GMS_STOLEN_48M:
260                         *stolen_size = MB(48) - KB(stolen_overhead);
261                         return 0;
262                 case INTEL_915G_GMCH_GMS_STOLEN_64M:
263                         *stolen_size = MB(64) - KB(stolen_overhead);
264                         return 0;
265                 case INTEL_855_GMCH_GMS_DISABLED:
266                         ERR_MSG("video memory is disabled\n");
267                         return 0;
268                 default:
269                         ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
270                                 tmp & INTEL_855_GMCH_GMS_MASK);
271                         return 1;
272                 }
273         }
274 }
275
276 int intelfbhw_check_non_crt(struct intelfb_info *dinfo)
277 {
278         int dvo = 0;
279
280         if (INREG(LVDS) & PORT_ENABLE)
281                 dvo |= LVDS_PORT;
282         if (INREG(DVOA) & PORT_ENABLE)
283                 dvo |= DVOA_PORT;
284         if (INREG(DVOB) & PORT_ENABLE)
285                 dvo |= DVOB_PORT;
286         if (INREG(DVOC) & PORT_ENABLE)
287                 dvo |= DVOC_PORT;
288
289         return dvo;
290 }
291
292 const char * intelfbhw_dvo_to_string(int dvo)
293 {
294         if (dvo & DVOA_PORT)
295                 return "DVO port A";
296         else if (dvo & DVOB_PORT)
297                 return "DVO port B";
298         else if (dvo & DVOC_PORT)
299                 return "DVO port C";
300         else if (dvo & LVDS_PORT)
301                 return "LVDS port";
302         else
303                 return NULL;
304 }
305
306
307 int intelfbhw_validate_mode(struct intelfb_info *dinfo,
308                             struct fb_var_screeninfo *var)
309 {
310         int bytes_per_pixel;
311         int tmp;
312
313 #if VERBOSE > 0
314         DBG_MSG("intelfbhw_validate_mode\n");
315 #endif
316
317         bytes_per_pixel = var->bits_per_pixel / 8;
318         if (bytes_per_pixel == 3)
319                 bytes_per_pixel = 4;
320
321         /* Check if enough video memory. */
322         tmp = var->yres_virtual * var->xres_virtual * bytes_per_pixel;
323         if (tmp > dinfo->fb.size) {
324                 WRN_MSG("Not enough video ram for mode "
325                         "(%d KByte vs %d KByte).\n",
326                         BtoKB(tmp), BtoKB(dinfo->fb.size));
327                 return 1;
328         }
329
330         /* Check if x/y limits are OK. */
331         if (var->xres - 1 > HACTIVE_MASK) {
332                 WRN_MSG("X resolution too large (%d vs %d).\n",
333                         var->xres, HACTIVE_MASK + 1);
334                 return 1;
335         }
336         if (var->yres - 1 > VACTIVE_MASK) {
337                 WRN_MSG("Y resolution too large (%d vs %d).\n",
338                         var->yres, VACTIVE_MASK + 1);
339                 return 1;
340         }
341         if (var->xres < 4) {
342                 WRN_MSG("X resolution too small (%d vs 4).\n", var->xres);
343                 return 1;
344         }
345         if (var->yres < 4) {
346                 WRN_MSG("Y resolution too small (%d vs 4).\n", var->yres);
347                 return 1;
348         }
349
350         /* Check for doublescan modes. */
351         if (var->vmode & FB_VMODE_DOUBLE) {
352                 WRN_MSG("Mode is double-scan.\n");
353                 return 1;
354         }
355
356         if ((var->vmode & FB_VMODE_INTERLACED) && (var->yres & 1)) {
357                 WRN_MSG("Odd number of lines in interlaced mode\n");
358                 return 1;
359         }
360
361         /* Check if clock is OK. */
362         tmp = 1000000000 / var->pixclock;
363         if (tmp < MIN_CLOCK) {
364                 WRN_MSG("Pixel clock is too low (%d MHz vs %d MHz).\n",
365                         (tmp + 500) / 1000, MIN_CLOCK / 1000);
366                 return 1;
367         }
368         if (tmp > MAX_CLOCK) {
369                 WRN_MSG("Pixel clock is too high (%d MHz vs %d MHz).\n",
370                         (tmp + 500) / 1000, MAX_CLOCK / 1000);
371                 return 1;
372         }
373
374         return 0;
375 }
376
377 int intelfbhw_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
378 {
379         struct intelfb_info *dinfo = GET_DINFO(info);
380         u32 offset, xoffset, yoffset;
381
382 #if VERBOSE > 0
383         DBG_MSG("intelfbhw_pan_display\n");
384 #endif
385
386         xoffset = ROUND_DOWN_TO(var->xoffset, 8);
387         yoffset = var->yoffset;
388
389         if ((xoffset + var->xres > var->xres_virtual) ||
390             (yoffset + var->yres > var->yres_virtual))
391                 return -EINVAL;
392
393         offset = (yoffset * dinfo->pitch) +
394                  (xoffset * var->bits_per_pixel) / 8;
395
396         offset += dinfo->fb.offset << 12;
397
398         dinfo->vsync.pan_offset = offset;
399         if ((var->activate & FB_ACTIVATE_VBL) &&
400             !intelfbhw_enable_irq(dinfo))
401                 dinfo->vsync.pan_display = 1;
402         else {
403                 dinfo->vsync.pan_display = 0;
404                 OUTREG(DSPABASE, offset);
405         }
406
407         return 0;
408 }
409
410 /* Blank the screen. */
411 void intelfbhw_do_blank(int blank, struct fb_info *info)
412 {
413         struct intelfb_info *dinfo = GET_DINFO(info);
414         u32 tmp;
415
416 #if VERBOSE > 0
417         DBG_MSG("intelfbhw_do_blank: blank is %d\n", blank);
418 #endif
419
420         /* Turn plane A on or off */
421         tmp = INREG(DSPACNTR);
422         if (blank)
423                 tmp &= ~DISPPLANE_PLANE_ENABLE;
424         else
425                 tmp |= DISPPLANE_PLANE_ENABLE;
426         OUTREG(DSPACNTR, tmp);
427         /* Flush */
428         tmp = INREG(DSPABASE);
429         OUTREG(DSPABASE, tmp);
430
431         /* Turn off/on the HW cursor */
432 #if VERBOSE > 0
433         DBG_MSG("cursor_on is %d\n", dinfo->cursor_on);
434 #endif
435         if (dinfo->cursor_on) {
436                 if (blank)
437                         intelfbhw_cursor_hide(dinfo);
438                 else
439                         intelfbhw_cursor_show(dinfo);
440                 dinfo->cursor_on = 1;
441         }
442         dinfo->cursor_blanked = blank;
443
444         /* Set DPMS level */
445         tmp = INREG(ADPA) & ~ADPA_DPMS_CONTROL_MASK;
446         switch (blank) {
447         case FB_BLANK_UNBLANK:
448         case FB_BLANK_NORMAL:
449                 tmp |= ADPA_DPMS_D0;
450                 break;
451         case FB_BLANK_VSYNC_SUSPEND:
452                 tmp |= ADPA_DPMS_D1;
453                 break;
454         case FB_BLANK_HSYNC_SUSPEND:
455                 tmp |= ADPA_DPMS_D2;
456                 break;
457         case FB_BLANK_POWERDOWN:
458                 tmp |= ADPA_DPMS_D3;
459                 break;
460         }
461         OUTREG(ADPA, tmp);
462
463         return;
464 }
465
466
467 void intelfbhw_setcolreg(struct intelfb_info *dinfo, unsigned regno,
468                          unsigned red, unsigned green, unsigned blue,
469                          unsigned transp)
470 {
471         u32 palette_reg = (dinfo->pipe == PIPE_A) ?
472                           PALETTE_A : PALETTE_B;
473
474 #if VERBOSE > 0
475         DBG_MSG("intelfbhw_setcolreg: %d: (%d, %d, %d)\n",
476                 regno, red, green, blue);
477 #endif
478
479         OUTREG(palette_reg + (regno << 2),
480                (red << PALETTE_8_RED_SHIFT) |
481                (green << PALETTE_8_GREEN_SHIFT) |
482                (blue << PALETTE_8_BLUE_SHIFT));
483 }
484
485
486 int intelfbhw_read_hw_state(struct intelfb_info *dinfo,
487                             struct intelfb_hwstate *hw, int flag)
488 {
489         int i;
490
491 #if VERBOSE > 0
492         DBG_MSG("intelfbhw_read_hw_state\n");
493 #endif
494
495         if (!hw || !dinfo)
496                 return -1;
497
498         /* Read in as much of the HW state as possible. */
499         hw->vga0_divisor = INREG(VGA0_DIVISOR);
500         hw->vga1_divisor = INREG(VGA1_DIVISOR);
501         hw->vga_pd = INREG(VGAPD);
502         hw->dpll_a = INREG(DPLL_A);
503         hw->dpll_b = INREG(DPLL_B);
504         hw->fpa0 = INREG(FPA0);
505         hw->fpa1 = INREG(FPA1);
506         hw->fpb0 = INREG(FPB0);
507         hw->fpb1 = INREG(FPB1);
508
509         if (flag == 1)
510                 return flag;
511
512 #if 0
513         /* This seems to be a problem with the 852GM/855GM */
514         for (i = 0; i < PALETTE_8_ENTRIES; i++) {
515                 hw->palette_a[i] = INREG(PALETTE_A + (i << 2));
516                 hw->palette_b[i] = INREG(PALETTE_B + (i << 2));
517         }
518 #endif
519
520         if (flag == 2)
521                 return flag;
522
523         hw->htotal_a = INREG(HTOTAL_A);
524         hw->hblank_a = INREG(HBLANK_A);
525         hw->hsync_a = INREG(HSYNC_A);
526         hw->vtotal_a = INREG(VTOTAL_A);
527         hw->vblank_a = INREG(VBLANK_A);
528         hw->vsync_a = INREG(VSYNC_A);
529         hw->src_size_a = INREG(SRC_SIZE_A);
530         hw->bclrpat_a = INREG(BCLRPAT_A);
531         hw->htotal_b = INREG(HTOTAL_B);
532         hw->hblank_b = INREG(HBLANK_B);
533         hw->hsync_b = INREG(HSYNC_B);
534         hw->vtotal_b = INREG(VTOTAL_B);
535         hw->vblank_b = INREG(VBLANK_B);
536         hw->vsync_b = INREG(VSYNC_B);
537         hw->src_size_b = INREG(SRC_SIZE_B);
538         hw->bclrpat_b = INREG(BCLRPAT_B);
539
540         if (flag == 3)
541                 return flag;
542
543         hw->adpa = INREG(ADPA);
544         hw->dvoa = INREG(DVOA);
545         hw->dvob = INREG(DVOB);
546         hw->dvoc = INREG(DVOC);
547         hw->dvoa_srcdim = INREG(DVOA_SRCDIM);
548         hw->dvob_srcdim = INREG(DVOB_SRCDIM);
549         hw->dvoc_srcdim = INREG(DVOC_SRCDIM);
550         hw->lvds = INREG(LVDS);
551
552         if (flag == 4)
553                 return flag;
554
555         hw->pipe_a_conf = INREG(PIPEACONF);
556         hw->pipe_b_conf = INREG(PIPEBCONF);
557         hw->disp_arb = INREG(DISPARB);
558
559         if (flag == 5)
560                 return flag;
561
562         hw->cursor_a_control = INREG(CURSOR_A_CONTROL);
563         hw->cursor_b_control = INREG(CURSOR_B_CONTROL);
564         hw->cursor_a_base = INREG(CURSOR_A_BASEADDR);
565         hw->cursor_b_base = INREG(CURSOR_B_BASEADDR);
566
567         if (flag == 6)
568                 return flag;
569
570         for (i = 0; i < 4; i++) {
571                 hw->cursor_a_palette[i] = INREG(CURSOR_A_PALETTE0 + (i << 2));
572                 hw->cursor_b_palette[i] = INREG(CURSOR_B_PALETTE0 + (i << 2));
573         }
574
575         if (flag == 7)
576                 return flag;
577
578         hw->cursor_size = INREG(CURSOR_SIZE);
579
580         if (flag == 8)
581                 return flag;
582
583         hw->disp_a_ctrl = INREG(DSPACNTR);
584         hw->disp_b_ctrl = INREG(DSPBCNTR);
585         hw->disp_a_base = INREG(DSPABASE);
586         hw->disp_b_base = INREG(DSPBBASE);
587         hw->disp_a_stride = INREG(DSPASTRIDE);
588         hw->disp_b_stride = INREG(DSPBSTRIDE);
589
590         if (flag == 9)
591                 return flag;
592
593         hw->vgacntrl = INREG(VGACNTRL);
594
595         if (flag == 10)
596                 return flag;
597
598         hw->add_id = INREG(ADD_ID);
599
600         if (flag == 11)
601                 return flag;
602
603         for (i = 0; i < 7; i++) {
604                 hw->swf0x[i] = INREG(SWF00 + (i << 2));
605                 hw->swf1x[i] = INREG(SWF10 + (i << 2));
606                 if (i < 3)
607                         hw->swf3x[i] = INREG(SWF30 + (i << 2));
608         }
609
610         for (i = 0; i < 8; i++)
611                 hw->fence[i] = INREG(FENCE + (i << 2));
612
613         hw->instpm = INREG(INSTPM);
614         hw->mem_mode = INREG(MEM_MODE);
615         hw->fw_blc_0 = INREG(FW_BLC_0);
616         hw->fw_blc_1 = INREG(FW_BLC_1);
617
618         hw->hwstam = INREG16(HWSTAM);
619         hw->ier = INREG16(IER);
620         hw->iir = INREG16(IIR);
621         hw->imr = INREG16(IMR);
622
623         return 0;
624 }
625
626
627 static int calc_vclock3(int index, int m, int n, int p)
628 {
629         if (p == 0 || n == 0)
630                 return 0;
631         return plls[index].ref_clk * m / n / p;
632 }
633
634 static int calc_vclock(int index, int m1, int m2, int n, int p1, int p2,
635                        int lvds)
636 {
637         struct pll_min_max *pll = &plls[index];
638         u32 m, vco, p;
639
640         m = (5 * (m1 + 2)) + (m2 + 2);
641         n += 2;
642         vco = pll->ref_clk * m / n;
643
644         if (index == PLLS_I8xx)
645                 p = ((p1 + 2) * (1 << (p2 + 1)));
646         else
647                 p = ((p1) * (p2 ? 5 : 10));
648         return vco / p;
649 }
650
651 #if REGDUMP
652 static void intelfbhw_get_p1p2(struct intelfb_info *dinfo, int dpll,
653                                int *o_p1, int *o_p2)
654 {
655         int p1, p2;
656
657         if (IS_I9XX(dinfo)) {
658                 if (dpll & DPLL_P1_FORCE_DIV2)
659                         p1 = 1;
660                 else
661                         p1 = (dpll >> DPLL_P1_SHIFT) & 0xff;
662
663                 p1 = ffs(p1);
664
665                 p2 = (dpll >> DPLL_I9XX_P2_SHIFT) & DPLL_P2_MASK;
666         } else {
667                 if (dpll & DPLL_P1_FORCE_DIV2)
668                         p1 = 0;
669                 else
670                         p1 = (dpll >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
671                 p2 = (dpll >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
672         }
673
674         *o_p1 = p1;
675         *o_p2 = p2;
676 }
677 #endif
678
679
680 void intelfbhw_print_hw_state(struct intelfb_info *dinfo,
681                               struct intelfb_hwstate *hw)
682 {
683 #if REGDUMP
684         int i, m1, m2, n, p1, p2;
685         int index = dinfo->pll_index;
686         DBG_MSG("intelfbhw_print_hw_state\n");
687
688         if (!hw)
689                 return;
690         /* Read in as much of the HW state as possible. */
691         printk("hw state dump start\n");
692         printk("        VGA0_DIVISOR:           0x%08x\n", hw->vga0_divisor);
693         printk("        VGA1_DIVISOR:           0x%08x\n", hw->vga1_divisor);
694         printk("        VGAPD:                  0x%08x\n", hw->vga_pd);
695         n = (hw->vga0_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
696         m1 = (hw->vga0_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
697         m2 = (hw->vga0_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
698
699         intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
700
701         printk("        VGA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
702                m1, m2, n, p1, p2);
703         printk("        VGA0: clock is %d\n",
704                calc_vclock(index, m1, m2, n, p1, p2, 0));
705
706         n = (hw->vga1_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
707         m1 = (hw->vga1_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
708         m2 = (hw->vga1_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
709
710         intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
711         printk("        VGA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
712                m1, m2, n, p1, p2);
713         printk("        VGA1: clock is %d\n",
714                calc_vclock(index, m1, m2, n, p1, p2, 0));
715
716         printk("        DPLL_A:                 0x%08x\n", hw->dpll_a);
717         printk("        DPLL_B:                 0x%08x\n", hw->dpll_b);
718         printk("        FPA0:                   0x%08x\n", hw->fpa0);
719         printk("        FPA1:                   0x%08x\n", hw->fpa1);
720         printk("        FPB0:                   0x%08x\n", hw->fpb0);
721         printk("        FPB1:                   0x%08x\n", hw->fpb1);
722
723         n = (hw->fpa0 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
724         m1 = (hw->fpa0 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
725         m2 = (hw->fpa0 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
726
727         intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
728
729         printk("        PLLA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
730                m1, m2, n, p1, p2);
731         printk("        PLLA0: clock is %d\n",
732                calc_vclock(index, m1, m2, n, p1, p2, 0));
733
734         n = (hw->fpa1 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
735         m1 = (hw->fpa1 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
736         m2 = (hw->fpa1 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
737
738         intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
739
740         printk("        PLLA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
741                m1, m2, n, p1, p2);
742         printk("        PLLA1: clock is %d\n",
743                calc_vclock(index, m1, m2, n, p1, p2, 0));
744
745 #if 0
746         printk("        PALETTE_A:\n");
747         for (i = 0; i < PALETTE_8_ENTRIES)
748                 printk("        %3d:    0x%08x\n", i, hw->palette_a[i]);
749         printk("        PALETTE_B:\n");
750         for (i = 0; i < PALETTE_8_ENTRIES)
751                 printk("        %3d:    0x%08x\n", i, hw->palette_b[i]);
752 #endif
753
754         printk("        HTOTAL_A:               0x%08x\n", hw->htotal_a);
755         printk("        HBLANK_A:               0x%08x\n", hw->hblank_a);
756         printk("        HSYNC_A:                0x%08x\n", hw->hsync_a);
757         printk("        VTOTAL_A:               0x%08x\n", hw->vtotal_a);
758         printk("        VBLANK_A:               0x%08x\n", hw->vblank_a);
759         printk("        VSYNC_A:                0x%08x\n", hw->vsync_a);
760         printk("        SRC_SIZE_A:             0x%08x\n", hw->src_size_a);
761         printk("        BCLRPAT_A:              0x%08x\n", hw->bclrpat_a);
762         printk("        HTOTAL_B:               0x%08x\n", hw->htotal_b);
763         printk("        HBLANK_B:               0x%08x\n", hw->hblank_b);
764         printk("        HSYNC_B:                0x%08x\n", hw->hsync_b);
765         printk("        VTOTAL_B:               0x%08x\n", hw->vtotal_b);
766         printk("        VBLANK_B:               0x%08x\n", hw->vblank_b);
767         printk("        VSYNC_B:                0x%08x\n", hw->vsync_b);
768         printk("        SRC_SIZE_B:             0x%08x\n", hw->src_size_b);
769         printk("        BCLRPAT_B:              0x%08x\n", hw->bclrpat_b);
770
771         printk("        ADPA:                   0x%08x\n", hw->adpa);
772         printk("        DVOA:                   0x%08x\n", hw->dvoa);
773         printk("        DVOB:                   0x%08x\n", hw->dvob);
774         printk("        DVOC:                   0x%08x\n", hw->dvoc);
775         printk("        DVOA_SRCDIM:            0x%08x\n", hw->dvoa_srcdim);
776         printk("        DVOB_SRCDIM:            0x%08x\n", hw->dvob_srcdim);
777         printk("        DVOC_SRCDIM:            0x%08x\n", hw->dvoc_srcdim);
778         printk("        LVDS:                   0x%08x\n", hw->lvds);
779
780         printk("        PIPEACONF:              0x%08x\n", hw->pipe_a_conf);
781         printk("        PIPEBCONF:              0x%08x\n", hw->pipe_b_conf);
782         printk("        DISPARB:                0x%08x\n", hw->disp_arb);
783
784         printk("        CURSOR_A_CONTROL:       0x%08x\n", hw->cursor_a_control);
785         printk("        CURSOR_B_CONTROL:       0x%08x\n", hw->cursor_b_control);
786         printk("        CURSOR_A_BASEADDR:      0x%08x\n", hw->cursor_a_base);
787         printk("        CURSOR_B_BASEADDR:      0x%08x\n", hw->cursor_b_base);
788
789         printk("        CURSOR_A_PALETTE:       ");
790         for (i = 0; i < 4; i++) {
791                 printk("0x%08x", hw->cursor_a_palette[i]);
792                 if (i < 3)
793                         printk(", ");
794         }
795         printk("\n");
796         printk("        CURSOR_B_PALETTE:       ");
797         for (i = 0; i < 4; i++) {
798                 printk("0x%08x", hw->cursor_b_palette[i]);
799                 if (i < 3)
800                         printk(", ");
801         }
802         printk("\n");
803
804         printk("        CURSOR_SIZE:            0x%08x\n", hw->cursor_size);
805
806         printk("        DSPACNTR:               0x%08x\n", hw->disp_a_ctrl);
807         printk("        DSPBCNTR:               0x%08x\n", hw->disp_b_ctrl);
808         printk("        DSPABASE:               0x%08x\n", hw->disp_a_base);
809         printk("        DSPBBASE:               0x%08x\n", hw->disp_b_base);
810         printk("        DSPASTRIDE:             0x%08x\n", hw->disp_a_stride);
811         printk("        DSPBSTRIDE:             0x%08x\n", hw->disp_b_stride);
812
813         printk("        VGACNTRL:               0x%08x\n", hw->vgacntrl);
814         printk("        ADD_ID:                 0x%08x\n", hw->add_id);
815
816         for (i = 0; i < 7; i++) {
817                 printk("        SWF0%d                  0x%08x\n", i,
818                         hw->swf0x[i]);
819         }
820         for (i = 0; i < 7; i++) {
821                 printk("        SWF1%d                  0x%08x\n", i,
822                         hw->swf1x[i]);
823         }
824         for (i = 0; i < 3; i++) {
825                 printk("        SWF3%d                  0x%08x\n", i,
826                        hw->swf3x[i]);
827         }
828         for (i = 0; i < 8; i++)
829                 printk("        FENCE%d                 0x%08x\n", i,
830                        hw->fence[i]);
831
832         printk("        INSTPM                  0x%08x\n", hw->instpm);
833         printk("        MEM_MODE                0x%08x\n", hw->mem_mode);
834         printk("        FW_BLC_0                0x%08x\n", hw->fw_blc_0);
835         printk("        FW_BLC_1                0x%08x\n", hw->fw_blc_1);
836
837         printk("        HWSTAM                  0x%04x\n", hw->hwstam);
838         printk("        IER                     0x%04x\n", hw->ier);
839         printk("        IIR                     0x%04x\n", hw->iir);
840         printk("        IMR                     0x%04x\n", hw->imr);
841         printk("hw state dump end\n");
842 #endif
843 }
844
845
846
847 /* Split the M parameter into M1 and M2. */
848 static int splitm(int index, unsigned int m, unsigned int *retm1,
849                   unsigned int *retm2)
850 {
851         int m1, m2;
852         int testm;
853         struct pll_min_max *pll = &plls[index];
854
855         /* no point optimising too much - brute force m */
856         for (m1 = pll->min_m1; m1 < pll->max_m1 + 1; m1++) {
857                 for (m2 = pll->min_m2; m2 < pll->max_m2 + 1; m2++) {
858                         testm = (5 * (m1 + 2)) + (m2 + 2);
859                         if (testm == m) {
860                                 *retm1 = (unsigned int)m1;
861                                 *retm2 = (unsigned int)m2;
862                                 return 0;
863                         }
864                 }
865         }
866         return 1;
867 }
868
869 /* Split the P parameter into P1 and P2. */
870 static int splitp(int index, unsigned int p, unsigned int *retp1,
871                   unsigned int *retp2)
872 {
873         int p1, p2;
874         struct pll_min_max *pll = &plls[index];
875
876         if (index == PLLS_I9xx) {
877                 p2 = (p % 10) ? 1 : 0;
878
879                 p1 = p / (p2 ? 5 : 10);
880
881                 *retp1 = (unsigned int)p1;
882                 *retp2 = (unsigned int)p2;
883                 return 0;
884         }
885
886         if (p % 4 == 0)
887                 p2 = 1;
888         else
889                 p2 = 0;
890         p1 = (p / (1 << (p2 + 1))) - 2;
891         if (p % 4 == 0 && p1 < pll->min_p1) {
892                 p2 = 0;
893                 p1 = (p / (1 << (p2 + 1))) - 2;
894         }
895         if (p1 < pll->min_p1 || p1 > pll->max_p1 ||
896             (p1 + 2) * (1 << (p2 + 1)) != p) {
897                 return 1;
898         } else {
899                 *retp1 = (unsigned int)p1;
900                 *retp2 = (unsigned int)p2;
901                 return 0;
902         }
903 }
904
905 static int calc_pll_params(int index, int clock, u32 *retm1, u32 *retm2,
906                            u32 *retn, u32 *retp1, u32 *retp2, u32 *retclock)
907 {
908         u32 m1, m2, n, p1, p2, n1, testm;
909         u32 f_vco, p, p_best = 0, m, f_out = 0;
910         u32 err_max, err_target, err_best = 10000000;
911         u32 n_best = 0, m_best = 0, f_best, f_err;
912         u32 p_min, p_max, p_inc, div_max;
913         struct pll_min_max *pll = &plls[index];
914
915         /* Accept 0.5% difference, but aim for 0.1% */
916         err_max = 5 * clock / 1000;
917         err_target = clock / 1000;
918
919         DBG_MSG("Clock is %d\n", clock);
920
921         div_max = pll->max_vco / clock;
922
923         p_inc = (clock <= pll->p_transition_clk) ? pll->p_inc_lo : pll->p_inc_hi;
924         p_min = p_inc;
925         p_max = ROUND_DOWN_TO(div_max, p_inc);
926         if (p_min < pll->min_p)
927                 p_min = pll->min_p;
928         if (p_max > pll->max_p)
929                 p_max = pll->max_p;
930
931         DBG_MSG("p range is %d-%d (%d)\n", p_min, p_max, p_inc);
932
933         p = p_min;
934         do {
935                 if (splitp(index, p, &p1, &p2)) {
936                         WRN_MSG("cannot split p = %d\n", p);
937                         p += p_inc;
938                         continue;
939                 }
940                 n = pll->min_n;
941                 f_vco = clock * p;
942
943                 do {
944                         m = ROUND_UP_TO(f_vco * n, pll->ref_clk) / pll->ref_clk;
945                         if (m < pll->min_m)
946                                 m = pll->min_m + 1;
947                         if (m > pll->max_m)
948                                 m = pll->max_m - 1;
949                         for (testm = m - 1; testm <= m; testm++) {
950                                 f_out = calc_vclock3(index, testm, n, p);
951                                 if (splitm(index, testm, &m1, &m2)) {
952                                         WRN_MSG("cannot split m = %d\n",
953                                                 testm);
954                                         continue;
955                                 }
956                                 if (clock > f_out)
957                                         f_err = clock - f_out;
958                                 else/* slightly bias the error for bigger clocks */
959                                         f_err = f_out - clock + 1;
960
961                                 if (f_err < err_best) {
962                                         m_best = testm;
963                                         n_best = n;
964                                         p_best = p;
965                                         f_best = f_out;
966                                         err_best = f_err;
967                                 }
968                         }
969                         n++;
970                 } while ((n <= pll->max_n) && (f_out >= clock));
971                 p += p_inc;
972         } while ((p <= p_max));
973
974         if (!m_best) {
975                 WRN_MSG("cannot find parameters for clock %d\n", clock);
976                 return 1;
977         }
978         m = m_best;
979         n = n_best;
980         p = p_best;
981         splitm(index, m, &m1, &m2);
982         splitp(index, p, &p1, &p2);
983         n1 = n - 2;
984
985         DBG_MSG("m, n, p: %d (%d,%d), %d (%d), %d (%d,%d), "
986                 "f: %d (%d), VCO: %d\n",
987                 m, m1, m2, n, n1, p, p1, p2,
988                 calc_vclock3(index, m, n, p),
989                 calc_vclock(index, m1, m2, n1, p1, p2, 0),
990                 calc_vclock3(index, m, n, p) * p);
991         *retm1 = m1;
992         *retm2 = m2;
993         *retn = n1;
994         *retp1 = p1;
995         *retp2 = p2;
996         *retclock = calc_vclock(index, m1, m2, n1, p1, p2, 0);
997
998         return 0;
999 }
1000
1001 static __inline__ int check_overflow(u32 value, u32 limit,
1002                                      const char *description)
1003 {
1004         if (value > limit) {
1005                 WRN_MSG("%s value %d exceeds limit %d\n",
1006                         description, value, limit);
1007                 return 1;
1008         }
1009         return 0;
1010 }
1011
1012 /* It is assumed that hw is filled in with the initial state information. */
1013 int intelfbhw_mode_to_hw(struct intelfb_info *dinfo,
1014                          struct intelfb_hwstate *hw,
1015                          struct fb_var_screeninfo *var)
1016 {
1017         int pipe = PIPE_A;
1018         u32 *dpll, *fp0, *fp1;
1019         u32 m1, m2, n, p1, p2, clock_target, clock;
1020         u32 hsync_start, hsync_end, hblank_start, hblank_end, htotal, hactive;
1021         u32 vsync_start, vsync_end, vblank_start, vblank_end, vtotal, vactive;
1022         u32 vsync_pol, hsync_pol;
1023         u32 *vs, *vb, *vt, *hs, *hb, *ht, *ss, *pipe_conf;
1024         u32 stride_alignment;
1025
1026         DBG_MSG("intelfbhw_mode_to_hw\n");
1027
1028         /* Disable VGA */
1029         hw->vgacntrl |= VGA_DISABLE;
1030
1031         /* Check whether pipe A or pipe B is enabled. */
1032         if (hw->pipe_a_conf & PIPECONF_ENABLE)
1033                 pipe = PIPE_A;
1034         else if (hw->pipe_b_conf & PIPECONF_ENABLE)
1035                 pipe = PIPE_B;
1036
1037         /* Set which pipe's registers will be set. */
1038         if (pipe == PIPE_B) {
1039                 dpll = &hw->dpll_b;
1040                 fp0 = &hw->fpb0;
1041                 fp1 = &hw->fpb1;
1042                 hs = &hw->hsync_b;
1043                 hb = &hw->hblank_b;
1044                 ht = &hw->htotal_b;
1045                 vs = &hw->vsync_b;
1046                 vb = &hw->vblank_b;
1047                 vt = &hw->vtotal_b;
1048                 ss = &hw->src_size_b;
1049                 pipe_conf = &hw->pipe_b_conf;
1050         } else {
1051                 dpll = &hw->dpll_a;
1052                 fp0 = &hw->fpa0;
1053                 fp1 = &hw->fpa1;
1054                 hs = &hw->hsync_a;
1055                 hb = &hw->hblank_a;
1056                 ht = &hw->htotal_a;
1057                 vs = &hw->vsync_a;
1058                 vb = &hw->vblank_a;
1059                 vt = &hw->vtotal_a;
1060                 ss = &hw->src_size_a;
1061                 pipe_conf = &hw->pipe_a_conf;
1062         }
1063
1064         /* Use ADPA register for sync control. */
1065         hw->adpa &= ~ADPA_USE_VGA_HVPOLARITY;
1066
1067         /* sync polarity */
1068         hsync_pol = (var->sync & FB_SYNC_HOR_HIGH_ACT) ?
1069                         ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
1070         vsync_pol = (var->sync & FB_SYNC_VERT_HIGH_ACT) ?
1071                         ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
1072         hw->adpa &= ~((ADPA_SYNC_ACTIVE_MASK << ADPA_VSYNC_ACTIVE_SHIFT) |
1073                       (ADPA_SYNC_ACTIVE_MASK << ADPA_HSYNC_ACTIVE_SHIFT));
1074         hw->adpa |= (hsync_pol << ADPA_HSYNC_ACTIVE_SHIFT) |
1075                     (vsync_pol << ADPA_VSYNC_ACTIVE_SHIFT);
1076
1077         /* Connect correct pipe to the analog port DAC */
1078         hw->adpa &= ~(PIPE_MASK << ADPA_PIPE_SELECT_SHIFT);
1079         hw->adpa |= (pipe << ADPA_PIPE_SELECT_SHIFT);
1080
1081         /* Set DPMS state to D0 (on) */
1082         hw->adpa &= ~ADPA_DPMS_CONTROL_MASK;
1083         hw->adpa |= ADPA_DPMS_D0;
1084
1085         hw->adpa |= ADPA_DAC_ENABLE;
1086
1087         *dpll |= (DPLL_VCO_ENABLE | DPLL_VGA_MODE_DISABLE);
1088         *dpll &= ~(DPLL_RATE_SELECT_MASK | DPLL_REFERENCE_SELECT_MASK);
1089         *dpll |= (DPLL_REFERENCE_DEFAULT | DPLL_RATE_SELECT_FP0);
1090
1091         /* Desired clock in kHz */
1092         clock_target = 1000000000 / var->pixclock;
1093
1094         if (calc_pll_params(dinfo->pll_index, clock_target, &m1, &m2,
1095                             &n, &p1, &p2, &clock)) {
1096                 WRN_MSG("calc_pll_params failed\n");
1097                 return 1;
1098         }
1099
1100         /* Check for overflow. */
1101         if (check_overflow(p1, DPLL_P1_MASK, "PLL P1 parameter"))
1102                 return 1;
1103         if (check_overflow(p2, DPLL_P2_MASK, "PLL P2 parameter"))
1104                 return 1;
1105         if (check_overflow(m1, FP_DIVISOR_MASK, "PLL M1 parameter"))
1106                 return 1;
1107         if (check_overflow(m2, FP_DIVISOR_MASK, "PLL M2 parameter"))
1108                 return 1;
1109         if (check_overflow(n, FP_DIVISOR_MASK, "PLL N parameter"))
1110                 return 1;
1111
1112         *dpll &= ~DPLL_P1_FORCE_DIV2;
1113         *dpll &= ~((DPLL_P2_MASK << DPLL_P2_SHIFT) |
1114                    (DPLL_P1_MASK << DPLL_P1_SHIFT));
1115
1116         if (IS_I9XX(dinfo)) {
1117                 *dpll |= (p2 << DPLL_I9XX_P2_SHIFT);
1118                 *dpll |= (1 << (p1 - 1)) << DPLL_P1_SHIFT;
1119         } else
1120                 *dpll |= (p2 << DPLL_P2_SHIFT) | (p1 << DPLL_P1_SHIFT);
1121
1122         *fp0 = (n << FP_N_DIVISOR_SHIFT) |
1123                (m1 << FP_M1_DIVISOR_SHIFT) |
1124                (m2 << FP_M2_DIVISOR_SHIFT);
1125         *fp1 = *fp0;
1126
1127         hw->dvob &= ~PORT_ENABLE;
1128         hw->dvoc &= ~PORT_ENABLE;
1129
1130         /* Use display plane A. */
1131         hw->disp_a_ctrl |= DISPPLANE_PLANE_ENABLE;
1132         hw->disp_a_ctrl &= ~DISPPLANE_GAMMA_ENABLE;
1133         hw->disp_a_ctrl &= ~DISPPLANE_PIXFORMAT_MASK;
1134         switch (intelfb_var_to_depth(var)) {
1135         case 8:
1136                 hw->disp_a_ctrl |= DISPPLANE_8BPP | DISPPLANE_GAMMA_ENABLE;
1137                 break;
1138         case 15:
1139                 hw->disp_a_ctrl |= DISPPLANE_15_16BPP;
1140                 break;
1141         case 16:
1142                 hw->disp_a_ctrl |= DISPPLANE_16BPP;
1143                 break;
1144         case 24:
1145                 hw->disp_a_ctrl |= DISPPLANE_32BPP_NO_ALPHA;
1146                 break;
1147         }
1148         hw->disp_a_ctrl &= ~(PIPE_MASK << DISPPLANE_SEL_PIPE_SHIFT);
1149         hw->disp_a_ctrl |= (pipe << DISPPLANE_SEL_PIPE_SHIFT);
1150
1151         /* Set CRTC registers. */
1152         hactive = var->xres;
1153         hsync_start = hactive + var->right_margin;
1154         hsync_end = hsync_start + var->hsync_len;
1155         htotal = hsync_end + var->left_margin;
1156         hblank_start = hactive;
1157         hblank_end = htotal;
1158
1159         DBG_MSG("H: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
1160                 hactive, hsync_start, hsync_end, htotal, hblank_start,
1161                 hblank_end);
1162
1163         vactive = var->yres;
1164         if (var->vmode & FB_VMODE_INTERLACED)
1165                 vactive--; /* the chip adds 2 halflines automatically */
1166         vsync_start = vactive + var->lower_margin;
1167         vsync_end = vsync_start + var->vsync_len;
1168         vtotal = vsync_end + var->upper_margin;
1169         vblank_start = vactive;
1170         vblank_end = vtotal;
1171         vblank_end = vsync_end + 1;
1172
1173         DBG_MSG("V: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
1174                 vactive, vsync_start, vsync_end, vtotal, vblank_start,
1175                 vblank_end);
1176
1177         /* Adjust for register values, and check for overflow. */
1178         hactive--;
1179         if (check_overflow(hactive, HACTIVE_MASK, "CRTC hactive"))
1180                 return 1;
1181         hsync_start--;
1182         if (check_overflow(hsync_start, HSYNCSTART_MASK, "CRTC hsync_start"))
1183                 return 1;
1184         hsync_end--;
1185         if (check_overflow(hsync_end, HSYNCEND_MASK, "CRTC hsync_end"))
1186                 return 1;
1187         htotal--;
1188         if (check_overflow(htotal, HTOTAL_MASK, "CRTC htotal"))
1189                 return 1;
1190         hblank_start--;
1191         if (check_overflow(hblank_start, HBLANKSTART_MASK, "CRTC hblank_start"))
1192                 return 1;
1193         hblank_end--;
1194         if (check_overflow(hblank_end, HBLANKEND_MASK, "CRTC hblank_end"))
1195                 return 1;
1196
1197         vactive--;
1198         if (check_overflow(vactive, VACTIVE_MASK, "CRTC vactive"))
1199                 return 1;
1200         vsync_start--;
1201         if (check_overflow(vsync_start, VSYNCSTART_MASK, "CRTC vsync_start"))
1202                 return 1;
1203         vsync_end--;
1204         if (check_overflow(vsync_end, VSYNCEND_MASK, "CRTC vsync_end"))
1205                 return 1;
1206         vtotal--;
1207         if (check_overflow(vtotal, VTOTAL_MASK, "CRTC vtotal"))
1208                 return 1;
1209         vblank_start--;
1210         if (check_overflow(vblank_start, VBLANKSTART_MASK, "CRTC vblank_start"))
1211                 return 1;
1212         vblank_end--;
1213         if (check_overflow(vblank_end, VBLANKEND_MASK, "CRTC vblank_end"))
1214                 return 1;
1215
1216         *ht = (htotal << HTOTAL_SHIFT) | (hactive << HACTIVE_SHIFT);
1217         *hb = (hblank_start << HBLANKSTART_SHIFT) |
1218               (hblank_end << HSYNCEND_SHIFT);
1219         *hs = (hsync_start << HSYNCSTART_SHIFT) | (hsync_end << HSYNCEND_SHIFT);
1220
1221         *vt = (vtotal << VTOTAL_SHIFT) | (vactive << VACTIVE_SHIFT);
1222         *vb = (vblank_start << VBLANKSTART_SHIFT) |
1223               (vblank_end << VSYNCEND_SHIFT);
1224         *vs = (vsync_start << VSYNCSTART_SHIFT) | (vsync_end << VSYNCEND_SHIFT);
1225         *ss = (hactive << SRC_SIZE_HORIZ_SHIFT) |
1226               (vactive << SRC_SIZE_VERT_SHIFT);
1227
1228         hw->disp_a_stride = dinfo->pitch;
1229         DBG_MSG("pitch is %d\n", hw->disp_a_stride);
1230
1231         hw->disp_a_base = hw->disp_a_stride * var->yoffset +
1232                           var->xoffset * var->bits_per_pixel / 8;
1233
1234         hw->disp_a_base += dinfo->fb.offset << 12;
1235
1236         /* Check stride alignment. */
1237         stride_alignment = IS_I9XX(dinfo) ? STRIDE_ALIGNMENT_I9XX :
1238                                             STRIDE_ALIGNMENT;
1239         if (hw->disp_a_stride % stride_alignment != 0) {
1240                 WRN_MSG("display stride %d has bad alignment %d\n",
1241                         hw->disp_a_stride, stride_alignment);
1242                 return 1;
1243         }
1244
1245         /* Set the palette to 8-bit mode. */
1246         *pipe_conf &= ~PIPECONF_GAMMA;
1247
1248         if (var->vmode & FB_VMODE_INTERLACED)
1249                 *pipe_conf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
1250         else
1251                 *pipe_conf &= ~PIPECONF_INTERLACE_MASK;
1252
1253         return 0;
1254 }
1255
1256 /* Program a (non-VGA) video mode. */
1257 int intelfbhw_program_mode(struct intelfb_info *dinfo,
1258                            const struct intelfb_hwstate *hw, int blank)
1259 {
1260         int pipe = PIPE_A;
1261         u32 tmp;
1262         const u32 *dpll, *fp0, *fp1, *pipe_conf;
1263         const u32 *hs, *ht, *hb, *vs, *vt, *vb, *ss;
1264         u32 dpll_reg, fp0_reg, fp1_reg, pipe_conf_reg, pipe_stat_reg;
1265         u32 hsync_reg, htotal_reg, hblank_reg;
1266         u32 vsync_reg, vtotal_reg, vblank_reg;
1267         u32 src_size_reg;
1268         u32 count, tmp_val[3];
1269
1270         /* Assume single pipe, display plane A, analog CRT. */
1271
1272 #if VERBOSE > 0
1273         DBG_MSG("intelfbhw_program_mode\n");
1274 #endif
1275
1276         /* Disable VGA */
1277         tmp = INREG(VGACNTRL);
1278         tmp |= VGA_DISABLE;
1279         OUTREG(VGACNTRL, tmp);
1280
1281         /* Check whether pipe A or pipe B is enabled. */
1282         if (hw->pipe_a_conf & PIPECONF_ENABLE)
1283                 pipe = PIPE_A;
1284         else if (hw->pipe_b_conf & PIPECONF_ENABLE)
1285                 pipe = PIPE_B;
1286
1287         dinfo->pipe = pipe;
1288
1289         if (pipe == PIPE_B) {
1290                 dpll = &hw->dpll_b;
1291                 fp0 = &hw->fpb0;
1292                 fp1 = &hw->fpb1;
1293                 pipe_conf = &hw->pipe_b_conf;
1294                 hs = &hw->hsync_b;
1295                 hb = &hw->hblank_b;
1296                 ht = &hw->htotal_b;
1297                 vs = &hw->vsync_b;
1298                 vb = &hw->vblank_b;
1299                 vt = &hw->vtotal_b;
1300                 ss = &hw->src_size_b;
1301                 dpll_reg = DPLL_B;
1302                 fp0_reg = FPB0;
1303                 fp1_reg = FPB1;
1304                 pipe_conf_reg = PIPEBCONF;
1305                 pipe_stat_reg = PIPEBSTAT;
1306                 hsync_reg = HSYNC_B;
1307                 htotal_reg = HTOTAL_B;
1308                 hblank_reg = HBLANK_B;
1309                 vsync_reg = VSYNC_B;
1310                 vtotal_reg = VTOTAL_B;
1311                 vblank_reg = VBLANK_B;
1312                 src_size_reg = SRC_SIZE_B;
1313         } else {
1314                 dpll = &hw->dpll_a;
1315                 fp0 = &hw->fpa0;
1316                 fp1 = &hw->fpa1;
1317                 pipe_conf = &hw->pipe_a_conf;
1318                 hs = &hw->hsync_a;
1319                 hb = &hw->hblank_a;
1320                 ht = &hw->htotal_a;
1321                 vs = &hw->vsync_a;
1322                 vb = &hw->vblank_a;
1323                 vt = &hw->vtotal_a;
1324                 ss = &hw->src_size_a;
1325                 dpll_reg = DPLL_A;
1326                 fp0_reg = FPA0;
1327                 fp1_reg = FPA1;
1328                 pipe_conf_reg = PIPEACONF;
1329                 pipe_stat_reg = PIPEASTAT;
1330                 hsync_reg = HSYNC_A;
1331                 htotal_reg = HTOTAL_A;
1332                 hblank_reg = HBLANK_A;
1333                 vsync_reg = VSYNC_A;
1334                 vtotal_reg = VTOTAL_A;
1335                 vblank_reg = VBLANK_A;
1336                 src_size_reg = SRC_SIZE_A;
1337         }
1338
1339         /* turn off pipe */
1340         tmp = INREG(pipe_conf_reg);
1341         tmp &= ~PIPECONF_ENABLE;
1342         OUTREG(pipe_conf_reg, tmp);
1343
1344         count = 0;
1345         do {
1346                 tmp_val[count % 3] = INREG(PIPEA_DSL);
1347                 if ((tmp_val[0] == tmp_val[1]) && (tmp_val[1] == tmp_val[2]))
1348                         break;
1349                 count++;
1350                 udelay(1);
1351                 if (count % 200 == 0) {
1352                         tmp = INREG(pipe_conf_reg);
1353                         tmp &= ~PIPECONF_ENABLE;
1354                         OUTREG(pipe_conf_reg, tmp);
1355                 }
1356         } while (count < 2000);
1357
1358         OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
1359
1360         /* Disable planes A and B. */
1361         tmp = INREG(DSPACNTR);
1362         tmp &= ~DISPPLANE_PLANE_ENABLE;
1363         OUTREG(DSPACNTR, tmp);
1364         tmp = INREG(DSPBCNTR);
1365         tmp &= ~DISPPLANE_PLANE_ENABLE;
1366         OUTREG(DSPBCNTR, tmp);
1367
1368         /* Wait for vblank. For now, just wait for a 50Hz cycle (20ms)) */
1369         mdelay(20);
1370
1371         OUTREG(DVOB, INREG(DVOB) & ~PORT_ENABLE);
1372         OUTREG(DVOC, INREG(DVOC) & ~PORT_ENABLE);
1373         OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
1374
1375         /* Disable Sync */
1376         tmp = INREG(ADPA);
1377         tmp &= ~ADPA_DPMS_CONTROL_MASK;
1378         tmp |= ADPA_DPMS_D3;
1379         OUTREG(ADPA, tmp);
1380
1381         /* do some funky magic - xyzzy */
1382         OUTREG(0x61204, 0xabcd0000);
1383
1384         /* turn off PLL */
1385         tmp = INREG(dpll_reg);
1386         tmp &= ~DPLL_VCO_ENABLE;
1387         OUTREG(dpll_reg, tmp);
1388
1389         /* Set PLL parameters */
1390         OUTREG(fp0_reg, *fp0);
1391         OUTREG(fp1_reg, *fp1);
1392
1393         /* Enable PLL */
1394         OUTREG(dpll_reg, *dpll);
1395
1396         /* Set DVOs B/C */
1397         OUTREG(DVOB, hw->dvob);
1398         OUTREG(DVOC, hw->dvoc);
1399
1400         /* undo funky magic */
1401         OUTREG(0x61204, 0x00000000);
1402
1403         /* Set ADPA */
1404         OUTREG(ADPA, INREG(ADPA) | ADPA_DAC_ENABLE);
1405         OUTREG(ADPA, (hw->adpa & ~(ADPA_DPMS_CONTROL_MASK)) | ADPA_DPMS_D3);
1406
1407         /* Set pipe parameters */
1408         OUTREG(hsync_reg, *hs);
1409         OUTREG(hblank_reg, *hb);
1410         OUTREG(htotal_reg, *ht);
1411         OUTREG(vsync_reg, *vs);
1412         OUTREG(vblank_reg, *vb);
1413         OUTREG(vtotal_reg, *vt);
1414         OUTREG(src_size_reg, *ss);
1415
1416         switch (dinfo->info->var.vmode & (FB_VMODE_INTERLACED |
1417                                           FB_VMODE_ODD_FLD_FIRST)) {
1418         case FB_VMODE_INTERLACED | FB_VMODE_ODD_FLD_FIRST:
1419                 OUTREG(pipe_stat_reg, 0xFFFF | PIPESTAT_FLD_EVT_ODD_EN);
1420                 break;
1421         case FB_VMODE_INTERLACED: /* even lines first */
1422                 OUTREG(pipe_stat_reg, 0xFFFF | PIPESTAT_FLD_EVT_EVEN_EN);
1423                 break;
1424         default:                /* non-interlaced */
1425                 OUTREG(pipe_stat_reg, 0xFFFF); /* clear all status bits only */
1426         }
1427         /* Enable pipe */
1428         OUTREG(pipe_conf_reg, *pipe_conf | PIPECONF_ENABLE);
1429
1430         /* Enable sync */
1431         tmp = INREG(ADPA);
1432         tmp &= ~ADPA_DPMS_CONTROL_MASK;
1433         tmp |= ADPA_DPMS_D0;
1434         OUTREG(ADPA, tmp);
1435
1436         /* setup display plane */
1437         if (dinfo->pdev->device == PCI_DEVICE_ID_INTEL_830M) {
1438                 /*
1439                  *      i830M errata: the display plane must be enabled
1440                  *      to allow writes to the other bits in the plane
1441                  *      control register.
1442                  */
1443                 tmp = INREG(DSPACNTR);
1444                 if ((tmp & DISPPLANE_PLANE_ENABLE) != DISPPLANE_PLANE_ENABLE) {
1445                         tmp |= DISPPLANE_PLANE_ENABLE;
1446                         OUTREG(DSPACNTR, tmp);
1447                         OUTREG(DSPACNTR,
1448                                hw->disp_a_ctrl|DISPPLANE_PLANE_ENABLE);
1449                         mdelay(1);
1450                 }
1451         }
1452
1453         OUTREG(DSPACNTR, hw->disp_a_ctrl & ~DISPPLANE_PLANE_ENABLE);
1454         OUTREG(DSPASTRIDE, hw->disp_a_stride);
1455         OUTREG(DSPABASE, hw->disp_a_base);
1456
1457         /* Enable plane */
1458         if (!blank) {
1459                 tmp = INREG(DSPACNTR);
1460                 tmp |= DISPPLANE_PLANE_ENABLE;
1461                 OUTREG(DSPACNTR, tmp);
1462                 OUTREG(DSPABASE, hw->disp_a_base);
1463         }
1464
1465         return 0;
1466 }
1467
1468 /* forward declarations */
1469 static void refresh_ring(struct intelfb_info *dinfo);
1470 static void reset_state(struct intelfb_info *dinfo);
1471 static void do_flush(struct intelfb_info *dinfo);
1472
1473 static  u32 get_ring_space(struct intelfb_info *dinfo)
1474 {
1475         u32 ring_space;
1476
1477         if (dinfo->ring_tail >= dinfo->ring_head)
1478                 ring_space = dinfo->ring.size -
1479                         (dinfo->ring_tail - dinfo->ring_head);
1480         else
1481                 ring_space = dinfo->ring_head - dinfo->ring_tail;
1482
1483         if (ring_space > RING_MIN_FREE)
1484                 ring_space -= RING_MIN_FREE;
1485         else
1486                 ring_space = 0;
1487
1488         return ring_space;
1489 }
1490
1491 static int wait_ring(struct intelfb_info *dinfo, int n)
1492 {
1493         int i = 0;
1494         unsigned long end;
1495         u32 last_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1496
1497 #if VERBOSE > 0
1498         DBG_MSG("wait_ring: %d\n", n);
1499 #endif
1500
1501         end = jiffies + (HZ * 3);
1502         while (dinfo->ring_space < n) {
1503                 dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1504                 dinfo->ring_space = get_ring_space(dinfo);
1505
1506                 if (dinfo->ring_head != last_head) {
1507                         end = jiffies + (HZ * 3);
1508                         last_head = dinfo->ring_head;
1509                 }
1510                 i++;
1511                 if (time_before(end, jiffies)) {
1512                         if (!i) {
1513                                 /* Try again */
1514                                 reset_state(dinfo);
1515                                 refresh_ring(dinfo);
1516                                 do_flush(dinfo);
1517                                 end = jiffies + (HZ * 3);
1518                                 i = 1;
1519                         } else {
1520                                 WRN_MSG("ring buffer : space: %d wanted %d\n",
1521                                         dinfo->ring_space, n);
1522                                 WRN_MSG("lockup - turning off hardware "
1523                                         "acceleration\n");
1524                                 dinfo->ring_lockup = 1;
1525                                 break;
1526                         }
1527                 }
1528                 udelay(1);
1529         }
1530         return i;
1531 }
1532
1533 static void do_flush(struct intelfb_info *dinfo)
1534 {
1535         START_RING(2);
1536         OUT_RING(MI_FLUSH | MI_WRITE_DIRTY_STATE | MI_INVALIDATE_MAP_CACHE);
1537         OUT_RING(MI_NOOP);
1538         ADVANCE_RING();
1539 }
1540
1541 void intelfbhw_do_sync(struct intelfb_info *dinfo)
1542 {
1543 #if VERBOSE > 0
1544         DBG_MSG("intelfbhw_do_sync\n");
1545 #endif
1546
1547         if (!dinfo->accel)
1548                 return;
1549
1550         /*
1551          * Send a flush, then wait until the ring is empty.  This is what
1552          * the XFree86 driver does, and actually it doesn't seem a lot worse
1553          * than the recommended method (both have problems).
1554          */
1555         do_flush(dinfo);
1556         wait_ring(dinfo, dinfo->ring.size - RING_MIN_FREE);
1557         dinfo->ring_space = dinfo->ring.size - RING_MIN_FREE;
1558 }
1559
1560 static void refresh_ring(struct intelfb_info *dinfo)
1561 {
1562 #if VERBOSE > 0
1563         DBG_MSG("refresh_ring\n");
1564 #endif
1565
1566         dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1567         dinfo->ring_tail = INREG(PRI_RING_TAIL) & RING_TAIL_MASK;
1568         dinfo->ring_space = get_ring_space(dinfo);
1569 }
1570
1571 static void reset_state(struct intelfb_info *dinfo)
1572 {
1573         int i;
1574         u32 tmp;
1575
1576 #if VERBOSE > 0
1577         DBG_MSG("reset_state\n");
1578 #endif
1579
1580         for (i = 0; i < FENCE_NUM; i++)
1581                 OUTREG(FENCE + (i << 2), 0);
1582
1583         /* Flush the ring buffer if it's enabled. */
1584         tmp = INREG(PRI_RING_LENGTH);
1585         if (tmp & RING_ENABLE) {
1586 #if VERBOSE > 0
1587                 DBG_MSG("reset_state: ring was enabled\n");
1588 #endif
1589                 refresh_ring(dinfo);
1590                 intelfbhw_do_sync(dinfo);
1591                 DO_RING_IDLE();
1592         }
1593
1594         OUTREG(PRI_RING_LENGTH, 0);
1595         OUTREG(PRI_RING_HEAD, 0);
1596         OUTREG(PRI_RING_TAIL, 0);
1597         OUTREG(PRI_RING_START, 0);
1598 }
1599
1600 /* Stop the 2D engine, and turn off the ring buffer. */
1601 void intelfbhw_2d_stop(struct intelfb_info *dinfo)
1602 {
1603 #if VERBOSE > 0
1604         DBG_MSG("intelfbhw_2d_stop: accel: %d, ring_active: %d\n",
1605                 dinfo->accel, dinfo->ring_active);
1606 #endif
1607
1608         if (!dinfo->accel)
1609                 return;
1610
1611         dinfo->ring_active = 0;
1612         reset_state(dinfo);
1613 }
1614
1615 /*
1616  * Enable the ring buffer, and initialise the 2D engine.
1617  * It is assumed that the graphics engine has been stopped by previously
1618  * calling intelfb_2d_stop().
1619  */
1620 void intelfbhw_2d_start(struct intelfb_info *dinfo)
1621 {
1622 #if VERBOSE > 0
1623         DBG_MSG("intelfbhw_2d_start: accel: %d, ring_active: %d\n",
1624                 dinfo->accel, dinfo->ring_active);
1625 #endif
1626
1627         if (!dinfo->accel)
1628                 return;
1629
1630         /* Initialise the primary ring buffer. */
1631         OUTREG(PRI_RING_LENGTH, 0);
1632         OUTREG(PRI_RING_TAIL, 0);
1633         OUTREG(PRI_RING_HEAD, 0);
1634
1635         OUTREG(PRI_RING_START, dinfo->ring.physical & RING_START_MASK);
1636         OUTREG(PRI_RING_LENGTH,
1637                 ((dinfo->ring.size - GTT_PAGE_SIZE) & RING_LENGTH_MASK) |
1638                 RING_NO_REPORT | RING_ENABLE);
1639         refresh_ring(dinfo);
1640         dinfo->ring_active = 1;
1641 }
1642
1643 /* 2D fillrect (solid fill or invert) */
1644 void intelfbhw_do_fillrect(struct intelfb_info *dinfo, u32 x, u32 y, u32 w,
1645                            u32 h, u32 color, u32 pitch, u32 bpp, u32 rop)
1646 {
1647         u32 br00, br09, br13, br14, br16;
1648
1649 #if VERBOSE > 0
1650         DBG_MSG("intelfbhw_do_fillrect: (%d,%d) %dx%d, c 0x%06x, p %d bpp %d, "
1651                 "rop 0x%02x\n", x, y, w, h, color, pitch, bpp, rop);
1652 #endif
1653
1654         br00 = COLOR_BLT_CMD;
1655         br09 = dinfo->fb_start + (y * pitch + x * (bpp / 8));
1656         br13 = (rop << ROP_SHIFT) | pitch;
1657         br14 = (h << HEIGHT_SHIFT) | ((w * (bpp / 8)) << WIDTH_SHIFT);
1658         br16 = color;
1659
1660         switch (bpp) {
1661         case 8:
1662                 br13 |= COLOR_DEPTH_8;
1663                 break;
1664         case 16:
1665                 br13 |= COLOR_DEPTH_16;
1666                 break;
1667         case 32:
1668                 br13 |= COLOR_DEPTH_32;
1669                 br00 |= WRITE_ALPHA | WRITE_RGB;
1670                 break;
1671         }
1672
1673         START_RING(6);
1674         OUT_RING(br00);
1675         OUT_RING(br13);
1676         OUT_RING(br14);
1677         OUT_RING(br09);
1678         OUT_RING(br16);
1679         OUT_RING(MI_NOOP);
1680         ADVANCE_RING();
1681
1682 #if VERBOSE > 0
1683         DBG_MSG("ring = 0x%08x, 0x%08x (%d)\n", dinfo->ring_head,
1684                 dinfo->ring_tail, dinfo->ring_space);
1685 #endif
1686 }
1687
1688 void
1689 intelfbhw_do_bitblt(struct intelfb_info *dinfo, u32 curx, u32 cury,
1690                     u32 dstx, u32 dsty, u32 w, u32 h, u32 pitch, u32 bpp)
1691 {
1692         u32 br00, br09, br11, br12, br13, br22, br23, br26;
1693
1694 #if VERBOSE > 0
1695         DBG_MSG("intelfbhw_do_bitblt: (%d,%d)->(%d,%d) %dx%d, p %d bpp %d\n",
1696                 curx, cury, dstx, dsty, w, h, pitch, bpp);
1697 #endif
1698
1699         br00 = XY_SRC_COPY_BLT_CMD;
1700         br09 = dinfo->fb_start;
1701         br11 = (pitch << PITCH_SHIFT);
1702         br12 = dinfo->fb_start;
1703         br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
1704         br22 = (dstx << WIDTH_SHIFT) | (dsty << HEIGHT_SHIFT);
1705         br23 = ((dstx + w) << WIDTH_SHIFT) |
1706                ((dsty + h) << HEIGHT_SHIFT);
1707         br26 = (curx << WIDTH_SHIFT) | (cury << HEIGHT_SHIFT);
1708
1709         switch (bpp) {
1710         case 8:
1711                 br13 |= COLOR_DEPTH_8;
1712                 break;
1713         case 16:
1714                 br13 |= COLOR_DEPTH_16;
1715                 break;
1716         case 32:
1717                 br13 |= COLOR_DEPTH_32;
1718                 br00 |= WRITE_ALPHA | WRITE_RGB;
1719                 break;
1720         }
1721
1722         START_RING(8);
1723         OUT_RING(br00);
1724         OUT_RING(br13);
1725         OUT_RING(br22);
1726         OUT_RING(br23);
1727         OUT_RING(br09);
1728         OUT_RING(br26);
1729         OUT_RING(br11);
1730         OUT_RING(br12);
1731         ADVANCE_RING();
1732 }
1733
1734 int intelfbhw_do_drawglyph(struct intelfb_info *dinfo, u32 fg, u32 bg, u32 w,
1735                            u32 h, const u8* cdat, u32 x, u32 y, u32 pitch,
1736                            u32 bpp)
1737 {
1738         int nbytes, ndwords, pad, tmp;
1739         u32 br00, br09, br13, br18, br19, br22, br23;
1740         int dat, ix, iy, iw;
1741         int i, j;
1742
1743 #if VERBOSE > 0
1744         DBG_MSG("intelfbhw_do_drawglyph: (%d,%d) %dx%d\n", x, y, w, h);
1745 #endif
1746
1747         /* size in bytes of a padded scanline */
1748         nbytes = ROUND_UP_TO(w, 16) / 8;
1749
1750         /* Total bytes of padded scanline data to write out. */
1751         nbytes = nbytes * h;
1752
1753         /*
1754          * Check if the glyph data exceeds the immediate mode limit.
1755          * It would take a large font (1K pixels) to hit this limit.
1756          */
1757         if (nbytes > MAX_MONO_IMM_SIZE)
1758                 return 0;
1759
1760         /* Src data is packaged a dword (32-bit) at a time. */
1761         ndwords = ROUND_UP_TO(nbytes, 4) / 4;
1762
1763         /*
1764          * Ring has to be padded to a quad word. But because the command starts
1765            with 7 bytes, pad only if there is an even number of ndwords
1766          */
1767         pad = !(ndwords % 2);
1768
1769         tmp = (XY_MONO_SRC_IMM_BLT_CMD & DW_LENGTH_MASK) + ndwords;
1770         br00 = (XY_MONO_SRC_IMM_BLT_CMD & ~DW_LENGTH_MASK) | tmp;
1771         br09 = dinfo->fb_start;
1772         br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
1773         br18 = bg;
1774         br19 = fg;
1775         br22 = (x << WIDTH_SHIFT) | (y << HEIGHT_SHIFT);
1776         br23 = ((x + w) << WIDTH_SHIFT) | ((y + h) << HEIGHT_SHIFT);
1777
1778         switch (bpp) {
1779         case 8:
1780                 br13 |= COLOR_DEPTH_8;
1781                 break;
1782         case 16:
1783                 br13 |= COLOR_DEPTH_16;
1784                 break;
1785         case 32:
1786                 br13 |= COLOR_DEPTH_32;
1787                 br00 |= WRITE_ALPHA | WRITE_RGB;
1788                 break;
1789         }
1790
1791         START_RING(8 + ndwords);
1792         OUT_RING(br00);
1793         OUT_RING(br13);
1794         OUT_RING(br22);
1795         OUT_RING(br23);
1796         OUT_RING(br09);
1797         OUT_RING(br18);
1798         OUT_RING(br19);
1799         ix = iy = 0;
1800         iw = ROUND_UP_TO(w, 8) / 8;
1801         while (ndwords--) {
1802                 dat = 0;
1803                 for (j = 0; j < 2; ++j) {
1804                         for (i = 0; i < 2; ++i) {
1805                                 if (ix != iw || i == 0)
1806                                         dat |= cdat[iy*iw + ix++] << (i+j*2)*8;
1807                         }
1808                         if (ix == iw && iy != (h-1)) {
1809                                 ix = 0;
1810                                 ++iy;
1811                         }
1812                 }
1813                 OUT_RING(dat);
1814         }
1815         if (pad)
1816                 OUT_RING(MI_NOOP);
1817         ADVANCE_RING();
1818
1819         return 1;
1820 }
1821
1822 /* HW cursor functions. */
1823 void intelfbhw_cursor_init(struct intelfb_info *dinfo)
1824 {
1825         u32 tmp;
1826
1827 #if VERBOSE > 0
1828         DBG_MSG("intelfbhw_cursor_init\n");
1829 #endif
1830
1831         if (dinfo->mobile || IS_I9XX(dinfo)) {
1832                 if (!dinfo->cursor.physical)
1833                         return;
1834                 tmp = INREG(CURSOR_A_CONTROL);
1835                 tmp &= ~(CURSOR_MODE_MASK | CURSOR_MOBILE_GAMMA_ENABLE |
1836                          CURSOR_MEM_TYPE_LOCAL |
1837                          (1 << CURSOR_PIPE_SELECT_SHIFT));
1838                 tmp |= CURSOR_MODE_DISABLE;
1839                 OUTREG(CURSOR_A_CONTROL, tmp);
1840                 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1841         } else {
1842                 tmp = INREG(CURSOR_CONTROL);
1843                 tmp &= ~(CURSOR_FORMAT_MASK | CURSOR_GAMMA_ENABLE |
1844                          CURSOR_ENABLE | CURSOR_STRIDE_MASK);
1845                 tmp = CURSOR_FORMAT_3C;
1846                 OUTREG(CURSOR_CONTROL, tmp);
1847                 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.offset << 12);
1848                 tmp = (64 << CURSOR_SIZE_H_SHIFT) |
1849                       (64 << CURSOR_SIZE_V_SHIFT);
1850                 OUTREG(CURSOR_SIZE, tmp);
1851         }
1852 }
1853
1854 void intelfbhw_cursor_hide(struct intelfb_info *dinfo)
1855 {
1856         u32 tmp;
1857
1858 #if VERBOSE > 0
1859         DBG_MSG("intelfbhw_cursor_hide\n");
1860 #endif
1861
1862         dinfo->cursor_on = 0;
1863         if (dinfo->mobile || IS_I9XX(dinfo)) {
1864                 if (!dinfo->cursor.physical)
1865                         return;
1866                 tmp = INREG(CURSOR_A_CONTROL);
1867                 tmp &= ~CURSOR_MODE_MASK;
1868                 tmp |= CURSOR_MODE_DISABLE;
1869                 OUTREG(CURSOR_A_CONTROL, tmp);
1870                 /* Flush changes */
1871                 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1872         } else {
1873                 tmp = INREG(CURSOR_CONTROL);
1874                 tmp &= ~CURSOR_ENABLE;
1875                 OUTREG(CURSOR_CONTROL, tmp);
1876         }
1877 }
1878
1879 void intelfbhw_cursor_show(struct intelfb_info *dinfo)
1880 {
1881         u32 tmp;
1882
1883 #if VERBOSE > 0
1884         DBG_MSG("intelfbhw_cursor_show\n");
1885 #endif
1886
1887         dinfo->cursor_on = 1;
1888
1889         if (dinfo->cursor_blanked)
1890                 return;
1891
1892         if (dinfo->mobile || IS_I9XX(dinfo)) {
1893                 if (!dinfo->cursor.physical)
1894                         return;
1895                 tmp = INREG(CURSOR_A_CONTROL);
1896                 tmp &= ~CURSOR_MODE_MASK;
1897                 tmp |= CURSOR_MODE_64_4C_AX;
1898                 OUTREG(CURSOR_A_CONTROL, tmp);
1899                 /* Flush changes */
1900                 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1901         } else {
1902                 tmp = INREG(CURSOR_CONTROL);
1903                 tmp |= CURSOR_ENABLE;
1904                 OUTREG(CURSOR_CONTROL, tmp);
1905         }
1906 }
1907
1908 void intelfbhw_cursor_setpos(struct intelfb_info *dinfo, int x, int y)
1909 {
1910         u32 tmp;
1911
1912 #if VERBOSE > 0
1913         DBG_MSG("intelfbhw_cursor_setpos: (%d, %d)\n", x, y);
1914 #endif
1915
1916         /*
1917          * Sets the position. The coordinates are assumed to already
1918          * have any offset adjusted. Assume that the cursor is never
1919          * completely off-screen, and that x, y are always >= 0.
1920          */
1921
1922         tmp = ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT) |
1923               ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
1924         OUTREG(CURSOR_A_POSITION, tmp);
1925
1926         if (IS_I9XX(dinfo))
1927                 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1928 }
1929
1930 void intelfbhw_cursor_setcolor(struct intelfb_info *dinfo, u32 bg, u32 fg)
1931 {
1932 #if VERBOSE > 0
1933         DBG_MSG("intelfbhw_cursor_setcolor\n");
1934 #endif
1935
1936         OUTREG(CURSOR_A_PALETTE0, bg & CURSOR_PALETTE_MASK);
1937         OUTREG(CURSOR_A_PALETTE1, fg & CURSOR_PALETTE_MASK);
1938         OUTREG(CURSOR_A_PALETTE2, fg & CURSOR_PALETTE_MASK);
1939         OUTREG(CURSOR_A_PALETTE3, bg & CURSOR_PALETTE_MASK);
1940 }
1941
1942 void intelfbhw_cursor_load(struct intelfb_info *dinfo, int width, int height,
1943                            u8 *data)
1944 {
1945         u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
1946         int i, j, w = width / 8;
1947         int mod = width % 8, t_mask, d_mask;
1948
1949 #if VERBOSE > 0
1950         DBG_MSG("intelfbhw_cursor_load\n");
1951 #endif
1952
1953         if (!dinfo->cursor.virtual)
1954                 return;
1955
1956         t_mask = 0xff >> mod;
1957         d_mask = ~(0xff >> mod);
1958         for (i = height; i--; ) {
1959                 for (j = 0; j < w; j++) {
1960                         writeb(0x00, addr + j);
1961                         writeb(*(data++), addr + j+8);
1962                 }
1963                 if (mod) {
1964                         writeb(t_mask, addr + j);
1965                         writeb(*(data++) & d_mask, addr + j+8);
1966                 }
1967                 addr += 16;
1968         }
1969 }
1970
1971 void intelfbhw_cursor_reset(struct intelfb_info *dinfo)
1972 {
1973         u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
1974         int i, j;
1975
1976 #if VERBOSE > 0
1977         DBG_MSG("intelfbhw_cursor_reset\n");
1978 #endif
1979
1980         if (!dinfo->cursor.virtual)
1981                 return;
1982
1983         for (i = 64; i--; ) {
1984                 for (j = 0; j < 8; j++) {
1985                         writeb(0xff, addr + j+0);
1986                         writeb(0x00, addr + j+8);
1987                 }
1988                 addr += 16;
1989         }
1990 }
1991
1992 static irqreturn_t intelfbhw_irq(int irq, void *dev_id)
1993 {
1994         u16 tmp;
1995         struct intelfb_info *dinfo = dev_id;
1996
1997         spin_lock(&dinfo->int_lock);
1998
1999         tmp = INREG16(IIR);
2000         if (dinfo->info->var.vmode & FB_VMODE_INTERLACED)
2001                 tmp &= PIPE_A_EVENT_INTERRUPT;
2002         else
2003                 tmp &= VSYNC_PIPE_A_INTERRUPT; /* non-interlaced */
2004
2005         if (tmp == 0) {
2006                 spin_unlock(&dinfo->int_lock);
2007                 return IRQ_RETVAL(0); /* not us */
2008         }
2009
2010         /* clear status bits 0-15 ASAP and don't touch bits 16-31 */
2011         OUTREG(PIPEASTAT, INREG(PIPEASTAT));
2012
2013         OUTREG16(IIR, tmp);
2014         if (dinfo->vsync.pan_display) {
2015                 dinfo->vsync.pan_display = 0;
2016                 OUTREG(DSPABASE, dinfo->vsync.pan_offset);
2017         }
2018
2019         dinfo->vsync.count++;
2020         wake_up_interruptible(&dinfo->vsync.wait);
2021
2022         spin_unlock(&dinfo->int_lock);
2023
2024         return IRQ_RETVAL(1);
2025 }
2026
2027 int intelfbhw_enable_irq(struct intelfb_info *dinfo)
2028 {
2029         u16 tmp;
2030         if (!test_and_set_bit(0, &dinfo->irq_flags)) {
2031                 if (request_irq(dinfo->pdev->irq, intelfbhw_irq, IRQF_SHARED,
2032                                 "intelfb", dinfo)) {
2033                         clear_bit(0, &dinfo->irq_flags);
2034                         return -EINVAL;
2035                 }
2036
2037                 spin_lock_irq(&dinfo->int_lock);
2038                 OUTREG16(HWSTAM, 0xfffe); /* i830 DRM uses ffff */
2039                 OUTREG16(IMR, 0);
2040         } else
2041                 spin_lock_irq(&dinfo->int_lock);
2042
2043         if (dinfo->info->var.vmode & FB_VMODE_INTERLACED)
2044                 tmp = PIPE_A_EVENT_INTERRUPT;
2045         else
2046                 tmp = VSYNC_PIPE_A_INTERRUPT; /* non-interlaced */
2047         if (tmp != INREG16(IER)) {
2048                 DBG_MSG("changing IER to 0x%X\n", tmp);
2049                 OUTREG16(IER, tmp);
2050         }
2051
2052         spin_unlock_irq(&dinfo->int_lock);
2053         return 0;
2054 }
2055
2056 void intelfbhw_disable_irq(struct intelfb_info *dinfo)
2057 {
2058         if (test_and_clear_bit(0, &dinfo->irq_flags)) {
2059                 if (dinfo->vsync.pan_display) {
2060                         dinfo->vsync.pan_display = 0;
2061                         OUTREG(DSPABASE, dinfo->vsync.pan_offset);
2062                 }
2063                 spin_lock_irq(&dinfo->int_lock);
2064                 OUTREG16(HWSTAM, 0xffff);
2065                 OUTREG16(IMR, 0xffff);
2066                 OUTREG16(IER, 0x0);
2067
2068                 OUTREG16(IIR, INREG16(IIR)); /* clear IRQ requests */
2069                 spin_unlock_irq(&dinfo->int_lock);
2070
2071                 free_irq(dinfo->pdev->irq, dinfo);
2072         }
2073 }
2074
2075 int intelfbhw_wait_for_vsync(struct intelfb_info *dinfo, u32 pipe)
2076 {
2077         struct intelfb_vsync *vsync;
2078         unsigned int count;
2079         int ret;
2080
2081         switch (pipe) {
2082                 case 0:
2083                         vsync = &dinfo->vsync;
2084                         break;
2085                 default:
2086                         return -ENODEV;
2087         }
2088
2089         ret = intelfbhw_enable_irq(dinfo);
2090         if (ret)
2091                 return ret;
2092
2093         count = vsync->count;
2094         ret = wait_event_interruptible_timeout(vsync->wait,
2095                                                count != vsync->count, HZ / 10);
2096         if (ret < 0)
2097                 return ret;
2098         if (ret == 0) {
2099                 DBG_MSG("wait_for_vsync timed out!\n");
2100                 return -ETIMEDOUT;
2101         }
2102
2103         return 0;
2104 }